50c957f702
Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
96 lines
3.7 KiB
Bash
96 lines
3.7 KiB
Bash
export KERNELSRC=@LINUX@
|
|
export KERNELBUILD=@LINUX_OBJ@
|
|
export KERNELSRCVER=@LINUX_VERSION@
|
|
export KERNELMOD=/lib/modules/${KERNELSRCVER}/kernel
|
|
|
|
export SPLSRC=@SPL@
|
|
export SPLBUILD=@SPL_OBJ@
|
|
export SPLSRCVER=@SPL_VERSION@
|
|
|
|
export SRCDIR=@abs_top_srcdir@
|
|
export BUILDDIR=@abs_top_builddir@
|
|
export LIBDIR=${BUILDDIR}/lib
|
|
export CMDDIR=${BUILDDIR}/cmd
|
|
export MODDIR=${BUILDDIR}/module
|
|
export SCRIPTDIR=${BUILDDIR}/scripts
|
|
export ZPOOLDIR=${BUILDDIR}/scripts/zpool-config
|
|
export ZPIOSDIR=${BUILDDIR}/scripts/zpios-test
|
|
export ZPIOSPROFILEDIR=${BUILDDIR}/scripts/zpios-profile
|
|
export ETCDIR=${SRCDIR}/etc
|
|
export TESTSDIR=${SRCDIR}/tests
|
|
export RUNFILEDIR=${TESTSDIR}/runfiles
|
|
export UDEVRULEDIR=${BUILDDIR}/udev/rules.d
|
|
|
|
export ZDB=${CMDDIR}/zdb/zdb
|
|
export ZFS=${CMDDIR}/zfs/zfs
|
|
export ZHACK=${CMDDIR}/zhack/zhack
|
|
export ZINJECT=${CMDDIR}/zinject/zinject
|
|
export ZPOOL=${CMDDIR}/zpool/zpool
|
|
export ZTEST=${CMDDIR}/ztest/ztest
|
|
export ZPIOS=${CMDDIR}/zpios/zpios
|
|
export RAIDZ_TEST=${CMDDIR}/raidz_test/raidz_test}
|
|
|
|
export COMMON_SH=${SCRIPTDIR}/common.sh
|
|
export ZFS_SH=${SCRIPTDIR}/zfs.sh
|
|
export ZPOOL_CREATE_SH=${SCRIPTDIR}/zpool-create.sh
|
|
export ZPIOS_SH=${SCRIPTDIR}/zpios.sh
|
|
export ZPIOS_SURVEY_SH=${SCRIPTDIR}/zpios-survey.sh
|
|
|
|
# Test Suite Specific Commands
|
|
export TEST_RUNNER=${TESTSDIR}/test-runner/cmd/test-runner.py
|
|
export STF_TOOLS=${TESTSDIR}/test-runner
|
|
export STF_SUITE=${TESTSDIR}/zfs-tests
|
|
|
|
export CHG_USR_EXEC=${TESTSDIR}/zfs-tests/cmd/chg_usr_exec/chg_usr_exec
|
|
export DEVNAME2DEVID=${TESTSDIR}/zfs-tests/cmd/devname2devid/devname2devid
|
|
export DIR_RD_UPDATE=${TESTSDIR}/zfs-tests/cmd/dir_rd_update/dir_rd_update
|
|
export FILE_CHECK=${TESTSDIR}/zfs-tests/cmd/file_check/file_check
|
|
export FILE_TRUNC=${TESTSDIR}/zfs-tests/cmd/file_trunc/file_trunc
|
|
export FILE_WRITE=${TESTSDIR}/zfs-tests/cmd/file_write/file_write
|
|
export LARGEST_FILE=${TESTSDIR}/zfs-tests/cmd/largest_file/largest_file
|
|
export MKBUSY=${TESTSDIR}/zfs-tests/cmd/mkbusy/mkbusy
|
|
export MKFILE=${TESTSDIR}/zfs-tests/cmd/mkfile/mkfile
|
|
export MKFILES=${TESTSDIR}/zfs-tests/cmd/mkfile/mkfiles
|
|
export MKTREE=${TESTSDIR}/zfs-tests/cmd/mktree/mktree
|
|
export MMAP_EXEC=${TESTSDIR}/zfs-tests/cmd/mmap_exec/mmap_exec
|
|
export MMAPWRITE=${TESTSDIR}/zfs-tests/cmd/mmapwrite/mmapwrite
|
|
export RANDFREE_FILE=${TESTSDIR}/zfs-tests/cmd/randfree_file/randfree_file
|
|
export READMMAP=${TESTSDIR}/zfs-tests/cmd/readmmap/readmmap
|
|
export RENAME_DIR=${TESTSDIR}/zfs-tests/cmd/rename_dir/rename_dir
|
|
export RM_LNKCNT_ZERO_FILE=${TESTSDIR}/zfs-tests/cmd/rm_lnkcnt_zero_file/rm_lnkcnt_zero_file
|
|
export THREADSAPPEND=${TESTSDIR}/zfs-tests/cmd/threadsappend/threadsappend
|
|
export XATTRTEST=${TESTSDIR}/zfs-tests/cmd/xattrtest/xattrtest
|
|
|
|
export INTREE=1
|
|
export LDMOD=/sbin/insmod
|
|
export GDB="/usr/bin/libtool --mode=execute gdb"
|
|
|
|
export ZED_PIDFILE=@runstatedir@/zed.pid
|
|
|
|
export KERNEL_MODULES=( \
|
|
${KERNELMOD}/lib/zlib_deflate/zlib_deflate.ko \
|
|
${KERNELMOD}/lib/zlib_inflate/zlib_inflate.ko \
|
|
)
|
|
|
|
export SPL_MODULES=( \
|
|
${SPLBUILD}/module/spl/spl.ko \
|
|
${SPLBUILD}/module/splat/splat.ko \
|
|
)
|
|
|
|
export ZFS_MODULES=( \
|
|
${MODDIR}/avl/zavl.ko \
|
|
${MODDIR}/nvpair/znvpair.ko \
|
|
${MODDIR}/unicode/zunicode.ko \
|
|
${MODDIR}/zcommon/zcommon.ko \
|
|
${MODDIR}/zfs/zfs.ko \
|
|
)
|
|
|
|
export ZPIOS_MODULES=( \
|
|
${MODDIR}/zpios/zpios.ko \
|
|
)
|
|
|
|
export MODULES=( \
|
|
${SPL_MODULES[*]} \
|
|
${ZFS_MODULES[*]} \
|
|
)
|