d6dbfed81e
call into leaf functions that require epoch. Since the function is already run in non-sleepable context, it should be safe to cover it whole with epoch. Reported by: syzcaller
2755 lines
69 KiB
C
2755 lines
69 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/route.h>
|
|
#include <net/vnet.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_kdtrace.h>
|
|
#include <net/if_llatbl.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/scope6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet6/in6_ifattach.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <netinet6/send.h>
|
|
|
|
#include <sys/limits.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
|
|
#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
|
|
|
|
#define SIN6(s) ((const struct sockaddr_in6 *)(s))
|
|
|
|
MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
|
|
|
|
/* timer values */
|
|
VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */
|
|
VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */
|
|
VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */
|
|
VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */
|
|
VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for
|
|
* local traffic */
|
|
VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage
|
|
* collection timer */
|
|
|
|
/* preventing too many loops in ND option parsing */
|
|
VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
|
|
|
|
VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper
|
|
* layer hints */
|
|
VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
|
|
* ND entries */
|
|
#define V_nd6_maxndopt VNET(nd6_maxndopt)
|
|
#define V_nd6_maxqueuelen VNET(nd6_maxqueuelen)
|
|
|
|
#ifdef ND6_DEBUG
|
|
VNET_DEFINE(int, nd6_debug) = 1;
|
|
#else
|
|
VNET_DEFINE(int, nd6_debug) = 0;
|
|
#endif
|
|
|
|
static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh;
|
|
|
|
VNET_DEFINE(struct nd_drhead, nd_defrouter);
|
|
VNET_DEFINE(struct nd_prhead, nd_prefix);
|
|
VNET_DEFINE(struct rwlock, nd6_lock);
|
|
VNET_DEFINE(uint64_t, nd6_list_genid);
|
|
VNET_DEFINE(struct mtx, nd6_onlink_mtx);
|
|
|
|
VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
|
|
#define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval)
|
|
|
|
int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
|
|
|
|
static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
|
|
struct ifnet *);
|
|
static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
|
|
static void nd6_slowtimo(void *);
|
|
static int regen_tmpaddr(struct in6_ifaddr *);
|
|
static void nd6_free(struct llentry **, int);
|
|
static void nd6_free_redirect(const struct llentry *);
|
|
static void nd6_llinfo_timer(void *);
|
|
static void nd6_llinfo_settimer_locked(struct llentry *, long);
|
|
static void clear_llinfo_pqueue(struct llentry *);
|
|
static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
|
|
static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *,
|
|
const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
|
|
static int nd6_need_cache(struct ifnet *);
|
|
|
|
|
|
VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch);
|
|
#define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch)
|
|
|
|
VNET_DEFINE(struct callout, nd6_timer_ch);
|
|
#define V_nd6_timer_ch VNET(nd6_timer_ch)
|
|
|
|
static void
|
|
nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
|
|
{
|
|
struct rt_addrinfo rtinfo;
|
|
struct sockaddr_in6 dst;
|
|
struct sockaddr_dl gw;
|
|
struct ifnet *ifp;
|
|
int type;
|
|
int fibnum;
|
|
|
|
LLE_WLOCK_ASSERT(lle);
|
|
|
|
if (lltable_get_af(lle->lle_tbl) != AF_INET6)
|
|
return;
|
|
|
|
switch (evt) {
|
|
case LLENTRY_RESOLVED:
|
|
type = RTM_ADD;
|
|
KASSERT(lle->la_flags & LLE_VALID,
|
|
("%s: %p resolved but not valid?", __func__, lle));
|
|
break;
|
|
case LLENTRY_EXPIRED:
|
|
type = RTM_DELETE;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
ifp = lltable_get_ifp(lle->lle_tbl);
|
|
|
|
bzero(&dst, sizeof(dst));
|
|
bzero(&gw, sizeof(gw));
|
|
bzero(&rtinfo, sizeof(rtinfo));
|
|
lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
|
|
dst.sin6_scope_id = in6_getscopezone(ifp,
|
|
in6_addrscope(&dst.sin6_addr));
|
|
gw.sdl_len = sizeof(struct sockaddr_dl);
|
|
gw.sdl_family = AF_LINK;
|
|
gw.sdl_alen = ifp->if_addrlen;
|
|
gw.sdl_index = ifp->if_index;
|
|
gw.sdl_type = ifp->if_type;
|
|
if (evt == LLENTRY_RESOLVED)
|
|
bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
|
|
rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
|
|
rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
|
|
rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
|
|
fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
|
|
rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
|
|
type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
|
|
}
|
|
|
|
/*
|
|
* A handler for interface link layer address change event.
|
|
*/
|
|
static void
|
|
nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
|
|
{
|
|
|
|
lltable_update_ifaddr(LLTABLE6(ifp));
|
|
}
|
|
|
|
void
|
|
nd6_init(void)
|
|
{
|
|
|
|
mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
|
|
rw_init(&V_nd6_lock, "nd6 list");
|
|
|
|
LIST_INIT(&V_nd_prefix);
|
|
TAILQ_INIT(&V_nd_defrouter);
|
|
|
|
/* Start timers. */
|
|
callout_init(&V_nd6_slowtimo_ch, 0);
|
|
callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
|
|
nd6_slowtimo, curvnet);
|
|
|
|
callout_init(&V_nd6_timer_ch, 0);
|
|
callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
|
|
|
|
nd6_dad_init();
|
|
if (IS_DEFAULT_VNET(curvnet)) {
|
|
lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
|
|
NULL, EVENTHANDLER_PRI_ANY);
|
|
iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
|
|
nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
|
|
ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event,
|
|
nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY);
|
|
}
|
|
}
|
|
|
|
#ifdef VIMAGE
|
|
void
|
|
nd6_destroy()
|
|
{
|
|
|
|
callout_drain(&V_nd6_slowtimo_ch);
|
|
callout_drain(&V_nd6_timer_ch);
|
|
if (IS_DEFAULT_VNET(curvnet)) {
|
|
EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh);
|
|
EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
|
|
EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
|
|
}
|
|
rw_destroy(&V_nd6_lock);
|
|
mtx_destroy(&V_nd6_onlink_mtx);
|
|
}
|
|
#endif
|
|
|
|
struct nd_ifinfo *
|
|
nd6_ifattach(struct ifnet *ifp)
|
|
{
|
|
struct nd_ifinfo *nd;
|
|
|
|
nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
|
|
nd->initialized = 1;
|
|
|
|
nd->chlim = IPV6_DEFHLIM;
|
|
nd->basereachable = REACHABLE_TIME;
|
|
nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
|
|
nd->retrans = RETRANS_TIMER;
|
|
|
|
nd->flags = ND6_IFF_PERFORMNUD;
|
|
|
|
/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
|
|
* XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
|
|
* default regardless of the V_ip6_auto_linklocal configuration to
|
|
* give a reasonable default behavior.
|
|
*/
|
|
if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
|
|
(ifp->if_flags & IFF_LOOPBACK))
|
|
nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
|
|
/*
|
|
* A loopback interface does not need to accept RTADV.
|
|
* XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
|
|
* default regardless of the V_ip6_accept_rtadv configuration to
|
|
* prevent the interface from accepting RA messages arrived
|
|
* on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
|
|
*/
|
|
if (V_ip6_accept_rtadv &&
|
|
!(ifp->if_flags & IFF_LOOPBACK) &&
|
|
(ifp->if_type != IFT_BRIDGE))
|
|
nd->flags |= ND6_IFF_ACCEPT_RTADV;
|
|
if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
|
|
nd->flags |= ND6_IFF_NO_RADR;
|
|
|
|
/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
|
|
nd6_setmtu0(ifp, nd);
|
|
|
|
return nd;
|
|
}
|
|
|
|
void
|
|
nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifaddr *ifa, *next;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
|
|
/* stop DAD processing */
|
|
nd6_dad_stop(ifa);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
free(nd, M_IP6NDP);
|
|
}
|
|
|
|
/*
|
|
* Reset ND level link MTU. This function is called when the physical MTU
|
|
* changes, which means we might have to adjust the ND level MTU.
|
|
*/
|
|
void
|
|
nd6_setmtu(struct ifnet *ifp)
|
|
{
|
|
if (ifp->if_afdata[AF_INET6] == NULL)
|
|
return;
|
|
|
|
nd6_setmtu0(ifp, ND_IFINFO(ifp));
|
|
}
|
|
|
|
/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
|
|
void
|
|
nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
|
|
{
|
|
u_int32_t omaxmtu;
|
|
|
|
omaxmtu = ndi->maxmtu;
|
|
ndi->maxmtu = ifp->if_mtu;
|
|
|
|
/*
|
|
* Decreasing the interface MTU under IPV6 minimum MTU may cause
|
|
* undesirable situation. We thus notify the operator of the change
|
|
* explicitly. The check for omaxmtu is necessary to restrict the
|
|
* log to the case of changing the MTU, not initializing it.
|
|
*/
|
|
if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
|
|
log(LOG_NOTICE, "nd6_setmtu0: "
|
|
"new link MTU on %s (%lu) is too small for IPv6\n",
|
|
if_name(ifp), (unsigned long)ndi->maxmtu);
|
|
}
|
|
|
|
if (ndi->maxmtu > V_in6_maxmtu)
|
|
in6_setmaxmtu(); /* check all interfaces just in case */
|
|
|
|
}
|
|
|
|
void
|
|
nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
|
|
{
|
|
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
|
|
ndopts->nd_opts_last
|
|
= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
|
|
|
|
if (icmp6len == 0) {
|
|
ndopts->nd_opts_done = 1;
|
|
ndopts->nd_opts_search = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Take one ND option.
|
|
*/
|
|
struct nd_opt_hdr *
|
|
nd6_option(union nd_opts *ndopts)
|
|
{
|
|
struct nd_opt_hdr *nd_opt;
|
|
int olen;
|
|
|
|
KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
|
|
KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
|
|
__func__));
|
|
if (ndopts->nd_opts_search == NULL)
|
|
return NULL;
|
|
if (ndopts->nd_opts_done)
|
|
return NULL;
|
|
|
|
nd_opt = ndopts->nd_opts_search;
|
|
|
|
/* make sure nd_opt_len is inside the buffer */
|
|
if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
return NULL;
|
|
}
|
|
|
|
olen = nd_opt->nd_opt_len << 3;
|
|
if (olen == 0) {
|
|
/*
|
|
* Message validation requires that all included
|
|
* options have a length that is greater than zero.
|
|
*/
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
return NULL;
|
|
}
|
|
|
|
ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
|
|
if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
|
|
/* option overruns the end of buffer, invalid */
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
return NULL;
|
|
} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
|
|
/* reached the end of options chain */
|
|
ndopts->nd_opts_done = 1;
|
|
ndopts->nd_opts_search = NULL;
|
|
}
|
|
return nd_opt;
|
|
}
|
|
|
|
/*
|
|
* Parse multiple ND options.
|
|
* This function is much easier to use, for ND routines that do not need
|
|
* multiple options of the same type.
|
|
*/
|
|
int
|
|
nd6_options(union nd_opts *ndopts)
|
|
{
|
|
struct nd_opt_hdr *nd_opt;
|
|
int i = 0;
|
|
|
|
KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
|
|
KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
|
|
__func__));
|
|
if (ndopts->nd_opts_search == NULL)
|
|
return 0;
|
|
|
|
while (1) {
|
|
nd_opt = nd6_option(ndopts);
|
|
if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
|
|
/*
|
|
* Message validation requires that all included
|
|
* options have a length that is greater than zero.
|
|
*/
|
|
ICMP6STAT_INC(icp6s_nd_badopt);
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
return -1;
|
|
}
|
|
|
|
if (nd_opt == NULL)
|
|
goto skip1;
|
|
|
|
switch (nd_opt->nd_opt_type) {
|
|
case ND_OPT_SOURCE_LINKADDR:
|
|
case ND_OPT_TARGET_LINKADDR:
|
|
case ND_OPT_MTU:
|
|
case ND_OPT_REDIRECTED_HEADER:
|
|
case ND_OPT_NONCE:
|
|
if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
|
|
nd6log((LOG_INFO,
|
|
"duplicated ND6 option found (type=%d)\n",
|
|
nd_opt->nd_opt_type));
|
|
/* XXX bark? */
|
|
} else {
|
|
ndopts->nd_opt_array[nd_opt->nd_opt_type]
|
|
= nd_opt;
|
|
}
|
|
break;
|
|
case ND_OPT_PREFIX_INFORMATION:
|
|
if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
|
|
ndopts->nd_opt_array[nd_opt->nd_opt_type]
|
|
= nd_opt;
|
|
}
|
|
ndopts->nd_opts_pi_end =
|
|
(struct nd_opt_prefix_info *)nd_opt;
|
|
break;
|
|
/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
|
|
case ND_OPT_RDNSS: /* RFC 6106 */
|
|
case ND_OPT_DNSSL: /* RFC 6106 */
|
|
/*
|
|
* Silently ignore options we know and do not care about
|
|
* in the kernel.
|
|
*/
|
|
break;
|
|
default:
|
|
/*
|
|
* Unknown options must be silently ignored,
|
|
* to accommodate future extension to the protocol.
|
|
*/
|
|
nd6log((LOG_DEBUG,
|
|
"nd6_options: unsupported option %d - "
|
|
"option ignored\n", nd_opt->nd_opt_type));
|
|
}
|
|
|
|
skip1:
|
|
i++;
|
|
if (i > V_nd6_maxndopt) {
|
|
ICMP6STAT_INC(icp6s_nd_toomanyopt);
|
|
nd6log((LOG_INFO, "too many loop in nd opt\n"));
|
|
break;
|
|
}
|
|
|
|
if (ndopts->nd_opts_done)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ND6 timer routine to handle ND6 entries
|
|
*/
|
|
static void
|
|
nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
|
|
{
|
|
int canceled;
|
|
|
|
LLE_WLOCK_ASSERT(ln);
|
|
|
|
if (tick < 0) {
|
|
ln->la_expire = 0;
|
|
ln->ln_ntick = 0;
|
|
canceled = callout_stop(&ln->lle_timer);
|
|
} else {
|
|
ln->la_expire = time_uptime + tick / hz;
|
|
LLE_ADDREF(ln);
|
|
if (tick > INT_MAX) {
|
|
ln->ln_ntick = tick - INT_MAX;
|
|
canceled = callout_reset(&ln->lle_timer, INT_MAX,
|
|
nd6_llinfo_timer, ln);
|
|
} else {
|
|
ln->ln_ntick = 0;
|
|
canceled = callout_reset(&ln->lle_timer, tick,
|
|
nd6_llinfo_timer, ln);
|
|
}
|
|
}
|
|
if (canceled > 0)
|
|
LLE_REMREF(ln);
|
|
}
|
|
|
|
/*
|
|
* Gets source address of the first packet in hold queue
|
|
* and stores it in @src.
|
|
* Returns pointer to @src (if hold queue is not empty) or NULL.
|
|
*
|
|
* Set noinline to be dtrace-friendly
|
|
*/
|
|
static __noinline struct in6_addr *
|
|
nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
|
|
{
|
|
struct ip6_hdr hdr;
|
|
struct mbuf *m;
|
|
|
|
if (ln->la_hold == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* assume every packet in la_hold has the same IP header
|
|
*/
|
|
m = ln->la_hold;
|
|
if (sizeof(hdr) > m->m_len)
|
|
return (NULL);
|
|
|
|
m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
|
|
*src = hdr.ip6_src;
|
|
|
|
return (src);
|
|
}
|
|
|
|
/*
|
|
* Checks if we need to switch from STALE state.
|
|
*
|
|
* RFC 4861 requires switching from STALE to DELAY state
|
|
* on first packet matching entry, waiting V_nd6_delay and
|
|
* transition to PROBE state (if upper layer confirmation was
|
|
* not received).
|
|
*
|
|
* This code performs a bit differently:
|
|
* On packet hit we don't change state (but desired state
|
|
* can be guessed by control plane). However, after V_nd6_delay
|
|
* seconds code will transition to PROBE state (so DELAY state
|
|
* is kinda skipped in most situations).
|
|
*
|
|
* Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
|
|
* we perform the following upon entering STALE state:
|
|
*
|
|
* 1) Arm timer to run each V_nd6_delay seconds to make sure that
|
|
* if packet was transmitted at the start of given interval, we
|
|
* would be able to switch to PROBE state in V_nd6_delay seconds
|
|
* as user expects.
|
|
*
|
|
* 2) Reschedule timer until original V_nd6_gctimer expires keeping
|
|
* lle in STALE state (remaining timer value stored in lle_remtime).
|
|
*
|
|
* 3) Reschedule timer if packet was transmitted less that V_nd6_delay
|
|
* seconds ago.
|
|
*
|
|
* Returns non-zero value if the entry is still STALE (storing
|
|
* the next timer interval in @pdelay).
|
|
*
|
|
* Returns zero value if original timer expired or we need to switch to
|
|
* PROBE (store that in @do_switch variable).
|
|
*/
|
|
static int
|
|
nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
|
|
{
|
|
int nd_delay, nd_gctimer, r_skip_req;
|
|
time_t lle_hittime;
|
|
long delay;
|
|
|
|
*do_switch = 0;
|
|
nd_gctimer = V_nd6_gctimer;
|
|
nd_delay = V_nd6_delay;
|
|
|
|
LLE_REQ_LOCK(lle);
|
|
r_skip_req = lle->r_skip_req;
|
|
lle_hittime = lle->lle_hittime;
|
|
LLE_REQ_UNLOCK(lle);
|
|
|
|
if (r_skip_req > 0) {
|
|
|
|
/*
|
|
* Nonzero r_skip_req value was set upon entering
|
|
* STALE state. Since value was not changed, no
|
|
* packets were passed using this lle. Ask for
|
|
* timer reschedule and keep STALE state.
|
|
*/
|
|
delay = (long)(MIN(nd_gctimer, nd_delay));
|
|
delay *= hz;
|
|
if (lle->lle_remtime > delay)
|
|
lle->lle_remtime -= delay;
|
|
else {
|
|
delay = lle->lle_remtime;
|
|
lle->lle_remtime = 0;
|
|
}
|
|
|
|
if (delay == 0) {
|
|
|
|
/*
|
|
* The original ng6_gctime timeout ended,
|
|
* no more rescheduling.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
*pdelay = delay;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Packet received. Verify timestamp
|
|
*/
|
|
delay = (long)(time_uptime - lle_hittime);
|
|
if (delay < nd_delay) {
|
|
|
|
/*
|
|
* V_nd6_delay still not passed since the first
|
|
* hit in STALE state.
|
|
* Reshedule timer and return.
|
|
*/
|
|
*pdelay = (long)(nd_delay - delay) * hz;
|
|
return (1);
|
|
}
|
|
|
|
/* Request switching to probe */
|
|
*do_switch = 1;
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Switch @lle state to new state optionally arming timers.
|
|
*
|
|
* Set noinline to be dtrace-friendly
|
|
*/
|
|
__noinline void
|
|
nd6_llinfo_setstate(struct llentry *lle, int newstate)
|
|
{
|
|
struct ifnet *ifp;
|
|
int nd_gctimer, nd_delay;
|
|
long delay, remtime;
|
|
|
|
delay = 0;
|
|
remtime = 0;
|
|
|
|
switch (newstate) {
|
|
case ND6_LLINFO_INCOMPLETE:
|
|
ifp = lle->lle_tbl->llt_ifp;
|
|
delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
|
|
break;
|
|
case ND6_LLINFO_REACHABLE:
|
|
if (!ND6_LLINFO_PERMANENT(lle)) {
|
|
ifp = lle->lle_tbl->llt_ifp;
|
|
delay = (long)ND_IFINFO(ifp)->reachable * hz;
|
|
}
|
|
break;
|
|
case ND6_LLINFO_STALE:
|
|
|
|
/*
|
|
* Notify fast path that we want to know if any packet
|
|
* is transmitted by setting r_skip_req.
|
|
*/
|
|
LLE_REQ_LOCK(lle);
|
|
lle->r_skip_req = 1;
|
|
LLE_REQ_UNLOCK(lle);
|
|
nd_delay = V_nd6_delay;
|
|
nd_gctimer = V_nd6_gctimer;
|
|
|
|
delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
|
|
remtime = (long)nd_gctimer * hz - delay;
|
|
break;
|
|
case ND6_LLINFO_DELAY:
|
|
lle->la_asked = 0;
|
|
delay = (long)V_nd6_delay * hz;
|
|
break;
|
|
}
|
|
|
|
if (delay > 0)
|
|
nd6_llinfo_settimer_locked(lle, delay);
|
|
|
|
lle->lle_remtime = remtime;
|
|
lle->ln_state = newstate;
|
|
}
|
|
|
|
/*
|
|
* Timer-dependent part of nd state machine.
|
|
*
|
|
* Set noinline to be dtrace-friendly
|
|
*/
|
|
static __noinline void
|
|
nd6_llinfo_timer(void *arg)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct llentry *ln;
|
|
struct in6_addr *dst, *pdst, *psrc, src;
|
|
struct ifnet *ifp;
|
|
struct nd_ifinfo *ndi;
|
|
int do_switch, send_ns;
|
|
long delay;
|
|
|
|
KASSERT(arg != NULL, ("%s: arg NULL", __func__));
|
|
ln = (struct llentry *)arg;
|
|
ifp = lltable_get_ifp(ln->lle_tbl);
|
|
CURVNET_SET(ifp->if_vnet);
|
|
|
|
ND6_RLOCK();
|
|
LLE_WLOCK(ln);
|
|
if (callout_pending(&ln->lle_timer)) {
|
|
/*
|
|
* Here we are a bit odd here in the treatment of
|
|
* active/pending. If the pending bit is set, it got
|
|
* rescheduled before I ran. The active
|
|
* bit we ignore, since if it was stopped
|
|
* in ll_tablefree() and was currently running
|
|
* it would have return 0 so the code would
|
|
* not have deleted it since the callout could
|
|
* not be stopped so we want to go through
|
|
* with the delete here now. If the callout
|
|
* was restarted, the pending bit will be back on and
|
|
* we just want to bail since the callout_reset would
|
|
* return 1 and our reference would have been removed
|
|
* by nd6_llinfo_settimer_locked above since canceled
|
|
* would have been 1.
|
|
*/
|
|
LLE_WUNLOCK(ln);
|
|
ND6_RUNLOCK();
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
NET_EPOCH_ENTER(et);
|
|
ndi = ND_IFINFO(ifp);
|
|
send_ns = 0;
|
|
dst = &ln->r_l3addr.addr6;
|
|
pdst = dst;
|
|
|
|
if (ln->ln_ntick > 0) {
|
|
if (ln->ln_ntick > INT_MAX) {
|
|
ln->ln_ntick -= INT_MAX;
|
|
nd6_llinfo_settimer_locked(ln, INT_MAX);
|
|
} else {
|
|
ln->ln_ntick = 0;
|
|
nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
if (ln->la_flags & LLE_STATIC) {
|
|
goto done;
|
|
}
|
|
|
|
if (ln->la_flags & LLE_DELETED) {
|
|
nd6_free(&ln, 0);
|
|
goto done;
|
|
}
|
|
|
|
switch (ln->ln_state) {
|
|
case ND6_LLINFO_INCOMPLETE:
|
|
if (ln->la_asked < V_nd6_mmaxtries) {
|
|
ln->la_asked++;
|
|
send_ns = 1;
|
|
/* Send NS to multicast address */
|
|
pdst = NULL;
|
|
} else {
|
|
struct mbuf *m = ln->la_hold;
|
|
if (m) {
|
|
struct mbuf *m0;
|
|
|
|
/*
|
|
* assuming every packet in la_hold has the
|
|
* same IP header. Send error after unlock.
|
|
*/
|
|
m0 = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
ln->la_hold = m0;
|
|
clear_llinfo_pqueue(ln);
|
|
}
|
|
nd6_free(&ln, 0);
|
|
if (m != NULL)
|
|
icmp6_error2(m, ICMP6_DST_UNREACH,
|
|
ICMP6_DST_UNREACH_ADDR, 0, ifp);
|
|
}
|
|
break;
|
|
case ND6_LLINFO_REACHABLE:
|
|
if (!ND6_LLINFO_PERMANENT(ln))
|
|
nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
|
|
break;
|
|
|
|
case ND6_LLINFO_STALE:
|
|
if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
|
|
|
|
/*
|
|
* No packet has used this entry and GC timeout
|
|
* has not been passed. Reshedule timer and
|
|
* return.
|
|
*/
|
|
nd6_llinfo_settimer_locked(ln, delay);
|
|
break;
|
|
}
|
|
|
|
if (do_switch == 0) {
|
|
|
|
/*
|
|
* GC timer has ended and entry hasn't been used.
|
|
* Run Garbage collector (RFC 4861, 5.3)
|
|
*/
|
|
if (!ND6_LLINFO_PERMANENT(ln))
|
|
nd6_free(&ln, 1);
|
|
break;
|
|
}
|
|
|
|
/* Entry has been used AND delay timer has ended. */
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case ND6_LLINFO_DELAY:
|
|
if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
|
|
/* We need NUD */
|
|
ln->la_asked = 1;
|
|
nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
|
|
send_ns = 1;
|
|
} else
|
|
nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
|
|
break;
|
|
case ND6_LLINFO_PROBE:
|
|
if (ln->la_asked < V_nd6_umaxtries) {
|
|
ln->la_asked++;
|
|
send_ns = 1;
|
|
} else {
|
|
nd6_free(&ln, 0);
|
|
}
|
|
break;
|
|
default:
|
|
panic("%s: paths in a dark night can be confusing: %d",
|
|
__func__, ln->ln_state);
|
|
}
|
|
done:
|
|
if (ln != NULL)
|
|
ND6_RUNLOCK();
|
|
if (send_ns != 0) {
|
|
nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
|
|
psrc = nd6_llinfo_get_holdsrc(ln, &src);
|
|
LLE_FREE_LOCKED(ln);
|
|
ln = NULL;
|
|
nd6_ns_output(ifp, psrc, pdst, dst, NULL);
|
|
}
|
|
|
|
if (ln != NULL)
|
|
LLE_FREE_LOCKED(ln);
|
|
NET_EPOCH_EXIT(et);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
|
|
/*
|
|
* ND6 timer routine to expire default route list and prefix list
|
|
*/
|
|
void
|
|
nd6_timer(void *arg)
|
|
{
|
|
CURVNET_SET((struct vnet *) arg);
|
|
struct epoch_tracker et;
|
|
struct nd_drhead drq;
|
|
struct nd_prhead prl;
|
|
struct nd_defrouter *dr, *ndr;
|
|
struct nd_prefix *pr, *npr;
|
|
struct ifnet *ifp;
|
|
struct in6_ifaddr *ia6, *nia6;
|
|
uint64_t genid;
|
|
|
|
TAILQ_INIT(&drq);
|
|
LIST_INIT(&prl);
|
|
|
|
ND6_WLOCK();
|
|
TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr)
|
|
if (dr->expire && dr->expire < time_uptime)
|
|
defrouter_unlink(dr, &drq);
|
|
ND6_WUNLOCK();
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
while ((dr = TAILQ_FIRST(&drq)) != NULL) {
|
|
TAILQ_REMOVE(&drq, dr, dr_entry);
|
|
defrouter_del(dr);
|
|
}
|
|
|
|
/*
|
|
* expire interface addresses.
|
|
* in the past the loop was inside prefix expiry processing.
|
|
* However, from a stricter speci-confrmance standpoint, we should
|
|
* rather separate address lifetimes and prefix lifetimes.
|
|
*
|
|
* XXXRW: in6_ifaddrhead locking.
|
|
*/
|
|
addrloop:
|
|
CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
|
|
/* check address lifetime */
|
|
if (IFA6_IS_INVALID(ia6)) {
|
|
int regen = 0;
|
|
|
|
/*
|
|
* If the expiring address is temporary, try
|
|
* regenerating a new one. This would be useful when
|
|
* we suspended a laptop PC, then turned it on after a
|
|
* period that could invalidate all temporary
|
|
* addresses. Although we may have to restart the
|
|
* loop (see below), it must be after purging the
|
|
* address. Otherwise, we'd see an infinite loop of
|
|
* regeneration.
|
|
*/
|
|
if (V_ip6_use_tempaddr &&
|
|
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
|
|
if (regen_tmpaddr(ia6) == 0)
|
|
regen = 1;
|
|
}
|
|
|
|
in6_purgeaddr(&ia6->ia_ifa);
|
|
|
|
if (regen)
|
|
goto addrloop; /* XXX: see below */
|
|
} else if (IFA6_IS_DEPRECATED(ia6)) {
|
|
int oldflags = ia6->ia6_flags;
|
|
|
|
ia6->ia6_flags |= IN6_IFF_DEPRECATED;
|
|
|
|
/*
|
|
* If a temporary address has just become deprecated,
|
|
* regenerate a new one if possible.
|
|
*/
|
|
if (V_ip6_use_tempaddr &&
|
|
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
|
|
(oldflags & IN6_IFF_DEPRECATED) == 0) {
|
|
|
|
if (regen_tmpaddr(ia6) == 0) {
|
|
/*
|
|
* A new temporary address is
|
|
* generated.
|
|
* XXX: this means the address chain
|
|
* has changed while we are still in
|
|
* the loop. Although the change
|
|
* would not cause disaster (because
|
|
* it's not a deletion, but an
|
|
* addition,) we'd rather restart the
|
|
* loop just for safety. Or does this
|
|
* significantly reduce performance??
|
|
*/
|
|
goto addrloop;
|
|
}
|
|
}
|
|
} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
|
|
/*
|
|
* Schedule DAD for a tentative address. This happens
|
|
* if the interface was down or not running
|
|
* when the address was configured.
|
|
*/
|
|
int delay;
|
|
|
|
delay = arc4random() %
|
|
(MAX_RTR_SOLICITATION_DELAY * hz);
|
|
nd6_dad_start((struct ifaddr *)ia6, delay);
|
|
} else {
|
|
/*
|
|
* Check status of the interface. If it is down,
|
|
* mark the address as tentative for future DAD.
|
|
*/
|
|
ifp = ia6->ia_ifp;
|
|
if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 &&
|
|
((ifp->if_flags & IFF_UP) == 0 ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
|
|
(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){
|
|
ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
|
|
ia6->ia6_flags |= IN6_IFF_TENTATIVE;
|
|
}
|
|
|
|
/*
|
|
* A new RA might have made a deprecated address
|
|
* preferred.
|
|
*/
|
|
ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
|
|
}
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
ND6_WLOCK();
|
|
restart:
|
|
LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
|
|
/*
|
|
* Expire prefixes. Since the pltime is only used for
|
|
* autoconfigured addresses, pltime processing for prefixes is
|
|
* not necessary.
|
|
*
|
|
* Only unlink after all derived addresses have expired. This
|
|
* may not occur until two hours after the prefix has expired
|
|
* per RFC 4862. If the prefix expires before its derived
|
|
* addresses, mark it off-link. This will be done automatically
|
|
* after unlinking if no address references remain.
|
|
*/
|
|
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
|
|
time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
|
|
continue;
|
|
|
|
if (pr->ndpr_addrcnt == 0) {
|
|
nd6_prefix_unlink(pr, &prl);
|
|
continue;
|
|
}
|
|
if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
|
|
genid = V_nd6_list_genid;
|
|
nd6_prefix_ref(pr);
|
|
ND6_WUNLOCK();
|
|
ND6_ONLINK_LOCK();
|
|
(void)nd6_prefix_offlink(pr);
|
|
ND6_ONLINK_UNLOCK();
|
|
ND6_WLOCK();
|
|
nd6_prefix_rele(pr);
|
|
if (genid != V_nd6_list_genid)
|
|
goto restart;
|
|
}
|
|
}
|
|
ND6_WUNLOCK();
|
|
|
|
while ((pr = LIST_FIRST(&prl)) != NULL) {
|
|
LIST_REMOVE(pr, ndpr_entry);
|
|
nd6_prefix_del(pr);
|
|
}
|
|
|
|
callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
|
|
nd6_timer, curvnet);
|
|
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* ia6 - deprecated/invalidated temporary address
|
|
*/
|
|
static int
|
|
regen_tmpaddr(struct in6_ifaddr *ia6)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct ifnet *ifp;
|
|
struct in6_ifaddr *public_ifa6 = NULL;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
ifp = ia6->ia_ifa.ifa_ifp;
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
struct in6_ifaddr *it6;
|
|
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
|
|
it6 = (struct in6_ifaddr *)ifa;
|
|
|
|
/* ignore no autoconf addresses. */
|
|
if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
|
|
continue;
|
|
|
|
/* ignore autoconf addresses with different prefixes. */
|
|
if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
|
|
continue;
|
|
|
|
/*
|
|
* Now we are looking at an autoconf address with the same
|
|
* prefix as ours. If the address is temporary and is still
|
|
* preferred, do not create another one. It would be rare, but
|
|
* could happen, for example, when we resume a laptop PC after
|
|
* a long period.
|
|
*/
|
|
if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
|
|
!IFA6_IS_DEPRECATED(it6)) {
|
|
public_ifa6 = NULL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This is a public autoconf address that has the same prefix
|
|
* as ours. If it is preferred, keep it. We can't break the
|
|
* loop here, because there may be a still-preferred temporary
|
|
* address with the prefix.
|
|
*/
|
|
if (!IFA6_IS_DEPRECATED(it6))
|
|
public_ifa6 = it6;
|
|
}
|
|
if (public_ifa6 != NULL)
|
|
ifa_ref(&public_ifa6->ia_ifa);
|
|
|
|
if (public_ifa6 != NULL) {
|
|
int e;
|
|
|
|
if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
|
|
ifa_free(&public_ifa6->ia_ifa);
|
|
log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
|
|
" tmp addr,errno=%d\n", e);
|
|
return (-1);
|
|
}
|
|
ifa_free(&public_ifa6->ia_ifa);
|
|
return (0);
|
|
}
|
|
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Remove prefix and default router list entries corresponding to ifp. Neighbor
|
|
* cache entries are freed in in6_domifdetach().
|
|
*/
|
|
void
|
|
nd6_purge(struct ifnet *ifp)
|
|
{
|
|
struct nd_drhead drq;
|
|
struct nd_prhead prl;
|
|
struct nd_defrouter *dr, *ndr;
|
|
struct nd_prefix *pr, *npr;
|
|
|
|
TAILQ_INIT(&drq);
|
|
LIST_INIT(&prl);
|
|
|
|
/*
|
|
* Nuke default router list entries toward ifp.
|
|
* We defer removal of default router list entries that is installed
|
|
* in the routing table, in order to keep additional side effects as
|
|
* small as possible.
|
|
*/
|
|
ND6_WLOCK();
|
|
TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
|
|
if (dr->installed)
|
|
continue;
|
|
if (dr->ifp == ifp)
|
|
defrouter_unlink(dr, &drq);
|
|
}
|
|
TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
|
|
if (!dr->installed)
|
|
continue;
|
|
if (dr->ifp == ifp)
|
|
defrouter_unlink(dr, &drq);
|
|
}
|
|
|
|
/*
|
|
* Remove prefixes on ifp. We should have already removed addresses on
|
|
* this interface, so no addresses should be referencing these prefixes.
|
|
*/
|
|
LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
|
|
if (pr->ndpr_ifp == ifp)
|
|
nd6_prefix_unlink(pr, &prl);
|
|
}
|
|
ND6_WUNLOCK();
|
|
|
|
/* Delete the unlinked router and prefix objects. */
|
|
while ((dr = TAILQ_FIRST(&drq)) != NULL) {
|
|
TAILQ_REMOVE(&drq, dr, dr_entry);
|
|
defrouter_del(dr);
|
|
}
|
|
while ((pr = LIST_FIRST(&prl)) != NULL) {
|
|
LIST_REMOVE(pr, ndpr_entry);
|
|
nd6_prefix_del(pr);
|
|
}
|
|
|
|
/* cancel default outgoing interface setting */
|
|
if (V_nd6_defifindex == ifp->if_index)
|
|
nd6_setdefaultiface(0);
|
|
|
|
if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
|
|
/* Refresh default router list. */
|
|
defrouter_select_fib(ifp->if_fib);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* the caller acquires and releases the lock on the lltbls
|
|
* Returns the llentry locked
|
|
*/
|
|
struct llentry *
|
|
nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
|
|
{
|
|
struct sockaddr_in6 sin6;
|
|
struct llentry *ln;
|
|
|
|
bzero(&sin6, sizeof(sin6));
|
|
sin6.sin6_len = sizeof(struct sockaddr_in6);
|
|
sin6.sin6_family = AF_INET6;
|
|
sin6.sin6_addr = *addr6;
|
|
|
|
IF_AFDATA_LOCK_ASSERT(ifp);
|
|
|
|
ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
|
|
|
|
return (ln);
|
|
}
|
|
|
|
struct llentry *
|
|
nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
|
|
{
|
|
struct sockaddr_in6 sin6;
|
|
struct llentry *ln;
|
|
|
|
bzero(&sin6, sizeof(sin6));
|
|
sin6.sin6_len = sizeof(struct sockaddr_in6);
|
|
sin6.sin6_family = AF_INET6;
|
|
sin6.sin6_addr = *addr6;
|
|
|
|
ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
|
|
if (ln != NULL)
|
|
ln->ln_state = ND6_LLINFO_NOSTATE;
|
|
|
|
return (ln);
|
|
}
|
|
|
|
/*
|
|
* Test whether a given IPv6 address is a neighbor or not, ignoring
|
|
* the actual neighbor cache. The neighbor cache is ignored in order
|
|
* to not reenter the routing code from within itself.
|
|
*/
|
|
static int
|
|
nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
|
|
{
|
|
struct nd_prefix *pr;
|
|
struct ifaddr *ifa;
|
|
struct rt_addrinfo info;
|
|
struct sockaddr_in6 rt_key;
|
|
const struct sockaddr *dst6;
|
|
uint64_t genid;
|
|
int error, fibnum;
|
|
|
|
/*
|
|
* A link-local address is always a neighbor.
|
|
* XXX: a link does not necessarily specify a single interface.
|
|
*/
|
|
if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
|
|
struct sockaddr_in6 sin6_copy;
|
|
u_int32_t zone;
|
|
|
|
/*
|
|
* We need sin6_copy since sa6_recoverscope() may modify the
|
|
* content (XXX).
|
|
*/
|
|
sin6_copy = *addr;
|
|
if (sa6_recoverscope(&sin6_copy))
|
|
return (0); /* XXX: should be impossible */
|
|
if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
|
|
return (0);
|
|
if (sin6_copy.sin6_scope_id == zone)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
bzero(&rt_key, sizeof(rt_key));
|
|
bzero(&info, sizeof(info));
|
|
info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
|
|
|
|
/*
|
|
* If the address matches one of our addresses,
|
|
* it should be a neighbor.
|
|
* If the address matches one of our on-link prefixes, it should be a
|
|
* neighbor.
|
|
*/
|
|
ND6_RLOCK();
|
|
restart:
|
|
LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
|
|
if (pr->ndpr_ifp != ifp)
|
|
continue;
|
|
|
|
if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) {
|
|
dst6 = (const struct sockaddr *)&pr->ndpr_prefix;
|
|
|
|
/*
|
|
* We only need to check all FIBs if add_addr_allfibs
|
|
* is unset. If set, checking any FIB will suffice.
|
|
*/
|
|
fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0;
|
|
for (; fibnum < rt_numfibs; fibnum++) {
|
|
genid = V_nd6_list_genid;
|
|
ND6_RUNLOCK();
|
|
|
|
/*
|
|
* Restore length field before
|
|
* retrying lookup
|
|
*/
|
|
rt_key.sin6_len = sizeof(rt_key);
|
|
error = rib_lookup_info(fibnum, dst6, 0, 0,
|
|
&info);
|
|
|
|
ND6_RLOCK();
|
|
if (genid != V_nd6_list_genid)
|
|
goto restart;
|
|
if (error == 0)
|
|
break;
|
|
}
|
|
if (error != 0)
|
|
continue;
|
|
|
|
/*
|
|
* This is the case where multiple interfaces
|
|
* have the same prefix, but only one is installed
|
|
* into the routing table and that prefix entry
|
|
* is not the one being examined here. In the case
|
|
* where RADIX_MPATH is enabled, multiple route
|
|
* entries (of the same rt_key value) will be
|
|
* installed because the interface addresses all
|
|
* differ.
|
|
*/
|
|
if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
|
|
&rt_key.sin6_addr))
|
|
continue;
|
|
}
|
|
|
|
if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
|
|
&addr->sin6_addr, &pr->ndpr_mask)) {
|
|
ND6_RUNLOCK();
|
|
return (1);
|
|
}
|
|
}
|
|
ND6_RUNLOCK();
|
|
|
|
/*
|
|
* If the address is assigned on the node of the other side of
|
|
* a p2p interface, the address should be a neighbor.
|
|
*/
|
|
if (ifp->if_flags & IFF_POINTOPOINT) {
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != addr->sin6_family)
|
|
continue;
|
|
if (ifa->ifa_dstaddr != NULL &&
|
|
sa_equal(addr, ifa->ifa_dstaddr)) {
|
|
NET_EPOCH_EXIT(et);
|
|
return 1;
|
|
}
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
/*
|
|
* If the default router list is empty, all addresses are regarded
|
|
* as on-link, and thus, as a neighbor.
|
|
*/
|
|
if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
|
|
TAILQ_EMPTY(&V_nd_defrouter) &&
|
|
V_nd6_defifindex == ifp->if_index) {
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Detect if a given IPv6 address identifies a neighbor on a given link.
|
|
* XXX: should take care of the destination of a p2p link?
|
|
*/
|
|
int
|
|
nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
|
|
{
|
|
struct llentry *lle;
|
|
int rc = 0;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
IF_AFDATA_UNLOCK_ASSERT(ifp);
|
|
if (nd6_is_new_addr_neighbor(addr, ifp))
|
|
return (1);
|
|
|
|
/*
|
|
* Even if the address matches none of our addresses, it might be
|
|
* in the neighbor cache.
|
|
*/
|
|
if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
|
|
LLE_RUNLOCK(lle);
|
|
rc = 1;
|
|
}
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Free an nd6 llinfo entry.
|
|
* Since the function would cause significant changes in the kernel, DO NOT
|
|
* make it global, unless you have a strong reason for the change, and are sure
|
|
* that the change is safe.
|
|
*
|
|
* Set noinline to be dtrace-friendly
|
|
*/
|
|
static __noinline void
|
|
nd6_free(struct llentry **lnp, int gc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct llentry *ln;
|
|
struct nd_defrouter *dr;
|
|
|
|
ln = *lnp;
|
|
*lnp = NULL;
|
|
|
|
LLE_WLOCK_ASSERT(ln);
|
|
ND6_RLOCK_ASSERT();
|
|
|
|
ifp = lltable_get_ifp(ln->lle_tbl);
|
|
if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
|
|
dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
|
|
else
|
|
dr = NULL;
|
|
ND6_RUNLOCK();
|
|
|
|
if ((ln->la_flags & LLE_DELETED) == 0)
|
|
EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
|
|
|
|
/*
|
|
* we used to have pfctlinput(PRC_HOSTDEAD) here.
|
|
* even though it is not harmful, it was not really necessary.
|
|
*/
|
|
|
|
/* cancel timer */
|
|
nd6_llinfo_settimer_locked(ln, -1);
|
|
|
|
if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
|
|
if (dr != NULL && dr->expire &&
|
|
ln->ln_state == ND6_LLINFO_STALE && gc) {
|
|
/*
|
|
* If the reason for the deletion is just garbage
|
|
* collection, and the neighbor is an active default
|
|
* router, do not delete it. Instead, reset the GC
|
|
* timer using the router's lifetime.
|
|
* Simply deleting the entry would affect default
|
|
* router selection, which is not necessarily a good
|
|
* thing, especially when we're using router preference
|
|
* values.
|
|
* XXX: the check for ln_state would be redundant,
|
|
* but we intentionally keep it just in case.
|
|
*/
|
|
if (dr->expire > time_uptime)
|
|
nd6_llinfo_settimer_locked(ln,
|
|
(dr->expire - time_uptime) * hz);
|
|
else
|
|
nd6_llinfo_settimer_locked(ln,
|
|
(long)V_nd6_gctimer * hz);
|
|
|
|
LLE_REMREF(ln);
|
|
LLE_WUNLOCK(ln);
|
|
defrouter_rele(dr);
|
|
return;
|
|
}
|
|
|
|
if (dr) {
|
|
/*
|
|
* Unreachablity of a router might affect the default
|
|
* router selection and on-link detection of advertised
|
|
* prefixes.
|
|
*/
|
|
|
|
/*
|
|
* Temporarily fake the state to choose a new default
|
|
* router and to perform on-link determination of
|
|
* prefixes correctly.
|
|
* Below the state will be set correctly,
|
|
* or the entry itself will be deleted.
|
|
*/
|
|
ln->ln_state = ND6_LLINFO_INCOMPLETE;
|
|
}
|
|
|
|
if (ln->ln_router || dr) {
|
|
|
|
/*
|
|
* We need to unlock to avoid a LOR with rt6_flush() with the
|
|
* rnh and for the calls to pfxlist_onlink_check() and
|
|
* defrouter_select_fib() in the block further down for calls
|
|
* into nd6_lookup(). We still hold a ref.
|
|
*/
|
|
LLE_WUNLOCK(ln);
|
|
|
|
/*
|
|
* rt6_flush must be called whether or not the neighbor
|
|
* is in the Default Router List.
|
|
* See a corresponding comment in nd6_na_input().
|
|
*/
|
|
rt6_flush(&ln->r_l3addr.addr6, ifp);
|
|
}
|
|
|
|
if (dr) {
|
|
/*
|
|
* Since defrouter_select_fib() does not affect the
|
|
* on-link determination and MIP6 needs the check
|
|
* before the default router selection, we perform
|
|
* the check now.
|
|
*/
|
|
pfxlist_onlink_check();
|
|
|
|
/*
|
|
* Refresh default router list.
|
|
*/
|
|
defrouter_select_fib(dr->ifp->if_fib);
|
|
}
|
|
|
|
/*
|
|
* If this entry was added by an on-link redirect, remove the
|
|
* corresponding host route.
|
|
*/
|
|
if (ln->la_flags & LLE_REDIRECT)
|
|
nd6_free_redirect(ln);
|
|
|
|
if (ln->ln_router || dr)
|
|
LLE_WLOCK(ln);
|
|
}
|
|
|
|
/*
|
|
* Save to unlock. We still hold an extra reference and will not
|
|
* free(9) in llentry_free() if someone else holds one as well.
|
|
*/
|
|
LLE_WUNLOCK(ln);
|
|
IF_AFDATA_LOCK(ifp);
|
|
LLE_WLOCK(ln);
|
|
/* Guard against race with other llentry_free(). */
|
|
if (ln->la_flags & LLE_LINKED) {
|
|
/* Remove callout reference */
|
|
LLE_REMREF(ln);
|
|
lltable_unlink_entry(ln->lle_tbl, ln);
|
|
}
|
|
IF_AFDATA_UNLOCK(ifp);
|
|
|
|
llentry_free(ln);
|
|
if (dr != NULL)
|
|
defrouter_rele(dr);
|
|
}
|
|
|
|
static int
|
|
nd6_isdynrte(const struct rtentry *rt, void *xap)
|
|
{
|
|
|
|
if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC))
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
/*
|
|
* Remove the rtentry for the given llentry,
|
|
* both of which were installed by a redirect.
|
|
*/
|
|
static void
|
|
nd6_free_redirect(const struct llentry *ln)
|
|
{
|
|
int fibnum;
|
|
struct sockaddr_in6 sin6;
|
|
struct rt_addrinfo info;
|
|
|
|
lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
|
|
memset(&info, 0, sizeof(info));
|
|
info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
|
|
info.rti_filter = nd6_isdynrte;
|
|
|
|
for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
|
|
rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum);
|
|
}
|
|
|
|
/*
|
|
* Rejuvenate this function for routing operations related
|
|
* processing.
|
|
*/
|
|
void
|
|
nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
|
|
{
|
|
struct sockaddr_in6 *gateway;
|
|
struct nd_defrouter *dr;
|
|
struct ifnet *ifp;
|
|
|
|
gateway = (struct sockaddr_in6 *)rt->rt_gateway;
|
|
ifp = rt->rt_ifp;
|
|
|
|
switch (req) {
|
|
case RTM_ADD:
|
|
break;
|
|
|
|
case RTM_DELETE:
|
|
if (!ifp)
|
|
return;
|
|
/*
|
|
* Only indirect routes are interesting.
|
|
*/
|
|
if ((rt->rt_flags & RTF_GATEWAY) == 0)
|
|
return;
|
|
/*
|
|
* check for default route
|
|
*/
|
|
if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
|
|
&SIN6(rt_key(rt))->sin6_addr)) {
|
|
dr = defrouter_lookup(&gateway->sin6_addr, ifp);
|
|
if (dr != NULL) {
|
|
dr->installed = 0;
|
|
defrouter_rele(dr);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
|
|
{
|
|
struct in6_ndireq *ndi = (struct in6_ndireq *)data;
|
|
struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
|
|
struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
|
|
struct epoch_tracker et;
|
|
int error = 0;
|
|
|
|
if (ifp->if_afdata[AF_INET6] == NULL)
|
|
return (EPFNOSUPPORT);
|
|
switch (cmd) {
|
|
case OSIOCGIFINFO_IN6:
|
|
#define ND ndi->ndi
|
|
/* XXX: old ndp(8) assumes a positive value for linkmtu. */
|
|
bzero(&ND, sizeof(ND));
|
|
ND.linkmtu = IN6_LINKMTU(ifp);
|
|
ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
|
|
ND.basereachable = ND_IFINFO(ifp)->basereachable;
|
|
ND.reachable = ND_IFINFO(ifp)->reachable;
|
|
ND.retrans = ND_IFINFO(ifp)->retrans;
|
|
ND.flags = ND_IFINFO(ifp)->flags;
|
|
ND.recalctm = ND_IFINFO(ifp)->recalctm;
|
|
ND.chlim = ND_IFINFO(ifp)->chlim;
|
|
break;
|
|
case SIOCGIFINFO_IN6:
|
|
ND = *ND_IFINFO(ifp);
|
|
break;
|
|
case SIOCSIFINFO_IN6:
|
|
/*
|
|
* used to change host variables from userland.
|
|
* intended for a use on router to reflect RA configurations.
|
|
*/
|
|
/* 0 means 'unspecified' */
|
|
if (ND.linkmtu != 0) {
|
|
if (ND.linkmtu < IPV6_MMTU ||
|
|
ND.linkmtu > IN6_LINKMTU(ifp)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
|
|
}
|
|
|
|
if (ND.basereachable != 0) {
|
|
int obasereachable = ND_IFINFO(ifp)->basereachable;
|
|
|
|
ND_IFINFO(ifp)->basereachable = ND.basereachable;
|
|
if (ND.basereachable != obasereachable)
|
|
ND_IFINFO(ifp)->reachable =
|
|
ND_COMPUTE_RTIME(ND.basereachable);
|
|
}
|
|
if (ND.retrans != 0)
|
|
ND_IFINFO(ifp)->retrans = ND.retrans;
|
|
if (ND.chlim != 0)
|
|
ND_IFINFO(ifp)->chlim = ND.chlim;
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFINFO_FLAGS:
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct in6_ifaddr *ia;
|
|
|
|
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
|
|
!(ND.flags & ND6_IFF_IFDISABLED)) {
|
|
/* ifdisabled 1->0 transision */
|
|
|
|
/*
|
|
* If the interface is marked as ND6_IFF_IFDISABLED and
|
|
* has an link-local address with IN6_IFF_DUPLICATED,
|
|
* do not clear ND6_IFF_IFDISABLED.
|
|
* See RFC 4862, Section 5.4.5.
|
|
*/
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
ia = (struct in6_ifaddr *)ifa;
|
|
if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
|
|
IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
|
|
break;
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
if (ifa != NULL) {
|
|
/* LLA is duplicated. */
|
|
ND.flags |= ND6_IFF_IFDISABLED;
|
|
log(LOG_ERR, "Cannot enable an interface"
|
|
" with a link-local address marked"
|
|
" duplicate.\n");
|
|
} else {
|
|
ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
|
|
if (ifp->if_flags & IFF_UP)
|
|
in6_if_up(ifp);
|
|
}
|
|
} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
|
|
(ND.flags & ND6_IFF_IFDISABLED)) {
|
|
/* ifdisabled 0->1 transision */
|
|
/* Mark all IPv6 address as tentative. */
|
|
|
|
ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
|
|
if (V_ip6_dad_count > 0 &&
|
|
(ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
|
|
ifa_link) {
|
|
if (ifa->ifa_addr->sa_family !=
|
|
AF_INET6)
|
|
continue;
|
|
ia = (struct in6_ifaddr *)ifa;
|
|
ia->ia6_flags |= IN6_IFF_TENTATIVE;
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
}
|
|
|
|
if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
|
|
if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
|
|
/* auto_linklocal 0->1 transision */
|
|
|
|
/* If no link-local address on ifp, configure */
|
|
ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
|
|
in6_ifattach(ifp, NULL);
|
|
} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
|
|
ifp->if_flags & IFF_UP) {
|
|
/*
|
|
* When the IF already has
|
|
* ND6_IFF_AUTO_LINKLOCAL, no link-local
|
|
* address is assigned, and IFF_UP, try to
|
|
* assign one.
|
|
*/
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
|
|
ifa_link) {
|
|
if (ifa->ifa_addr->sa_family !=
|
|
AF_INET6)
|
|
continue;
|
|
ia = (struct in6_ifaddr *)ifa;
|
|
if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
|
|
break;
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
if (ifa != NULL)
|
|
/* No LLA is configured. */
|
|
in6_ifattach(ifp, NULL);
|
|
}
|
|
}
|
|
ND_IFINFO(ifp)->flags = ND.flags;
|
|
break;
|
|
}
|
|
#undef ND
|
|
case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
|
|
/* sync kernel routing table with the default router list */
|
|
defrouter_reset();
|
|
defrouter_select();
|
|
break;
|
|
case SIOCSPFXFLUSH_IN6:
|
|
{
|
|
/* flush all the prefix advertised by routers */
|
|
struct in6_ifaddr *ia, *ia_next;
|
|
struct nd_prefix *pr, *next;
|
|
struct nd_prhead prl;
|
|
|
|
LIST_INIT(&prl);
|
|
|
|
ND6_WLOCK();
|
|
LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
|
|
if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
|
|
continue; /* XXX */
|
|
nd6_prefix_unlink(pr, &prl);
|
|
}
|
|
ND6_WUNLOCK();
|
|
|
|
while ((pr = LIST_FIRST(&prl)) != NULL) {
|
|
LIST_REMOVE(pr, ndpr_entry);
|
|
/* XXXRW: in6_ifaddrhead locking. */
|
|
CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
|
|
ia_next) {
|
|
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
|
|
continue;
|
|
|
|
if (ia->ia6_ndpr == pr)
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
}
|
|
nd6_prefix_del(pr);
|
|
}
|
|
break;
|
|
}
|
|
case SIOCSRTRFLUSH_IN6:
|
|
{
|
|
/* flush all the default routers */
|
|
struct nd_drhead drq;
|
|
struct nd_defrouter *dr;
|
|
|
|
TAILQ_INIT(&drq);
|
|
|
|
defrouter_reset();
|
|
|
|
ND6_WLOCK();
|
|
while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL)
|
|
defrouter_unlink(dr, &drq);
|
|
ND6_WUNLOCK();
|
|
while ((dr = TAILQ_FIRST(&drq)) != NULL) {
|
|
TAILQ_REMOVE(&drq, dr, dr_entry);
|
|
defrouter_del(dr);
|
|
}
|
|
|
|
defrouter_select();
|
|
break;
|
|
}
|
|
case SIOCGNBRINFO_IN6:
|
|
{
|
|
struct llentry *ln;
|
|
struct in6_addr nb_addr = nbi->addr; /* make local for safety */
|
|
|
|
if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
|
|
return (error);
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
ln = nd6_lookup(&nb_addr, 0, ifp);
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
if (ln == NULL) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
nbi->state = ln->ln_state;
|
|
nbi->asked = ln->la_asked;
|
|
nbi->isrouter = ln->ln_router;
|
|
if (ln->la_expire == 0)
|
|
nbi->expire = 0;
|
|
else
|
|
nbi->expire = ln->la_expire + ln->lle_remtime / hz +
|
|
(time_second - time_uptime);
|
|
LLE_RUNLOCK(ln);
|
|
break;
|
|
}
|
|
case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
|
|
ndif->ifindex = V_nd6_defifindex;
|
|
break;
|
|
case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
|
|
return (nd6_setdefaultiface(ndif->ifindex));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Calculates new isRouter value based on provided parameters and
|
|
* returns it.
|
|
*/
|
|
static int
|
|
nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
|
|
int ln_router)
|
|
{
|
|
|
|
/*
|
|
* ICMP6 type dependent behavior.
|
|
*
|
|
* NS: clear IsRouter if new entry
|
|
* RS: clear IsRouter
|
|
* RA: set IsRouter if there's lladdr
|
|
* redir: clear IsRouter if new entry
|
|
*
|
|
* RA case, (1):
|
|
* The spec says that we must set IsRouter in the following cases:
|
|
* - If lladdr exist, set IsRouter. This means (1-5).
|
|
* - If it is old entry (!newentry), set IsRouter. This means (7).
|
|
* So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
|
|
* A quetion arises for (1) case. (1) case has no lladdr in the
|
|
* neighbor cache, this is similar to (6).
|
|
* This case is rare but we figured that we MUST NOT set IsRouter.
|
|
*
|
|
* is_new old_addr new_addr NS RS RA redir
|
|
* D R
|
|
* 0 n n (1) c ? s
|
|
* 0 y n (2) c s s
|
|
* 0 n y (3) c s s
|
|
* 0 y y (4) c s s
|
|
* 0 y y (5) c s s
|
|
* 1 -- n (6) c c c s
|
|
* 1 -- y (7) c c s c s
|
|
*
|
|
* (c=clear s=set)
|
|
*/
|
|
switch (type & 0xff) {
|
|
case ND_NEIGHBOR_SOLICIT:
|
|
/*
|
|
* New entry must have is_router flag cleared.
|
|
*/
|
|
if (is_new) /* (6-7) */
|
|
ln_router = 0;
|
|
break;
|
|
case ND_REDIRECT:
|
|
/*
|
|
* If the icmp is a redirect to a better router, always set the
|
|
* is_router flag. Otherwise, if the entry is newly created,
|
|
* clear the flag. [RFC 2461, sec 8.3]
|
|
*/
|
|
if (code == ND_REDIRECT_ROUTER)
|
|
ln_router = 1;
|
|
else {
|
|
if (is_new) /* (6-7) */
|
|
ln_router = 0;
|
|
}
|
|
break;
|
|
case ND_ROUTER_SOLICIT:
|
|
/*
|
|
* is_router flag must always be cleared.
|
|
*/
|
|
ln_router = 0;
|
|
break;
|
|
case ND_ROUTER_ADVERT:
|
|
/*
|
|
* Mark an entry with lladdr as a router.
|
|
*/
|
|
if ((!is_new && (old_addr || new_addr)) || /* (2-5) */
|
|
(is_new && new_addr)) { /* (7) */
|
|
ln_router = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return (ln_router);
|
|
}
|
|
|
|
/*
|
|
* Create neighbor cache entry and cache link-layer address,
|
|
* on reception of inbound ND6 packets. (RS/RA/NS/redirect)
|
|
*
|
|
* type - ICMP6 type
|
|
* code - type dependent information
|
|
*
|
|
*/
|
|
void
|
|
nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
|
|
int lladdrlen, int type, int code)
|
|
{
|
|
struct llentry *ln = NULL, *ln_tmp;
|
|
int is_newentry;
|
|
int do_update;
|
|
int olladdr;
|
|
int llchange;
|
|
int flags;
|
|
uint16_t router = 0;
|
|
struct sockaddr_in6 sin6;
|
|
struct mbuf *chain = NULL;
|
|
u_char linkhdr[LLE_MAX_LINKHDR];
|
|
size_t linkhdrsize;
|
|
int lladdr_off;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
IF_AFDATA_UNLOCK_ASSERT(ifp);
|
|
|
|
KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
|
|
KASSERT(from != NULL, ("%s: from == NULL", __func__));
|
|
|
|
/* nothing must be updated for unspecified address */
|
|
if (IN6_IS_ADDR_UNSPECIFIED(from))
|
|
return;
|
|
|
|
/*
|
|
* Validation about ifp->if_addrlen and lladdrlen must be done in
|
|
* the caller.
|
|
*
|
|
* XXX If the link does not have link-layer adderss, what should
|
|
* we do? (ifp->if_addrlen == 0)
|
|
* Spec says nothing in sections for RA, RS and NA. There's small
|
|
* description on it in NS section (RFC 2461 7.2.3).
|
|
*/
|
|
flags = lladdr ? LLE_EXCLUSIVE : 0;
|
|
ln = nd6_lookup(from, flags, ifp);
|
|
is_newentry = 0;
|
|
if (ln == NULL) {
|
|
flags |= LLE_EXCLUSIVE;
|
|
ln = nd6_alloc(from, 0, ifp);
|
|
if (ln == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Since we already know all the data for the new entry,
|
|
* fill it before insertion.
|
|
*/
|
|
if (lladdr != NULL) {
|
|
linkhdrsize = sizeof(linkhdr);
|
|
if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
|
|
linkhdr, &linkhdrsize, &lladdr_off) != 0)
|
|
return;
|
|
lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
|
|
lladdr_off);
|
|
}
|
|
|
|
IF_AFDATA_WLOCK(ifp);
|
|
LLE_WLOCK(ln);
|
|
/* Prefer any existing lle over newly-created one */
|
|
ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
|
|
if (ln_tmp == NULL)
|
|
lltable_link_entry(LLTABLE6(ifp), ln);
|
|
IF_AFDATA_WUNLOCK(ifp);
|
|
if (ln_tmp == NULL) {
|
|
/* No existing lle, mark as new entry (6,7) */
|
|
is_newentry = 1;
|
|
if (lladdr != NULL) { /* (7) */
|
|
nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
|
|
EVENTHANDLER_INVOKE(lle_event, ln,
|
|
LLENTRY_RESOLVED);
|
|
}
|
|
} else {
|
|
lltable_free_entry(LLTABLE6(ifp), ln);
|
|
ln = ln_tmp;
|
|
ln_tmp = NULL;
|
|
}
|
|
}
|
|
/* do nothing if static ndp is set */
|
|
if ((ln->la_flags & LLE_STATIC)) {
|
|
if (flags & LLE_EXCLUSIVE)
|
|
LLE_WUNLOCK(ln);
|
|
else
|
|
LLE_RUNLOCK(ln);
|
|
return;
|
|
}
|
|
|
|
olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
|
|
if (olladdr && lladdr) {
|
|
llchange = bcmp(lladdr, ln->ll_addr,
|
|
ifp->if_addrlen);
|
|
} else if (!olladdr && lladdr)
|
|
llchange = 1;
|
|
else
|
|
llchange = 0;
|
|
|
|
/*
|
|
* newentry olladdr lladdr llchange (*=record)
|
|
* 0 n n -- (1)
|
|
* 0 y n -- (2)
|
|
* 0 n y y (3) * STALE
|
|
* 0 y y n (4) *
|
|
* 0 y y y (5) * STALE
|
|
* 1 -- n -- (6) NOSTATE(= PASSIVE)
|
|
* 1 -- y -- (7) * STALE
|
|
*/
|
|
|
|
do_update = 0;
|
|
if (is_newentry == 0 && llchange != 0) {
|
|
do_update = 1; /* (3,5) */
|
|
|
|
/*
|
|
* Record source link-layer address
|
|
* XXX is it dependent to ifp->if_type?
|
|
*/
|
|
linkhdrsize = sizeof(linkhdr);
|
|
if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
|
|
linkhdr, &linkhdrsize, &lladdr_off) != 0)
|
|
return;
|
|
|
|
if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
|
|
lladdr_off) == 0) {
|
|
/* Entry was deleted */
|
|
return;
|
|
}
|
|
|
|
nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
|
|
|
|
EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
|
|
|
|
if (ln->la_hold != NULL)
|
|
nd6_grab_holdchain(ln, &chain, &sin6);
|
|
}
|
|
|
|
/* Calculates new router status */
|
|
router = nd6_is_router(type, code, is_newentry, olladdr,
|
|
lladdr != NULL ? 1 : 0, ln->ln_router);
|
|
|
|
ln->ln_router = router;
|
|
/* Mark non-router redirects with special flag */
|
|
if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
|
|
ln->la_flags |= LLE_REDIRECT;
|
|
|
|
if (flags & LLE_EXCLUSIVE)
|
|
LLE_WUNLOCK(ln);
|
|
else
|
|
LLE_RUNLOCK(ln);
|
|
|
|
if (chain != NULL)
|
|
nd6_flush_holdchain(ifp, chain, &sin6);
|
|
|
|
/*
|
|
* When the link-layer address of a router changes, select the
|
|
* best router again. In particular, when the neighbor entry is newly
|
|
* created, it might affect the selection policy.
|
|
* Question: can we restrict the first condition to the "is_newentry"
|
|
* case?
|
|
* XXX: when we hear an RA from a new router with the link-layer
|
|
* address option, defrouter_select_fib() is called twice, since
|
|
* defrtrlist_update called the function as well. However, I believe
|
|
* we can compromise the overhead, since it only happens the first
|
|
* time.
|
|
* XXX: although defrouter_select_fib() should not have a bad effect
|
|
* for those are not autoconfigured hosts, we explicitly avoid such
|
|
* cases for safety.
|
|
*/
|
|
if ((do_update || is_newentry) && router &&
|
|
ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
|
|
/*
|
|
* guaranteed recursion
|
|
*/
|
|
defrouter_select_fib(ifp->if_fib);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nd6_slowtimo(void *arg)
|
|
{
|
|
struct epoch_tracker et;
|
|
CURVNET_SET((struct vnet *) arg);
|
|
struct nd_ifinfo *nd6if;
|
|
struct ifnet *ifp;
|
|
|
|
callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
|
|
nd6_slowtimo, curvnet);
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
|
|
if (ifp->if_afdata[AF_INET6] == NULL)
|
|
continue;
|
|
nd6if = ND_IFINFO(ifp);
|
|
if (nd6if->basereachable && /* already initialized */
|
|
(nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
|
|
/*
|
|
* Since reachable time rarely changes by router
|
|
* advertisements, we SHOULD insure that a new random
|
|
* value gets recomputed at least once every few hours.
|
|
* (RFC 2461, 6.3.4)
|
|
*/
|
|
nd6if->recalctm = V_nd6_recalc_reachtm_interval;
|
|
nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
|
|
}
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
void
|
|
nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
|
|
struct sockaddr_in6 *sin6)
|
|
{
|
|
|
|
LLE_WLOCK_ASSERT(ln);
|
|
|
|
*chain = ln->la_hold;
|
|
ln->la_hold = NULL;
|
|
lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
|
|
|
|
if (ln->ln_state == ND6_LLINFO_STALE) {
|
|
|
|
/*
|
|
* The first time we send a packet to a
|
|
* neighbor whose entry is STALE, we have
|
|
* to change the state to DELAY and a sets
|
|
* a timer to expire in DELAY_FIRST_PROBE_TIME
|
|
* seconds to ensure do neighbor unreachability
|
|
* detection on expiration.
|
|
* (RFC 2461 7.3.3)
|
|
*/
|
|
nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
|
|
}
|
|
}
|
|
|
|
int
|
|
nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
|
|
struct sockaddr_in6 *dst, struct route *ro)
|
|
{
|
|
int error;
|
|
int ip6len;
|
|
struct ip6_hdr *ip6;
|
|
struct m_tag *mtag;
|
|
|
|
#ifdef MAC
|
|
mac_netinet6_nd6_send(ifp, m);
|
|
#endif
|
|
|
|
/*
|
|
* If called from nd6_ns_output() (NS), nd6_na_output() (NA),
|
|
* icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
|
|
* as handled by rtsol and rtadvd), mbufs will be tagged for SeND
|
|
* to be diverted to user space. When re-injected into the kernel,
|
|
* send_output() will directly dispatch them to the outgoing interface.
|
|
*/
|
|
if (send_sendso_input_hook != NULL) {
|
|
mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
|
|
if (mtag != NULL) {
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
|
|
/* Use the SEND socket */
|
|
error = send_sendso_input_hook(m, ifp, SND_OUT,
|
|
ip6len);
|
|
/* -1 == no app on SEND socket */
|
|
if (error == 0 || error != -1)
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
m_clrprotoflags(m); /* Avoid confusing lower layers. */
|
|
IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
|
|
mtod(m, struct ip6_hdr *));
|
|
|
|
if ((ifp->if_flags & IFF_LOOPBACK) == 0)
|
|
origifp = ifp;
|
|
|
|
error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Lookup link headerfor @sa_dst address. Stores found
|
|
* data in @desten buffer. Copy of lle ln_flags can be also
|
|
* saved in @pflags if @pflags is non-NULL.
|
|
*
|
|
* If destination LLE does not exists or lle state modification
|
|
* is required, call "slow" version.
|
|
*
|
|
* Return values:
|
|
* - 0 on success (address copied to buffer).
|
|
* - EWOULDBLOCK (no local error, but address is still unresolved)
|
|
* - other errors (alloc failure, etc)
|
|
*/
|
|
int
|
|
nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
|
|
const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
|
|
struct llentry **plle)
|
|
{
|
|
struct llentry *ln = NULL;
|
|
const struct sockaddr_in6 *dst6;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
if (pflags != NULL)
|
|
*pflags = 0;
|
|
|
|
dst6 = (const struct sockaddr_in6 *)sa_dst;
|
|
|
|
/* discard the packet if IPv6 operation is disabled on the interface */
|
|
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
|
|
m_freem(m);
|
|
return (ENETDOWN); /* better error? */
|
|
}
|
|
|
|
if (m != NULL && m->m_flags & M_MCAST) {
|
|
switch (ifp->if_type) {
|
|
case IFT_ETHER:
|
|
case IFT_L2VLAN:
|
|
case IFT_BRIDGE:
|
|
ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
|
|
desten);
|
|
return (0);
|
|
default:
|
|
m_freem(m);
|
|
return (EAFNOSUPPORT);
|
|
}
|
|
}
|
|
|
|
ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED,
|
|
ifp);
|
|
if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
|
|
/* Entry found, let's copy lle info */
|
|
bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
|
|
if (pflags != NULL)
|
|
*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
|
|
/* Check if we have feedback request from nd6 timer */
|
|
if (ln->r_skip_req != 0) {
|
|
LLE_REQ_LOCK(ln);
|
|
ln->r_skip_req = 0; /* Notify that entry was used */
|
|
ln->lle_hittime = time_uptime;
|
|
LLE_REQ_UNLOCK(ln);
|
|
}
|
|
if (plle) {
|
|
LLE_ADDREF(ln);
|
|
*plle = ln;
|
|
LLE_WUNLOCK(ln);
|
|
}
|
|
return (0);
|
|
} else if (plle && ln)
|
|
LLE_WUNLOCK(ln);
|
|
|
|
return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle));
|
|
}
|
|
|
|
|
|
/*
|
|
* Do L2 address resolution for @sa_dst address. Stores found
|
|
* address in @desten buffer. Copy of lle ln_flags can be also
|
|
* saved in @pflags if @pflags is non-NULL.
|
|
*
|
|
* Heavy version.
|
|
* Function assume that destination LLE does not exist,
|
|
* is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
|
|
*
|
|
* Set noinline to be dtrace-friendly
|
|
*/
|
|
static __noinline int
|
|
nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m,
|
|
const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
|
|
struct llentry **plle)
|
|
{
|
|
struct llentry *lle = NULL, *lle_tmp;
|
|
struct in6_addr *psrc, src;
|
|
int send_ns, ll_len;
|
|
char *lladdr;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
/*
|
|
* Address resolution or Neighbor Unreachability Detection
|
|
* for the next hop.
|
|
* At this point, the destination of the packet must be a unicast
|
|
* or an anycast address(i.e. not a multicast).
|
|
*/
|
|
if (lle == NULL) {
|
|
lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
|
|
if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) {
|
|
/*
|
|
* Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
|
|
* the condition below is not very efficient. But we believe
|
|
* it is tolerable, because this should be a rare case.
|
|
*/
|
|
lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
|
|
if (lle == NULL) {
|
|
char ip6buf[INET6_ADDRSTRLEN];
|
|
log(LOG_DEBUG,
|
|
"nd6_output: can't allocate llinfo for %s "
|
|
"(ln=%p)\n",
|
|
ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
IF_AFDATA_WLOCK(ifp);
|
|
LLE_WLOCK(lle);
|
|
/* Prefer any existing entry over newly-created one */
|
|
lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
|
|
if (lle_tmp == NULL)
|
|
lltable_link_entry(LLTABLE6(ifp), lle);
|
|
IF_AFDATA_WUNLOCK(ifp);
|
|
if (lle_tmp != NULL) {
|
|
lltable_free_entry(LLTABLE6(ifp), lle);
|
|
lle = lle_tmp;
|
|
lle_tmp = NULL;
|
|
}
|
|
}
|
|
}
|
|
if (lle == NULL) {
|
|
if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
LLE_WLOCK_ASSERT(lle);
|
|
|
|
/*
|
|
* The first time we send a packet to a neighbor whose entry is
|
|
* STALE, we have to change the state to DELAY and a sets a timer to
|
|
* expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
|
|
* neighbor unreachability detection on expiration.
|
|
* (RFC 2461 7.3.3)
|
|
*/
|
|
if (lle->ln_state == ND6_LLINFO_STALE)
|
|
nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
|
|
|
|
/*
|
|
* If the neighbor cache entry has a state other than INCOMPLETE
|
|
* (i.e. its link-layer address is already resolved), just
|
|
* send the packet.
|
|
*/
|
|
if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
|
|
if (flags & LLE_ADDRONLY) {
|
|
lladdr = lle->ll_addr;
|
|
ll_len = ifp->if_addrlen;
|
|
} else {
|
|
lladdr = lle->r_linkdata;
|
|
ll_len = lle->r_hdrlen;
|
|
}
|
|
bcopy(lladdr, desten, ll_len);
|
|
if (pflags != NULL)
|
|
*pflags = lle->la_flags;
|
|
if (plle) {
|
|
LLE_ADDREF(lle);
|
|
*plle = lle;
|
|
}
|
|
LLE_WUNLOCK(lle);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* There is a neighbor cache entry, but no ethernet address
|
|
* response yet. Append this latest packet to the end of the
|
|
* packet queue in the mbuf. When it exceeds nd6_maxqueuelen,
|
|
* the oldest packet in the queue will be removed.
|
|
*/
|
|
|
|
if (lle->la_hold != NULL) {
|
|
struct mbuf *m_hold;
|
|
int i;
|
|
|
|
i = 0;
|
|
for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
|
|
i++;
|
|
if (m_hold->m_nextpkt == NULL) {
|
|
m_hold->m_nextpkt = m;
|
|
break;
|
|
}
|
|
}
|
|
while (i >= V_nd6_maxqueuelen) {
|
|
m_hold = lle->la_hold;
|
|
lle->la_hold = lle->la_hold->m_nextpkt;
|
|
m_freem(m_hold);
|
|
i--;
|
|
}
|
|
} else {
|
|
lle->la_hold = m;
|
|
}
|
|
|
|
/*
|
|
* If there has been no NS for the neighbor after entering the
|
|
* INCOMPLETE state, send the first solicitation.
|
|
* Note that for newly-created lle la_asked will be 0,
|
|
* so we will transition from ND6_LLINFO_NOSTATE to
|
|
* ND6_LLINFO_INCOMPLETE state here.
|
|
*/
|
|
psrc = NULL;
|
|
send_ns = 0;
|
|
if (lle->la_asked == 0) {
|
|
lle->la_asked++;
|
|
send_ns = 1;
|
|
psrc = nd6_llinfo_get_holdsrc(lle, &src);
|
|
|
|
nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
|
|
}
|
|
LLE_WUNLOCK(lle);
|
|
if (send_ns != 0)
|
|
nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
|
|
|
|
return (EWOULDBLOCK);
|
|
}
|
|
|
|
/*
|
|
* Do L2 address resolution for @sa_dst address. Stores found
|
|
* address in @desten buffer. Copy of lle ln_flags can be also
|
|
* saved in @pflags if @pflags is non-NULL.
|
|
*
|
|
* Return values:
|
|
* - 0 on success (address copied to buffer).
|
|
* - EWOULDBLOCK (no local error, but address is still unresolved)
|
|
* - other errors (alloc failure, etc)
|
|
*/
|
|
int
|
|
nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
|
|
char *desten, uint32_t *pflags)
|
|
{
|
|
int error;
|
|
|
|
flags |= LLE_ADDRONLY;
|
|
error = nd6_resolve_slow(ifp, flags, NULL,
|
|
(const struct sockaddr_in6 *)dst, desten, pflags, NULL);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain,
|
|
struct sockaddr_in6 *dst)
|
|
{
|
|
struct mbuf *m, *m_head;
|
|
int error = 0;
|
|
|
|
m_head = chain;
|
|
|
|
while (m_head) {
|
|
m = m_head;
|
|
m_head = m_head->m_nextpkt;
|
|
error = nd6_output_ifp(ifp, ifp, m, dst, NULL);
|
|
}
|
|
|
|
/*
|
|
* XXX
|
|
* note that intermediate errors are blindly ignored
|
|
*/
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
nd6_need_cache(struct ifnet *ifp)
|
|
{
|
|
/*
|
|
* XXX: we currently do not make neighbor cache on any interface
|
|
* other than Ethernet and GIF.
|
|
*
|
|
* RFC2893 says:
|
|
* - unidirectional tunnels needs no ND
|
|
*/
|
|
switch (ifp->if_type) {
|
|
case IFT_ETHER:
|
|
case IFT_IEEE1394:
|
|
case IFT_L2VLAN:
|
|
case IFT_INFINIBAND:
|
|
case IFT_BRIDGE:
|
|
case IFT_PROPVIRTUAL:
|
|
return (1);
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add pernament ND6 link-layer record for given
|
|
* interface address.
|
|
*
|
|
* Very similar to IPv4 arp_ifinit(), but:
|
|
* 1) IPv6 DAD is performed in different place
|
|
* 2) It is called by IPv6 protocol stack in contrast to
|
|
* arp_ifinit() which is typically called in SIOCSIFADDR
|
|
* driver ioctl handler.
|
|
*
|
|
*/
|
|
int
|
|
nd6_add_ifa_lle(struct in6_ifaddr *ia)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct llentry *ln, *ln_tmp;
|
|
struct sockaddr *dst;
|
|
|
|
ifp = ia->ia_ifa.ifa_ifp;
|
|
if (nd6_need_cache(ifp) == 0)
|
|
return (0);
|
|
|
|
ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
|
|
dst = (struct sockaddr *)&ia->ia_addr;
|
|
ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
|
|
if (ln == NULL)
|
|
return (ENOBUFS);
|
|
|
|
IF_AFDATA_WLOCK(ifp);
|
|
LLE_WLOCK(ln);
|
|
/* Unlink any entry if exists */
|
|
ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
|
|
if (ln_tmp != NULL)
|
|
lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
|
|
lltable_link_entry(LLTABLE6(ifp), ln);
|
|
IF_AFDATA_WUNLOCK(ifp);
|
|
|
|
if (ln_tmp != NULL)
|
|
EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
|
|
EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
|
|
|
|
LLE_WUNLOCK(ln);
|
|
if (ln_tmp != NULL)
|
|
llentry_free(ln_tmp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Removes either all lle entries for given @ia, or lle
|
|
* corresponding to @ia address.
|
|
*/
|
|
void
|
|
nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
|
|
{
|
|
struct sockaddr_in6 mask, addr;
|
|
struct sockaddr *saddr, *smask;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = ia->ia_ifa.ifa_ifp;
|
|
memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
|
|
memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
|
|
saddr = (struct sockaddr *)&addr;
|
|
smask = (struct sockaddr *)&mask;
|
|
|
|
if (all != 0)
|
|
lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
|
|
else
|
|
lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
|
|
}
|
|
|
|
static void
|
|
clear_llinfo_pqueue(struct llentry *ln)
|
|
{
|
|
struct mbuf *m_hold, *m_hold_next;
|
|
|
|
for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
|
|
m_hold_next = m_hold->m_nextpkt;
|
|
m_freem(m_hold);
|
|
}
|
|
|
|
ln->la_hold = NULL;
|
|
}
|
|
|
|
static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
|
|
static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
|
|
|
|
SYSCTL_DECL(_net_inet6_icmp6);
|
|
SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
|
|
CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter",
|
|
"NDP default router list");
|
|
SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
|
|
CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
|
|
"NDP prefix list");
|
|
SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
|
|
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
|
|
SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
|
|
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
|
|
|
|
static int
|
|
nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct in6_defrouter d;
|
|
struct nd_defrouter *dr;
|
|
int error;
|
|
|
|
if (req->newptr != NULL)
|
|
return (EPERM);
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
bzero(&d, sizeof(d));
|
|
d.rtaddr.sin6_family = AF_INET6;
|
|
d.rtaddr.sin6_len = sizeof(d.rtaddr);
|
|
|
|
ND6_RLOCK();
|
|
TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
|
|
d.rtaddr.sin6_addr = dr->rtaddr;
|
|
error = sa6_recoverscope(&d.rtaddr);
|
|
if (error != 0)
|
|
break;
|
|
d.flags = dr->raflags;
|
|
d.rtlifetime = dr->rtlifetime;
|
|
d.expire = dr->expire + (time_second - time_uptime);
|
|
d.if_index = dr->ifp->if_index;
|
|
error = SYSCTL_OUT(req, &d, sizeof(d));
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
ND6_RUNLOCK();
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct in6_prefix p;
|
|
struct sockaddr_in6 s6;
|
|
struct nd_prefix *pr;
|
|
struct nd_pfxrouter *pfr;
|
|
time_t maxexpire;
|
|
int error;
|
|
char ip6buf[INET6_ADDRSTRLEN];
|
|
|
|
if (req->newptr)
|
|
return (EPERM);
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
bzero(&p, sizeof(p));
|
|
p.origin = PR_ORIG_RA;
|
|
bzero(&s6, sizeof(s6));
|
|
s6.sin6_family = AF_INET6;
|
|
s6.sin6_len = sizeof(s6);
|
|
|
|
ND6_RLOCK();
|
|
LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
|
|
p.prefix = pr->ndpr_prefix;
|
|
if (sa6_recoverscope(&p.prefix)) {
|
|
log(LOG_ERR, "scope error in prefix list (%s)\n",
|
|
ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
|
|
/* XXX: press on... */
|
|
}
|
|
p.raflags = pr->ndpr_raf;
|
|
p.prefixlen = pr->ndpr_plen;
|
|
p.vltime = pr->ndpr_vltime;
|
|
p.pltime = pr->ndpr_pltime;
|
|
p.if_index = pr->ndpr_ifp->if_index;
|
|
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
|
|
p.expire = 0;
|
|
else {
|
|
/* XXX: we assume time_t is signed. */
|
|
maxexpire = (-1) &
|
|
~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
|
|
if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
|
|
p.expire = pr->ndpr_lastupdate +
|
|
pr->ndpr_vltime +
|
|
(time_second - time_uptime);
|
|
else
|
|
p.expire = maxexpire;
|
|
}
|
|
p.refcnt = pr->ndpr_addrcnt;
|
|
p.flags = pr->ndpr_stateflags;
|
|
p.advrtrs = 0;
|
|
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
|
|
p.advrtrs++;
|
|
error = SYSCTL_OUT(req, &p, sizeof(p));
|
|
if (error != 0)
|
|
break;
|
|
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
|
|
s6.sin6_addr = pfr->router->rtaddr;
|
|
if (sa6_recoverscope(&s6))
|
|
log(LOG_ERR,
|
|
"scope error in prefix list (%s)\n",
|
|
ip6_sprintf(ip6buf, &pfr->router->rtaddr));
|
|
error = SYSCTL_OUT(req, &s6, sizeof(s6));
|
|
if (error != 0)
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
ND6_RUNLOCK();
|
|
return (error);
|
|
}
|