2b15cb3d09
Thanks to roberto for providing pointers to wedge this into HEAD. Approved by: roberto
1044 lines
30 KiB
C
1044 lines
30 KiB
C
/*
|
|
* refclock_irig - audio IRIG-B/E demodulator/decoder
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#if defined(REFCLOCK) && defined(CLOCK_IRIG)
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_io.h"
|
|
#include "ntp_refclock.h"
|
|
#include "ntp_calendar.h"
|
|
#include "ntp_stdlib.h"
|
|
|
|
#include <stdio.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
#ifdef HAVE_SYS_IOCTL_H
|
|
#include <sys/ioctl.h>
|
|
#endif /* HAVE_SYS_IOCTL_H */
|
|
|
|
#include "audio.h"
|
|
|
|
/*
|
|
* Audio IRIG-B/E demodulator/decoder
|
|
*
|
|
* This driver synchronizes the computer time using data encoded in
|
|
* IRIG-B/E signals commonly produced by GPS receivers and other timing
|
|
* devices. The IRIG signal is an amplitude-modulated carrier with
|
|
* pulse-width modulated data bits. For IRIG-B, the carrier frequency is
|
|
* 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
|
|
* 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
|
|
& format is in use.
|
|
*
|
|
* The driver requires an audio codec or sound card with sampling rate 8
|
|
* kHz and mu-law companding. This is the same standard as used by the
|
|
* telephone industry and is supported by most hardware and operating
|
|
* systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
|
|
* implementation, only one audio driver and codec can be supported on a
|
|
* single machine.
|
|
*
|
|
* The program processes 8000-Hz mu-law companded samples using separate
|
|
* signal filters for IRIG-B and IRIG-E, a comb filter, envelope
|
|
* detector and automatic threshold corrector. Cycle crossings relative
|
|
* to the corrected slice level determine the width of each pulse and
|
|
* its value - zero, one or position identifier.
|
|
*
|
|
* The data encode 20 BCD digits which determine the second, minute,
|
|
* hour and day of the year and sometimes the year and synchronization
|
|
* condition. The comb filter exponentially averages the corresponding
|
|
* samples of successive baud intervals in order to reliably identify
|
|
* the reference carrier cycle. A type-II phase-lock loop (PLL) performs
|
|
* additional integration and interpolation to accurately determine the
|
|
* zero crossing of that cycle, which determines the reference
|
|
* timestamp. A pulse-width discriminator demodulates the data pulses,
|
|
* which are then encoded as the BCD digits of the timecode.
|
|
*
|
|
* The timecode and reference timestamp are updated once each second
|
|
* with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
|
|
* saved for later processing. At poll intervals of 64 s, the saved
|
|
* samples are processed by a trimmed-mean filter and used to update the
|
|
* system clock.
|
|
*
|
|
* An automatic gain control feature provides protection against
|
|
* overdriven or underdriven input signal amplitudes. It is designed to
|
|
* maintain adequate demodulator signal amplitude while avoiding
|
|
* occasional noise spikes. In order to assure reliable capture, the
|
|
* decompanded input signal amplitude must be greater than 100 units and
|
|
* the codec sample frequency error less than 250 PPM (.025 percent).
|
|
*
|
|
* Monitor Data
|
|
*
|
|
* The timecode format used for debugging and data recording includes
|
|
* data helpful in diagnosing problems with the IRIG signal and codec
|
|
* connections. The driver produces one line for each timecode in the
|
|
* following format:
|
|
*
|
|
* 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
|
|
*
|
|
* If clockstats is enabled, the most recent line is written to the
|
|
* clockstats file every 64 s. If verbose recording is enabled (fudge
|
|
* flag 4) each line is written as generated.
|
|
*
|
|
* The first field containes the error flags in hex, where the hex bits
|
|
* are interpreted as below. This is followed by the year of century,
|
|
* day of year and time of day. Note that the time of day is for the
|
|
* previous minute, not the current time. The status indicator and year
|
|
* are not produced by some IRIG devices and appear as zeros. Following
|
|
* these fields are the carrier amplitude (0-3000), codec gain (0-255),
|
|
* modulation index (0-1), time constant (4-10), carrier phase error
|
|
* +-.5) and carrier frequency error (PPM). The last field is the on-
|
|
* time timestamp in NTP format.
|
|
*
|
|
* The error flags are defined as follows in hex:
|
|
*
|
|
* x01 Low signal. The carrier amplitude is less than 100 units. This
|
|
* is usually the result of no signal or wrong input port.
|
|
* x02 Frequency error. The codec frequency error is greater than 250
|
|
* PPM. This may be due to wrong signal format or (rarely)
|
|
* defective codec.
|
|
* x04 Modulation error. The IRIG modulation index is less than 0.5.
|
|
* This is usually the result of an overdriven codec, wrong signal
|
|
* format or wrong input port.
|
|
* x08 Frame synch error. The decoder frame does not match the IRIG
|
|
* frame. This is usually the result of an overdriven codec, wrong
|
|
* signal format or noisy IRIG signal. It may also be the result of
|
|
* an IRIG signature check which indicates a failure of the IRIG
|
|
* signal synchronization source.
|
|
* x10 Data bit error. The data bit length is out of tolerance. This is
|
|
* usually the result of an overdriven codec, wrong signal format
|
|
* or noisy IRIG signal.
|
|
* x20 Seconds numbering discrepancy. The decoder second does not match
|
|
* the IRIG second. This is usually the result of an overdriven
|
|
* codec, wrong signal format or noisy IRIG signal.
|
|
* x40 Codec error (overrun). The machine is not fast enough to keep up
|
|
* with the codec.
|
|
* x80 Device status error (Spectracom).
|
|
*
|
|
*
|
|
* Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
|
|
* within a few tens of microseconds relative to the IRIG-B signal.
|
|
* Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
|
|
* broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
|
|
* modulation.
|
|
*
|
|
* Unlike other drivers, which can have multiple instantiations, this
|
|
* one supports only one. It does not seem likely that more than one
|
|
* audio codec would be useful in a single machine. More than one would
|
|
* probably chew up too much CPU time anyway.
|
|
*
|
|
* Fudge factors
|
|
*
|
|
* Fudge flag4 causes the dubugging output described above to be
|
|
* recorded in the clockstats file. Fudge flag2 selects the audio input
|
|
* port, where 0 is the mike port (default) and 1 is the line-in port.
|
|
* It does not seem useful to select the compact disc player port. Fudge
|
|
* flag3 enables audio monitoring of the input signal. For this purpose,
|
|
* the monitor gain is set t a default value. Fudgetime2 is used as a
|
|
* frequency vernier for broken codec sample frequency.
|
|
*
|
|
* Alarm codes
|
|
*
|
|
* CEVNT_BADTIME invalid date or time
|
|
* CEVNT_TIMEOUT no IRIG data since last poll
|
|
*/
|
|
/*
|
|
* Interface definitions
|
|
*/
|
|
#define DEVICE_AUDIO "/dev/audio" /* audio device name */
|
|
#define PRECISION (-17) /* precision assumed (about 10 us) */
|
|
#define REFID "IRIG" /* reference ID */
|
|
#define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */
|
|
#define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */
|
|
#define SECOND 8000 /* nominal sample rate (Hz) */
|
|
#define BAUD 80 /* samples per baud interval */
|
|
#define OFFSET 128 /* companded sample offset */
|
|
#define SIZE 256 /* decompanding table size */
|
|
#define CYCLE 8 /* samples per bit */
|
|
#define SUBFLD 10 /* bits per frame */
|
|
#define FIELD 100 /* bits per second */
|
|
#define MINTC 2 /* min PLL time constant */
|
|
#define MAXTC 10 /* max PLL time constant max */
|
|
#define MAXAMP 3000. /* maximum signal amplitude */
|
|
#define MINAMP 2000. /* minimum signal amplitude */
|
|
#define DRPOUT 100. /* dropout signal amplitude */
|
|
#define MODMIN 0.5 /* minimum modulation index */
|
|
#define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */
|
|
|
|
/*
|
|
* The on-time synchronization point is the positive-going zero crossing
|
|
* of the first cycle of the second. The IIR baseband filter phase delay
|
|
* is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
|
|
* due to the codec and other causes was determined by calibrating to a
|
|
* PPS signal from a GPS receiver.
|
|
*
|
|
* The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
|
|
* within .02 ms short-term with .02 ms jitter. The processor load due
|
|
* to the driver is 0.51 percent.
|
|
*/
|
|
#define IRIG_B ((1.03 + 2.68) / 1000) /* IRIG-B system delay (s) */
|
|
#define IRIG_E ((3.47 + 2.68) / 1000) /* IRIG-E system delay (s) */
|
|
|
|
/*
|
|
* Data bit definitions
|
|
*/
|
|
#define BIT0 0 /* zero */
|
|
#define BIT1 1 /* one */
|
|
#define BITP 2 /* position identifier */
|
|
|
|
/*
|
|
* Error flags
|
|
*/
|
|
#define IRIG_ERR_AMP 0x01 /* low carrier amplitude */
|
|
#define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */
|
|
#define IRIG_ERR_MOD 0x04 /* low modulation index */
|
|
#define IRIG_ERR_SYNCH 0x08 /* frame synch error */
|
|
#define IRIG_ERR_DECODE 0x10 /* frame decoding error */
|
|
#define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */
|
|
#define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */
|
|
#define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */
|
|
|
|
static char hexchar[] = "0123456789abcdef";
|
|
|
|
/*
|
|
* IRIG unit control structure
|
|
*/
|
|
struct irigunit {
|
|
u_char timecode[2 * SUBFLD + 1]; /* timecode string */
|
|
l_fp timestamp; /* audio sample timestamp */
|
|
l_fp tick; /* audio sample increment */
|
|
l_fp refstamp; /* reference timestamp */
|
|
l_fp chrstamp; /* baud timestamp */
|
|
l_fp prvstamp; /* previous baud timestamp */
|
|
double integ[BAUD]; /* baud integrator */
|
|
double phase, freq; /* logical clock phase and frequency */
|
|
double zxing; /* phase detector integrator */
|
|
double yxing; /* cycle phase */
|
|
double exing; /* envelope phase */
|
|
double modndx; /* modulation index */
|
|
double irig_b; /* IRIG-B signal amplitude */
|
|
double irig_e; /* IRIG-E signal amplitude */
|
|
int errflg; /* error flags */
|
|
/*
|
|
* Audio codec variables
|
|
*/
|
|
double comp[SIZE]; /* decompanding table */
|
|
double signal; /* peak signal for AGC */
|
|
int port; /* codec port */
|
|
int gain; /* codec gain */
|
|
int mongain; /* codec monitor gain */
|
|
int seccnt; /* second interval counter */
|
|
|
|
/*
|
|
* RF variables
|
|
*/
|
|
double bpf[9]; /* IRIG-B filter shift register */
|
|
double lpf[5]; /* IRIG-E filter shift register */
|
|
double envmin, envmax; /* envelope min and max */
|
|
double slice; /* envelope slice level */
|
|
double intmin, intmax; /* integrated envelope min and max */
|
|
double maxsignal; /* integrated peak amplitude */
|
|
double noise; /* integrated noise amplitude */
|
|
double lastenv[CYCLE]; /* last cycle amplitudes */
|
|
double lastint[CYCLE]; /* last integrated cycle amplitudes */
|
|
double lastsig; /* last carrier sample */
|
|
double fdelay; /* filter delay */
|
|
int decim; /* sample decimation factor */
|
|
int envphase; /* envelope phase */
|
|
int envptr; /* envelope phase pointer */
|
|
int envsw; /* envelope state */
|
|
int envxing; /* envelope slice crossing */
|
|
int tc; /* time constant */
|
|
int tcount; /* time constant counter */
|
|
int badcnt; /* decimation interval counter */
|
|
|
|
/*
|
|
* Decoder variables
|
|
*/
|
|
int pulse; /* cycle counter */
|
|
int cycles; /* carrier cycles */
|
|
int dcycles; /* data cycles */
|
|
int lastbit; /* last code element */
|
|
int second; /* previous second */
|
|
int bitcnt; /* bit count in frame */
|
|
int frmcnt; /* bit count in second */
|
|
int xptr; /* timecode pointer */
|
|
int bits; /* demodulated bits */
|
|
};
|
|
|
|
/*
|
|
* Function prototypes
|
|
*/
|
|
static int irig_start (int, struct peer *);
|
|
static void irig_shutdown (int, struct peer *);
|
|
static void irig_receive (struct recvbuf *);
|
|
static void irig_poll (int, struct peer *);
|
|
|
|
/*
|
|
* More function prototypes
|
|
*/
|
|
static void irig_base (struct peer *, double);
|
|
static void irig_rf (struct peer *, double);
|
|
static void irig_baud (struct peer *, int);
|
|
static void irig_decode (struct peer *, int);
|
|
static void irig_gain (struct peer *);
|
|
|
|
/*
|
|
* Transfer vector
|
|
*/
|
|
struct refclock refclock_irig = {
|
|
irig_start, /* start up driver */
|
|
irig_shutdown, /* shut down driver */
|
|
irig_poll, /* transmit poll message */
|
|
noentry, /* not used (old irig_control) */
|
|
noentry, /* initialize driver (not used) */
|
|
noentry, /* not used (old irig_buginfo) */
|
|
NOFLAGS /* not used */
|
|
};
|
|
|
|
|
|
/*
|
|
* irig_start - open the devices and initialize data for processing
|
|
*/
|
|
static int
|
|
irig_start(
|
|
int unit, /* instance number (used for PCM) */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct irigunit *up;
|
|
|
|
/*
|
|
* Local variables
|
|
*/
|
|
int fd; /* file descriptor */
|
|
int i; /* index */
|
|
double step; /* codec adjustment */
|
|
|
|
/*
|
|
* Open audio device
|
|
*/
|
|
fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
|
|
if (fd < 0)
|
|
return (0);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
audio_show();
|
|
#endif
|
|
|
|
/*
|
|
* Allocate and initialize unit structure
|
|
*/
|
|
up = emalloc_zero(sizeof(*up));
|
|
pp = peer->procptr;
|
|
pp->io.clock_recv = irig_receive;
|
|
pp->io.srcclock = peer;
|
|
pp->io.datalen = 0;
|
|
pp->io.fd = fd;
|
|
if (!io_addclock(&pp->io)) {
|
|
close(fd);
|
|
pp->io.fd = -1;
|
|
free(up);
|
|
return (0);
|
|
}
|
|
pp->unitptr = up;
|
|
|
|
/*
|
|
* Initialize miscellaneous variables
|
|
*/
|
|
peer->precision = PRECISION;
|
|
pp->clockdesc = DESCRIPTION;
|
|
memcpy((char *)&pp->refid, REFID, 4);
|
|
up->tc = MINTC;
|
|
up->decim = 1;
|
|
up->gain = 127;
|
|
|
|
/*
|
|
* The companded samples are encoded sign-magnitude. The table
|
|
* contains all the 256 values in the interest of speed.
|
|
*/
|
|
up->comp[0] = up->comp[OFFSET] = 0.;
|
|
up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
|
|
up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
|
|
step = 2.;
|
|
for (i = 3; i < OFFSET; i++) {
|
|
up->comp[i] = up->comp[i - 1] + step;
|
|
up->comp[OFFSET + i] = -up->comp[i];
|
|
if (i % 16 == 0)
|
|
step *= 2.;
|
|
}
|
|
DTOLFP(1. / SECOND, &up->tick);
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* irig_shutdown - shut down the clock
|
|
*/
|
|
static void
|
|
irig_shutdown(
|
|
int unit, /* instance number (not used) */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct irigunit *up;
|
|
|
|
pp = peer->procptr;
|
|
up = pp->unitptr;
|
|
if (-1 != pp->io.fd)
|
|
io_closeclock(&pp->io);
|
|
if (NULL != up)
|
|
free(up);
|
|
}
|
|
|
|
|
|
/*
|
|
* irig_receive - receive data from the audio device
|
|
*
|
|
* This routine reads input samples and adjusts the logical clock to
|
|
* track the irig clock by dropping or duplicating codec samples.
|
|
*/
|
|
static void
|
|
irig_receive(
|
|
struct recvbuf *rbufp /* receive buffer structure pointer */
|
|
)
|
|
{
|
|
struct peer *peer;
|
|
struct refclockproc *pp;
|
|
struct irigunit *up;
|
|
|
|
/*
|
|
* Local variables
|
|
*/
|
|
double sample; /* codec sample */
|
|
u_char *dpt; /* buffer pointer */
|
|
int bufcnt; /* buffer counter */
|
|
l_fp ltemp; /* l_fp temp */
|
|
|
|
peer = rbufp->recv_peer;
|
|
pp = peer->procptr;
|
|
up = pp->unitptr;
|
|
|
|
/*
|
|
* Main loop - read until there ain't no more. Note codec
|
|
* samples are bit-inverted.
|
|
*/
|
|
DTOLFP((double)rbufp->recv_length / SECOND, <emp);
|
|
L_SUB(&rbufp->recv_time, <emp);
|
|
up->timestamp = rbufp->recv_time;
|
|
dpt = rbufp->recv_buffer;
|
|
for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
|
|
sample = up->comp[~*dpt++ & 0xff];
|
|
|
|
/*
|
|
* Variable frequency oscillator. The codec oscillator
|
|
* runs at the nominal rate of 8000 samples per second,
|
|
* or 125 us per sample. A frequency change of one unit
|
|
* results in either duplicating or deleting one sample
|
|
* per second, which results in a frequency change of
|
|
* 125 PPM.
|
|
*/
|
|
up->phase += (up->freq + clock_codec) / SECOND;
|
|
up->phase += pp->fudgetime2 / 1e6;
|
|
if (up->phase >= .5) {
|
|
up->phase -= 1.;
|
|
} else if (up->phase < -.5) {
|
|
up->phase += 1.;
|
|
irig_rf(peer, sample);
|
|
irig_rf(peer, sample);
|
|
} else {
|
|
irig_rf(peer, sample);
|
|
}
|
|
L_ADD(&up->timestamp, &up->tick);
|
|
sample = fabs(sample);
|
|
if (sample > up->signal)
|
|
up->signal = sample;
|
|
up->signal += (sample - up->signal) /
|
|
1000;
|
|
|
|
/*
|
|
* Once each second, determine the IRIG format and gain.
|
|
*/
|
|
up->seccnt = (up->seccnt + 1) % SECOND;
|
|
if (up->seccnt == 0) {
|
|
if (up->irig_b > up->irig_e) {
|
|
up->decim = 1;
|
|
up->fdelay = IRIG_B;
|
|
} else {
|
|
up->decim = 10;
|
|
up->fdelay = IRIG_E;
|
|
}
|
|
up->irig_b = up->irig_e = 0;
|
|
irig_gain(peer);
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the input port and monitor gain for the next buffer.
|
|
*/
|
|
if (pp->sloppyclockflag & CLK_FLAG2)
|
|
up->port = 2;
|
|
else
|
|
up->port = 1;
|
|
if (pp->sloppyclockflag & CLK_FLAG3)
|
|
up->mongain = MONGAIN;
|
|
else
|
|
up->mongain = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* irig_rf - RF processing
|
|
*
|
|
* This routine filters the RF signal using a bandass filter for IRIG-B
|
|
* and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
|
|
* decimated by a factor of ten. Note that the codec filters function as
|
|
* roofing filters to attenuate both the high and low ends of the
|
|
* passband. IIR filter coefficients were determined using Matlab Signal
|
|
* Processing Toolkit.
|
|
*/
|
|
static void
|
|
irig_rf(
|
|
struct peer *peer, /* peer structure pointer */
|
|
double sample /* current signal sample */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct irigunit *up;
|
|
|
|
/*
|
|
* Local variables
|
|
*/
|
|
double irig_b, irig_e; /* irig filter outputs */
|
|
|
|
pp = peer->procptr;
|
|
up = pp->unitptr;
|
|
|
|
/*
|
|
* IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
|
|
* bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
|
|
* phase delay 1.03 ms.
|
|
*/
|
|
irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
|
|
irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
|
|
irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
|
|
irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
|
|
irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
|
|
irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
|
|
irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
|
|
irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
|
|
up->bpf[0] = sample - irig_b;
|
|
irig_b = up->bpf[0] * 4.952157e-003
|
|
+ up->bpf[1] * -2.055878e-002
|
|
+ up->bpf[2] * 4.401413e-002
|
|
+ up->bpf[3] * -6.558851e-002
|
|
+ up->bpf[4] * 7.462108e-002
|
|
+ up->bpf[5] * -6.558851e-002
|
|
+ up->bpf[6] * 4.401413e-002
|
|
+ up->bpf[7] * -2.055878e-002
|
|
+ up->bpf[8] * 4.952157e-003;
|
|
up->irig_b += irig_b * irig_b;
|
|
|
|
/*
|
|
* IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
|
|
* 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
|
|
* 3.47 ms.
|
|
*/
|
|
irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
|
|
irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
|
|
irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
|
|
irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
|
|
up->lpf[0] = sample - irig_e;
|
|
irig_e = up->lpf[0] * 3.215696e-003
|
|
+ up->lpf[1] * -1.174951e-002
|
|
+ up->lpf[2] * 1.712074e-002
|
|
+ up->lpf[3] * -1.174951e-002
|
|
+ up->lpf[4] * 3.215696e-003;
|
|
up->irig_e += irig_e * irig_e;
|
|
|
|
/*
|
|
* Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
|
|
*/
|
|
up->badcnt = (up->badcnt + 1) % up->decim;
|
|
if (up->badcnt == 0) {
|
|
if (up->decim == 1)
|
|
irig_base(peer, irig_b);
|
|
else
|
|
irig_base(peer, irig_e);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* irig_base - baseband processing
|
|
*
|
|
* This routine processes the baseband signal and demodulates the AM
|
|
* carrier using a synchronous detector. It then synchronizes to the
|
|
* data frame at the baud rate and decodes the width-modulated data
|
|
* pulses.
|
|
*/
|
|
static void
|
|
irig_base(
|
|
struct peer *peer, /* peer structure pointer */
|
|
double sample /* current signal sample */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct irigunit *up;
|
|
|
|
/*
|
|
* Local variables
|
|
*/
|
|
double lope; /* integrator output */
|
|
double env; /* envelope detector output */
|
|
double dtemp;
|
|
int carphase; /* carrier phase */
|
|
|
|
pp = peer->procptr;
|
|
up = pp->unitptr;
|
|
|
|
/*
|
|
* Synchronous baud integrator. Corresponding samples of current
|
|
* and past baud intervals are integrated to refine the envelope
|
|
* amplitude and phase estimate. We keep one cycle (1 ms) of the
|
|
* raw data and one baud (10 ms) of the integrated data.
|
|
*/
|
|
up->envphase = (up->envphase + 1) % BAUD;
|
|
up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
|
|
(5 * up->tc);
|
|
lope = up->integ[up->envphase];
|
|
carphase = up->envphase % CYCLE;
|
|
up->lastenv[carphase] = sample;
|
|
up->lastint[carphase] = lope;
|
|
|
|
/*
|
|
* Phase detector. Find the negative-going zero crossing
|
|
* relative to sample 4 in the 8-sample sycle. A phase change of
|
|
* 360 degrees produces an output change of one unit.
|
|
*/
|
|
if (up->lastsig > 0 && lope <= 0)
|
|
up->zxing += (double)(carphase - 4) / CYCLE;
|
|
up->lastsig = lope;
|
|
|
|
/*
|
|
* End of the baud. Update signal/noise estimates and PLL
|
|
* phase, frequency and time constant.
|
|
*/
|
|
if (up->envphase == 0) {
|
|
up->maxsignal = up->intmax; up->noise = up->intmin;
|
|
up->intmin = 1e6; up->intmax = -1e6;
|
|
if (up->maxsignal < DRPOUT)
|
|
up->errflg |= IRIG_ERR_AMP;
|
|
if (up->maxsignal > 0)
|
|
up->modndx = (up->maxsignal - up->noise) /
|
|
up->maxsignal;
|
|
else
|
|
up->modndx = 0;
|
|
if (up->modndx < MODMIN)
|
|
up->errflg |= IRIG_ERR_MOD;
|
|
if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
|
|
IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
|
|
up->tc = MINTC;
|
|
up->tcount = 0;
|
|
}
|
|
|
|
/*
|
|
* Update PLL phase and frequency. The PLL time constant
|
|
* is set initially to stabilize the frequency within a
|
|
* minute or two, then increases to the maximum. The
|
|
* frequency is clamped so that the PLL capture range
|
|
* cannot be exceeded.
|
|
*/
|
|
dtemp = up->zxing * up->decim / BAUD;
|
|
up->yxing = dtemp;
|
|
up->zxing = 0.;
|
|
up->phase += dtemp / up->tc;
|
|
up->freq += dtemp / (4. * up->tc * up->tc);
|
|
if (up->freq > MAXFREQ) {
|
|
up->freq = MAXFREQ;
|
|
up->errflg |= IRIG_ERR_FREQ;
|
|
} else if (up->freq < -MAXFREQ) {
|
|
up->freq = -MAXFREQ;
|
|
up->errflg |= IRIG_ERR_FREQ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Synchronous demodulator. There are eight samples in the cycle
|
|
* and ten cycles in the baud. Since the PLL has aligned the
|
|
* negative-going zero crossing at sample 4, the maximum
|
|
* amplitude is at sample 2 and minimum at sample 6. The
|
|
* beginning of the data pulse is determined from the integrated
|
|
* samples, while the end of the pulse is determined from the
|
|
* raw samples. The raw data bits are demodulated relative to
|
|
* the slice level and left-shifted in the decoding register.
|
|
*/
|
|
if (carphase != 7)
|
|
return;
|
|
|
|
lope = (up->lastint[2] - up->lastint[6]) / 2.;
|
|
if (lope > up->intmax)
|
|
up->intmax = lope;
|
|
if (lope < up->intmin)
|
|
up->intmin = lope;
|
|
|
|
/*
|
|
* Pulse code demodulator and reference timestamp. The decoder
|
|
* looks for a sequence of ten bits; the first two bits must be
|
|
* one, the last two bits must be zero. Frame synch is asserted
|
|
* when three correct frames have been found.
|
|
*/
|
|
up->pulse = (up->pulse + 1) % 10;
|
|
up->cycles <<= 1;
|
|
if (lope >= (up->maxsignal + up->noise) / 2.)
|
|
up->cycles |= 1;
|
|
if ((up->cycles & 0x303c0f03) == 0x300c0300) {
|
|
if (up->pulse != 0)
|
|
up->errflg |= IRIG_ERR_SYNCH;
|
|
up->pulse = 0;
|
|
}
|
|
|
|
/*
|
|
* Assemble the baud and max/min to get the slice level for the
|
|
* next baud. The slice level is based on the maximum over the
|
|
* first two bits and the minimum over the last two bits, with
|
|
* the slice level halfway between the maximum and minimum.
|
|
*/
|
|
env = (up->lastenv[2] - up->lastenv[6]) / 2.;
|
|
up->dcycles <<= 1;
|
|
if (env >= up->slice)
|
|
up->dcycles |= 1;
|
|
switch(up->pulse) {
|
|
|
|
case 0:
|
|
irig_baud(peer, up->dcycles);
|
|
if (env < up->envmin)
|
|
up->envmin = env;
|
|
up->slice = (up->envmax + up->envmin) / 2;
|
|
up->envmin = 1e6; up->envmax = -1e6;
|
|
break;
|
|
|
|
case 1:
|
|
up->envmax = env;
|
|
break;
|
|
|
|
case 2:
|
|
if (env > up->envmax)
|
|
up->envmax = env;
|
|
break;
|
|
|
|
case 9:
|
|
up->envmin = env;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* irig_baud - update the PLL and decode the pulse-width signal
|
|
*/
|
|
static void
|
|
irig_baud(
|
|
struct peer *peer, /* peer structure pointer */
|
|
int bits /* decoded bits */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct irigunit *up;
|
|
double dtemp;
|
|
l_fp ltemp;
|
|
|
|
pp = peer->procptr;
|
|
up = pp->unitptr;
|
|
|
|
/*
|
|
* The PLL time constant starts out small, in order to
|
|
* sustain a frequency tolerance of 250 PPM. It
|
|
* gradually increases as the loop settles down. Note
|
|
* that small wiggles are not believed, unless they
|
|
* persist for lots of samples.
|
|
*/
|
|
up->exing = -up->yxing;
|
|
if (abs(up->envxing - up->envphase) <= 1) {
|
|
up->tcount++;
|
|
if (up->tcount > 20 * up->tc) {
|
|
up->tc++;
|
|
if (up->tc > MAXTC)
|
|
up->tc = MAXTC;
|
|
up->tcount = 0;
|
|
up->envxing = up->envphase;
|
|
} else {
|
|
up->exing -= up->envxing - up->envphase;
|
|
}
|
|
} else {
|
|
up->tcount = 0;
|
|
up->envxing = up->envphase;
|
|
}
|
|
|
|
/*
|
|
* Strike the baud timestamp as the positive zero crossing of
|
|
* the first bit, accounting for the codec delay and filter
|
|
* delay.
|
|
*/
|
|
up->prvstamp = up->chrstamp;
|
|
dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
|
|
DTOLFP(dtemp, <emp);
|
|
up->chrstamp = up->timestamp;
|
|
L_SUB(&up->chrstamp, <emp);
|
|
|
|
/*
|
|
* The data bits are collected in ten-bit bauds. The first two
|
|
* bits are not used. The resulting patterns represent runs of
|
|
* 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
|
|
* 8-bit run represents a soft error and is treated as 0.
|
|
*/
|
|
switch (up->dcycles & 0xff) {
|
|
|
|
case 0x00: /* 0-1 bits (0) */
|
|
case 0x80:
|
|
irig_decode(peer, BIT0);
|
|
break;
|
|
|
|
case 0xc0: /* 2-4 bits (1) */
|
|
case 0xe0:
|
|
case 0xf0:
|
|
irig_decode(peer, BIT1);
|
|
break;
|
|
|
|
case 0xf8: /* (5-7 bits (PI) */
|
|
case 0xfc:
|
|
case 0xfe:
|
|
irig_decode(peer, BITP);
|
|
break;
|
|
|
|
default: /* 8 bits (error) */
|
|
irig_decode(peer, BIT0);
|
|
up->errflg |= IRIG_ERR_DECODE;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* irig_decode - decode the data
|
|
*
|
|
* This routine assembles bauds into digits, digits into frames and
|
|
* frames into the timecode fields. Bits can have values of zero, one
|
|
* or position identifier. There are four bits per digit, ten digits per
|
|
* frame and ten frames per second.
|
|
*/
|
|
static void
|
|
irig_decode(
|
|
struct peer *peer, /* peer structure pointer */
|
|
int bit /* data bit (0, 1 or 2) */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct irigunit *up;
|
|
|
|
/*
|
|
* Local variables
|
|
*/
|
|
int syncdig; /* sync digit (Spectracom) */
|
|
char sbs[6 + 1]; /* binary seconds since 0h */
|
|
char spare[2 + 1]; /* mulligan digits */
|
|
int temp;
|
|
|
|
syncdig = 0;
|
|
pp = peer->procptr;
|
|
up = pp->unitptr;
|
|
|
|
/*
|
|
* Assemble frame bits.
|
|
*/
|
|
up->bits >>= 1;
|
|
if (bit == BIT1) {
|
|
up->bits |= 0x200;
|
|
} else if (bit == BITP && up->lastbit == BITP) {
|
|
|
|
/*
|
|
* Frame sync - two adjacent position identifiers, which
|
|
* mark the beginning of the second. The reference time
|
|
* is the beginning of the second position identifier,
|
|
* so copy the character timestamp to the reference
|
|
* timestamp.
|
|
*/
|
|
if (up->frmcnt != 1)
|
|
up->errflg |= IRIG_ERR_SYNCH;
|
|
up->frmcnt = 1;
|
|
up->refstamp = up->prvstamp;
|
|
}
|
|
up->lastbit = bit;
|
|
if (up->frmcnt % SUBFLD == 0) {
|
|
|
|
/*
|
|
* End of frame. Encode two hexadecimal digits in
|
|
* little-endian timecode field. Note frame 1 is shifted
|
|
* right one bit to account for the marker PI.
|
|
*/
|
|
temp = up->bits;
|
|
if (up->frmcnt == 10)
|
|
temp >>= 1;
|
|
if (up->xptr >= 2) {
|
|
up->timecode[--up->xptr] = hexchar[temp & 0xf];
|
|
up->timecode[--up->xptr] = hexchar[(temp >> 5) &
|
|
0xf];
|
|
}
|
|
if (up->frmcnt == 0) {
|
|
|
|
/*
|
|
* End of second. Decode the timecode and wind
|
|
* the clock. Not all IRIG generators have the
|
|
* year; if so, it is nonzero after year 2000.
|
|
* Not all have the hardware status bit; if so,
|
|
* it is lit when the source is okay and dim
|
|
* when bad. We watch this only if the year is
|
|
* nonzero. Not all are configured for signature
|
|
* control. If so, all BCD digits are set to
|
|
* zero if the source is bad. In this case the
|
|
* refclock_process() will reject the timecode
|
|
* as invalid.
|
|
*/
|
|
up->xptr = 2 * SUBFLD;
|
|
if (sscanf((char *)up->timecode,
|
|
"%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
|
|
&syncdig, spare, &pp->day, &pp->hour,
|
|
&pp->minute, &pp->second) != 8)
|
|
pp->leap = LEAP_NOTINSYNC;
|
|
else
|
|
pp->leap = LEAP_NOWARNING;
|
|
up->second = (up->second + up->decim) % 60;
|
|
|
|
/*
|
|
* Raise an alarm if the day field is zero,
|
|
* which happens when signature control is
|
|
* enabled and the device has lost
|
|
* synchronization. Raise an alarm if the year
|
|
* field is nonzero and the sync indicator is
|
|
* zero, which happens when a Spectracom radio
|
|
* has lost synchronization. Raise an alarm if
|
|
* the expected second does not agree with the
|
|
* decoded second, which happens with a garbled
|
|
* IRIG signal. We are very particular.
|
|
*/
|
|
if (pp->day == 0 || (pp->year != 0 && syncdig ==
|
|
0))
|
|
up->errflg |= IRIG_ERR_SIGERR;
|
|
if (pp->second != up->second)
|
|
up->errflg |= IRIG_ERR_CHECK;
|
|
up->second = pp->second;
|
|
|
|
/*
|
|
* Wind the clock only if there are no errors
|
|
* and the time constant has reached the
|
|
* maximum.
|
|
*/
|
|
if (up->errflg == 0 && up->tc == MAXTC) {
|
|
pp->lastref = pp->lastrec;
|
|
pp->lastrec = up->refstamp;
|
|
if (!refclock_process(pp))
|
|
refclock_report(peer,
|
|
CEVNT_BADTIME);
|
|
}
|
|
snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
|
|
"%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
|
|
up->errflg, pp->year, pp->day,
|
|
pp->hour, pp->minute, pp->second,
|
|
up->maxsignal, up->gain, up->modndx,
|
|
up->tc, up->exing * 1e6 / SECOND, up->freq *
|
|
1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
|
|
pp->lencode = strlen(pp->a_lastcode);
|
|
up->errflg = 0;
|
|
if (pp->sloppyclockflag & CLK_FLAG4) {
|
|
record_clock_stats(&peer->srcadr,
|
|
pp->a_lastcode);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("irig %s\n",
|
|
pp->a_lastcode);
|
|
#endif /* DEBUG */
|
|
}
|
|
}
|
|
}
|
|
up->frmcnt = (up->frmcnt + 1) % FIELD;
|
|
}
|
|
|
|
|
|
/*
|
|
* irig_poll - called by the transmit procedure
|
|
*
|
|
* This routine sweeps up the timecode updates since the last poll. For
|
|
* IRIG-B there should be at least 60 updates; for IRIG-E there should
|
|
* be at least 6. If nothing is heard, a timeout event is declared.
|
|
*/
|
|
static void
|
|
irig_poll(
|
|
int unit, /* instance number (not used) */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
|
|
pp = peer->procptr;
|
|
|
|
if (pp->coderecv == pp->codeproc) {
|
|
refclock_report(peer, CEVNT_TIMEOUT);
|
|
return;
|
|
|
|
}
|
|
refclock_receive(peer);
|
|
if (!(pp->sloppyclockflag & CLK_FLAG4)) {
|
|
record_clock_stats(&peer->srcadr, pp->a_lastcode);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("irig %s\n", pp->a_lastcode);
|
|
#endif /* DEBUG */
|
|
}
|
|
pp->polls++;
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* irig_gain - adjust codec gain
|
|
*
|
|
* This routine is called at the end of each second. It uses the AGC to
|
|
* bradket the maximum signal level between MINAMP and MAXAMP to avoid
|
|
* hunting. The routine also jiggles the input port and selectively
|
|
* mutes the monitor.
|
|
*/
|
|
static void
|
|
irig_gain(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
struct irigunit *up;
|
|
|
|
pp = peer->procptr;
|
|
up = pp->unitptr;
|
|
|
|
/*
|
|
* Apparently, the codec uses only the high order bits of the
|
|
* gain control field. Thus, it may take awhile for changes to
|
|
* wiggle the hardware bits.
|
|
*/
|
|
if (up->maxsignal < MINAMP) {
|
|
up->gain += 4;
|
|
if (up->gain > MAXGAIN)
|
|
up->gain = MAXGAIN;
|
|
} else if (up->maxsignal > MAXAMP) {
|
|
up->gain -= 4;
|
|
if (up->gain < 0)
|
|
up->gain = 0;
|
|
}
|
|
audio_gain(up->gain, up->mongain, up->port);
|
|
}
|
|
|
|
|
|
#else
|
|
int refclock_irig_bs;
|
|
#endif /* REFCLOCK */
|