freebsd-nq/sys/ufs/ffs/ffs_inode.c
Konstantin Belousov 2030ee0e1b ufs: remove write-only variables
Mark variables as __diagused for invariant-only vars

Reviewed by:	imp, mjg
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D32577
2021-10-21 21:40:46 +03:00

824 lines
25 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ufs.h"
#include "opt_quota.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/random.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/stat.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#ifdef UFS_DIRHASH
#include <ufs/ufs/dirhash.h>
#endif
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t,
ufs2_daddr_t, int, ufs2_daddr_t *);
static void
ffs_inode_bwrite(struct vnode *vp, struct buf *bp, int flags)
{
if ((flags & IO_SYNC) != 0)
bwrite(bp);
else if (DOINGASYNC(vp))
bdwrite(bp);
else
bawrite(bp);
}
/*
* Update the access, modified, and inode change times as specified by the
* IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode
* to disk if the IN_MODIFIED flag is set (it may be set initially, or by
* the timestamp update). The IN_LAZYMOD flag is set to force a write
* later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs
* is currently being suspended (or is suspended) and vnode has been accessed.
* If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to
* reflect the presumably successful write, and if waitfor is set, then wait
* for the write to complete.
*/
int
ffs_update(vp, waitfor)
struct vnode *vp;
int waitfor;
{
struct fs *fs;
struct buf *bp;
struct inode *ip;
daddr_t bn;
int flags, error;
ASSERT_VOP_ELOCKED(vp, "ffs_update");
ufs_itimes(vp);
ip = VTOI(vp);
if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
return (0);
ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
/*
* The IN_SIZEMOD and IN_IBLKDATA flags indicate changes to the
* file size and block pointer fields in the inode. When these
* fields have been changed, the fsync() and fsyncdata() system
* calls must write the inode to ensure their semantics that the
* file is on stable store.
*
* The IN_SIZEMOD and IN_IBLKDATA flags cannot be cleared until
* a synchronous write of the inode is done. If they are cleared
* on an asynchronous write, then the inode may not yet have been
* written to the disk when an fsync() or fsyncdata() call is done.
* Absent these flags, these calls would not know that they needed
* to write the inode. Thus, these flags only can be cleared on
* synchronous writes of the inode. Since the inode will be locked
* for the duration of the I/O that writes it to disk, no fsync()
* or fsyncdata() will be able to run before the on-disk inode
* is complete.
*/
if (waitfor)
ip->i_flag &= ~(IN_SIZEMOD | IN_IBLKDATA);
fs = ITOFS(ip);
if (fs->fs_ronly)
return (0);
/*
* If we are updating a snapshot and another process is currently
* writing the buffer containing the inode for this snapshot then
* a deadlock can occur when it tries to check the snapshot to see
* if that block needs to be copied. Thus when updating a snapshot
* we check to see if the buffer is already locked, and if it is
* we drop the snapshot lock until the buffer has been written
* and is available to us. We have to grab a reference to the
* snapshot vnode to prevent it from being removed while we are
* waiting for the buffer.
*/
loop:
flags = 0;
if (IS_SNAPSHOT(ip))
flags = GB_LOCK_NOWAIT;
bn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
error = ffs_breadz(VFSTOUFS(vp->v_mount), ITODEVVP(ip), bn, bn,
(int) fs->fs_bsize, NULL, NULL, 0, NOCRED, flags, NULL, &bp);
if (error != 0) {
/*
* If EBUSY was returned without GB_LOCK_NOWAIT (which
* requests trylock for buffer lock), it is for some
* other reason and we should not handle it specially.
*/
if (error != EBUSY || (flags & GB_LOCK_NOWAIT) == 0)
return (error);
/*
* Wait for our inode block to become available.
*
* Hold a reference to the vnode to protect against
* ffs_snapgone(). Since we hold a reference, it can only
* get reclaimed (VIRF_DOOMED flag) in a forcible downgrade
* or unmount. For an unmount, the entire filesystem will be
* gone, so we cannot attempt to touch anything associated
* with it while the vnode is unlocked; all we can do is
* pause briefly and try again. If when we relock the vnode
* we discover that it has been reclaimed, updating it is no
* longer necessary and we can just return an error.
*/
vref(vp);
VOP_UNLOCK(vp);
pause("ffsupd", 1);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
vrele(vp);
if (VN_IS_DOOMED(vp))
return (ENOENT);
/*
* Recalculate flags, because the vnode was relocked and
* could no longer be a snapshot.
*/
goto loop;
}
if (DOINGSOFTDEP(vp))
softdep_update_inodeblock(ip, bp, waitfor);
else if (ip->i_effnlink != ip->i_nlink)
panic("ffs_update: bad link cnt");
if (I_IS_UFS1(ip)) {
*((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
/*
* XXX: FIX? The entropy here is desirable,
* but the harvesting may be expensive
*/
random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME);
} else {
ffs_update_dinode_ckhash(fs, ip->i_din2);
*((struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
/*
* XXX: FIX? The entropy here is desirable,
* but the harvesting may be expensive
*/
random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME);
}
if (waitfor) {
error = bwrite(bp);
if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error))
error = 0;
} else if (vm_page_count_severe() || buf_dirty_count_severe()) {
bawrite(bp);
error = 0;
} else {
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
bdwrite(bp);
error = 0;
}
return (error);
}
#define SINGLE 0 /* index of single indirect block */
#define DOUBLE 1 /* index of double indirect block */
#define TRIPLE 2 /* index of triple indirect block */
/*
* Truncate the inode ip to at most length size, freeing the
* disk blocks.
*/
int
ffs_truncate(vp, length, flags, cred)
struct vnode *vp;
off_t length;
int flags;
struct ucred *cred;
{
struct inode *ip;
ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR];
ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR];
ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR];
ufs2_daddr_t count, blocksreleased = 0, blkno;
struct bufobj *bo __diagused;
struct fs *fs;
struct buf *bp;
struct ufsmount *ump;
int softdeptrunc, journaltrunc;
int needextclean, extblocks;
int offset, size, level, nblocks;
int i, error, allerror, indiroff, waitforupdate;
u_long key;
off_t osize;
ip = VTOI(vp);
ump = VFSTOUFS(vp->v_mount);
fs = ump->um_fs;
bo = &vp->v_bufobj;
ASSERT_VOP_LOCKED(vp, "ffs_truncate");
if (length < 0)
return (EINVAL);
if (length > fs->fs_maxfilesize)
return (EFBIG);
#ifdef QUOTA
error = getinoquota(ip);
if (error)
return (error);
#endif
/*
* Historically clients did not have to specify which data
* they were truncating. So, if not specified, we assume
* traditional behavior, e.g., just the normal data.
*/
if ((flags & (IO_EXT | IO_NORMAL)) == 0)
flags |= IO_NORMAL;
if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp))
flags |= IO_SYNC;
waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp);
/*
* If we are truncating the extended-attributes, and cannot
* do it with soft updates, then do it slowly here. If we are
* truncating both the extended attributes and the file contents
* (e.g., the file is being unlinked), then pick it off with
* soft updates below.
*/
allerror = 0;
needextclean = 0;
softdeptrunc = 0;
journaltrunc = DOINGSUJ(vp);
journaltrunc = 0; /* XXX temp patch until bug found */
if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0)
softdeptrunc = !softdep_slowdown(vp);
extblocks = 0;
if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) {
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
}
if ((flags & IO_EXT) && extblocks > 0) {
if (length != 0)
panic("ffs_truncate: partial trunc of extdata");
if (softdeptrunc || journaltrunc) {
if ((flags & IO_NORMAL) == 0)
goto extclean;
needextclean = 1;
} else {
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
return (error);
#ifdef QUOTA
(void) chkdq(ip, -extblocks, NOCRED, FORCE);
#endif
vinvalbuf(vp, V_ALT, 0, 0);
vn_pages_remove(vp,
OFF_TO_IDX(lblktosize(fs, -extblocks)), 0);
osize = ip->i_din2->di_extsize;
ip->i_din2->di_blocks -= extblocks;
ip->i_din2->di_extsize = 0;
for (i = 0; i < UFS_NXADDR; i++) {
oldblks[i] = ip->i_din2->di_extb[i];
ip->i_din2->di_extb[i] = 0;
}
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
if ((error = ffs_update(vp, waitforupdate)))
return (error);
for (i = 0; i < UFS_NXADDR; i++) {
if (oldblks[i] == 0)
continue;
ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i],
sblksize(fs, osize, i), ip->i_number,
vp->v_type, NULL, SINGLETON_KEY);
}
}
}
if ((flags & IO_NORMAL) == 0)
return (0);
if (vp->v_type == VLNK && ip->i_size < ump->um_maxsymlinklen) {
#ifdef INVARIANTS
if (length != 0)
panic("ffs_truncate: partial truncate of symlink");
#endif
bzero(SHORTLINK(ip), (u_int)ip->i_size);
ip->i_size = 0;
DIP_SET(ip, i_size, 0);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
if (needextclean)
goto extclean;
return (ffs_update(vp, waitforupdate));
}
if (ip->i_size == length) {
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
if (needextclean)
goto extclean;
return (ffs_update(vp, 0));
}
if (fs->fs_ronly)
panic("ffs_truncate: read-only filesystem");
if (IS_SNAPSHOT(ip))
ffs_snapremove(vp);
cluster_init_vn(&ip->i_clusterw);
osize = ip->i_size;
/*
* Lengthen the size of the file. We must ensure that the
* last byte of the file is allocated. Since the smallest
* value of osize is 0, length will be at least 1.
*/
if (osize < length) {
vnode_pager_setsize(vp, length);
flags |= BA_CLRBUF;
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
if (error) {
vnode_pager_setsize(vp, osize);
return (error);
}
ip->i_size = length;
DIP_SET(ip, i_size, length);
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
ffs_inode_bwrite(vp, bp, flags);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
return (ffs_update(vp, waitforupdate));
}
/*
* Lookup block number for a given offset. Zero length files
* have no blocks, so return a blkno of -1.
*/
lbn = lblkno(fs, length - 1);
if (length == 0) {
blkno = -1;
} else if (lbn < UFS_NDADDR) {
blkno = DIP(ip, i_db[lbn]);
} else {
error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize,
cred, BA_METAONLY, &bp);
if (error)
return (error);
indiroff = (lbn - UFS_NDADDR) % NINDIR(fs);
if (I_IS_UFS1(ip))
blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff];
else
blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff];
/*
* If the block number is non-zero, then the indirect block
* must have been previously allocated and need not be written.
* If the block number is zero, then we may have allocated
* the indirect block and hence need to write it out.
*/
if (blkno != 0)
brelse(bp);
else if (flags & IO_SYNC)
bwrite(bp);
else
bdwrite(bp);
}
/*
* If the block number at the new end of the file is zero,
* then we must allocate it to ensure that the last block of
* the file is allocated. Soft updates does not handle this
* case, so here we have to clean up the soft updates data
* structures describing the allocation past the truncation
* point. Finding and deallocating those structures is a lot of
* work. Since partial truncation with a hole at the end occurs
* rarely, we solve the problem by syncing the file so that it
* will have no soft updates data structures left.
*/
if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
return (error);
if (blkno != 0 && DOINGSOFTDEP(vp)) {
if (softdeptrunc == 0 && journaltrunc == 0) {
/*
* If soft updates cannot handle this truncation,
* clean up soft dependency data structures and
* fall through to the synchronous truncation.
*/
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
return (error);
} else {
flags = IO_NORMAL | (needextclean ? IO_EXT: 0);
if (journaltrunc)
softdep_journal_freeblocks(ip, cred, length,
flags);
else
softdep_setup_freeblocks(ip, length, flags);
ASSERT_VOP_LOCKED(vp, "ffs_truncate1");
if (journaltrunc == 0) {
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
error = ffs_update(vp, 0);
}
return (error);
}
}
/*
* Shorten the size of the file. If the last block of the
* shortened file is unallocated, we must allocate it.
* Additionally, if the file is not being truncated to a
* block boundary, the contents of the partial block
* following the end of the file must be zero'ed in
* case it ever becomes accessible again because of
* subsequent file growth. Directories however are not
* zero'ed as they should grow back initialized to empty.
*/
offset = blkoff(fs, length);
if (blkno != 0 && offset == 0) {
ip->i_size = length;
DIP_SET(ip, i_size, length);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
#ifdef UFS_DIRHASH
if (vp->v_type == VDIR && ip->i_dirhash != NULL)
ufsdirhash_dirtrunc(ip, length);
#endif
} else {
lbn = lblkno(fs, length);
flags |= BA_CLRBUF;
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
if (error)
return (error);
ffs_inode_bwrite(vp, bp, flags);
/*
* When we are doing soft updates and the UFS_BALLOC
* above fills in a direct block hole with a full sized
* block that will be truncated down to a fragment below,
* we must flush out the block dependency with an FSYNC
* so that we do not get a soft updates inconsistency
* when we create the fragment below.
*/
if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR &&
fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize &&
(error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
return (error);
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
if (error)
return (error);
ip->i_size = length;
DIP_SET(ip, i_size, length);
#ifdef UFS_DIRHASH
if (vp->v_type == VDIR && ip->i_dirhash != NULL)
ufsdirhash_dirtrunc(ip, length);
#endif
size = blksize(fs, ip, lbn);
if (vp->v_type != VDIR && offset != 0)
bzero((char *)bp->b_data + offset,
(u_int)(size - offset));
/* Kirk's code has reallocbuf(bp, size, 1) here */
allocbuf(bp, size);
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
ffs_inode_bwrite(vp, bp, flags);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
}
/*
* Calculate index into inode's block list of
* last direct and indirect blocks (if any)
* which we want to keep. Lastblock is -1 when
* the file is truncated to 0.
*/
lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
lastiblock[SINGLE] = lastblock - UFS_NDADDR;
lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
nblocks = btodb(fs->fs_bsize);
/*
* Update file and block pointers on disk before we start freeing
* blocks. If we crash before free'ing blocks below, the blocks
* will be returned to the free list. lastiblock values are also
* normalized to -1 for calls to ffs_indirtrunc below.
*/
for (level = TRIPLE; level >= SINGLE; level--) {
oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]);
if (lastiblock[level] < 0) {
DIP_SET(ip, i_ib[level], 0);
lastiblock[level] = -1;
}
}
for (i = 0; i < UFS_NDADDR; i++) {
oldblks[i] = DIP(ip, i_db[i]);
if (i > lastblock)
DIP_SET(ip, i_db[i], 0);
}
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
allerror = ffs_update(vp, waitforupdate);
/*
* Having written the new inode to disk, save its new configuration
* and put back the old block pointers long enough to process them.
* Note that we save the new block configuration so we can check it
* when we are done.
*/
for (i = 0; i < UFS_NDADDR; i++) {
newblks[i] = DIP(ip, i_db[i]);
DIP_SET(ip, i_db[i], oldblks[i]);
}
for (i = 0; i < UFS_NIADDR; i++) {
newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]);
DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]);
}
ip->i_size = osize;
DIP_SET(ip, i_size, osize);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
error = vtruncbuf(vp, length, fs->fs_bsize);
if (error && (allerror == 0))
allerror = error;
/*
* Indirect blocks first.
*/
indir_lbn[SINGLE] = -UFS_NDADDR;
indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
for (level = TRIPLE; level >= SINGLE; level--) {
bn = DIP(ip, i_ib[level]);
if (bn != 0) {
error = ffs_indirtrunc(ip, indir_lbn[level],
fsbtodb(fs, bn), lastiblock[level], level, &count);
if (error)
allerror = error;
blocksreleased += count;
if (lastiblock[level] < 0) {
DIP_SET(ip, i_ib[level], 0);
ffs_blkfree(ump, fs, ump->um_devvp, bn,
fs->fs_bsize, ip->i_number,
vp->v_type, NULL, SINGLETON_KEY);
blocksreleased += nblocks;
}
}
if (lastiblock[level] >= 0)
goto done;
}
/*
* All whole direct blocks or frags.
*/
key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number);
for (i = UFS_NDADDR - 1; i > lastblock; i--) {
long bsize;
bn = DIP(ip, i_db[i]);
if (bn == 0)
continue;
DIP_SET(ip, i_db[i], 0);
bsize = blksize(fs, ip, i);
ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number,
vp->v_type, NULL, key);
blocksreleased += btodb(bsize);
}
ffs_blkrelease_finish(ump, key);
if (lastblock < 0)
goto done;
/*
* Finally, look for a change in size of the
* last direct block; release any frags.
*/
bn = DIP(ip, i_db[lastblock]);
if (bn != 0) {
long oldspace, newspace;
/*
* Calculate amount of space we're giving
* back as old block size minus new block size.
*/
oldspace = blksize(fs, ip, lastblock);
ip->i_size = length;
DIP_SET(ip, i_size, length);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
newspace = blksize(fs, ip, lastblock);
if (newspace == 0)
panic("ffs_truncate: newspace");
if (oldspace - newspace > 0) {
/*
* Block number of space to be free'd is
* the old block # plus the number of frags
* required for the storage we're keeping.
*/
bn += numfrags(fs, newspace);
ffs_blkfree(ump, fs, ump->um_devvp, bn,
oldspace - newspace, ip->i_number, vp->v_type,
NULL, SINGLETON_KEY);
blocksreleased += btodb(oldspace - newspace);
}
}
done:
#ifdef INVARIANTS
for (level = SINGLE; level <= TRIPLE; level++)
if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level]))
panic("ffs_truncate1: level %d newblks %jd != i_ib %jd",
level, (intmax_t)newblks[UFS_NDADDR + level],
(intmax_t)DIP(ip, i_ib[level]));
for (i = 0; i < UFS_NDADDR; i++)
if (newblks[i] != DIP(ip, i_db[i]))
panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd",
i, (intmax_t)newblks[UFS_NDADDR + level],
(intmax_t)DIP(ip, i_ib[level]));
BO_LOCK(bo);
if (length == 0 &&
(fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) &&
(bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d",
vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt);
BO_UNLOCK(bo);
#endif /* INVARIANTS */
/*
* Put back the real size.
*/
ip->i_size = length;
DIP_SET(ip, i_size, length);
if (DIP(ip, i_blocks) >= blocksreleased)
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased);
else /* sanity */
DIP_SET(ip, i_blocks, 0);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
#ifdef QUOTA
(void) chkdq(ip, -blocksreleased, NOCRED, FORCE);
#endif
return (allerror);
extclean:
if (journaltrunc)
softdep_journal_freeblocks(ip, cred, length, IO_EXT);
else
softdep_setup_freeblocks(ip, length, IO_EXT);
return (ffs_update(vp, waitforupdate));
}
/*
* Release blocks associated with the inode ip and stored in the indirect
* block bn. Blocks are free'd in LIFO order up to (but not including)
* lastbn. If level is greater than SINGLE, the block is an indirect block
* and recursive calls to indirtrunc must be used to cleanse other indirect
* blocks.
*/
static int
ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
struct inode *ip;
ufs2_daddr_t lbn, lastbn;
ufs2_daddr_t dbn;
int level;
ufs2_daddr_t *countp;
{
struct buf *bp;
struct fs *fs;
struct ufsmount *ump;
struct vnode *vp;
caddr_t copy = NULL;
u_long key;
int i, nblocks, error = 0, allerror = 0;
ufs2_daddr_t nb, nlbn, last;
ufs2_daddr_t blkcount, factor, blocksreleased = 0;
ufs1_daddr_t *bap1 = NULL;
ufs2_daddr_t *bap2 = NULL;
#define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i])
fs = ITOFS(ip);
ump = ITOUMP(ip);
/*
* Calculate index in current block of last
* block to be kept. -1 indicates the entire
* block so we need not calculate the index.
*/
factor = lbn_offset(fs, level);
last = lastbn;
if (lastbn > 0)
last /= factor;
nblocks = btodb(fs->fs_bsize);
/*
* Get buffer of block pointers, zero those entries corresponding
* to blocks to be free'd, and update on disk copy first. Since
* double(triple) indirect before single(double) indirect, calls
* to VOP_BMAP() on these blocks will fail. However, we already
* have the on-disk address, so we just pass it to bread() instead
* of having bread() attempt to calculate it using VOP_BMAP().
*/
vp = ITOV(ip);
error = ffs_breadz(ump, vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0,
NOCRED, 0, NULL, &bp);
if (error) {
*countp = 0;
return (error);
}
if (I_IS_UFS1(ip))
bap1 = (ufs1_daddr_t *)bp->b_data;
else
bap2 = (ufs2_daddr_t *)bp->b_data;
if (lastbn != -1) {
copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
bcopy((caddr_t)bp->b_data, copy, (u_int)fs->fs_bsize);
for (i = last + 1; i < NINDIR(fs); i++)
if (I_IS_UFS1(ip))
bap1[i] = 0;
else
bap2[i] = 0;
if (DOINGASYNC(vp)) {
bdwrite(bp);
} else {
error = bwrite(bp);
if (error)
allerror = error;
}
if (I_IS_UFS1(ip))
bap1 = (ufs1_daddr_t *)copy;
else
bap2 = (ufs2_daddr_t *)copy;
}
/*
* Recursively free totally unused blocks.
*/
key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number);
for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
i--, nlbn += factor) {
nb = BAP(ip, i);
if (nb == 0)
continue;
if (level > SINGLE) {
if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
(ufs2_daddr_t)-1, level - 1, &blkcount)) != 0)
allerror = error;
blocksreleased += blkcount;
}
ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize,
ip->i_number, vp->v_type, NULL, key);
blocksreleased += nblocks;
}
ffs_blkrelease_finish(ump, key);
/*
* Recursively free last partial block.
*/
if (level > SINGLE && lastbn >= 0) {
last = lastbn % factor;
nb = BAP(ip, i);
if (nb != 0) {
error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
last, level - 1, &blkcount);
if (error)
allerror = error;
blocksreleased += blkcount;
}
}
if (copy != NULL) {
free(copy, M_TEMP);
} else {
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
}
*countp = blocksreleased;
return (allerror);
}
int
ffs_rdonly(struct inode *ip)
{
return (ITOFS(ip)->fs_ronly != 0);
}