freebsd-nq/sys/dev/mps/mps_sas.c
Marius Strobl 50e66535b9 Sync with ahc(4)/ahd(4)/sym(4) etc:
Zero any sense not transferred by the device as the SCSI specification
mandates that any untransferred data should be assumed to be zero.

Reviewed by:	ken
2011-10-07 21:23:42 +00:00

2151 lines
59 KiB
C

/*-
* Copyright (c) 2009 Yahoo! Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* Communications core for LSI MPT2 */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/selinfo.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#include <sys/sysctl.h>
#include <sys/sglist.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_periph.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#if __FreeBSD_version >= 900026
#include <cam/scsi/smp_all.h>
#endif
#include <dev/mps/mpi/mpi2_type.h>
#include <dev/mps/mpi/mpi2.h>
#include <dev/mps/mpi/mpi2_ioc.h>
#include <dev/mps/mpi/mpi2_sas.h>
#include <dev/mps/mpi/mpi2_cnfg.h>
#include <dev/mps/mpi/mpi2_init.h>
#include <dev/mps/mpsvar.h>
#include <dev/mps/mps_table.h>
struct mpssas_target {
uint16_t handle;
uint8_t linkrate;
uint64_t devname;
uint64_t sasaddr;
uint32_t devinfo;
uint16_t encl_handle;
uint16_t encl_slot;
uint16_t parent_handle;
int flags;
#define MPSSAS_TARGET_INABORT (1 << 0)
#define MPSSAS_TARGET_INRESET (1 << 1)
#define MPSSAS_TARGET_INCHIPRESET (1 << 2)
#define MPSSAS_TARGET_INRECOVERY 0x7
uint16_t tid;
};
struct mpssas_softc {
struct mps_softc *sc;
u_int flags;
#define MPSSAS_IN_DISCOVERY (1 << 0)
#define MPSSAS_IN_STARTUP (1 << 1)
#define MPSSAS_DISCOVERY_TIMEOUT_PENDING (1 << 2)
#define MPSSAS_QUEUE_FROZEN (1 << 3)
struct mpssas_target *targets;
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *path;
struct intr_config_hook sas_ich;
struct callout discovery_callout;
u_int discovery_timeouts;
struct mps_event_handle *mpssas_eh;
};
struct mpssas_devprobe {
struct mps_config_params params;
u_int state;
#define MPSSAS_PROBE_DEV1 0x01
#define MPSSAS_PROBE_DEV2 0x02
#define MPSSAS_PROBE_PHY 0x03
#define MPSSAS_PROBE_EXP 0x04
#define MPSSAS_PROBE_PHY2 0x05
#define MPSSAS_PROBE_EXP2 0x06
struct mpssas_target target;
};
#define MPSSAS_DISCOVERY_TIMEOUT 20
#define MPSSAS_MAX_DISCOVERY_TIMEOUTS 10 /* 200 seconds */
MALLOC_DEFINE(M_MPSSAS, "MPSSAS", "MPS SAS memory");
static __inline int mpssas_set_lun(uint8_t *lun, u_int ccblun);
static struct mpssas_target * mpssas_alloc_target(struct mpssas_softc *,
struct mpssas_target *);
static struct mpssas_target * mpssas_find_target(struct mpssas_softc *, int,
uint16_t);
static void mpssas_announce_device(struct mpssas_softc *,
struct mpssas_target *);
static void mpssas_startup(void *data);
static void mpssas_discovery_end(struct mpssas_softc *sassc);
static void mpssas_discovery_timeout(void *data);
static void mpssas_prepare_remove(struct mpssas_softc *,
MPI2_EVENT_SAS_TOPO_PHY_ENTRY *);
static void mpssas_remove_device(struct mps_softc *, struct mps_command *);
static void mpssas_remove_complete(struct mps_softc *, struct mps_command *);
static void mpssas_action(struct cam_sim *sim, union ccb *ccb);
static void mpssas_poll(struct cam_sim *sim);
static void mpssas_probe_device(struct mps_softc *sc, uint16_t handle);
static void mpssas_probe_device_complete(struct mps_softc *sc,
struct mps_config_params *params);
static void mpssas_scsiio_timeout(void *data);
static void mpssas_abort_complete(struct mps_softc *sc, struct mps_command *cm);
static void mpssas_recovery(struct mps_softc *, struct mps_command *);
static int mpssas_map_tm_request(struct mps_softc *sc, struct mps_command *cm);
static void mpssas_issue_tm_request(struct mps_softc *sc,
struct mps_command *cm);
static void mpssas_tm_complete(struct mps_softc *sc, struct mps_command *cm,
int error);
static int mpssas_complete_tm_request(struct mps_softc *sc,
struct mps_command *cm, int free_cm);
static void mpssas_action_scsiio(struct mpssas_softc *, union ccb *);
static void mpssas_scsiio_complete(struct mps_softc *, struct mps_command *);
#if __FreeBSD_version >= 900026
static void mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm);
static void mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb,
uint64_t sasaddr);
static void mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb);
#endif /* __FreeBSD_version >= 900026 */
static void mpssas_resetdev(struct mpssas_softc *, struct mps_command *);
static void mpssas_action_resetdev(struct mpssas_softc *, union ccb *);
static void mpssas_resetdev_complete(struct mps_softc *, struct mps_command *);
static void mpssas_freeze_device(struct mpssas_softc *, struct mpssas_target *);
static void mpssas_unfreeze_device(struct mpssas_softc *, struct mpssas_target *) __unused;
/*
* Abstracted so that the driver can be backwards and forwards compatible
* with future versions of CAM that will provide this functionality.
*/
#define MPS_SET_LUN(lun, ccblun) \
mpssas_set_lun(lun, ccblun)
static __inline int
mpssas_set_lun(uint8_t *lun, u_int ccblun)
{
uint64_t *newlun;
newlun = (uint64_t *)lun;
*newlun = 0;
if (ccblun <= 0xff) {
/* Peripheral device address method, LUN is 0 to 255 */
lun[1] = ccblun;
} else if (ccblun <= 0x3fff) {
/* Flat space address method, LUN is <= 16383 */
scsi_ulto2b(ccblun, lun);
lun[0] |= 0x40;
} else if (ccblun <= 0xffffff) {
/* Extended flat space address method, LUN is <= 16777215 */
scsi_ulto3b(ccblun, &lun[1]);
/* Extended Flat space address method */
lun[0] = 0xc0;
/* Length = 1, i.e. LUN is 3 bytes long */
lun[0] |= 0x10;
/* Extended Address Method */
lun[0] |= 0x02;
} else {
return (EINVAL);
}
return (0);
}
static struct mpssas_target *
mpssas_alloc_target(struct mpssas_softc *sassc, struct mpssas_target *probe)
{
struct mpssas_target *target;
int start;
mps_dprint(sassc->sc, MPS_TRACE, "%s\n", __func__);
/*
* If it's not a sata or sas target, CAM won't be able to see it. Put
* it into a high-numbered slot so that it's accessible but not
* interrupting the target numbering sequence of real drives.
*/
if ((probe->devinfo & (MPI2_SAS_DEVICE_INFO_SSP_TARGET |
MPI2_SAS_DEVICE_INFO_STP_TARGET | MPI2_SAS_DEVICE_INFO_SATA_DEVICE))
== 0) {
start = 200;
} else {
/*
* Use the enclosure number and slot number as a hint for target
* numbering. If that doesn't produce a sane result, search the
* entire space.
*/
#if 0
start = probe->encl_handle * 16 + probe->encl_slot;
#else
start = probe->encl_slot;
#endif
if (start >= sassc->sc->facts->MaxTargets)
start = 0;
}
target = mpssas_find_target(sassc, start, 0);
/*
* Nothing found on the first pass, try a second pass that searches the
* entire space.
*/
if (target == NULL)
target = mpssas_find_target(sassc, 0, 0);
return (target);
}
static struct mpssas_target *
mpssas_find_target(struct mpssas_softc *sassc, int start, uint16_t handle)
{
struct mpssas_target *target;
int i;
for (i = start; i < sassc->sc->facts->MaxTargets; i++) {
target = &sassc->targets[i];
if (target->handle == handle)
return (target);
}
return (NULL);
}
/*
* Start the probe sequence for a given device handle. This will not
* block.
*/
static void
mpssas_probe_device(struct mps_softc *sc, uint16_t handle)
{
struct mpssas_devprobe *probe;
struct mps_config_params *params;
MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
int error;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
probe = malloc(sizeof(*probe), M_MPSSAS, M_NOWAIT | M_ZERO);
if (probe == NULL) {
mps_dprint(sc, MPS_FAULT, "Out of memory starting probe\n");
return;
}
params = &probe->params;
hdr = &params->hdr.Ext;
params->action = MPI2_CONFIG_ACTION_PAGE_HEADER;
params->page_address = MPI2_SAS_DEVICE_PGAD_FORM_HANDLE | handle;
hdr->ExtPageType = MPI2_CONFIG_EXTPAGETYPE_SAS_DEVICE;
hdr->ExtPageLength = 0;
hdr->PageNumber = 0;
hdr->PageVersion = 0;
params->buffer = NULL;
params->length = 0;
params->callback = mpssas_probe_device_complete;
params->cbdata = probe;
probe->target.handle = handle;
probe->state = MPSSAS_PROBE_DEV1;
if ((error = mps_read_config_page(sc, params)) != 0) {
free(probe, M_MPSSAS);
mps_dprint(sc, MPS_FAULT, "Failure starting device probe\n");
return;
}
}
static void
mpssas_probe_device_complete(struct mps_softc *sc,
struct mps_config_params *params)
{
MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
struct mpssas_devprobe *probe;
int error;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
hdr = &params->hdr.Ext;
probe = params->cbdata;
switch (probe->state) {
case MPSSAS_PROBE_DEV1:
case MPSSAS_PROBE_PHY:
case MPSSAS_PROBE_EXP:
if (params->status != MPI2_IOCSTATUS_SUCCESS) {
mps_dprint(sc, MPS_FAULT,
"Probe Failure 0x%x state %d\n", params->status,
probe->state);
free(probe, M_MPSSAS);
return;
}
params->action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
params->length = hdr->ExtPageLength * 4;
params->buffer = malloc(params->length, M_MPSSAS,
M_ZERO|M_NOWAIT);
if (params->buffer == NULL) {
mps_dprint(sc, MPS_FAULT, "Out of memory at state "
"0x%x, size 0x%x\n", probe->state, params->length);
free(probe, M_MPSSAS);
return;
}
if (probe->state == MPSSAS_PROBE_DEV1)
probe->state = MPSSAS_PROBE_DEV2;
else if (probe->state == MPSSAS_PROBE_PHY)
probe->state = MPSSAS_PROBE_PHY2;
else if (probe->state == MPSSAS_PROBE_EXP)
probe->state = MPSSAS_PROBE_EXP2;
error = mps_read_config_page(sc, params);
break;
case MPSSAS_PROBE_DEV2:
{
MPI2_CONFIG_PAGE_SAS_DEV_0 *buf;
if (params->status != MPI2_IOCSTATUS_SUCCESS) {
mps_dprint(sc, MPS_FAULT,
"Probe Failure 0x%x state %d\n", params->status,
probe->state);
free(params->buffer, M_MPSSAS);
free(probe, M_MPSSAS);
return;
}
buf = params->buffer;
mps_print_sasdev0(sc, buf);
probe->target.devname = mps_to_u64(&buf->DeviceName);
probe->target.devinfo = buf->DeviceInfo;
probe->target.encl_handle = buf->EnclosureHandle;
probe->target.encl_slot = buf->Slot;
probe->target.sasaddr = mps_to_u64(&buf->SASAddress);
probe->target.parent_handle = buf->ParentDevHandle;
if (buf->DeviceInfo & MPI2_SAS_DEVICE_INFO_DIRECT_ATTACH) {
params->page_address =
MPI2_SAS_PHY_PGAD_FORM_PHY_NUMBER | buf->PhyNum;
hdr->ExtPageType = MPI2_CONFIG_EXTPAGETYPE_SAS_PHY;
hdr->PageNumber = 0;
probe->state = MPSSAS_PROBE_PHY;
} else {
params->page_address =
MPI2_SAS_EXPAND_PGAD_FORM_HNDL_PHY_NUM |
buf->ParentDevHandle | (buf->PhyNum << 16);
hdr->ExtPageType = MPI2_CONFIG_EXTPAGETYPE_SAS_EXPANDER;
hdr->PageNumber = 1;
probe->state = MPSSAS_PROBE_EXP;
}
params->action = MPI2_CONFIG_ACTION_PAGE_HEADER;
hdr->ExtPageLength = 0;
hdr->PageVersion = 0;
params->buffer = NULL;
params->length = 0;
free(buf, M_MPSSAS);
error = mps_read_config_page(sc, params);
break;
}
case MPSSAS_PROBE_PHY2:
case MPSSAS_PROBE_EXP2:
{
MPI2_CONFIG_PAGE_SAS_PHY_0 *phy;
MPI2_CONFIG_PAGE_EXPANDER_1 *exp;
struct mpssas_softc *sassc;
struct mpssas_target *targ;
char devstring[80];
uint16_t handle;
if (params->status != MPI2_IOCSTATUS_SUCCESS) {
mps_dprint(sc, MPS_FAULT,
"Probe Failure 0x%x state %d\n", params->status,
probe->state);
free(params->buffer, M_MPSSAS);
free(probe, M_MPSSAS);
return;
}
if (probe->state == MPSSAS_PROBE_PHY2) {
phy = params->buffer;
mps_print_sasphy0(sc, phy);
probe->target.linkrate = phy->NegotiatedLinkRate & 0xf;
} else {
exp = params->buffer;
mps_print_expander1(sc, exp);
probe->target.linkrate = exp->NegotiatedLinkRate & 0xf;
}
free(params->buffer, M_MPSSAS);
sassc = sc->sassc;
handle = probe->target.handle;
if ((targ = mpssas_find_target(sassc, 0, handle)) != NULL) {
mps_printf(sc, "Ignoring dup device handle 0x%04x\n",
handle);
free(probe, M_MPSSAS);
return;
}
if ((targ = mpssas_alloc_target(sassc, &probe->target)) == NULL) {
mps_printf(sc, "Target table overflow, handle 0x%04x\n",
handle);
free(probe, M_MPSSAS);
return;
}
*targ = probe->target; /* Copy the attributes */
targ->tid = targ - sassc->targets;
mps_describe_devinfo(targ->devinfo, devstring, 80);
if (bootverbose)
mps_printf(sc, "Found device <%s> <%s> <0x%04x> "
"<%d/%d>\n", devstring,
mps_describe_table(mps_linkrate_names,
targ->linkrate), targ->handle, targ->encl_handle,
targ->encl_slot);
free(probe, M_MPSSAS);
mpssas_announce_device(sassc, targ);
break;
}
default:
printf("what?\n");
}
}
/*
* The MPT2 firmware performs debounce on the link to avoid transient link errors
* and false removals. When it does decide that link has been lost and a device
* need to go away, it expects that the host will perform a target reset and then
* an op remove. The reset has the side-effect of aborting any outstanding
* requests for the device, which is required for the op-remove to succeed. It's
* not clear if the host should check for the device coming back alive after the
* reset.
*/
static void
mpssas_prepare_remove(struct mpssas_softc *sassc, MPI2_EVENT_SAS_TOPO_PHY_ENTRY *phy)
{
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
struct mps_softc *sc;
struct mps_command *cm;
struct mpssas_target *targ = NULL;
uint16_t handle;
mps_dprint(sassc->sc, MPS_TRACE, "%s\n", __func__);
handle = phy->AttachedDevHandle;
targ = mpssas_find_target(sassc, 0, handle);
if (targ == NULL)
/* We don't know about this device? */
return;
sc = sassc->sc;
cm = mps_alloc_command(sc);
if (cm == NULL) {
mps_printf(sc, "comand alloc failure in mpssas_prepare_remove\n");
return;
}
mps_dprint(sc, MPS_INFO, "Preparing to remove target %d\n", targ->tid);
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
memset(req, 0, sizeof(*req));
req->DevHandle = targ->handle;
req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
/* SAS Hard Link Reset / SATA Link Reset */
req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
cm->cm_data = NULL;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_complete = mpssas_remove_device;
cm->cm_targ = targ;
mpssas_issue_tm_request(sc, cm);
}
static void
mpssas_remove_device(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_SCSI_TASK_MANAGE_REPLY *reply;
MPI2_SAS_IOUNIT_CONTROL_REQUEST *req;
struct mpssas_target *targ;
struct mps_command *next_cm;
uint16_t handle;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)cm->cm_reply;
handle = cm->cm_targ->handle;
mpssas_complete_tm_request(sc, cm, /*free_cm*/ 0);
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and
* task management commands don't have S/G lists.
*/
if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
mps_printf(sc, "%s: cm_flags = %#x for remove of handle %#04x! "
"This should not happen!\n", __func__, cm->cm_flags,
handle);
return;
}
if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) {
mps_printf(sc, "Failure 0x%x reseting device 0x%04x\n",
reply->IOCStatus, handle);
mps_free_command(sc, cm);
return;
}
mps_dprint(sc, MPS_INFO, "Reset aborted %u commands\n",
reply->TerminationCount);
mps_free_reply(sc, cm->cm_reply_data);
/* Reuse the existing command */
req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)cm->cm_req;
memset(req, 0, sizeof(*req));
req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL;
req->Operation = MPI2_SAS_OP_REMOVE_DEVICE;
req->DevHandle = handle;
cm->cm_data = NULL;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_flags &= ~MPS_CM_FLAGS_COMPLETE;
cm->cm_complete = mpssas_remove_complete;
mps_map_command(sc, cm);
mps_dprint(sc, MPS_INFO, "clearing target handle 0x%04x\n", handle);
TAILQ_FOREACH_SAFE(cm, &sc->io_list, cm_link, next_cm) {
union ccb *ccb;
if (cm->cm_targ->handle != handle)
continue;
mps_dprint(sc, MPS_INFO, "Completing missed command %p\n", cm);
ccb = cm->cm_complete_data;
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
mpssas_scsiio_complete(sc, cm);
}
targ = mpssas_find_target(sc->sassc, 0, handle);
if (targ != NULL) {
targ->handle = 0x0;
mpssas_announce_device(sc->sassc, targ);
}
}
static void
mpssas_remove_complete(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_SAS_IOUNIT_CONTROL_REPLY *reply;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)cm->cm_reply;
mps_printf(sc, "mpssas_remove_complete on target 0x%04x,"
" IOCStatus= 0x%x\n", cm->cm_targ->tid, reply->IOCStatus);
mps_free_command(sc, cm);
}
static void
mpssas_evt_handler(struct mps_softc *sc, uintptr_t data,
MPI2_EVENT_NOTIFICATION_REPLY *event)
{
struct mpssas_softc *sassc;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
sassc = sc->sassc;
mps_print_evt_sas(sc, event);
switch (event->Event) {
case MPI2_EVENT_SAS_DISCOVERY:
{
MPI2_EVENT_DATA_SAS_DISCOVERY *data;
data = (MPI2_EVENT_DATA_SAS_DISCOVERY *)&event->EventData;
if (data->ReasonCode & MPI2_EVENT_SAS_DISC_RC_STARTED)
mps_dprint(sc, MPS_TRACE,"SAS discovery start event\n");
if (data->ReasonCode & MPI2_EVENT_SAS_DISC_RC_COMPLETED) {
mps_dprint(sc, MPS_TRACE, "SAS discovery end event\n");
sassc->flags &= ~MPSSAS_IN_DISCOVERY;
mpssas_discovery_end(sassc);
}
break;
}
case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
{
MPI2_EVENT_DATA_SAS_TOPOLOGY_CHANGE_LIST *data;
MPI2_EVENT_SAS_TOPO_PHY_ENTRY *phy;
int i;
data = (MPI2_EVENT_DATA_SAS_TOPOLOGY_CHANGE_LIST *)
&event->EventData;
if (data->ExpStatus == MPI2_EVENT_SAS_TOPO_ES_ADDED) {
if (bootverbose)
printf("Expander found at enclosure %d\n",
data->EnclosureHandle);
mpssas_probe_device(sc, data->ExpanderDevHandle);
}
for (i = 0; i < data->NumEntries; i++) {
phy = &data->PHY[i];
switch (phy->PhyStatus & MPI2_EVENT_SAS_TOPO_RC_MASK) {
case MPI2_EVENT_SAS_TOPO_RC_TARG_ADDED:
mpssas_probe_device(sc, phy->AttachedDevHandle);
break;
case MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING:
mpssas_prepare_remove(sassc, phy);
break;
case MPI2_EVENT_SAS_TOPO_RC_PHY_CHANGED:
case MPI2_EVENT_SAS_TOPO_RC_NO_CHANGE:
case MPI2_EVENT_SAS_TOPO_RC_DELAY_NOT_RESPONDING:
default:
break;
}
}
break;
}
case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
break;
default:
break;
}
mps_free_reply(sc, data);
}
static int
mpssas_register_events(struct mps_softc *sc)
{
uint8_t events[16];
bzero(events, 16);
setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
setbit(events, MPI2_EVENT_SAS_DISCOVERY);
setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE);
setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW);
setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
mps_register_events(sc, events, mpssas_evt_handler, NULL,
&sc->sassc->mpssas_eh);
return (0);
}
int
mps_attach_sas(struct mps_softc *sc)
{
struct mpssas_softc *sassc;
int error = 0;
int num_sim_reqs;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
sassc = malloc(sizeof(struct mpssas_softc), M_MPT2, M_WAITOK|M_ZERO);
sassc->targets = malloc(sizeof(struct mpssas_target) *
sc->facts->MaxTargets, M_MPT2, M_WAITOK|M_ZERO);
sc->sassc = sassc;
sassc->sc = sc;
/*
* Tell CAM that we can handle 5 fewer requests than we have
* allocated. If we allow the full number of requests, all I/O
* will halt when we run out of resources. Things work fine with
* just 1 less request slot given to CAM than we have allocated.
* We also need a couple of extra commands so that we can send down
* abort, reset, etc. requests when commands time out. Otherwise
* we could wind up in a situation with sc->num_reqs requests down
* on the card and no way to send an abort.
*
* XXX KDM need to figure out why I/O locks up if all commands are
* used.
*/
num_sim_reqs = sc->num_reqs - 5;
if ((sassc->devq = cam_simq_alloc(num_sim_reqs)) == NULL) {
mps_dprint(sc, MPS_FAULT, "Cannot allocate SIMQ\n");
error = ENOMEM;
goto out;
}
sassc->sim = cam_sim_alloc(mpssas_action, mpssas_poll, "mps", sassc,
device_get_unit(sc->mps_dev), &sc->mps_mtx, num_sim_reqs,
num_sim_reqs, sassc->devq);
if (sassc->sim == NULL) {
mps_dprint(sc, MPS_FAULT, "Cannot allocate SIM\n");
error = EINVAL;
goto out;
}
/*
* XXX There should be a bus for every port on the adapter, but since
* we're just going to fake the topology for now, we'll pretend that
* everything is just a target on a single bus.
*/
mps_lock(sc);
if ((error = xpt_bus_register(sassc->sim, sc->mps_dev, 0)) != 0) {
mps_dprint(sc, MPS_FAULT, "Error %d registering SCSI bus\n",
error);
mps_unlock(sc);
goto out;
}
/*
* Assume that discovery events will start right away. Freezing
* the simq will prevent the CAM boottime scanner from running
* before discovery is complete.
*/
sassc->flags = MPSSAS_IN_STARTUP | MPSSAS_IN_DISCOVERY;
xpt_freeze_simq(sassc->sim, 1);
mps_unlock(sc);
callout_init(&sassc->discovery_callout, 1 /*mpsafe*/);
sassc->discovery_timeouts = 0;
mpssas_register_events(sc);
out:
if (error)
mps_detach_sas(sc);
return (error);
}
int
mps_detach_sas(struct mps_softc *sc)
{
struct mpssas_softc *sassc;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
if (sc->sassc == NULL)
return (0);
sassc = sc->sassc;
/* Make sure CAM doesn't wedge if we had to bail out early. */
mps_lock(sc);
if (sassc->flags & MPSSAS_IN_STARTUP)
xpt_release_simq(sassc->sim, 1);
mps_unlock(sc);
if (sassc->mpssas_eh != NULL)
mps_deregister_events(sc, sassc->mpssas_eh);
mps_lock(sc);
if (sassc->sim != NULL) {
xpt_bus_deregister(cam_sim_path(sassc->sim));
cam_sim_free(sassc->sim, FALSE);
}
mps_unlock(sc);
if (sassc->devq != NULL)
cam_simq_free(sassc->devq);
free(sassc->targets, M_MPT2);
free(sassc, M_MPT2);
sc->sassc = NULL;
return (0);
}
static void
mpssas_discovery_end(struct mpssas_softc *sassc)
{
struct mps_softc *sc = sassc->sc;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
if (sassc->flags & MPSSAS_DISCOVERY_TIMEOUT_PENDING)
callout_stop(&sassc->discovery_callout);
if ((sassc->flags & MPSSAS_IN_STARTUP) != 0) {
mps_dprint(sc, MPS_INFO,
"mpssas_discovery_end: removing confighook\n");
sassc->flags &= ~MPSSAS_IN_STARTUP;
xpt_release_simq(sassc->sim, 1);
}
#if 0
mpssas_announce_device(sassc, NULL);
#endif
}
static void
mpssas_announce_device(struct mpssas_softc *sassc, struct mpssas_target *targ)
{
union ccb *ccb;
int bus, tid, lun;
/*
* Force a rescan, a hackish way to announce devices.
* XXX Doing a scan on an individual device is hackish in that it
* won't scan the LUNs.
* XXX Does it matter if any of this fails?
*/
bus = cam_sim_path(sassc->sim);
if (targ != NULL) {
tid = targ->tid;
lun = 0;
} else {
tid = CAM_TARGET_WILDCARD;
lun = CAM_LUN_WILDCARD;
}
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL)
return;
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, bus, tid,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
return;
}
mps_dprint(sassc->sc, MPS_INFO, "Triggering rescan of %d:%d:-1\n",
bus, tid);
xpt_rescan(ccb);
}
static void
mpssas_startup(void *data)
{
struct mpssas_softc *sassc = data;
mps_dprint(sassc->sc, MPS_TRACE, "%s\n", __func__);
mps_lock(sassc->sc);
if ((sassc->flags & MPSSAS_IN_DISCOVERY) == 0) {
mpssas_discovery_end(sassc);
} else {
if (sassc->discovery_timeouts < MPSSAS_MAX_DISCOVERY_TIMEOUTS) {
sassc->flags |= MPSSAS_DISCOVERY_TIMEOUT_PENDING;
callout_reset(&sassc->discovery_callout,
MPSSAS_DISCOVERY_TIMEOUT * hz,
mpssas_discovery_timeout, sassc);
sassc->discovery_timeouts++;
} else {
mps_dprint(sassc->sc, MPS_FAULT,
"Discovery timed out, continuing.\n");
sassc->flags &= ~MPSSAS_IN_DISCOVERY;
mpssas_discovery_end(sassc);
}
}
mps_unlock(sassc->sc);
return;
}
static void
mpssas_discovery_timeout(void *data)
{
struct mpssas_softc *sassc = data;
struct mps_softc *sc;
sc = sassc->sc;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
mps_lock(sc);
mps_printf(sc,
"Timeout waiting for discovery, interrupts may not be working!\n");
sassc->flags &= ~MPSSAS_DISCOVERY_TIMEOUT_PENDING;
/* Poll the hardware for events in case interrupts aren't working */
mps_intr_locked(sc);
mps_unlock(sc);
/* Check the status of discovery and re-arm the timeout if needed */
mpssas_startup(sassc);
}
static void
mpssas_action(struct cam_sim *sim, union ccb *ccb)
{
struct mpssas_softc *sassc;
sassc = cam_sim_softc(sim);
mps_dprint(sassc->sc, MPS_TRACE, "%s func 0x%x\n", __func__,
ccb->ccb_h.func_code);
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET;
cpi->hba_eng_cnt = 0;
cpi->max_target = sassc->sc->facts->MaxTargets - 1;
cpi->max_lun = 8;
cpi->initiator_id = 255;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "LSILogic", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 150000;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_SPC;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts;
struct ccb_trans_settings_sas *sas;
struct ccb_trans_settings_scsi *scsi;
struct mpssas_target *targ;
cts = &ccb->cts;
sas = &cts->xport_specific.sas;
scsi = &cts->proto_specific.scsi;
targ = &sassc->targets[cts->ccb_h.target_id];
if (targ->handle == 0x0) {
cts->ccb_h.status = CAM_TID_INVALID;
break;
}
cts->protocol_version = SCSI_REV_SPC2;
cts->transport = XPORT_SAS;
cts->transport_version = 0;
sas->valid = CTS_SAS_VALID_SPEED;
switch (targ->linkrate) {
case 0x08:
sas->bitrate = 150000;
break;
case 0x09:
sas->bitrate = 300000;
break;
case 0x0a:
sas->bitrate = 600000;
break;
default:
sas->valid = 0;
}
cts->protocol = PROTO_SCSI;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
cts->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_CALC_GEOMETRY:
cam_calc_geometry(&ccb->ccg, /*extended*/1);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_RESET_DEV:
mpssas_action_resetdev(sassc, ccb);
return;
case XPT_RESET_BUS:
case XPT_ABORT:
case XPT_TERM_IO:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_SCSI_IO:
mpssas_action_scsiio(sassc, ccb);
return;
#if __FreeBSD_version >= 900026
case XPT_SMP_IO:
mpssas_action_smpio(sassc, ccb);
return;
#endif /* __FreeBSD_version >= 900026 */
default:
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
break;
}
xpt_done(ccb);
}
#if 0
static void
mpssas_resettimeout_complete(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_SCSI_TASK_MANAGE_REPLY *resp;
uint16_t code;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)cm->cm_reply;
code = resp->ResponseCode;
mps_free_command(sc, cm);
mpssas_unfreeze_device(sassc, targ);
if (code != MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) {
mps_reset_controller(sc);
}
return;
}
#endif
static void
mpssas_scsiio_timeout(void *data)
{
union ccb *ccb;
struct mps_softc *sc;
struct mps_command *cm;
struct mpssas_target *targ;
#if 0
char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
#endif
cm = (struct mps_command *)data;
sc = cm->cm_sc;
/*
* Run the interrupt handler to make sure it's not pending. This
* isn't perfect because the command could have already completed
* and been re-used, though this is unlikely.
*/
mps_lock(sc);
mps_intr_locked(sc);
if (cm->cm_state == MPS_CM_STATE_FREE) {
mps_unlock(sc);
return;
}
ccb = cm->cm_complete_data;
targ = cm->cm_targ;
if (targ == 0x00)
/* Driver bug */
targ = &sc->sassc->targets[ccb->ccb_h.target_id];
xpt_print(ccb->ccb_h.path, "SCSI command timeout on device handle "
"0x%04x SMID %d\n", targ->handle, cm->cm_desc.Default.SMID);
/*
* XXX KDM this is useful for debugging purposes, but the existing
* scsi_op_desc() implementation can't handle a NULL value for
* inq_data. So this will remain commented out until I bring in
* those changes as well.
*/
#if 0
xpt_print(ccb->ccb_h.path, "Timed out command: %s. CDB %s\n",
scsi_op_desc((ccb->ccb_h.flags & CAM_CDB_POINTER) ?
ccb->csio.cdb_io.cdb_ptr[0] :
ccb->csio.cdb_io.cdb_bytes[0], NULL),
scsi_cdb_string((ccb->ccb_h.flags & CAM_CDB_POINTER) ?
ccb->csio.cdb_io.cdb_ptr :
ccb->csio.cdb_io.cdb_bytes, cdb_str,
sizeof(cdb_str)));
#endif
/* Inform CAM about the timeout and that recovery is starting. */
#if 0
if ((targ->flags & MPSSAS_TARGET_INRECOVERY) == 0) {
mpssas_freeze_device(sc->sassc, targ);
ccb->ccb_h.status = CAM_CMD_TIMEOUT;
xpt_done(ccb);
}
#endif
mpssas_freeze_device(sc->sassc, targ);
ccb->ccb_h.status = CAM_CMD_TIMEOUT;
/*
* recycle the command into recovery so that there's no risk of
* command allocation failure.
*/
cm->cm_state = MPS_CM_STATE_TIMEDOUT;
mpssas_recovery(sc, cm);
mps_unlock(sc);
}
static void
mpssas_abort_complete(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and
* task management commands don't have S/G lists.
*/
if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
mps_printf(sc, "%s: cm_flags = %#x for abort on handle %#04x! "
"This should not happen!\n", __func__, cm->cm_flags,
req->DevHandle);
}
mps_printf(sc, "%s: abort request on handle %#04x SMID %d "
"complete\n", __func__, req->DevHandle, req->TaskMID);
mpssas_complete_tm_request(sc, cm, /*free_cm*/ 1);
}
static void
mpssas_recovery(struct mps_softc *sc, struct mps_command *abort_cm)
{
struct mps_command *cm;
MPI2_SCSI_TASK_MANAGE_REQUEST *req, *orig_req;
cm = mps_alloc_command(sc);
if (cm == NULL) {
mps_printf(sc, "%s: command allocation failure\n", __func__);
return;
}
cm->cm_targ = abort_cm->cm_targ;
cm->cm_complete = mpssas_abort_complete;
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
orig_req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)abort_cm->cm_req;
req->DevHandle = abort_cm->cm_targ->handle;
req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;
memcpy(req->LUN, orig_req->LUN, sizeof(req->LUN));
req->TaskMID = abort_cm->cm_desc.Default.SMID;
cm->cm_data = NULL;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
mpssas_issue_tm_request(sc, cm);
}
/*
* Can return 0 or EINPROGRESS on success. Any other value means failure.
*/
static int
mpssas_map_tm_request(struct mps_softc *sc, struct mps_command *cm)
{
int error;
error = 0;
cm->cm_flags |= MPS_CM_FLAGS_ACTIVE;
error = mps_map_command(sc, cm);
if ((error == 0)
|| (error == EINPROGRESS))
sc->tm_cmds_active++;
return (error);
}
static void
mpssas_issue_tm_request(struct mps_softc *sc, struct mps_command *cm)
{
int freeze_queue, send_command, error;
freeze_queue = 0;
send_command = 0;
error = 0;
mtx_assert(&sc->mps_mtx, MA_OWNED);
/*
* If there are no other pending task management commands, go
* ahead and send this one. There is a small amount of anecdotal
* evidence that sending lots of task management commands at once
* may cause the controller to lock up. Or, if the user has
* configured the driver (via the allow_multiple_tm_cmds variable) to
* not serialize task management commands, go ahead and send the
* command if even other task management commands are pending.
*/
if (TAILQ_FIRST(&sc->tm_list) == NULL) {
send_command = 1;
freeze_queue = 1;
} else if (sc->allow_multiple_tm_cmds != 0)
send_command = 1;
TAILQ_INSERT_TAIL(&sc->tm_list, cm, cm_link);
if (send_command != 0) {
/*
* Freeze the SIM queue while we issue the task management
* command. According to the Fusion-MPT 2.0 spec, task
* management requests are serialized, and so the host
* should not send any I/O requests while task management
* requests are pending.
*/
if (freeze_queue != 0)
xpt_freeze_simq(sc->sassc->sim, 1);
error = mpssas_map_tm_request(sc, cm);
/*
* At present, there is no error path back from
* mpssas_map_tm_request() (which calls mps_map_command())
* when cm->cm_data == NULL. But since there is a return
* value, we check it just in case the implementation
* changes later.
*/
if ((error != 0)
&& (error != EINPROGRESS))
mpssas_tm_complete(sc, cm,
MPI2_SCSITASKMGMT_RSP_TM_FAILED);
}
}
static void
mpssas_tm_complete(struct mps_softc *sc, struct mps_command *cm, int error)
{
MPI2_SCSI_TASK_MANAGE_REPLY *resp;
resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)cm->cm_reply;
if (resp != NULL)
resp->ResponseCode = error;
/*
* Call the callback for this command, it will be
* removed from the list and freed via the callback.
*/
cm->cm_complete(sc, cm);
}
/*
* Complete a task management request. The basic completion operation will
* always succeed. Returns status for sending any further task management
* commands that were queued.
*/
static int
mpssas_complete_tm_request(struct mps_softc *sc, struct mps_command *cm,
int free_cm)
{
int error;
error = 0;
mtx_assert(&sc->mps_mtx, MA_OWNED);
TAILQ_REMOVE(&sc->tm_list, cm, cm_link);
cm->cm_flags &= ~MPS_CM_FLAGS_ACTIVE;
sc->tm_cmds_active--;
if (free_cm != 0)
mps_free_command(sc, cm);
if (TAILQ_FIRST(&sc->tm_list) == NULL) {
/*
* Release the SIM queue, we froze it when we sent the first
* task management request.
*/
xpt_release_simq(sc->sassc->sim, 1);
} else if ((sc->tm_cmds_active == 0)
|| (sc->allow_multiple_tm_cmds != 0)) {
int error;
struct mps_command *cm2;
restart_traversal:
/*
* We don't bother using TAILQ_FOREACH_SAFE here, but
* rather use the standard version and just restart the
* list traversal if we run into the error case.
* TAILQ_FOREACH_SAFE allows safe removal of the current
* list element, but if you have a queue of task management
* commands, all of which have mapping errors, you'll end
* up with recursive calls to this routine and so you could
* wind up removing more than just the current list element.
*/
TAILQ_FOREACH(cm2, &sc->tm_list, cm_link) {
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
/* This command is active, no need to send it again */
if (cm2->cm_flags & MPS_CM_FLAGS_ACTIVE)
continue;
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm2->cm_req;
mps_printf(sc, "%s: sending deferred task management "
"request for handle %#04x SMID %d\n", __func__,
req->DevHandle, req->TaskMID);
error = mpssas_map_tm_request(sc, cm2);
/*
* Check for errors. If we had an error, complete
* this command with an error, and keep going through
* the list until we are able to send at least one
* command or all of them are completed with errors.
*
* We don't want to wind up in a situation where
* we're stalled out with no way for queued task
* management commands to complete.
*
* Note that there is not currently an error path
* back from mpssas_map_tm_request() (which calls
* mps_map_command()) when cm->cm_data == NULL.
* But we still want to check for errors here in
* case the implementation changes, or in case
* there is some reason for a data payload here.
*/
if ((error != 0)
&& (error != EINPROGRESS)) {
mpssas_tm_complete(sc, cm,
MPI2_SCSITASKMGMT_RSP_TM_FAILED);
/*
* If we don't currently have any commands
* active, go back to the beginning and see
* if there are any more that can be started.
* Otherwise, we're done here.
*/
if (sc->tm_cmds_active == 0)
goto restart_traversal;
else
break;
}
/*
* If the user only wants one task management command
* active at a time, we're done, since we've
* already successfully sent a command at this point.
*/
if (sc->allow_multiple_tm_cmds == 0)
break;
}
}
return (error);
}
static void
mpssas_action_scsiio(struct mpssas_softc *sassc, union ccb *ccb)
{
MPI2_SCSI_IO_REQUEST *req;
struct ccb_scsiio *csio;
struct mps_softc *sc;
struct mpssas_target *targ;
struct mps_command *cm;
mps_dprint(sassc->sc, MPS_TRACE, "%s\n", __func__);
sc = sassc->sc;
csio = &ccb->csio;
targ = &sassc->targets[csio->ccb_h.target_id];
if (targ->handle == 0x0) {
csio->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done(ccb);
return;
}
cm = mps_alloc_command(sc);
if (cm == NULL) {
if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) {
xpt_freeze_simq(sassc->sim, 1);
sassc->flags |= MPSSAS_QUEUE_FROZEN;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
xpt_done(ccb);
return;
}
req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req;
bzero(req, sizeof(*req));
req->DevHandle = targ->handle;
req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
req->MsgFlags = 0;
req->SenseBufferLowAddress = cm->cm_sense_busaddr;
req->SenseBufferLength = MPS_SENSE_LEN;
req->SGLFlags = 0;
req->ChainOffset = 0;
req->SGLOffset0 = 24; /* 32bit word offset to the SGL */
req->SGLOffset1= 0;
req->SGLOffset2= 0;
req->SGLOffset3= 0;
req->SkipCount = 0;
req->DataLength = csio->dxfer_len;
req->BidirectionalDataLength = 0;
req->IoFlags = csio->cdb_len;
req->EEDPFlags = 0;
/* Note: BiDirectional transfers are not supported */
switch (csio->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
req->Control = MPI2_SCSIIO_CONTROL_READ;
cm->cm_flags |= MPS_CM_FLAGS_DATAIN;
break;
case CAM_DIR_OUT:
req->Control = MPI2_SCSIIO_CONTROL_WRITE;
cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
break;
case CAM_DIR_NONE:
default:
req->Control = MPI2_SCSIIO_CONTROL_NODATATRANSFER;
break;
}
/*
* It looks like the hardware doesn't require an explicit tag
* number for each transaction. SAM Task Management not supported
* at the moment.
*/
switch (csio->tag_action) {
case MSG_HEAD_OF_Q_TAG:
req->Control |= MPI2_SCSIIO_CONTROL_HEADOFQ;
break;
case MSG_ORDERED_Q_TAG:
req->Control |= MPI2_SCSIIO_CONTROL_ORDEREDQ;
break;
case MSG_ACA_TASK:
req->Control |= MPI2_SCSIIO_CONTROL_ACAQ;
break;
case CAM_TAG_ACTION_NONE:
case MSG_SIMPLE_Q_TAG:
default:
req->Control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
break;
}
if (MPS_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) {
mps_free_command(sc, cm);
ccb->ccb_h.status = CAM_LUN_INVALID;
xpt_done(ccb);
return;
}
if (csio->ccb_h.flags & CAM_CDB_POINTER)
bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len);
else
bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len);
req->IoFlags = csio->cdb_len;
/*
* XXX need to handle S/G lists and physical addresses here.
*/
cm->cm_data = csio->data_ptr;
cm->cm_length = csio->dxfer_len;
cm->cm_sge = &req->SGL;
cm->cm_sglsize = (32 - 24) * 4;
cm->cm_desc.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
cm->cm_desc.SCSIIO.DevHandle = targ->handle;
cm->cm_complete = mpssas_scsiio_complete;
cm->cm_complete_data = ccb;
cm->cm_targ = targ;
sc->io_cmds_active++;
if (sc->io_cmds_active > sc->io_cmds_highwater)
sc->io_cmds_highwater = sc->io_cmds_active;
TAILQ_INSERT_TAIL(&sc->io_list, cm, cm_link);
callout_reset(&cm->cm_callout, (ccb->ccb_h.timeout * hz) / 1000,
mpssas_scsiio_timeout, cm);
mps_map_command(sc, cm);
return;
}
static void
mpssas_scsiio_complete(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_SCSI_IO_REPLY *rep;
union ccb *ccb;
struct mpssas_softc *sassc;
int dir = 0;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
callout_stop(&cm->cm_callout);
TAILQ_REMOVE(&sc->io_list, cm, cm_link);
sc->io_cmds_active--;
sassc = sc->sassc;
ccb = cm->cm_complete_data;
rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply;
/*
* XXX KDM if the chain allocation fails, does it matter if we do
* the sync and unload here? It is simpler to do it in every case,
* assuming it doesn't cause problems.
*/
if (cm->cm_data != NULL) {
if (cm->cm_flags & MPS_CM_FLAGS_DATAIN)
dir = BUS_DMASYNC_POSTREAD;
else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT)
dir = BUS_DMASYNC_POSTWRITE;;
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
}
if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
/*
* We ran into an error after we tried to map the command,
* so we're getting a callback without queueing the command
* to the hardware. So we set the status here, and it will
* be retained below. We'll go through the "fast path",
* because there can be no reply when we haven't actually
* gone out to the hardware.
*/
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
/*
* Currently the only error included in the mask is
* MPS_CM_FLAGS_CHAIN_FAILED, which means we're out of
* chain frames. We need to freeze the queue until we get
* a command that completed without this error, which will
* hopefully have some chain frames attached that we can
* use. If we wanted to get smarter about it, we would
* only unfreeze the queue in this condition when we're
* sure that we're getting some chain frames back. That's
* probably unnecessary.
*/
if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) {
xpt_freeze_simq(sassc->sim, 1);
sassc->flags |= MPSSAS_QUEUE_FROZEN;
mps_dprint(sc, MPS_INFO, "Error sending command, "
"freezing SIM queue\n");
}
}
/* Take the fast path to completion */
if (cm->cm_reply == NULL) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) {
ccb->ccb_h.status = CAM_REQ_CMP;
ccb->csio.scsi_status = SCSI_STATUS_OK;
if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
mps_dprint(sc, MPS_INFO,
"Unfreezing SIM queue\n");
}
} else {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
}
mps_free_command(sc, cm);
xpt_done(ccb);
return;
}
mps_dprint(sc, MPS_INFO, "(%d:%d:%d) IOCStatus= 0x%x, "
"ScsiStatus= 0x%x, SCSIState= 0x%x TransferCount= 0x%x\n",
xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
xpt_path_lun_id(ccb->ccb_h.path), rep->IOCStatus,
rep->SCSIStatus, rep->SCSIState, rep->TransferCount);
switch (rep->IOCStatus & MPI2_IOCSTATUS_MASK) {
case MPI2_IOCSTATUS_BUSY:
case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
/*
* The controller is overloaded, try waiting a bit for it
* to free up.
*/
ccb->ccb_h.status = CAM_BUSY;
break;
case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
ccb->csio.resid = cm->cm_length - rep->TransferCount;
/* FALLTHROUGH */
case MPI2_IOCSTATUS_SUCCESS:
case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
/* resid is ignored for this condition */
ccb->csio.resid = 0;
ccb->ccb_h.status = CAM_DATA_RUN_ERR;
break;
case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
break;
case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
/*
* This is one of the responses that comes back when an I/O
* has been aborted. If it is because of a timeout that we
* initiated, just set the status to CAM_CMD_TIMEOUT.
* Otherwise set it to CAM_REQ_ABORTED. The effect on the
* command is the same (it gets retried, subject to the
* retry counter), the only difference is what gets printed
* on the console.
*/
if (cm->cm_state == MPS_CM_STATE_TIMEDOUT)
ccb->ccb_h.status = CAM_CMD_TIMEOUT;
else
ccb->ccb_h.status = CAM_REQ_ABORTED;
break;
case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
#if 0
ccb->ccb_h.status = CAM_REQ_ABORTED;
#endif
mps_printf(sc, "(%d:%d:%d) terminated ioc %x scsi %x state %x "
"xfer %u\n", xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
xpt_path_lun_id(ccb->ccb_h.path),
rep->IOCStatus, rep->SCSIStatus, rep->SCSIState,
rep->TransferCount);
ccb->ccb_h.status = CAM_REQUEUE_REQ;
break;
case MPI2_IOCSTATUS_INVALID_SGL:
mps_print_scsiio_cmd(sc, cm);
ccb->ccb_h.status = CAM_UNREC_HBA_ERROR;
break;
case MPI2_IOCSTATUS_INVALID_FUNCTION:
case MPI2_IOCSTATUS_INTERNAL_ERROR:
case MPI2_IOCSTATUS_INVALID_VPID:
case MPI2_IOCSTATUS_INVALID_FIELD:
case MPI2_IOCSTATUS_INVALID_STATE:
case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
default:
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
}
if ((rep->SCSIState & MPI2_SCSI_STATE_NO_SCSI_STATUS) == 0) {
ccb->csio.scsi_status = rep->SCSIStatus;
switch (rep->SCSIStatus) {
case MPI2_SCSI_STATUS_TASK_SET_FULL:
case MPI2_SCSI_STATUS_CHECK_CONDITION:
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
break;
case MPI2_SCSI_STATUS_COMMAND_TERMINATED:
case MPI2_SCSI_STATUS_TASK_ABORTED:
ccb->ccb_h.status = CAM_REQ_ABORTED;
break;
case MPI2_SCSI_STATUS_GOOD:
default:
break;
}
}
if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
int sense_len;
if (rep->SenseCount < ccb->csio.sense_len)
ccb->csio.sense_resid = ccb->csio.sense_len -
rep->SenseCount;
else
ccb->csio.sense_resid = 0;
sense_len = min(rep->SenseCount, ccb->csio.sense_len -
ccb->csio.sense_resid);
bzero(&ccb->csio.sense_data, sizeof(&ccb->csio.sense_data));
bcopy(cm->cm_sense, &ccb->csio.sense_data, sense_len);
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
}
if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED)
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
if (rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID)
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
mps_printf(sc, "Command completed, unfreezing SIM queue\n");
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
}
mps_free_command(sc, cm);
xpt_done(ccb);
}
#if __FreeBSD_version >= 900026
static void
mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_SMP_PASSTHROUGH_REPLY *rpl;
MPI2_SMP_PASSTHROUGH_REQUEST *req;
uint64_t sasaddr;
union ccb *ccb;
ccb = cm->cm_complete_data;
/*
* Currently there should be no way we can hit this case. It only
* happens when we have a failure to allocate chain frames, and SMP
* commands require two S/G elements only. That should be handled
* in the standard request size.
*/
if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
mps_printf(sc, "%s: cm_flags = %#x on SMP request!\n",
__func__, cm->cm_flags);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
goto bailout;
}
rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply;
if (rpl == NULL) {
mps_dprint(sc, MPS_INFO, "%s: NULL cm_reply!\n", __func__);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
goto bailout;
}
req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
sasaddr = le32toh(req->SASAddress.Low);
sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32;
if ((rpl->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS ||
rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) {
mps_dprint(sc, MPS_INFO, "%s: IOCStatus %04x SASStatus %02x\n",
__func__, rpl->IOCStatus, rpl->SASStatus);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
goto bailout;
}
mps_dprint(sc, MPS_INFO, "%s: SMP request to SAS address "
"%#jx completed successfully\n", __func__,
(uintmax_t)sasaddr);
if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED)
ccb->ccb_h.status = CAM_REQ_CMP;
else
ccb->ccb_h.status = CAM_SMP_STATUS_ERROR;
bailout:
/*
* We sync in both directions because we had DMAs in the S/G list
* in both directions.
*/
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
mps_free_command(sc, cm);
xpt_done(ccb);
}
static void
mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb, uint64_t sasaddr)
{
struct mps_command *cm;
uint8_t *request, *response;
MPI2_SMP_PASSTHROUGH_REQUEST *req;
struct mps_softc *sc;
struct sglist *sg;
int error;
sc = sassc->sc;
sg = NULL;
error = 0;
/*
* XXX We don't yet support physical addresses here.
*/
if (ccb->ccb_h.flags & (CAM_DATA_PHYS|CAM_SG_LIST_PHYS)) {
mps_printf(sc, "%s: physical addresses not supported\n",
__func__);
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
return;
}
/*
* If the user wants to send an S/G list, check to make sure they
* have single buffers.
*/
if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
/*
* The chip does not support more than one buffer for the
* request or response.
*/
if ((ccb->smpio.smp_request_sglist_cnt > 1)
|| (ccb->smpio.smp_response_sglist_cnt > 1)) {
mps_printf(sc, "%s: multiple request or response "
"buffer segments not supported for SMP\n",
__func__);
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
return;
}
/*
* The CAM_SCATTER_VALID flag was originally implemented
* for the XPT_SCSI_IO CCB, which only has one data pointer.
* We have two. So, just take that flag to mean that we
* might have S/G lists, and look at the S/G segment count
* to figure out whether that is the case for each individual
* buffer.
*/
if (ccb->smpio.smp_request_sglist_cnt != 0) {
bus_dma_segment_t *req_sg;
req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
request = (uint8_t *)req_sg[0].ds_addr;
} else
request = ccb->smpio.smp_request;
if (ccb->smpio.smp_response_sglist_cnt != 0) {
bus_dma_segment_t *rsp_sg;
rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
response = (uint8_t *)rsp_sg[0].ds_addr;
} else
response = ccb->smpio.smp_response;
} else {
request = ccb->smpio.smp_request;
response = ccb->smpio.smp_response;
}
cm = mps_alloc_command(sc);
if (cm == NULL) {
mps_printf(sc, "%s: cannot allocate command\n", __func__);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(ccb);
return;
}
req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
bzero(req, sizeof(*req));
req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH;
/* Allow the chip to use any route to this SAS address. */
req->PhysicalPort = 0xff;
req->RequestDataLength = ccb->smpio.smp_request_len;
req->SGLFlags =
MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI;
mps_dprint(sc, MPS_INFO, "%s: sending SMP request to SAS "
"address %#jx\n", __func__, (uintmax_t)sasaddr);
mpi_init_sge(cm, req, &req->SGL);
/*
* Set up a uio to pass into mps_map_command(). This allows us to
* do one map command, and one busdma call in there.
*/
cm->cm_uio.uio_iov = cm->cm_iovec;
cm->cm_uio.uio_iovcnt = 2;
cm->cm_uio.uio_segflg = UIO_SYSSPACE;
/*
* The read/write flag isn't used by busdma, but set it just in
* case. This isn't exactly accurate, either, since we're going in
* both directions.
*/
cm->cm_uio.uio_rw = UIO_WRITE;
cm->cm_iovec[0].iov_base = request;
cm->cm_iovec[0].iov_len = req->RequestDataLength;
cm->cm_iovec[1].iov_base = response;
cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len;
cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len +
cm->cm_iovec[1].iov_len;
/*
* Trigger a warning message in mps_data_cb() for the user if we
* wind up exceeding two S/G segments. The chip expects one
* segment for the request and another for the response.
*/
cm->cm_max_segs = 2;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_complete = mpssas_smpio_complete;
cm->cm_complete_data = ccb;
/*
* Tell the mapping code that we're using a uio, and that this is
* an SMP passthrough request. There is a little special-case
* logic there (in mps_data_cb()) to handle the bidirectional
* transfer.
*/
cm->cm_flags |= MPS_CM_FLAGS_USE_UIO | MPS_CM_FLAGS_SMP_PASS |
MPS_CM_FLAGS_DATAIN | MPS_CM_FLAGS_DATAOUT;
/* The chip data format is little endian. */
req->SASAddress.High = htole32(sasaddr >> 32);
req->SASAddress.Low = htole32(sasaddr);
/*
* XXX Note that we don't have a timeout/abort mechanism here.
* From the manual, it looks like task management requests only
* work for SCSI IO and SATA passthrough requests. We may need to
* have a mechanism to retry requests in the event of a chip reset
* at least. Hopefully the chip will insure that any errors short
* of that are relayed back to the driver.
*/
error = mps_map_command(sc, cm);
if ((error != 0) && (error != EINPROGRESS)) {
mps_printf(sc, "%s: error %d returned from mps_map_command()\n",
__func__, error);
goto bailout_error;
}
return;
bailout_error:
mps_free_command(sc, cm);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(ccb);
return;
}
static void
mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb)
{
struct mps_softc *sc;
struct mpssas_target *targ;
uint64_t sasaddr = 0;
sc = sassc->sc;
/*
* Make sure the target exists.
*/
targ = &sassc->targets[ccb->ccb_h.target_id];
if (targ->handle == 0x0) {
mps_printf(sc, "%s: target %d does not exist!\n", __func__,
ccb->ccb_h.target_id);
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done(ccb);
return;
}
/*
* If this device has an embedded SMP target, we'll talk to it
* directly.
* figure out what the expander's address is.
*/
if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0)
sasaddr = targ->sasaddr;
/*
* If we don't have a SAS address for the expander yet, try
* grabbing it from the page 0x83 information cached in the
* transport layer for this target. LSI expanders report the
* expander SAS address as the port-associated SAS address in
* Inquiry VPD page 0x83. Maxim expanders don't report it in page
* 0x83.
*
* XXX KDM disable this for now, but leave it commented out so that
* it is obvious that this is another possible way to get the SAS
* address.
*
* The parent handle method below is a little more reliable, and
* the other benefit is that it works for devices other than SES
* devices. So you can send a SMP request to a da(4) device and it
* will get routed to the expander that device is attached to.
* (Assuming the da(4) device doesn't contain an SMP target...)
*/
#if 0
if (sasaddr == 0)
sasaddr = xpt_path_sas_addr(ccb->ccb_h.path);
#endif
/*
* If we still don't have a SAS address for the expander, look for
* the parent device of this device, which is probably the expander.
*/
if (sasaddr == 0) {
struct mpssas_target *parent_target;
if (targ->parent_handle == 0x0) {
mps_printf(sc, "%s: handle %d does not have a valid "
"parent handle!\n", __func__, targ->handle);
ccb->ccb_h.status = CAM_REQ_INVALID;
goto bailout;
}
parent_target = mpssas_find_target(sassc, 0,
targ->parent_handle);
if (parent_target == NULL) {
mps_printf(sc, "%s: handle %d does not have a valid "
"parent target!\n", __func__, targ->handle);
ccb->ccb_h.status = CAM_REQ_INVALID;
goto bailout;
}
if ((parent_target->devinfo &
MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
mps_printf(sc, "%s: handle %d parent %d does not "
"have an SMP target!\n", __func__,
targ->handle, parent_target->handle);
ccb->ccb_h.status = CAM_REQ_INVALID;
goto bailout;
}
sasaddr = parent_target->sasaddr;
}
if (sasaddr == 0) {
mps_printf(sc, "%s: unable to find SAS address for handle %d\n",
__func__, targ->handle);
ccb->ccb_h.status = CAM_REQ_INVALID;
goto bailout;
}
mpssas_send_smpcmd(sassc, ccb, sasaddr);
return;
bailout:
xpt_done(ccb);
}
#endif /* __FreeBSD_version >= 900026 */
static void
mpssas_action_resetdev(struct mpssas_softc *sassc, union ccb *ccb)
{
struct mps_softc *sc;
struct mps_command *cm;
struct mpssas_target *targ;
sc = sassc->sc;
targ = &sassc->targets[ccb->ccb_h.target_id];
if (targ->flags & MPSSAS_TARGET_INRECOVERY) {
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(ccb);
return;
}
cm = mps_alloc_command(sc);
if (cm == NULL) {
mps_printf(sc, "%s: cannot alloc command\n", __func__);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(ccb);
return;
}
cm->cm_targ = targ;
cm->cm_complete = mpssas_resetdev_complete;
cm->cm_complete_data = ccb;
mpssas_resetdev(sassc, cm);
}
static void
mpssas_resetdev(struct mpssas_softc *sassc, struct mps_command *cm)
{
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
struct mps_softc *sc;
mps_dprint(sassc->sc, MPS_TRACE, "%s\n", __func__);
sc = sassc->sc;
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
req->DevHandle = cm->cm_targ->handle;
req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
/* SAS Hard Link Reset / SATA Link Reset */
req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
cm->cm_data = NULL;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
mpssas_issue_tm_request(sc, cm);
}
static void
mpssas_resetdev_complete(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_SCSI_TASK_MANAGE_REPLY *resp;
union ccb *ccb;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)cm->cm_reply;
ccb = cm->cm_complete_data;
if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
MPI2_SCSI_TASK_MANAGE_REQUEST *req;
req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
mps_printf(sc, "%s: cm_flags = %#x for reset of handle %#04x! "
"This should not happen!\n", __func__, cm->cm_flags,
req->DevHandle);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
goto bailout;
}
printf("resetdev complete IOCStatus= 0x%x ResponseCode= 0x%x\n",
resp->IOCStatus, resp->ResponseCode);
if (resp->ResponseCode == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE)
ccb->ccb_h.status = CAM_REQ_CMP;
else
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
bailout:
mpssas_complete_tm_request(sc, cm, /*free_cm*/ 1);
xpt_done(ccb);
}
static void
mpssas_poll(struct cam_sim *sim)
{
struct mpssas_softc *sassc;
sassc = cam_sim_softc(sim);
mps_intr_locked(sassc->sc);
}
static void
mpssas_freeze_device(struct mpssas_softc *sassc, struct mpssas_target *targ)
{
}
static void
mpssas_unfreeze_device(struct mpssas_softc *sassc, struct mpssas_target *targ)
{
}