freebsd-nq/sys/dev/fxp/if_fxp.c
2011-06-27 21:37:38 +00:00

3223 lines
92 KiB
C

/*-
* Copyright (c) 1995, David Greenman
* Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Intel EtherExpress Pro/100B PCI Fast Ethernet driver
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <machine/resource.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/fxp/if_fxpreg.h>
#include <dev/fxp/if_fxpvar.h>
#include <dev/fxp/rcvbundl.h>
MODULE_DEPEND(fxp, pci, 1, 1, 1);
MODULE_DEPEND(fxp, ether, 1, 1, 1);
MODULE_DEPEND(fxp, miibus, 1, 1, 1);
#include "miibus_if.h"
/*
* NOTE! On !x86 we typically have an alignment constraint. The
* card DMAs the packet immediately following the RFA. However,
* the first thing in the packet is a 14-byte Ethernet header.
* This means that the packet is misaligned. To compensate,
* we actually offset the RFA 2 bytes into the cluster. This
* alignes the packet after the Ethernet header at a 32-bit
* boundary. HOWEVER! This means that the RFA is misaligned!
*/
#define RFA_ALIGNMENT_FUDGE 2
/*
* Set initial transmit threshold at 64 (512 bytes). This is
* increased by 64 (512 bytes) at a time, to maximum of 192
* (1536 bytes), if an underrun occurs.
*/
static int tx_threshold = 64;
/*
* The configuration byte map has several undefined fields which
* must be one or must be zero. Set up a template for these bits.
* The actual configuration is performed in fxp_init_body.
*
* See struct fxp_cb_config for the bit definitions.
*/
static const u_char const fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x0, 0x0, /* cb_command */
0x0, 0x0, 0x0, 0x0, /* link_addr */
0x0, /* 0 */
0x0, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x0, /* 5 */
0x32, /* 6 */
0x0, /* 7 */
0x0, /* 8 */
0x0, /* 9 */
0x6, /* 10 */
0x0, /* 11 */
0x0, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf0, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5, /* 21 */
0x0, /* 22 */
0x0, /* 23 */
0x0, /* 24 */
0x0, /* 25 */
0x0, /* 26 */
0x0, /* 27 */
0x0, /* 28 */
0x0, /* 29 */
0x0, /* 30 */
0x0 /* 31 */
};
/*
* Claim various Intel PCI device identifiers for this driver. The
* sub-vendor and sub-device field are extensively used to identify
* particular variants, but we don't currently differentiate between
* them.
*/
static const struct fxp_ident const fxp_ident_table[] = {
{ 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" },
{ 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" },
{ 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
{ 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
{ 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
{ 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
{ 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
{ 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
{ 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
{ 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
{ 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
{ 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
{ 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
{ 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
{ 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
{ 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
{ 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
{ 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
{ 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" },
{ 0x1064, -1, 6, "Intel 82562EZ (ICH6)" },
{ 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
{ 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
{ 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
{ 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" },
{ 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" },
{ 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" },
{ 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
{ 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" },
{ 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" },
{ 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" },
{ 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" },
{ 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" },
{ 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" },
{ 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" },
{ 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" },
{ 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" },
{ 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" },
{ 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" },
{ 0x1229, 0x0d, 0, "Intel 82550 Pro/100 Ethernet" },
{ 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" },
{ 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" },
{ 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" },
{ 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" },
{ 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
{ 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
{ 0, -1, 0, NULL },
};
#ifdef FXP_IP_CSUM_WAR
#define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
#else
#define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
#endif
static int fxp_probe(device_t dev);
static int fxp_attach(device_t dev);
static int fxp_detach(device_t dev);
static int fxp_shutdown(device_t dev);
static int fxp_suspend(device_t dev);
static int fxp_resume(device_t dev);
static const struct fxp_ident *fxp_find_ident(device_t dev);
static void fxp_intr(void *xsc);
static void fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
struct mbuf *m, uint16_t status, int pos);
static int fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
uint8_t statack, int count);
static void fxp_init(void *xsc);
static void fxp_init_body(struct fxp_softc *sc, int);
static void fxp_tick(void *xsc);
static void fxp_start(struct ifnet *ifp);
static void fxp_start_body(struct ifnet *ifp);
static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
static void fxp_txeof(struct fxp_softc *sc);
static void fxp_stop(struct fxp_softc *sc);
static void fxp_release(struct fxp_softc *sc);
static int fxp_ioctl(struct ifnet *ifp, u_long command,
caddr_t data);
static void fxp_watchdog(struct fxp_softc *sc);
static void fxp_add_rfabuf(struct fxp_softc *sc,
struct fxp_rx *rxp);
static void fxp_discard_rfabuf(struct fxp_softc *sc,
struct fxp_rx *rxp);
static int fxp_new_rfabuf(struct fxp_softc *sc,
struct fxp_rx *rxp);
static int fxp_mc_addrs(struct fxp_softc *sc);
static void fxp_mc_setup(struct fxp_softc *sc);
static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
int autosize);
static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
uint16_t data);
static void fxp_autosize_eeprom(struct fxp_softc *sc);
static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
int offset, int words);
static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
int offset, int words);
static int fxp_ifmedia_upd(struct ifnet *ifp);
static void fxp_ifmedia_sts(struct ifnet *ifp,
struct ifmediareq *ifmr);
static int fxp_serial_ifmedia_upd(struct ifnet *ifp);
static void fxp_serial_ifmedia_sts(struct ifnet *ifp,
struct ifmediareq *ifmr);
static int fxp_miibus_readreg(device_t dev, int phy, int reg);
static int fxp_miibus_writereg(device_t dev, int phy, int reg,
int value);
static void fxp_miibus_statchg(device_t dev);
static void fxp_load_ucode(struct fxp_softc *sc);
static void fxp_update_stats(struct fxp_softc *sc);
static void fxp_sysctl_node(struct fxp_softc *sc);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
int low, int high);
static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
static void fxp_scb_wait(struct fxp_softc *sc);
static void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
static void fxp_dma_wait(struct fxp_softc *sc,
volatile uint16_t *status, bus_dma_tag_t dmat,
bus_dmamap_t map);
static device_method_t fxp_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fxp_probe),
DEVMETHOD(device_attach, fxp_attach),
DEVMETHOD(device_detach, fxp_detach),
DEVMETHOD(device_shutdown, fxp_shutdown),
DEVMETHOD(device_suspend, fxp_suspend),
DEVMETHOD(device_resume, fxp_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
DEVMETHOD(miibus_statchg, fxp_miibus_statchg),
{ 0, 0 }
};
static driver_t fxp_driver = {
"fxp",
fxp_methods,
sizeof(struct fxp_softc),
};
static devclass_t fxp_devclass;
DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec fxp_res_spec_mem[] = {
{ SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0 }
};
static struct resource_spec fxp_res_spec_io[] = {
{ SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0 }
};
/*
* Wait for the previous command to be accepted (but not necessarily
* completed).
*/
static void
fxp_scb_wait(struct fxp_softc *sc)
{
union {
uint16_t w;
uint8_t b[2];
} flowctl;
int i = 10000;
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
DELAY(2);
if (i == 0) {
flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
}
}
static void
fxp_scb_cmd(struct fxp_softc *sc, int cmd)
{
if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
fxp_scb_wait(sc);
}
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
}
static void
fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
bus_dma_tag_t dmat, bus_dmamap_t map)
{
int i;
for (i = 10000; i > 0; i--) {
DELAY(2);
bus_dmamap_sync(dmat, map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
break;
}
if (i == 0)
device_printf(sc->dev, "DMA timeout\n");
}
static const struct fxp_ident *
fxp_find_ident(device_t dev)
{
uint16_t devid;
uint8_t revid;
const struct fxp_ident *ident;
if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
devid = pci_get_device(dev);
revid = pci_get_revid(dev);
for (ident = fxp_ident_table; ident->name != NULL; ident++) {
if (ident->devid == devid &&
(ident->revid == revid || ident->revid == -1)) {
return (ident);
}
}
}
return (NULL);
}
/*
* Return identification string if this device is ours.
*/
static int
fxp_probe(device_t dev)
{
const struct fxp_ident *ident;
ident = fxp_find_ident(dev);
if (ident != NULL) {
device_set_desc(dev, ident->name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static void
fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
uint32_t *addr;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
addr = arg;
*addr = segs->ds_addr;
}
static int
fxp_attach(device_t dev)
{
struct fxp_softc *sc;
struct fxp_cb_tx *tcbp;
struct fxp_tx *txp;
struct fxp_rx *rxp;
struct ifnet *ifp;
uint32_t val;
uint16_t data, myea[ETHER_ADDR_LEN / 2];
u_char eaddr[ETHER_ADDR_LEN];
int error, flags, i, pmc, prefer_iomap;
error = 0;
sc = device_get_softc(dev);
sc->dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
fxp_serial_ifmedia_sts);
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
/*
* Enable bus mastering.
*/
pci_enable_busmaster(dev);
val = pci_read_config(dev, PCIR_COMMAND, 2);
/*
* Figure out which we should try first - memory mapping or i/o mapping?
* We default to memory mapping. Then we accept an override from the
* command line. Then we check to see which one is enabled.
*/
prefer_iomap = 0;
resource_int_value(device_get_name(dev), device_get_unit(dev),
"prefer_iomap", &prefer_iomap);
if (prefer_iomap)
sc->fxp_spec = fxp_res_spec_io;
else
sc->fxp_spec = fxp_res_spec_mem;
error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
if (error) {
if (sc->fxp_spec == fxp_res_spec_mem)
sc->fxp_spec = fxp_res_spec_io;
else
sc->fxp_spec = fxp_res_spec_mem;
error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
}
if (error) {
device_printf(dev, "could not allocate resources\n");
error = ENXIO;
goto fail;
}
if (bootverbose) {
device_printf(dev, "using %s space register mapping\n",
sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
}
/*
* Put CU/RU idle state and prepare full reset.
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/* Full reset and disable interrupts. */
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
DELAY(10);
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
/*
* Find out how large of an SEEPROM we have.
*/
fxp_autosize_eeprom(sc);
/*
* Find out the chip revision; lump all 82557 revs together.
*/
sc->ident = fxp_find_ident(dev);
if (sc->ident->ich > 0) {
/* Assume ICH controllers are 82559. */
sc->revision = FXP_REV_82559_A0;
} else {
fxp_read_eeprom(sc, &data, 5, 1);
if ((data >> 8) == 1)
sc->revision = FXP_REV_82557;
else
sc->revision = pci_get_revid(dev);
}
/*
* Check availability of WOL. 82559ER does not support WOL.
*/
if (sc->revision >= FXP_REV_82558_A4 &&
sc->revision != FXP_REV_82559S_A) {
fxp_read_eeprom(sc, &data, 10, 1);
if ((data & 0x20) != 0 &&
pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
sc->flags |= FXP_FLAG_WOLCAP;
}
/* Receiver lock-up workaround detection. */
if (sc->revision < FXP_REV_82558_A4) {
fxp_read_eeprom(sc, &data, 3, 1);
if ((data & 0x03) != 0x03) {
sc->flags |= FXP_FLAG_RXBUG;
device_printf(dev, "Enabling Rx lock-up workaround\n");
}
}
/*
* Determine whether we must use the 503 serial interface.
*/
fxp_read_eeprom(sc, &data, 6, 1);
if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
&& (data & FXP_PHY_SERIAL_ONLY))
sc->flags |= FXP_FLAG_SERIAL_MEDIA;
fxp_sysctl_node(sc);
/*
* Enable workarounds for certain chip revision deficiencies.
*
* Systems based on the ICH2/ICH2-M chip from Intel, and possibly
* some systems based a normal 82559 design, have a defect where
* the chip can cause a PCI protocol violation if it receives
* a CU_RESUME command when it is entering the IDLE state. The
* workaround is to disable Dynamic Standby Mode, so the chip never
* deasserts CLKRUN#, and always remains in an active state.
*
* See Intel 82801BA/82801BAM Specification Update, Errata #30.
*/
if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
(sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
fxp_read_eeprom(sc, &data, 10, 1);
if (data & 0x02) { /* STB enable */
uint16_t cksum;
int i;
device_printf(dev,
"Disabling dynamic standby mode in EEPROM\n");
data &= ~0x02;
fxp_write_eeprom(sc, &data, 10, 1);
device_printf(dev, "New EEPROM ID: 0x%x\n", data);
cksum = 0;
for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
fxp_read_eeprom(sc, &data, i, 1);
cksum += data;
}
i = (1 << sc->eeprom_size) - 1;
cksum = 0xBABA - cksum;
fxp_read_eeprom(sc, &data, i, 1);
fxp_write_eeprom(sc, &cksum, i, 1);
device_printf(dev,
"EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
i, data, cksum);
#if 1
/*
* If the user elects to continue, try the software
* workaround, as it is better than nothing.
*/
sc->flags |= FXP_FLAG_CU_RESUME_BUG;
#endif
}
}
/*
* If we are not a 82557 chip, we can enable extended features.
*/
if (sc->revision != FXP_REV_82557) {
/*
* If MWI is enabled in the PCI configuration, and there
* is a valid cacheline size (8 or 16 dwords), then tell
* the board to turn on MWI.
*/
if (val & PCIM_CMD_MWRICEN &&
pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
sc->flags |= FXP_FLAG_MWI_ENABLE;
/* turn on the extended TxCB feature */
sc->flags |= FXP_FLAG_EXT_TXCB;
/* enable reception of long frames for VLAN */
sc->flags |= FXP_FLAG_LONG_PKT_EN;
} else {
/* a hack to get long VLAN frames on a 82557 */
sc->flags |= FXP_FLAG_SAVE_BAD;
}
/* For 82559 or later chips, Rx checksum offload is supported. */
if (sc->revision >= FXP_REV_82559_A0) {
/* 82559ER does not support Rx checksum offloading. */
if (sc->ident->devid != 0x1209)
sc->flags |= FXP_FLAG_82559_RXCSUM;
}
/*
* Enable use of extended RFDs and TCBs for 82550
* and later chips. Note: we need extended TXCB support
* too, but that's already enabled by the code above.
* Be careful to do this only on the right devices.
*/
if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
|| sc->revision == FXP_REV_82551_10) {
sc->rfa_size = sizeof (struct fxp_rfa);
sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
sc->flags |= FXP_FLAG_EXT_RFA;
/* Use extended RFA instead of 82559 checksum mode. */
sc->flags &= ~FXP_FLAG_82559_RXCSUM;
} else {
sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
sc->tx_cmd = FXP_CB_COMMAND_XMIT;
}
/*
* Allocate DMA tags and DMA safe memory.
*/
sc->maxtxseg = FXP_NTXSEG;
sc->maxsegsize = MCLBYTES;
if (sc->flags & FXP_FLAG_EXT_RFA) {
sc->maxtxseg--;
sc->maxsegsize = FXP_TSO_SEGSIZE;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
sc->maxtxseg, sc->maxsegsize, 0,
busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
if (error) {
device_printf(dev, "could not create TX DMA tag\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES, 1, MCLBYTES, 0,
busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
if (error) {
device_printf(dev, "could not create RX DMA tag\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
busdma_lock_mutex, &Giant, &sc->fxp_stag);
if (error) {
device_printf(dev, "could not create stats DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
if (error) {
device_printf(dev, "could not allocate stats DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
if (error) {
device_printf(dev, "could not load the stats DMA buffer\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
busdma_lock_mutex, &Giant, &sc->cbl_tag);
if (error) {
device_printf(dev, "could not create TxCB DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
if (error) {
device_printf(dev, "could not allocate TxCB DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
&sc->fxp_desc.cbl_addr, 0);
if (error) {
device_printf(dev, "could not load TxCB DMA buffer\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
busdma_lock_mutex, &Giant, &sc->mcs_tag);
if (error) {
device_printf(dev,
"could not create multicast setup DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
if (error) {
device_printf(dev,
"could not allocate multicast setup DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
if (error) {
device_printf(dev,
"can't load the multicast setup DMA buffer\n");
goto fail;
}
/*
* Pre-allocate the TX DMA maps and setup the pointers to
* the TX command blocks.
*/
txp = sc->fxp_desc.tx_list;
tcbp = sc->fxp_desc.cbl_list;
for (i = 0; i < FXP_NTXCB; i++) {
txp[i].tx_cb = tcbp + i;
error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
if (error) {
device_printf(dev, "can't create DMA map for TX\n");
goto fail;
}
}
error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
if (error) {
device_printf(dev, "can't create spare DMA map\n");
goto fail;
}
/*
* Pre-allocate our receive buffers.
*/
sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
for (i = 0; i < FXP_NRFABUFS; i++) {
rxp = &sc->fxp_desc.rx_list[i];
error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
if (error) {
device_printf(dev, "can't create DMA map for RX\n");
goto fail;
}
if (fxp_new_rfabuf(sc, rxp) != 0) {
error = ENOMEM;
goto fail;
}
fxp_add_rfabuf(sc, rxp);
}
/*
* Read MAC address.
*/
fxp_read_eeprom(sc, myea, 0, 3);
eaddr[0] = myea[0] & 0xff;
eaddr[1] = myea[0] >> 8;
eaddr[2] = myea[1] & 0xff;
eaddr[3] = myea[1] >> 8;
eaddr[4] = myea[2] & 0xff;
eaddr[5] = myea[2] >> 8;
if (bootverbose) {
device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
pci_get_vendor(dev), pci_get_device(dev),
pci_get_subvendor(dev), pci_get_subdevice(dev),
pci_get_revid(dev));
fxp_read_eeprom(sc, &data, 10, 1);
device_printf(dev, "Dynamic Standby mode is %s\n",
data & 0x02 ? "enabled" : "disabled");
}
/*
* If this is only a 10Mbps device, then there is no MII, and
* the PHY will use a serial interface instead.
*
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
* doesn't have a programming interface of any sort. The
* media is sensed automatically based on how the link partner
* is configured. This is, in essence, manual configuration.
*/
if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
} else {
/*
* i82557 wedge when isolating all of their PHYs.
*/
flags = MIIF_NOISOLATE;
if (sc->revision >= FXP_REV_82558_A4)
flags |= MIIF_DOPAUSE;
error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
MII_OFFSET_ANY, flags);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_init = fxp_init;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = fxp_ioctl;
ifp->if_start = fxp_start;
ifp->if_capabilities = ifp->if_capenable = 0;
/* Enable checksum offload/TSO for 82550 or better chips */
if (sc->flags & FXP_FLAG_EXT_RFA) {
ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
}
if (sc->flags & FXP_FLAG_82559_RXCSUM) {
ifp->if_capabilities |= IFCAP_RXCSUM;
ifp->if_capenable |= IFCAP_RXCSUM;
}
if (sc->flags & FXP_FLAG_WOLCAP) {
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
ifp->if_capenable |= IFCAP_WOL_MAGIC;
}
#ifdef DEVICE_POLLING
/* Inform the world we support polling. */
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* Attach the interface.
*/
ether_ifattach(ifp, eaddr);
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
}
/*
* Let the system queue as many packets as we have available
* TX descriptors.
*/
IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
IFQ_SET_READY(&ifp->if_snd);
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
NULL, fxp_intr, sc, &sc->ih);
if (error) {
device_printf(dev, "could not setup irq\n");
ether_ifdetach(sc->ifp);
goto fail;
}
/*
* Configure hardware to reject magic frames otherwise
* system will hang on recipt of magic frames.
*/
if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
FXP_LOCK(sc);
/* Clear wakeup events. */
CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
fxp_init_body(sc, 1);
fxp_stop(sc);
FXP_UNLOCK(sc);
}
fail:
if (error)
fxp_release(sc);
return (error);
}
/*
* Release all resources. The softc lock should not be held and the
* interrupt should already be torn down.
*/
static void
fxp_release(struct fxp_softc *sc)
{
struct fxp_rx *rxp;
struct fxp_tx *txp;
int i;
FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
KASSERT(sc->ih == NULL,
("fxp_release() called with intr handle still active"));
if (sc->miibus)
device_delete_child(sc->dev, sc->miibus);
bus_generic_detach(sc->dev);
ifmedia_removeall(&sc->sc_media);
if (sc->fxp_desc.cbl_list) {
bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
sc->cbl_map);
}
if (sc->fxp_stats) {
bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
}
if (sc->mcsp) {
bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
}
bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
if (sc->fxp_rxmtag) {
for (i = 0; i < FXP_NRFABUFS; i++) {
rxp = &sc->fxp_desc.rx_list[i];
if (rxp->rx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
m_freem(rxp->rx_mbuf);
}
bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
}
bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
bus_dma_tag_destroy(sc->fxp_rxmtag);
}
if (sc->fxp_txmtag) {
for (i = 0; i < FXP_NTXCB; i++) {
txp = &sc->fxp_desc.tx_list[i];
if (txp->tx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
m_freem(txp->tx_mbuf);
}
bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
}
bus_dma_tag_destroy(sc->fxp_txmtag);
}
if (sc->fxp_stag)
bus_dma_tag_destroy(sc->fxp_stag);
if (sc->cbl_tag)
bus_dma_tag_destroy(sc->cbl_tag);
if (sc->mcs_tag)
bus_dma_tag_destroy(sc->mcs_tag);
if (sc->ifp)
if_free(sc->ifp);
mtx_destroy(&sc->sc_mtx);
}
/*
* Detach interface.
*/
static int
fxp_detach(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(sc->ifp);
#endif
FXP_LOCK(sc);
/*
* Stop DMA and drop transmit queue, but disable interrupts first.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
fxp_stop(sc);
FXP_UNLOCK(sc);
callout_drain(&sc->stat_ch);
/*
* Close down routes etc.
*/
ether_ifdetach(sc->ifp);
/*
* Unhook interrupt before dropping lock. This is to prevent
* races with fxp_intr().
*/
bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
sc->ih = NULL;
/* Release our allocated resources. */
fxp_release(sc);
return (0);
}
/*
* Device shutdown routine. Called at system shutdown after sync. The
* main purpose of this routine is to shut off receiver DMA so that
* kernel memory doesn't get clobbered during warmboot.
*/
static int
fxp_shutdown(device_t dev)
{
/*
* Make sure that DMA is disabled prior to reboot. Not doing
* do could allow DMA to corrupt kernel memory during the
* reboot before the driver initializes.
*/
return (fxp_suspend(dev));
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
fxp_suspend(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
int pmc;
uint16_t pmstat;
FXP_LOCK(sc);
ifp = sc->ifp;
if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
/* Request PME. */
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
sc->flags |= FXP_FLAG_WOL;
/* Reconfigure hardware to accept magic frames. */
fxp_init_body(sc, 1);
}
pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}
fxp_stop(sc);
sc->suspended = 1;
FXP_UNLOCK(sc);
return (0);
}
/*
* Device resume routine. re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
fxp_resume(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->ifp;
int pmc;
uint16_t pmstat;
FXP_LOCK(sc);
if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
sc->flags &= ~FXP_FLAG_WOL;
pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
/* Disable PME and clear PME status. */
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
CSR_WRITE_1(sc, FXP_CSR_PMDR,
CSR_READ_1(sc, FXP_CSR_PMDR));
}
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
fxp_init_body(sc, 1);
sc->suspended = 0;
FXP_UNLOCK(sc);
return (0);
}
static void
fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
{
uint16_t reg;
int x;
/*
* Shift in data.
*/
for (x = 1 << (length - 1); x; x >>= 1) {
if (data & x)
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
else
reg = FXP_EEPROM_EECS;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
}
/*
* Read from the serial EEPROM. Basically, you manually shift in
* the read opcode (one bit at a time) and then shift in the address,
* and then you shift out the data (all of this one bit at a time).
* The word size is 16 bits, so you have to provide the address for
* every 16 bits of data.
*/
static uint16_t
fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
{
uint16_t reg, data;
int x;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
/*
* Shift in read opcode.
*/
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
/*
* Shift in address.
*/
data = 0;
for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
if (offset & x)
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
else
reg = FXP_EEPROM_EECS;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
data++;
if (autosize && reg == 0) {
sc->eeprom_size = data;
break;
}
}
/*
* Shift out data.
*/
data = 0;
reg = FXP_EEPROM_EECS;
for (x = 1 << 15; x; x >>= 1) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
DELAY(1);
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
data |= x;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
return (data);
}
static void
fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
{
int i;
/*
* Erase/write enable.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, 0x4, 3);
fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
/*
* Shift in write opcode, address, data.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
fxp_eeprom_shiftin(sc, data, 16);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
/*
* Wait for EEPROM to finish up.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
DELAY(1);
for (i = 0; i < 1000; i++) {
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
break;
DELAY(50);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
/*
* Erase/write disable.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, 0x4, 3);
fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
}
/*
* From NetBSD:
*
* Figure out EEPROM size.
*
* 559's can have either 64-word or 256-word EEPROMs, the 558
* datasheet only talks about 64-word EEPROMs, and the 557 datasheet
* talks about the existance of 16 to 256 word EEPROMs.
*
* The only known sizes are 64 and 256, where the 256 version is used
* by CardBus cards to store CIS information.
*
* The address is shifted in msb-to-lsb, and after the last
* address-bit the EEPROM is supposed to output a `dummy zero' bit,
* after which follows the actual data. We try to detect this zero, by
* probing the data-out bit in the EEPROM control register just after
* having shifted in a bit. If the bit is zero, we assume we've
* shifted enough address bits. The data-out should be tri-state,
* before this, which should translate to a logical one.
*/
static void
fxp_autosize_eeprom(struct fxp_softc *sc)
{
/* guess maximum size of 256 words */
sc->eeprom_size = 8;
/* autosize */
(void) fxp_eeprom_getword(sc, 0, 1);
}
static void
fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
{
int i;
for (i = 0; i < words; i++)
data[i] = fxp_eeprom_getword(sc, offset + i, 0);
}
static void
fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
{
int i;
for (i = 0; i < words; i++)
fxp_eeprom_putword(sc, offset + i, data[i]);
}
/*
* Grab the softc lock and call the real fxp_start_body() routine
*/
static void
fxp_start(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
FXP_LOCK(sc);
fxp_start_body(ifp);
FXP_UNLOCK(sc);
}
/*
* Start packet transmission on the interface.
* This routine must be called with the softc lock held, and is an
* internal entry point only.
*/
static void
fxp_start_body(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
struct mbuf *mb_head;
int txqueued;
FXP_LOCK_ASSERT(sc, MA_OWNED);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
if (sc->tx_queued > FXP_NTXCB_HIWAT)
fxp_txeof(sc);
/*
* We're finished if there is nothing more to add to the list or if
* we're all filled up with buffers to transmit.
* NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
* a NOP command when needed.
*/
txqueued = 0;
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->tx_queued < FXP_NTXCB - 1) {
/*
* Grab a packet to transmit.
*/
IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
if (mb_head == NULL)
break;
if (fxp_encap(sc, &mb_head)) {
if (mb_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
txqueued++;
/*
* Pass packet to bpf if there is a listener.
*/
BPF_MTAP(ifp, mb_head);
}
/*
* We're finished. If we added to the list, issue a RESUME to get DMA
* going again if suspended.
*/
if (txqueued > 0) {
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
/*
* Set a 5 second timer just in case we don't hear
* from the card again.
*/
sc->watchdog_timer = 5;
}
}
static int
fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
{
struct ifnet *ifp;
struct mbuf *m;
struct fxp_tx *txp;
struct fxp_cb_tx *cbp;
struct tcphdr *tcp;
bus_dma_segment_t segs[FXP_NTXSEG];
int error, i, nseg, tcp_payload;
FXP_LOCK_ASSERT(sc, MA_OWNED);
ifp = sc->ifp;
tcp_payload = 0;
tcp = NULL;
/*
* Get pointer to next available tx desc.
*/
txp = sc->fxp_desc.tx_last->tx_next;
/*
* A note in Appendix B of the Intel 8255x 10/100 Mbps
* Ethernet Controller Family Open Source Software
* Developer Manual says:
* Using software parsing is only allowed with legal
* TCP/IP or UDP/IP packets.
* ...
* For all other datagrams, hardware parsing must
* be used.
* Software parsing appears to truncate ICMP and
* fragmented UDP packets that contain one to three
* bytes in the second (and final) mbuf of the packet.
*/
if (sc->flags & FXP_FLAG_EXT_RFA)
txp->tx_cb->ipcb_ip_activation_high =
FXP_IPCB_HARDWAREPARSING_ENABLE;
m = *m_head;
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
/*
* 82550/82551 requires ethernet/IP/TCP headers must be
* contained in the first active transmit buffer.
*/
struct ether_header *eh;
struct ip *ip;
uint32_t ip_off, poff;
if (M_WRITABLE(*m_head) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_DONTWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(*m_head, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/* Check the existence of VLAN tag. */
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
/*
* Since 82550/82551 doesn't modify IP length and pseudo
* checksum in the first frame driver should compute it.
*/
ip = (struct ip *)(mtod(m, char *) + ip_off);
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
ip->ip_sum = 0;
ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
(tcp->th_off << 2));
tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons(IPPROTO_TCP + (tcp->th_off << 2) +
m->m_pkthdr.tso_segsz));
/* Compute total TCP payload. */
tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
tcp_payload -= tcp->th_off << 2;
*m_head = m;
} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
/*
* Deal with TCP/IP checksum offload. Note that
* in order for TCP checksum offload to work,
* the pseudo header checksum must have already
* been computed and stored in the checksum field
* in the TCP header. The stack should have
* already done this for us.
*/
txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
if (m->m_pkthdr.csum_flags & CSUM_TCP)
txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
#ifdef FXP_IP_CSUM_WAR
/*
* XXX The 82550 chip appears to have trouble
* dealing with IP header checksums in very small
* datagrams, namely fragments from 1 to 3 bytes
* in size. For example, say you want to transmit
* a UDP packet of 1473 bytes. The packet will be
* fragmented over two IP datagrams, the latter
* containing only one byte of data. The 82550 will
* botch the header checksum on the 1-byte fragment.
* As long as the datagram contains 4 or more bytes
* of data, you're ok.
*
* The following code attempts to work around this
* problem: if the datagram is less than 38 bytes
* in size (14 bytes ether header, 20 bytes IP header,
* plus 4 bytes of data), we punt and compute the IP
* header checksum by hand. This workaround doesn't
* work very well, however, since it can be fooled
* by things like VLAN tags and IP options that make
* the header sizes/offsets vary.
*/
if (m->m_pkthdr.csum_flags & CSUM_IP) {
if (m->m_pkthdr.len < 38) {
struct ip *ip;
m->m_data += ETHER_HDR_LEN;
ip = mtod(m, struct ip *);
ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
m->m_data -= ETHER_HDR_LEN;
m->m_pkthdr.csum_flags &= ~CSUM_IP;
} else {
txp->tx_cb->ipcb_ip_activation_high =
FXP_IPCB_HARDWAREPARSING_ENABLE;
txp->tx_cb->ipcb_ip_schedule |=
FXP_IPCB_IP_CHECKSUM_ENABLE;
}
}
#endif
}
error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
segs, &nseg, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
*m_head, segs, &nseg, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
} else if (error != 0)
return (error);
if (nseg == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
cbp = txp->tx_cb;
for (i = 0; i < nseg; i++) {
/*
* If this is an 82550/82551, then we're using extended
* TxCBs _and_ we're using checksum offload. This means
* that the TxCB is really an IPCB. One major difference
* between the two is that with plain extended TxCBs,
* the bottom half of the TxCB contains two entries from
* the TBD array, whereas IPCBs contain just one entry:
* one entry (8 bytes) has been sacrificed for the TCP/IP
* checksum offload control bits. So to make things work
* right, we have to start filling in the TBD array
* starting from a different place depending on whether
* the chip is an 82550/82551 or not.
*/
if (sc->flags & FXP_FLAG_EXT_RFA) {
cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
} else {
cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
}
}
if (sc->flags & FXP_FLAG_EXT_RFA) {
/* Configure dynamic TBD for 82550/82551. */
cbp->tbd_number = 0xFF;
cbp->tbd[nseg].tb_size |= htole32(0x8000);
} else
cbp->tbd_number = nseg;
/* Configure TSO. */
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
FXP_IPCB_IP_CHECKSUM_ENABLE |
FXP_IPCB_TCP_PACKET |
FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
}
/* Configure VLAN hardware tag insertion. */
if ((m->m_flags & M_VLANTAG) != 0) {
cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
txp->tx_cb->ipcb_ip_activation_high |=
FXP_IPCB_INSERTVLAN_ENABLE;
}
txp->tx_mbuf = m;
txp->tx_cb->cb_status = 0;
txp->tx_cb->byte_count = 0;
if (sc->tx_queued != FXP_CXINT_THRESH - 1)
txp->tx_cb->cb_command =
htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
FXP_CB_COMMAND_S);
else
txp->tx_cb->cb_command =
htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
txp->tx_cb->tx_threshold = tx_threshold;
/*
* Advance the end of list forward.
*/
sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
sc->fxp_desc.tx_last = txp;
/*
* Advance the beginning of the list forward if there are
* no other packets queued (when nothing is queued, tx_first
* sits on the last TxCB that was sent out).
*/
if (sc->tx_queued == 0)
sc->fxp_desc.tx_first = txp;
sc->tx_queued++;
return (0);
}
#ifdef DEVICE_POLLING
static poll_handler_t fxp_poll;
static int
fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct fxp_softc *sc = ifp->if_softc;
uint8_t statack;
int rx_npkts = 0;
FXP_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
FXP_UNLOCK(sc);
return (rx_npkts);
}
statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
FXP_SCB_STATACK_FR;
if (cmd == POLL_AND_CHECK_STATUS) {
uint8_t tmp;
tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
if (tmp == 0xff || tmp == 0) {
FXP_UNLOCK(sc);
return (rx_npkts); /* nothing to do */
}
tmp &= ~statack;
/* ack what we can */
if (tmp != 0)
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
statack |= tmp;
}
rx_npkts = fxp_intr_body(sc, ifp, statack, count);
FXP_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
/*
* Process interface interrupts.
*/
static void
fxp_intr(void *xsc)
{
struct fxp_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
uint8_t statack;
FXP_LOCK(sc);
if (sc->suspended) {
FXP_UNLOCK(sc);
return;
}
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
FXP_UNLOCK(sc);
return;
}
#endif
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
/*
* It should not be possible to have all bits set; the
* FXP_SCB_INTR_SWI bit always returns 0 on a read. If
* all bits are set, this may indicate that the card has
* been physically ejected, so ignore it.
*/
if (statack == 0xff) {
FXP_UNLOCK(sc);
return;
}
/*
* First ACK all the interrupts in this pass.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
fxp_intr_body(sc, ifp, statack, -1);
}
FXP_UNLOCK(sc);
}
static void
fxp_txeof(struct fxp_softc *sc)
{
struct ifnet *ifp;
struct fxp_tx *txp;
ifp = sc->ifp;
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
(le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
txp = txp->tx_next) {
if (txp->tx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
m_freem(txp->tx_mbuf);
txp->tx_mbuf = NULL;
/* clear this to reset csum offload bits */
txp->tx_cb->tbd[0].tb_addr = 0;
}
sc->tx_queued--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
sc->fxp_desc.tx_first = txp;
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->tx_queued == 0)
sc->watchdog_timer = 0;
}
static void
fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
uint16_t status, int pos)
{
struct ether_header *eh;
struct ip *ip;
struct udphdr *uh;
int32_t hlen, len, pktlen, temp32;
uint16_t csum, *opts;
if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
if ((status & FXP_RFA_STATUS_PARSE) != 0) {
if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (status & FXP_RFDX_CS_IP_CSUM_VALID)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
(status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
return;
}
pktlen = m->m_pkthdr.len;
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
return;
eh = mtod(m, struct ether_header *);
if (eh->ether_type != htons(ETHERTYPE_IP))
return;
ip = (struct ip *)(eh + 1);
if (ip->ip_v != IPVERSION)
return;
hlen = ip->ip_hl << 2;
pktlen -= sizeof(struct ether_header);
if (hlen < sizeof(struct ip))
return;
if (ntohs(ip->ip_len) < hlen)
return;
if (ntohs(ip->ip_len) != pktlen)
return;
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
return; /* can't handle fragmented packet */
switch (ip->ip_p) {
case IPPROTO_TCP:
if (pktlen < (hlen + sizeof(struct tcphdr)))
return;
break;
case IPPROTO_UDP:
if (pktlen < (hlen + sizeof(struct udphdr)))
return;
uh = (struct udphdr *)((caddr_t)ip + hlen);
if (uh->uh_sum == 0)
return; /* no checksum */
break;
default:
return;
}
/* Extract computed checksum. */
csum = be16dec(mtod(m, char *) + pos);
/* checksum fixup for IP options */
len = hlen - sizeof(struct ip);
if (len > 0) {
opts = (uint16_t *)(ip + 1);
for (; len > 0; len -= sizeof(uint16_t), opts++) {
temp32 = csum - *opts;
temp32 = (temp32 >> 16) + (temp32 & 65535);
csum = temp32 & 65535;
}
}
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
m->m_pkthdr.csum_data = csum;
}
static int
fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
int count)
{
struct mbuf *m;
struct fxp_rx *rxp;
struct fxp_rfa *rfa;
int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
int rx_npkts;
uint16_t status;
rx_npkts = 0;
FXP_LOCK_ASSERT(sc, MA_OWNED);
if (rnr)
sc->rnr++;
#ifdef DEVICE_POLLING
/* Pick up a deferred RNR condition if `count' ran out last time. */
if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
rnr = 1;
}
#endif
/*
* Free any finished transmit mbuf chains.
*
* Handle the CNA event likt a CXTNO event. It used to
* be that this event (control unit not ready) was not
* encountered, but it is now with the SMPng modifications.
* The exact sequence of events that occur when the interface
* is brought up are different now, and if this event
* goes unhandled, the configuration/rxfilter setup sequence
* can stall for several seconds. The result is that no
* packets go out onto the wire for about 5 to 10 seconds
* after the interface is ifconfig'ed for the first time.
*/
if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
fxp_txeof(sc);
/*
* Try to start more packets transmitting.
*/
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
fxp_start_body(ifp);
/*
* Just return if nothing happened on the receive side.
*/
if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
return (rx_npkts);
/*
* Process receiver interrupts. If a no-resource (RNR)
* condition exists, get whatever packets we can and
* re-start the receiver.
*
* When using polling, we do not process the list to completion,
* so when we get an RNR interrupt we must defer the restart
* until we hit the last buffer with the C bit set.
* If we run out of cycles and rfa_headm has the C bit set,
* record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
* that the info will be used in the subsequent polling cycle.
*/
for (;;) {
rxp = sc->fxp_desc.rx_head;
m = rxp->rx_mbuf;
rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
RFA_ALIGNMENT_FUDGE);
bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
if (count >= 0 && count-- == 0) {
if (rnr) {
/* Defer RNR processing until the next time. */
sc->flags |= FXP_FLAG_DEFERRED_RNR;
rnr = 0;
}
break;
}
#endif /* DEVICE_POLLING */
status = le16toh(rfa->rfa_status);
if ((status & FXP_RFA_STATUS_C) == 0)
break;
if ((status & FXP_RFA_STATUS_RNR) != 0)
rnr++;
/*
* Advance head forward.
*/
sc->fxp_desc.rx_head = rxp->rx_next;
/*
* Add a new buffer to the receive chain.
* If this fails, the old buffer is recycled
* instead.
*/
if (fxp_new_rfabuf(sc, rxp) == 0) {
int total_len;
/*
* Fetch packet length (the top 2 bits of
* actual_size are flags set by the controller
* upon completion), and drop the packet in case
* of bogus length or CRC errors.
*/
total_len = le16toh(rfa->actual_size) & 0x3fff;
if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
(ifp->if_capenable & IFCAP_RXCSUM) != 0) {
/* Adjust for appended checksum bytes. */
total_len -= 2;
}
if (total_len < (int)sizeof(struct ether_header) ||
total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
sc->rfa_size) ||
status & (FXP_RFA_STATUS_CRC |
FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
m_freem(m);
fxp_add_rfabuf(sc, rxp);
continue;
}
m->m_pkthdr.len = m->m_len = total_len;
m->m_pkthdr.rcvif = ifp;
/* Do IP checksum checking. */
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
fxp_rxcsum(sc, ifp, m, status, total_len);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(status & FXP_RFA_STATUS_VLAN) != 0) {
m->m_pkthdr.ether_vtag =
ntohs(rfa->rfax_vlan_id);
m->m_flags |= M_VLANTAG;
}
/*
* Drop locks before calling if_input() since it
* may re-enter fxp_start() in the netisr case.
* This would result in a lock reversal. Better
* performance might be obtained by chaining all
* packets received, dropping the lock, and then
* calling if_input() on each one.
*/
FXP_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
FXP_LOCK(sc);
rx_npkts++;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return (rx_npkts);
} else {
/* Reuse RFA and loaded DMA map. */
ifp->if_iqdrops++;
fxp_discard_rfabuf(sc, rxp);
}
fxp_add_rfabuf(sc, rxp);
}
if (rnr) {
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
sc->fxp_desc.rx_head->rx_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
}
return (rx_npkts);
}
static void
fxp_update_stats(struct fxp_softc *sc)
{
struct ifnet *ifp = sc->ifp;
struct fxp_stats *sp = sc->fxp_stats;
struct fxp_hwstats *hsp;
uint32_t *status;
FXP_LOCK_ASSERT(sc, MA_OWNED);
bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Update statistical counters. */
if (sc->revision >= FXP_REV_82559_A0)
status = &sp->completion_status;
else if (sc->revision >= FXP_REV_82558_A4)
status = (uint32_t *)&sp->tx_tco;
else
status = &sp->tx_pause;
if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
hsp = &sc->fxp_hwstats;
hsp->tx_good += le32toh(sp->tx_good);
hsp->tx_maxcols += le32toh(sp->tx_maxcols);
hsp->tx_latecols += le32toh(sp->tx_latecols);
hsp->tx_underruns += le32toh(sp->tx_underruns);
hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
hsp->tx_deffered += le32toh(sp->tx_deffered);
hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
hsp->tx_multiple_collisions +=
le32toh(sp->tx_multiple_collisions);
hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
hsp->rx_good += le32toh(sp->rx_good);
hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
hsp->rx_shortframes += le32toh(sp->rx_shortframes);
hsp->tx_pause += le32toh(sp->tx_pause);
hsp->rx_pause += le32toh(sp->rx_pause);
hsp->rx_controls += le32toh(sp->rx_controls);
hsp->tx_tco += le16toh(sp->tx_tco);
hsp->rx_tco += le16toh(sp->rx_tco);
ifp->if_opackets += le32toh(sp->tx_good);
ifp->if_collisions += le32toh(sp->tx_total_collisions);
if (sp->rx_good) {
ifp->if_ipackets += le32toh(sp->rx_good);
sc->rx_idle_secs = 0;
} else if (sc->flags & FXP_FLAG_RXBUG) {
/*
* Receiver's been idle for another second.
*/
sc->rx_idle_secs++;
}
ifp->if_ierrors +=
le32toh(sp->rx_crc_errors) +
le32toh(sp->rx_alignment_errors) +
le32toh(sp->rx_rnr_errors) +
le32toh(sp->rx_overrun_errors);
/*
* If any transmit underruns occured, bump up the transmit
* threshold by another 512 bytes (64 * 8).
*/
if (sp->tx_underruns) {
ifp->if_oerrors += le32toh(sp->tx_underruns);
if (tx_threshold < 192)
tx_threshold += 64;
}
*status = 0;
bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
/*
* Update packet in/out/collision statistics. The i82557 doesn't
* allow you to access these counters without doing a fairly
* expensive DMA to get _all_ of the statistics it maintains, so
* we do this operation here only once per second. The statistics
* counters in the kernel are updated from the previous dump-stats
* DMA and then a new dump-stats DMA is started. The on-chip
* counters are zeroed when the DMA completes. If we can't start
* the DMA immediately, we don't wait - we just prepare to read
* them again next time.
*/
static void
fxp_tick(void *xsc)
{
struct fxp_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
FXP_LOCK_ASSERT(sc, MA_OWNED);
/* Update statistical counters. */
fxp_update_stats(sc);
/*
* Release any xmit buffers that have completed DMA. This isn't
* strictly necessary to do here, but it's advantagous for mbufs
* with external storage to be released in a timely manner rather
* than being defered for a potentially long time. This limits
* the delay to a maximum of one second.
*/
fxp_txeof(sc);
/*
* If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
* then assume the receiver has locked up and attempt to clear
* the condition by reprogramming the multicast filter. This is
* a work-around for a bug in the 82557 where the receiver locks
* up if it gets certain types of garbage in the syncronization
* bits prior to the packet header. This bug is supposed to only
* occur in 10Mbps mode, but has been seen to occur in 100Mbps
* mode as well (perhaps due to a 10/100 speed transition).
*/
if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
sc->rx_idle_secs = 0;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
fxp_init_body(sc, 1);
return;
}
/*
* If there is no pending command, start another stats
* dump. Otherwise punt for now.
*/
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
/*
* Start another stats dump.
*/
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
}
if (sc->miibus != NULL)
mii_tick(device_get_softc(sc->miibus));
/*
* Check that chip hasn't hung.
*/
fxp_watchdog(sc);
/*
* Schedule another timeout one second from now.
*/
callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
}
/*
* Stop the interface. Cancels the statistics updater and resets
* the interface.
*/
static void
fxp_stop(struct fxp_softc *sc)
{
struct ifnet *ifp = sc->ifp;
struct fxp_tx *txp;
int i;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->watchdog_timer = 0;
/*
* Cancel stats updater.
*/
callout_stop(&sc->stat_ch);
/*
* Preserve PCI configuration, configure, IA/multicast
* setup and put RU and CU into idle state.
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(50);
/* Disable interrupts. */
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
fxp_update_stats(sc);
/*
* Release any xmit buffers.
*/
txp = sc->fxp_desc.tx_list;
if (txp != NULL) {
for (i = 0; i < FXP_NTXCB; i++) {
if (txp[i].tx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fxp_txmtag,
txp[i].tx_map);
m_freem(txp[i].tx_mbuf);
txp[i].tx_mbuf = NULL;
/* clear this to reset csum offload bits */
txp[i].tx_cb->tbd[0].tb_addr = 0;
}
}
}
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->tx_queued = 0;
}
/*
* Watchdog/transmission transmit timeout handler. Called when a
* transmission is started on the interface, but no interrupt is
* received before the timeout. This usually indicates that the
* card has wedged for some reason.
*/
static void
fxp_watchdog(struct fxp_softc *sc)
{
FXP_LOCK_ASSERT(sc, MA_OWNED);
if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
return;
device_printf(sc->dev, "device timeout\n");
sc->ifp->if_oerrors++;
fxp_init_body(sc, 1);
}
/*
* Acquire locks and then call the real initialization function. This
* is necessary because ether_ioctl() calls if_init() and this would
* result in mutex recursion if the mutex was held.
*/
static void
fxp_init(void *xsc)
{
struct fxp_softc *sc = xsc;
FXP_LOCK(sc);
fxp_init_body(sc, 1);
FXP_UNLOCK(sc);
}
/*
* Perform device initialization. This routine must be called with the
* softc lock held.
*/
static void
fxp_init_body(struct fxp_softc *sc, int setmedia)
{
struct ifnet *ifp = sc->ifp;
struct mii_data *mii;
struct fxp_cb_config *cbp;
struct fxp_cb_ias *cb_ias;
struct fxp_cb_tx *tcbp;
struct fxp_tx *txp;
int i, prm;
FXP_LOCK_ASSERT(sc, MA_OWNED);
/*
* Cancel any pending I/O
*/
fxp_stop(sc);
/*
* Issue software reset, which also unloads the microcode.
*/
sc->flags &= ~FXP_FLAG_UCODE;
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
DELAY(50);
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
/*
* Initialize base of dump-stats buffer.
*/
fxp_scb_wait(sc);
bzero(sc->fxp_stats, sizeof(struct fxp_stats));
bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
/*
* Attempt to load microcode if requested.
* For ICH based controllers do not load microcode.
*/
if (sc->ident->ich == 0) {
if (ifp->if_flags & IFF_LINK0 &&
(sc->flags & FXP_FLAG_UCODE) == 0)
fxp_load_ucode(sc);
}
/*
* Set IFF_ALLMULTI status. It's needed in configure action
* command.
*/
fxp_mc_addrs(sc);
/*
* We temporarily use memory that contains the TxCB list to
* construct the config CB. The TxCB list memory is rebuilt
* later.
*/
cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
/*
* This bcopy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
cbp->cb_status = 0;
cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
FXP_CB_COMMAND_EL);
cbp->link_addr = 0xffffffff; /* (no) next command */
cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
cbp->type_enable = 0; /* actually reserved */
cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_mbce = 0; /* (disable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
cbp->ci_int = 1; /* interrupt on CU idle */
cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
cbp->ext_stats_dis = 1; /* disable extended counters */
cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
cbp->csma_dis = 0; /* (don't) disable link */
cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
(ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
cbp->ia_wake_en = 0; /* (don't) wake up on address match */
cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1;
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
if (sc->revision == FXP_REV_82557) {
/*
* The 82557 has no hardware flow control, the values
* below are the defaults for the chip.
*/
cbp->fc_delay_lsb = 0;
cbp->fc_delay_msb = 0x40;
cbp->pri_fc_thresh = 3;
cbp->tx_fc_dis = 0;
cbp->rx_fc_restop = 0;
cbp->rx_fc_restart = 0;
cbp->fc_filter = 0;
cbp->pri_fc_loc = 1;
} else {
/* Set pause RX FIFO threshold to 1KB. */
CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
/* Set pause time. */
cbp->fc_delay_lsb = 0xff;
cbp->fc_delay_msb = 0xff;
cbp->pri_fc_thresh = 3;
mii = device_get_softc(sc->miibus);
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_TXPAUSE) != 0)
/* enable transmit FC */
cbp->tx_fc_dis = 0;
else
/* disable transmit FC */
cbp->tx_fc_dis = 1;
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0) {
/* enable FC restart/restop frames */
cbp->rx_fc_restart = 1;
cbp->rx_fc_restop = 1;
} else {
/* disable FC restart/restop frames */
cbp->rx_fc_restart = 0;
cbp->rx_fc_restop = 0;
}
cbp->fc_filter = !prm; /* drop FC frames to host */
cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
}
/* Enable 82558 and 82559 extended statistics functionality. */
if (sc->revision >= FXP_REV_82558_A4) {
if (sc->revision >= FXP_REV_82559_A0) {
/*
* Extend configuration table size to 32
* to include TCO configuration.
*/
cbp->byte_count = 32;
cbp->ext_stats_dis = 1;
/* Enable TCO stats. */
cbp->tno_int_or_tco_en = 1;
cbp->gamla_rx = 1;
} else
cbp->ext_stats_dis = 0;
}
/*
* Start the config command/DMA.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
/*
* Now initialize the station address. Temporarily use the TxCB
* memory area like we did above for the config CB.
*/
cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
cb_ias->cb_status = 0;
cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
cb_ias->link_addr = 0xffffffff;
bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
/*
* Initialize the multicast address list.
*/
fxp_mc_setup(sc);
/*
* Initialize transmit control block (TxCB) list.
*/
txp = sc->fxp_desc.tx_list;
tcbp = sc->fxp_desc.cbl_list;
bzero(tcbp, FXP_TXCB_SZ);
for (i = 0; i < FXP_NTXCB; i++) {
txp[i].tx_mbuf = NULL;
tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
(((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
if (sc->flags & FXP_FLAG_EXT_TXCB)
tcbp[i].tbd_array_addr =
htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
else
tcbp[i].tbd_array_addr =
htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
}
/*
* Set the suspend flag on the first TxCB and start the control
* unit. It will execute the NOP and then suspend.
*/
tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
sc->tx_queued = 1;
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/*
* Initialize receiver buffer area - RFA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
if (sc->miibus != NULL && setmedia != 0)
mii_mediachg(device_get_softc(sc->miibus));
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/*
* Enable interrupts.
*/
#ifdef DEVICE_POLLING
/*
* ... but only do that if we are not polling. And because (presumably)
* the default is interrupts on, we need to disable them explicitly!
*/
if (ifp->if_capenable & IFCAP_POLLING )
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
else
#endif /* DEVICE_POLLING */
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
/*
* Start stats updater.
*/
callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
}
static int
fxp_serial_ifmedia_upd(struct ifnet *ifp)
{
return (0);
}
static void
fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
}
/*
* Change media according to request.
*/
static int
fxp_ifmedia_upd(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct mii_softc *miisc;
mii = device_get_softc(sc->miibus);
FXP_LOCK(sc);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
mii_mediachg(mii);
FXP_UNLOCK(sc);
return (0);
}
/*
* Notify the world which media we're using.
*/
static void
fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct fxp_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
FXP_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
sc->flags & FXP_FLAG_CU_RESUME_BUG)
sc->cu_resume_bug = 1;
else
sc->cu_resume_bug = 0;
FXP_UNLOCK(sc);
}
/*
* Add a buffer to the end of the RFA buffer list.
* Return 0 if successful, 1 for failure. A failure results in
* reusing the RFA buffer.
* The RFA struct is stuck at the beginning of mbuf cluster and the
* data pointer is fixed up to point just past it.
*/
static int
fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
{
struct mbuf *m;
struct fxp_rfa *rfa;
bus_dmamap_t tmp_map;
int error;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
/*
* Move the data pointer up so that the incoming data packet
* will be 32-bit aligned.
*/
m->m_data += RFA_ALIGNMENT_FUDGE;
/*
* Get a pointer to the base of the mbuf cluster and move
* data start past it.
*/
rfa = mtod(m, struct fxp_rfa *);
m->m_data += sc->rfa_size;
rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
rfa->rfa_status = 0;
rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
rfa->actual_size = 0;
m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
sc->rfa_size;
/*
* Initialize the rest of the RFA. Note that since the RFA
* is misaligned, we cannot store values directly. We're thus
* using the le32enc() function which handles endianness and
* is also alignment-safe.
*/
le32enc(&rfa->link_addr, 0xffffffff);
le32enc(&rfa->rbd_addr, 0xffffffff);
/* Map the RFA into DMA memory. */
error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
&rxp->rx_addr, BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
return (error);
}
if (rxp->rx_mbuf != NULL)
bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
tmp_map = sc->spare_map;
sc->spare_map = rxp->rx_map;
rxp->rx_map = tmp_map;
rxp->rx_mbuf = m;
bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
{
struct fxp_rfa *p_rfa;
struct fxp_rx *p_rx;
/*
* If there are other buffers already on the list, attach this
* one to the end by fixing up the tail to point to this one.
*/
if (sc->fxp_desc.rx_head != NULL) {
p_rx = sc->fxp_desc.rx_tail;
p_rfa = (struct fxp_rfa *)
(p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
p_rx->rx_next = rxp;
le32enc(&p_rfa->link_addr, rxp->rx_addr);
p_rfa->rfa_control = 0;
bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
} else {
rxp->rx_next = NULL;
sc->fxp_desc.rx_head = rxp;
}
sc->fxp_desc.rx_tail = rxp;
}
static void
fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
{
struct mbuf *m;
struct fxp_rfa *rfa;
m = rxp->rx_mbuf;
m->m_data = m->m_ext.ext_buf;
/*
* Move the data pointer up so that the incoming data packet
* will be 32-bit aligned.
*/
m->m_data += RFA_ALIGNMENT_FUDGE;
/*
* Get a pointer to the base of the mbuf cluster and move
* data start past it.
*/
rfa = mtod(m, struct fxp_rfa *);
m->m_data += sc->rfa_size;
rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
rfa->rfa_status = 0;
rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
rfa->actual_size = 0;
/*
* Initialize the rest of the RFA. Note that since the RFA
* is misaligned, we cannot store values directly. We're thus
* using the le32enc() function which handles endianness and
* is also alignment-safe.
*/
le32enc(&rfa->link_addr, 0xffffffff);
le32enc(&rfa->rbd_addr, 0xffffffff);
bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
fxp_miibus_readreg(device_t dev, int phy, int reg)
{
struct fxp_softc *sc = device_get_softc(dev);
int count = 10000;
int value;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
&& count--)
DELAY(10);
if (count <= 0)
device_printf(dev, "fxp_miibus_readreg: timed out\n");
return (value & 0xffff);
}
static int
fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
{
struct fxp_softc *sc = device_get_softc(dev);
int count = 10000;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
(value & 0xffff));
while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
count--)
DELAY(10);
if (count <= 0)
device_printf(dev, "fxp_miibus_writereg: timed out\n");
return (0);
}
static void
fxp_miibus_statchg(device_t dev)
{
struct fxp_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = device_get_softc(dev);
mii = device_get_softc(sc->miibus);
ifp = sc->ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
(mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
(IFM_AVALID | IFM_ACTIVE))
return;
/*
* Call fxp_init_body in order to adjust the flow control settings.
* Note that the 82557 doesn't support hardware flow control.
*/
if (sc->revision == FXP_REV_82557)
return;
fxp_init_body(sc, 0);
}
static int
fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct fxp_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct mii_data *mii;
int flag, mask, error = 0, reinit;
switch (command) {
case SIOCSIFFLAGS:
FXP_LOCK(sc);
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
* XXX If it's up then re-initialize it. This is so flags
* such as IFF_PROMISC are handled.
*/
if (ifp->if_flags & IFF_UP) {
if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
((ifp->if_flags ^ sc->if_flags) &
(IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
fxp_init_body(sc, 1);
else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
fxp_init_body(sc, 1);
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
fxp_stop(sc);
}
sc->if_flags = ifp->if_flags;
FXP_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
FXP_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
fxp_init_body(sc, 0);
FXP_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (sc->miibus != NULL) {
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
} else {
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
}
break;
case SIOCSIFCAP:
reinit = 0;
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(fxp_poll, ifp);
if (error)
return(error);
FXP_LOCK(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
FXP_SCB_INTR_DISABLE);
ifp->if_capenable |= IFCAP_POLLING;
FXP_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts in any case */
FXP_LOCK(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
ifp->if_capenable &= ~IFCAP_POLLING;
FXP_UNLOCK(sc);
}
}
#endif
FXP_LOCK(sc);
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= FXP_CSUM_FEATURES;
else
ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
reinit++;
}
if ((mask & IFCAP_TSO4) != 0 &&
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((ifp->if_capenable & IFCAP_TSO4) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_MTU) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_MTU;
if (sc->revision != FXP_REV_82557)
flag = FXP_FLAG_LONG_PKT_EN;
else /* a hack to get long frames on the old chip */
flag = FXP_FLAG_SAVE_BAD;
sc->flags ^= flag;
if (ifp->if_flags & IFF_UP)
reinit++;
}
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &=
~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
reinit++;
}
if (reinit > 0 && ifp->if_flags & IFF_UP)
fxp_init_body(sc, 1);
FXP_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, command, data);
}
return (error);
}
/*
* Fill in the multicast address list and return number of entries.
*/
static int
fxp_mc_addrs(struct fxp_softc *sc)
{
struct fxp_cb_mcs *mcsp = sc->mcsp;
struct ifnet *ifp = sc->ifp;
struct ifmultiaddr *ifma;
int nmcasts;
nmcasts = 0;
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (nmcasts >= MAXMCADDR) {
ifp->if_flags |= IFF_ALLMULTI;
nmcasts = 0;
break;
}
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
&sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
nmcasts++;
}
if_maddr_runlock(ifp);
}
mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
return (nmcasts);
}
/*
* Program the multicast filter.
*
* We have an artificial restriction that the multicast setup command
* must be the first command in the chain, so we take steps to ensure
* this. By requiring this, it allows us to keep up the performance of
* the pre-initialized command ring (esp. link pointers) by not actually
* inserting the mcsetup command in the ring - i.e. its link pointer
* points to the TxCB ring, but the mcsetup descriptor itself is not part
* of it. We then can do 'CU_START' on the mcsetup descriptor and have it
* lead into the regular TxCB ring when it completes.
*/
static void
fxp_mc_setup(struct fxp_softc *sc)
{
struct fxp_cb_mcs *mcsp;
int count;
FXP_LOCK_ASSERT(sc, MA_OWNED);
mcsp = sc->mcsp;
mcsp->cb_status = 0;
mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
mcsp->link_addr = 0xffffffff;
fxp_mc_addrs(sc);
/*
* Wait until command unit is idle. This should never be the
* case when nothing is queued, but make sure anyway.
*/
count = 100;
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
FXP_SCB_CUS_IDLE && --count)
DELAY(10);
if (count == 0) {
device_printf(sc->dev, "command queue timeout\n");
return;
}
/*
* Start the multicast setup command.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
}
static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
#ifdef notyet
static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
#endif
static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
#define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
static const struct ucode {
uint32_t revision;
uint32_t *ucode;
int length;
u_short int_delay_offset;
u_short bundle_max_offset;
} const ucode_table[] = {
{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
#ifdef notyet
{ FXP_REV_82550, UCODE(fxp_ucode_d102),
D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
#endif
{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
{ 0, NULL, 0, 0, 0 }
};
static void
fxp_load_ucode(struct fxp_softc *sc)
{
const struct ucode *uc;
struct fxp_cb_ucode *cbp;
int i;
for (uc = ucode_table; uc->ucode != NULL; uc++)
if (sc->revision == uc->revision)
break;
if (uc->ucode == NULL)
return;
cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
cbp->cb_status = 0;
cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
cbp->link_addr = 0xffffffff; /* (no) next command */
for (i = 0; i < uc->length; i++)
cbp->ucode[i] = htole32(uc->ucode[i]);
if (uc->int_delay_offset)
*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
if (uc->bundle_max_offset)
*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
htole16(sc->tunable_bundle_max);
/*
* Download the ucode to the chip.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
device_printf(sc->dev,
"Microcode loaded, int_delay: %d usec bundle_max: %d\n",
sc->tunable_int_delay,
uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
sc->flags |= FXP_FLAG_UCODE;
}
#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
static void
fxp_sysctl_node(struct fxp_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct fxp_hwstats *hsp;
ctx = device_get_sysctl_ctx(sc->dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
SYSCTL_ADD_PROC(ctx, child,
OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
&sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
"FXP driver receive interrupt microcode bundling delay");
SYSCTL_ADD_PROC(ctx, child,
OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
&sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
"FXP driver receive interrupt microcode bundle size limit");
SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
"FXP RNR events");
/*
* Pull in device tunables.
*/
sc->tunable_int_delay = TUNABLE_INT_DELAY;
sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
(void) resource_int_value(device_get_name(sc->dev),
device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
(void) resource_int_value(device_get_name(sc->dev),
device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
sc->rnr = 0;
hsp = &sc->fxp_hwstats;
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "FXP statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx MAC statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
&hsp->rx_good, "Good frames");
FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
&hsp->rx_crc_errors, "CRC errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
&hsp->rx_alignment_errors, "Alignment errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
&hsp->rx_rnr_errors, "RNR errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
&hsp->rx_overrun_errors, "Overrun errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
&hsp->rx_cdt_errors, "Collision detect errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
&hsp->rx_shortframes, "Short frame errors");
if (sc->revision >= FXP_REV_82558_A4) {
FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
&hsp->rx_pause, "Pause frames");
FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
&hsp->rx_controls, "Unsupported control frames");
}
if (sc->revision >= FXP_REV_82559_A0)
FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
&hsp->rx_tco, "TCO frames");
/* Tx MAC statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
&hsp->tx_good, "Good frames");
FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
&hsp->tx_maxcols, "Maximum collisions errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
&hsp->tx_latecols, "Late collisions errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
&hsp->tx_underruns, "Underrun errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
&hsp->tx_lostcrs, "Lost carrier sense");
FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
&hsp->tx_deffered, "Deferred");
FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
&hsp->tx_single_collisions, "Single collisions");
FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
&hsp->tx_multiple_collisions, "Multiple collisions");
FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
&hsp->tx_total_collisions, "Total collisions");
if (sc->revision >= FXP_REV_82558_A4)
FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
&hsp->tx_pause, "Pause frames");
if (sc->revision >= FXP_REV_82559_A0)
FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
&hsp->tx_tco, "TCO frames");
}
#undef FXP_SYSCTL_STAT_ADD
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
/*
* Interrupt delay is expressed in microseconds, a multiplier is used
* to convert this to the appropriate clock ticks before using.
*/
static int
sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
}
static int
sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
}