9f36cace41
The kmalloc_node() function has been available since Linux 2.6.12. There is no longer a need to maintain this compatibility code. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
538 lines
20 KiB
C
538 lines
20 KiB
C
/*****************************************************************************\
|
|
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
|
|
* Copyright (C) 2007 The Regents of the University of California.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This file is part of the SPL, Solaris Porting Layer.
|
|
* For details, see <http://zfsonlinux.org/>.
|
|
*
|
|
* The SPL is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* The SPL is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
|
|
\*****************************************************************************/
|
|
|
|
#ifndef _SPL_KMEM_H
|
|
#define _SPL_KMEM_H
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/ctype.h>
|
|
#include <asm/atomic.h>
|
|
#include <sys/types.h>
|
|
#include <sys/vmsystm.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/taskq.h>
|
|
|
|
/*
|
|
* Memory allocation interfaces
|
|
*/
|
|
#define KM_SLEEP GFP_KERNEL /* Can sleep, never fails */
|
|
#define KM_NOSLEEP GFP_ATOMIC /* Can not sleep, may fail */
|
|
#define KM_PUSHPAGE (GFP_NOIO | __GFP_HIGH) /* Use reserved memory */
|
|
#define KM_NODEBUG __GFP_NOWARN /* Suppress warnings */
|
|
#define KM_FLAGS __GFP_BITS_MASK
|
|
#define KM_VMFLAGS GFP_LEVEL_MASK
|
|
|
|
/*
|
|
* Used internally, the kernel does not need to support this flag
|
|
*/
|
|
#ifndef __GFP_ZERO
|
|
# define __GFP_ZERO 0x8000
|
|
#endif
|
|
|
|
/*
|
|
* PF_NOFS is a per-process debug flag which is set in current->flags to
|
|
* detect when a process is performing an unsafe allocation. All tasks
|
|
* with PF_NOFS set must strictly use KM_PUSHPAGE for allocations because
|
|
* if they enter direct reclaim and initiate I/O the may deadlock.
|
|
*
|
|
* When debugging is disabled, any incorrect usage will be detected and
|
|
* a call stack with warning will be printed to the console. The flags
|
|
* will then be automatically corrected to allow for safe execution. If
|
|
* debugging is enabled this will be treated as a fatal condition.
|
|
*
|
|
* To avoid any risk of conflicting with the existing PF_ flags. The
|
|
* PF_NOFS bit shadows the rarely used PF_MUTEX_TESTER bit. Only when
|
|
* CONFIG_RT_MUTEX_TESTER is not set, and we know this bit is unused,
|
|
* will the PF_NOFS bit be valid. Happily, most existing distributions
|
|
* ship a kernel with CONFIG_RT_MUTEX_TESTER disabled.
|
|
*/
|
|
#if !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER)
|
|
# define PF_NOFS PF_MUTEX_TESTER
|
|
|
|
static inline void
|
|
sanitize_flags(struct task_struct *p, gfp_t *flags)
|
|
{
|
|
if (unlikely((p->flags & PF_NOFS) && (*flags & (__GFP_IO|__GFP_FS)))) {
|
|
# ifdef NDEBUG
|
|
SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "Fixing allocation for "
|
|
"task %s (%d) which used GFP flags 0x%x with PF_NOFS set\n",
|
|
p->comm, p->pid, flags);
|
|
spl_debug_dumpstack(p);
|
|
*flags &= ~(__GFP_IO|__GFP_FS);
|
|
# else
|
|
PANIC("FATAL allocation for task %s (%d) which used GFP "
|
|
"flags 0x%x with PF_NOFS set\n", p->comm, p->pid, flags);
|
|
# endif /* NDEBUG */
|
|
}
|
|
}
|
|
#else
|
|
# define PF_NOFS 0x00000000
|
|
# define sanitize_flags(p, fl) ((void)0)
|
|
#endif /* !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER) */
|
|
|
|
/*
|
|
* __GFP_NOFAIL looks like it will be removed from the kernel perhaps as
|
|
* early as 2.6.32. To avoid this issue when it occurs in upstream kernels
|
|
* we retry the allocation here as long as it is not __GFP_WAIT (GFP_ATOMIC).
|
|
* I would prefer the caller handle the failure case cleanly but we are
|
|
* trying to emulate Solaris and those are not the Solaris semantics.
|
|
*/
|
|
static inline void *
|
|
kmalloc_nofail(size_t size, gfp_t flags)
|
|
{
|
|
void *ptr;
|
|
|
|
sanitize_flags(current, &flags);
|
|
|
|
do {
|
|
ptr = kmalloc(size, flags);
|
|
} while (ptr == NULL && (flags & __GFP_WAIT));
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static inline void *
|
|
kzalloc_nofail(size_t size, gfp_t flags)
|
|
{
|
|
void *ptr;
|
|
|
|
sanitize_flags(current, &flags);
|
|
|
|
do {
|
|
ptr = kzalloc(size, flags);
|
|
} while (ptr == NULL && (flags & __GFP_WAIT));
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static inline void *
|
|
kmalloc_node_nofail(size_t size, gfp_t flags, int node)
|
|
{
|
|
void *ptr;
|
|
|
|
sanitize_flags(current, &flags);
|
|
|
|
do {
|
|
ptr = kmalloc_node(size, flags, node);
|
|
} while (ptr == NULL && (flags & __GFP_WAIT));
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static inline void *
|
|
vmalloc_nofail(size_t size, gfp_t flags)
|
|
{
|
|
void *ptr;
|
|
|
|
sanitize_flags(current, &flags);
|
|
|
|
/*
|
|
* Retry failed __vmalloc() allocations once every second. The
|
|
* rational for the delay is that the likely failure modes are:
|
|
*
|
|
* 1) The system has completely exhausted memory, in which case
|
|
* delaying 1 second for the memory reclaim to run is reasonable
|
|
* to avoid thrashing the system.
|
|
* 2) The system has memory but has exhausted the small virtual
|
|
* address space available on 32-bit systems. Retrying the
|
|
* allocation immediately will only result in spinning on the
|
|
* virtual address space lock. It is better delay a second and
|
|
* hope that another process will free some of the address space.
|
|
* But the bottom line is there is not much we can actually do
|
|
* since we can never safely return a failure and honor the
|
|
* Solaris semantics.
|
|
*/
|
|
while (1) {
|
|
ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
|
|
if (unlikely((ptr == NULL) && (flags & __GFP_WAIT))) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(HZ);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static inline void *
|
|
vzalloc_nofail(size_t size, gfp_t flags)
|
|
{
|
|
void *ptr;
|
|
|
|
ptr = vmalloc_nofail(size, flags);
|
|
if (ptr)
|
|
memset(ptr, 0, (size));
|
|
|
|
return ptr;
|
|
}
|
|
|
|
#ifdef DEBUG_KMEM
|
|
|
|
/*
|
|
* Memory accounting functions to be used only when DEBUG_KMEM is set.
|
|
*/
|
|
# ifdef HAVE_ATOMIC64_T
|
|
|
|
# define kmem_alloc_used_add(size) atomic64_add(size, &kmem_alloc_used)
|
|
# define kmem_alloc_used_sub(size) atomic64_sub(size, &kmem_alloc_used)
|
|
# define kmem_alloc_used_read() atomic64_read(&kmem_alloc_used)
|
|
# define kmem_alloc_used_set(size) atomic64_set(&kmem_alloc_used, size)
|
|
# define vmem_alloc_used_add(size) atomic64_add(size, &vmem_alloc_used)
|
|
# define vmem_alloc_used_sub(size) atomic64_sub(size, &vmem_alloc_used)
|
|
# define vmem_alloc_used_read() atomic64_read(&vmem_alloc_used)
|
|
# define vmem_alloc_used_set(size) atomic64_set(&vmem_alloc_used, size)
|
|
|
|
extern atomic64_t kmem_alloc_used;
|
|
extern unsigned long long kmem_alloc_max;
|
|
extern atomic64_t vmem_alloc_used;
|
|
extern unsigned long long vmem_alloc_max;
|
|
|
|
# else /* HAVE_ATOMIC64_T */
|
|
|
|
# define kmem_alloc_used_add(size) atomic_add(size, &kmem_alloc_used)
|
|
# define kmem_alloc_used_sub(size) atomic_sub(size, &kmem_alloc_used)
|
|
# define kmem_alloc_used_read() atomic_read(&kmem_alloc_used)
|
|
# define kmem_alloc_used_set(size) atomic_set(&kmem_alloc_used, size)
|
|
# define vmem_alloc_used_add(size) atomic_add(size, &vmem_alloc_used)
|
|
# define vmem_alloc_used_sub(size) atomic_sub(size, &vmem_alloc_used)
|
|
# define vmem_alloc_used_read() atomic_read(&vmem_alloc_used)
|
|
# define vmem_alloc_used_set(size) atomic_set(&vmem_alloc_used, size)
|
|
|
|
extern atomic_t kmem_alloc_used;
|
|
extern unsigned long long kmem_alloc_max;
|
|
extern atomic_t vmem_alloc_used;
|
|
extern unsigned long long vmem_alloc_max;
|
|
|
|
# endif /* HAVE_ATOMIC64_T */
|
|
|
|
# ifdef DEBUG_KMEM_TRACKING
|
|
/*
|
|
* DEBUG_KMEM && DEBUG_KMEM_TRACKING
|
|
*
|
|
* The maximum level of memory debugging. All memory will be accounted
|
|
* for and each allocation will be explicitly tracked. Any allocation
|
|
* which is leaked will be reported on module unload and the exact location
|
|
* where that memory was allocation will be reported. This level of memory
|
|
* tracking will have a significant impact on performance and should only
|
|
* be enabled for debugging. This feature may be enabled by passing
|
|
* --enable-debug-kmem-tracking to configure.
|
|
*/
|
|
# define kmem_alloc(sz, fl) kmem_alloc_track((sz), (fl), \
|
|
__FUNCTION__, __LINE__, 0, 0)
|
|
# define kmem_zalloc(sz, fl) kmem_alloc_track((sz), (fl)|__GFP_ZERO,\
|
|
__FUNCTION__, __LINE__, 0, 0)
|
|
# define kmem_alloc_node(sz, fl, nd) kmem_alloc_track((sz), (fl), \
|
|
__FUNCTION__, __LINE__, 1, nd)
|
|
# define kmem_free(ptr, sz) kmem_free_track((ptr), (sz))
|
|
|
|
# define vmem_alloc(sz, fl) vmem_alloc_track((sz), (fl), \
|
|
__FUNCTION__, __LINE__)
|
|
# define vmem_zalloc(sz, fl) vmem_alloc_track((sz), (fl)|__GFP_ZERO,\
|
|
__FUNCTION__, __LINE__)
|
|
# define vmem_free(ptr, sz) vmem_free_track((ptr), (sz))
|
|
|
|
extern void *kmem_alloc_track(size_t, int, const char *, int, int, int);
|
|
extern void kmem_free_track(const void *, size_t);
|
|
extern void *vmem_alloc_track(size_t, int, const char *, int);
|
|
extern void vmem_free_track(const void *, size_t);
|
|
|
|
# else /* DEBUG_KMEM_TRACKING */
|
|
/*
|
|
* DEBUG_KMEM && !DEBUG_KMEM_TRACKING
|
|
*
|
|
* The default build will set DEBUG_KEM. This provides basic memory
|
|
* accounting with little to no impact on performance. When the module
|
|
* is unloaded in any memory was leaked the total number of leaked bytes
|
|
* will be reported on the console. To disable this basic accounting
|
|
* pass the --disable-debug-kmem option to configure.
|
|
*/
|
|
# define kmem_alloc(sz, fl) kmem_alloc_debug((sz), (fl), \
|
|
__FUNCTION__, __LINE__, 0, 0)
|
|
# define kmem_zalloc(sz, fl) kmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
|
|
__FUNCTION__, __LINE__, 0, 0)
|
|
# define kmem_alloc_node(sz, fl, nd) kmem_alloc_debug((sz), (fl), \
|
|
__FUNCTION__, __LINE__, 1, nd)
|
|
# define kmem_free(ptr, sz) kmem_free_debug((ptr), (sz))
|
|
|
|
# define vmem_alloc(sz, fl) vmem_alloc_debug((sz), (fl), \
|
|
__FUNCTION__, __LINE__)
|
|
# define vmem_zalloc(sz, fl) vmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
|
|
__FUNCTION__, __LINE__)
|
|
# define vmem_free(ptr, sz) vmem_free_debug((ptr), (sz))
|
|
|
|
extern void *kmem_alloc_debug(size_t, int, const char *, int, int, int);
|
|
extern void kmem_free_debug(const void *, size_t);
|
|
extern void *vmem_alloc_debug(size_t, int, const char *, int);
|
|
extern void vmem_free_debug(const void *, size_t);
|
|
|
|
# endif /* DEBUG_KMEM_TRACKING */
|
|
#else /* DEBUG_KMEM */
|
|
/*
|
|
* !DEBUG_KMEM && !DEBUG_KMEM_TRACKING
|
|
*
|
|
* All debugging is disabled. There will be no overhead even for
|
|
* minimal memory accounting. To enable basic accounting pass the
|
|
* --enable-debug-kmem option to configure.
|
|
*/
|
|
# define kmem_alloc(sz, fl) kmalloc_nofail((sz), (fl))
|
|
# define kmem_zalloc(sz, fl) kzalloc_nofail((sz), (fl))
|
|
# define kmem_alloc_node(sz, fl, nd) kmalloc_node_nofail((sz), (fl), (nd))
|
|
# define kmem_free(ptr, sz) ((void)(sz), kfree(ptr))
|
|
|
|
# define vmem_alloc(sz, fl) vmalloc_nofail((sz), (fl))
|
|
# define vmem_zalloc(sz, fl) vzalloc_nofail((sz), (fl))
|
|
# define vmem_free(ptr, sz) ((void)(sz), vfree(ptr))
|
|
|
|
#endif /* DEBUG_KMEM */
|
|
|
|
extern int kmem_debugging(void);
|
|
extern char *kmem_vasprintf(const char *fmt, va_list ap);
|
|
extern char *kmem_asprintf(const char *fmt, ...);
|
|
extern char *strdup(const char *str);
|
|
extern void strfree(char *str);
|
|
|
|
|
|
/*
|
|
* Slab allocation interfaces. The SPL slab differs from the standard
|
|
* Linux SLAB or SLUB primarily in that each cache may be backed by slabs
|
|
* allocated from the physical or virtal memory address space. The virtual
|
|
* slabs allow for good behavior when allocation large objects of identical
|
|
* size. This slab implementation also supports both constructors and
|
|
* destructions which the Linux slab does not.
|
|
*/
|
|
enum {
|
|
KMC_BIT_NOTOUCH = 0, /* Don't update ages */
|
|
KMC_BIT_NODEBUG = 1, /* Default behavior */
|
|
KMC_BIT_NOMAGAZINE = 2, /* XXX: Unsupported */
|
|
KMC_BIT_NOHASH = 3, /* XXX: Unsupported */
|
|
KMC_BIT_QCACHE = 4, /* XXX: Unsupported */
|
|
KMC_BIT_KMEM = 5, /* Use kmem cache */
|
|
KMC_BIT_VMEM = 6, /* Use vmem cache */
|
|
KMC_BIT_SLAB = 7, /* Use Linux slab cache */
|
|
KMC_BIT_OFFSLAB = 8, /* Objects not on slab */
|
|
KMC_BIT_NOEMERGENCY = 9, /* Disable emergency objects */
|
|
KMC_BIT_DEADLOCKED = 14, /* Deadlock detected */
|
|
KMC_BIT_GROWING = 15, /* Growing in progress */
|
|
KMC_BIT_REAPING = 16, /* Reaping in progress */
|
|
KMC_BIT_DESTROY = 17, /* Destroy in progress */
|
|
KMC_BIT_TOTAL = 18, /* Proc handler helper bit */
|
|
KMC_BIT_ALLOC = 19, /* Proc handler helper bit */
|
|
KMC_BIT_MAX = 20, /* Proc handler helper bit */
|
|
};
|
|
|
|
/* kmem move callback return values */
|
|
typedef enum kmem_cbrc {
|
|
KMEM_CBRC_YES = 0, /* Object moved */
|
|
KMEM_CBRC_NO = 1, /* Object not moved */
|
|
KMEM_CBRC_LATER = 2, /* Object not moved, try again later */
|
|
KMEM_CBRC_DONT_NEED = 3, /* Neither object is needed */
|
|
KMEM_CBRC_DONT_KNOW = 4, /* Object unknown */
|
|
} kmem_cbrc_t;
|
|
|
|
#define KMC_NOTOUCH (1 << KMC_BIT_NOTOUCH)
|
|
#define KMC_NODEBUG (1 << KMC_BIT_NODEBUG)
|
|
#define KMC_NOMAGAZINE (1 << KMC_BIT_NOMAGAZINE)
|
|
#define KMC_NOHASH (1 << KMC_BIT_NOHASH)
|
|
#define KMC_QCACHE (1 << KMC_BIT_QCACHE)
|
|
#define KMC_KMEM (1 << KMC_BIT_KMEM)
|
|
#define KMC_VMEM (1 << KMC_BIT_VMEM)
|
|
#define KMC_SLAB (1 << KMC_BIT_SLAB)
|
|
#define KMC_OFFSLAB (1 << KMC_BIT_OFFSLAB)
|
|
#define KMC_NOEMERGENCY (1 << KMC_BIT_NOEMERGENCY)
|
|
#define KMC_DEADLOCKED (1 << KMC_BIT_DEADLOCKED)
|
|
#define KMC_GROWING (1 << KMC_BIT_GROWING)
|
|
#define KMC_REAPING (1 << KMC_BIT_REAPING)
|
|
#define KMC_DESTROY (1 << KMC_BIT_DESTROY)
|
|
#define KMC_TOTAL (1 << KMC_BIT_TOTAL)
|
|
#define KMC_ALLOC (1 << KMC_BIT_ALLOC)
|
|
#define KMC_MAX (1 << KMC_BIT_MAX)
|
|
|
|
#define KMC_REAP_CHUNK INT_MAX
|
|
#define KMC_DEFAULT_SEEKS 1
|
|
|
|
#define KMC_EXPIRE_AGE 0x1 /* Due to age */
|
|
#define KMC_EXPIRE_MEM 0x2 /* Due to low memory */
|
|
|
|
#define KMC_RECLAIM_ONCE 0x1 /* Force a single shrinker pass */
|
|
|
|
extern unsigned int spl_kmem_cache_expire;
|
|
extern struct list_head spl_kmem_cache_list;
|
|
extern struct rw_semaphore spl_kmem_cache_sem;
|
|
|
|
#define SKM_MAGIC 0x2e2e2e2e
|
|
#define SKO_MAGIC 0x20202020
|
|
#define SKS_MAGIC 0x22222222
|
|
#define SKC_MAGIC 0x2c2c2c2c
|
|
|
|
#define SPL_KMEM_CACHE_DELAY 15 /* Minimum slab release age */
|
|
#define SPL_KMEM_CACHE_REAP 0 /* Default reap everything */
|
|
#define SPL_KMEM_CACHE_OBJ_PER_SLAB 16 /* Target objects per slab */
|
|
#define SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN 8 /* Minimum objects per slab */
|
|
#define SPL_KMEM_CACHE_ALIGN 8 /* Default object alignment */
|
|
|
|
#define POINTER_IS_VALID(p) 0 /* Unimplemented */
|
|
#define POINTER_INVALIDATE(pp) /* Unimplemented */
|
|
|
|
typedef int (*spl_kmem_ctor_t)(void *, void *, int);
|
|
typedef void (*spl_kmem_dtor_t)(void *, void *);
|
|
typedef void (*spl_kmem_reclaim_t)(void *);
|
|
|
|
typedef struct spl_kmem_magazine {
|
|
uint32_t skm_magic; /* Sanity magic */
|
|
uint32_t skm_avail; /* Available objects */
|
|
uint32_t skm_size; /* Magazine size */
|
|
uint32_t skm_refill; /* Batch refill size */
|
|
struct spl_kmem_cache *skm_cache; /* Owned by cache */
|
|
unsigned long skm_age; /* Last cache access */
|
|
unsigned int skm_cpu; /* Owned by cpu */
|
|
void *skm_objs[0]; /* Object pointers */
|
|
} spl_kmem_magazine_t;
|
|
|
|
typedef struct spl_kmem_obj {
|
|
uint32_t sko_magic; /* Sanity magic */
|
|
void *sko_addr; /* Buffer address */
|
|
struct spl_kmem_slab *sko_slab; /* Owned by slab */
|
|
struct list_head sko_list; /* Free object list linkage */
|
|
} spl_kmem_obj_t;
|
|
|
|
typedef struct spl_kmem_slab {
|
|
uint32_t sks_magic; /* Sanity magic */
|
|
uint32_t sks_objs; /* Objects per slab */
|
|
struct spl_kmem_cache *sks_cache; /* Owned by cache */
|
|
struct list_head sks_list; /* Slab list linkage */
|
|
struct list_head sks_free_list; /* Free object list */
|
|
unsigned long sks_age; /* Last modify jiffie */
|
|
uint32_t sks_ref; /* Ref count used objects */
|
|
} spl_kmem_slab_t;
|
|
|
|
typedef struct spl_kmem_alloc {
|
|
struct spl_kmem_cache *ska_cache; /* Owned by cache */
|
|
int ska_flags; /* Allocation flags */
|
|
taskq_ent_t ska_tqe; /* Task queue entry */
|
|
} spl_kmem_alloc_t;
|
|
|
|
typedef struct spl_kmem_emergency {
|
|
struct rb_node ske_node; /* Emergency tree linkage */
|
|
void *ske_obj; /* Buffer address */
|
|
} spl_kmem_emergency_t;
|
|
|
|
typedef struct spl_kmem_cache {
|
|
uint32_t skc_magic; /* Sanity magic */
|
|
uint32_t skc_name_size; /* Name length */
|
|
char *skc_name; /* Name string */
|
|
spl_kmem_magazine_t *skc_mag[NR_CPUS]; /* Per-CPU warm cache */
|
|
uint32_t skc_mag_size; /* Magazine size */
|
|
uint32_t skc_mag_refill; /* Magazine refill count */
|
|
spl_kmem_ctor_t skc_ctor; /* Constructor */
|
|
spl_kmem_dtor_t skc_dtor; /* Destructor */
|
|
spl_kmem_reclaim_t skc_reclaim; /* Reclaimator */
|
|
void *skc_private; /* Private data */
|
|
void *skc_vmp; /* Unused */
|
|
struct kmem_cache *skc_linux_cache; /* Linux slab cache if used */
|
|
unsigned long skc_flags; /* Flags */
|
|
uint32_t skc_obj_size; /* Object size */
|
|
uint32_t skc_obj_align; /* Object alignment */
|
|
uint32_t skc_slab_objs; /* Objects per slab */
|
|
uint32_t skc_slab_size; /* Slab size */
|
|
uint32_t skc_delay; /* Slab reclaim interval */
|
|
uint32_t skc_reap; /* Slab reclaim count */
|
|
atomic_t skc_ref; /* Ref count callers */
|
|
taskqid_t skc_taskqid; /* Slab reclaim task */
|
|
struct list_head skc_list; /* List of caches linkage */
|
|
struct list_head skc_complete_list;/* Completely alloc'ed */
|
|
struct list_head skc_partial_list; /* Partially alloc'ed */
|
|
struct rb_root skc_emergency_tree; /* Min sized objects */
|
|
spinlock_t skc_lock; /* Cache lock */
|
|
wait_queue_head_t skc_waitq; /* Allocation waiters */
|
|
uint64_t skc_slab_fail; /* Slab alloc failures */
|
|
uint64_t skc_slab_create;/* Slab creates */
|
|
uint64_t skc_slab_destroy;/* Slab destroys */
|
|
uint64_t skc_slab_total; /* Slab total current */
|
|
uint64_t skc_slab_alloc; /* Slab alloc current */
|
|
uint64_t skc_slab_max; /* Slab max historic */
|
|
uint64_t skc_obj_total; /* Obj total current */
|
|
uint64_t skc_obj_alloc; /* Obj alloc current */
|
|
uint64_t skc_obj_max; /* Obj max historic */
|
|
uint64_t skc_obj_deadlock; /* Obj emergency deadlocks */
|
|
uint64_t skc_obj_emergency; /* Obj emergency current */
|
|
uint64_t skc_obj_emergency_max; /* Obj emergency max */
|
|
} spl_kmem_cache_t;
|
|
#define kmem_cache_t spl_kmem_cache_t
|
|
|
|
extern spl_kmem_cache_t *spl_kmem_cache_create(char *name, size_t size,
|
|
size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor,
|
|
spl_kmem_reclaim_t reclaim, void *priv, void *vmp, int flags);
|
|
extern void spl_kmem_cache_set_move(spl_kmem_cache_t *,
|
|
kmem_cbrc_t (*)(void *, void *, size_t, void *));
|
|
extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc);
|
|
extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags);
|
|
extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj);
|
|
extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count);
|
|
extern void spl_kmem_reap(void);
|
|
|
|
int spl_kmem_init_kallsyms_lookup(void);
|
|
int spl_kmem_init(void);
|
|
void spl_kmem_fini(void);
|
|
|
|
#define kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) \
|
|
spl_kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags)
|
|
#define kmem_cache_set_move(skc, move) spl_kmem_cache_set_move(skc, move)
|
|
#define kmem_cache_destroy(skc) spl_kmem_cache_destroy(skc)
|
|
#define kmem_cache_alloc(skc, flags) spl_kmem_cache_alloc(skc, flags)
|
|
#define kmem_cache_free(skc, obj) spl_kmem_cache_free(skc, obj)
|
|
#define kmem_cache_reap_now(skc) \
|
|
spl_kmem_cache_reap_now(skc, skc->skc_reap)
|
|
#define kmem_reap() spl_kmem_reap()
|
|
#define kmem_virt(ptr) (((ptr) >= (void *)VMALLOC_START) && \
|
|
((ptr) < (void *)VMALLOC_END))
|
|
|
|
/*
|
|
* Allow custom slab allocation flags to be set for KMC_SLAB based caches.
|
|
* One use for this function is to ensure the __GFP_COMP flag is part of
|
|
* the default allocation mask which ensures higher order allocations are
|
|
* properly refcounted. This flag was added to the default ->allocflags
|
|
* as of Linux 3.11.
|
|
*/
|
|
static inline void
|
|
kmem_cache_set_allocflags(spl_kmem_cache_t *skc, gfp_t flags)
|
|
{
|
|
if (skc->skc_linux_cache == NULL)
|
|
return;
|
|
|
|
#if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
|
|
skc->skc_linux_cache->allocflags |= flags;
|
|
#elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
|
|
skc->skc_linux_cache->gfpflags |= flags;
|
|
#endif
|
|
}
|
|
|
|
#endif /* _SPL_KMEM_H */
|