freebsd-nq/sys/kern/kern_clocksource.c
Alexander Motin 51636352b6 Extend timer driver API to report also minimal and maximal supported period
lengths. Make MI wrapper code to validate periods in request. Make kernel
clock management code to honor these hardware limitations while choosing hz,
stathz and profhz values.
2010-07-20 10:58:56 +00:00

533 lines
13 KiB
C

/*-
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Common routines to manage event timers hardware.
*/
/* XEN has own timer routines now. */
#ifndef XEN
#include "opt_kdtrace.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/kdb.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/timeet.h>
#include <machine/atomic.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/smp.h>
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
cyclic_clock_func_t cyclic_clock_func[MAXCPU];
#endif
static void cpu_restartclocks(void);
static void timercheck(void);
inline static int doconfigtimer(int i);
static void configtimer(int i);
static struct eventtimer *timer[2] = { NULL, NULL };
static int timertest = 0;
static int timerticks[2] = { 0, 0 };
static int profiling_on = 0;
static struct bintime timerperiod[2];
static char timername[2][32];
TUNABLE_STR("kern.eventtimer.timer1", timername[0], sizeof(*timername));
TUNABLE_STR("kern.eventtimer.timer2", timername[1], sizeof(*timername));
static u_int singlemul = 0;
TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
0, "Multiplier, used in single timer mode");
typedef u_int tc[2];
static DPCPU_DEFINE(tc, configtimer);
#define FREQ2BT(freq, bt) \
{ \
(bt)->sec = 0; \
(bt)->frac = ((uint64_t)0x8000000000000000 / (freq)) << 1; \
}
#define BT2FREQ(bt) \
(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) / \
((bt)->frac >> 1))
/* Per-CPU timer1 handler. */
static int
hardclockhandler(struct trapframe *frame)
{
#ifdef KDTRACE_HOOKS
/*
* If the DTrace hooks are configured and a callback function
* has been registered, then call it to process the high speed
* timers.
*/
int cpu = curcpu;
if (cyclic_clock_func[cpu] != NULL)
(*cyclic_clock_func[cpu])(frame);
#endif
timer1clock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
return (FILTER_HANDLED);
}
/* Per-CPU timer2 handler. */
static int
statclockhandler(struct trapframe *frame)
{
timer2clock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
return (FILTER_HANDLED);
}
/* timer1 broadcast IPI handler. */
int
hardclockintr(struct trapframe *frame)
{
if (doconfigtimer(0))
return (FILTER_HANDLED);
return (hardclockhandler(frame));
}
/* timer2 broadcast IPI handler. */
int
statclockintr(struct trapframe *frame)
{
if (doconfigtimer(1))
return (FILTER_HANDLED);
return (statclockhandler(frame));
}
/* timer1 callback. */
static void
timer1cb(struct eventtimer *et, void *arg)
{
#ifdef SMP
/* Broadcast interrupt to other CPUs for non-per-CPU timers */
if (smp_started && (et->et_flags & ET_FLAGS_PERCPU) == 0)
ipi_all_but_self(IPI_HARDCLOCK);
#endif
if (timertest) {
if ((et->et_flags & ET_FLAGS_PERCPU) == 0 || curcpu == 0) {
timerticks[0]++;
if (timerticks[0] >= timer1hz) {
ET_LOCK();
timercheck();
ET_UNLOCK();
}
}
}
hardclockhandler(curthread->td_intr_frame);
}
/* timer2 callback. */
static void
timer2cb(struct eventtimer *et, void *arg)
{
#ifdef SMP
/* Broadcast interrupt to other CPUs for non-per-CPU timers */
if (smp_started && (et->et_flags & ET_FLAGS_PERCPU) == 0)
ipi_all_but_self(IPI_STATCLOCK);
#endif
if (timertest) {
if ((et->et_flags & ET_FLAGS_PERCPU) == 0 || curcpu == 0) {
timerticks[1]++;
if (timerticks[1] >= timer2hz * 2) {
ET_LOCK();
timercheck();
ET_UNLOCK();
}
}
}
statclockhandler(curthread->td_intr_frame);
}
/*
* Check that both timers are running with at least 1/4 of configured rate.
* If not - replace the broken one.
*/
static void
timercheck(void)
{
if (!timertest)
return;
timertest = 0;
if (timerticks[0] * 4 < timer1hz) {
printf("Event timer \"%s\" is dead.\n", timer[0]->et_name);
timer1hz = 0;
configtimer(0);
et_ban(timer[0]);
et_free(timer[0]);
timer[0] = et_find(NULL, ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
if (timer[0] == NULL) {
timer2hz = 0;
configtimer(1);
et_free(timer[1]);
timer[1] = NULL;
timer[0] = timer[1];
}
et_init(timer[0], timer1cb, NULL, NULL);
cpu_restartclocks();
return;
}
if (timerticks[1] * 4 < timer2hz) {
printf("Event timer \"%s\" is dead.\n", timer[1]->et_name);
timer2hz = 0;
configtimer(1);
et_ban(timer[1]);
et_free(timer[1]);
timer[1] = et_find(NULL, ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
if (timer[1] != NULL)
et_init(timer[1], timer2cb, NULL, NULL);
cpu_restartclocks();
return;
}
}
/*
* Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
*/
inline static int
doconfigtimer(int i)
{
tc *conf;
conf = DPCPU_PTR(configtimer);
if (atomic_load_acq_int(*conf + i)) {
if (i == 0 ? timer1hz : timer2hz)
et_start(timer[i], NULL, &timerperiod[i]);
else
et_stop(timer[i]);
atomic_store_rel_int(*conf + i, 0);
return (1);
}
return (0);
}
/*
* Reconfigure specified timer.
* For per-CPU timers use IPI to make other CPUs to reconfigure.
*/
static void
configtimer(int i)
{
#ifdef SMP
tc *conf;
int cpu;
critical_enter();
#endif
/* Start/stop global timer or per-CPU timer of this CPU. */
if (i == 0 ? timer1hz : timer2hz)
et_start(timer[i], NULL, &timerperiod[i]);
else
et_stop(timer[i]);
#ifdef SMP
if ((timer[i]->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
critical_exit();
return;
}
/* Set reconfigure flags for other CPUs. */
CPU_FOREACH(cpu) {
conf = DPCPU_ID_PTR(cpu, configtimer);
atomic_store_rel_int(*conf + i, (cpu == curcpu) ? 0 : 1);
}
/* Send reconfigure IPI. */
ipi_all_but_self(i == 0 ? IPI_HARDCLOCK : IPI_STATCLOCK);
/* Wait for reconfiguration completed. */
restart:
cpu_spinwait();
CPU_FOREACH(cpu) {
if (cpu == curcpu)
continue;
conf = DPCPU_ID_PTR(cpu, configtimer);
if (atomic_load_acq_int(*conf + i))
goto restart;
}
critical_exit();
#endif
}
static int
round_freq(struct eventtimer *et, int freq)
{
uint64_t div;
if (et->et_frequency != 0) {
div = (et->et_frequency + freq / 2) / freq;
if (et->et_flags & ET_FLAGS_POW2DIV)
div = 1 << (flsl(div + div / 2) - 1);
freq = (et->et_frequency + div / 2) / div;
}
if (et->et_min_period.sec > 0)
freq = 0;
else if (et->et_max_period.frac != 0)
freq = min(freq, BT2FREQ(&et->et_min_period));
if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
freq = max(freq, BT2FREQ(&et->et_max_period));
return (freq);
}
/*
* Configure and start event timers.
*/
void
cpu_initclocks_bsp(void)
{
int base, div;
timer[0] = et_find(timername[0], ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
if (timer[0] == NULL)
timer[0] = et_find(NULL, ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
if (timer[0] == NULL)
panic("No usable event timer found!");
et_init(timer[0], timer1cb, NULL, NULL);
timer[1] = et_find(timername[1][0] ? timername[1] : NULL,
ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
if (timer[1])
et_init(timer[1], timer2cb, NULL, NULL);
/*
* We honor the requested 'hz' value.
* We want to run stathz in the neighborhood of 128hz.
* We would like profhz to run as often as possible.
*/
if (singlemul == 0) {
if (hz >= 1500 || (hz % 128) == 0)
singlemul = 1;
else if (hz >= 750)
singlemul = 2;
else
singlemul = 4;
}
if (timer[1] == NULL) {
base = round_freq(timer[0], hz * singlemul);
singlemul = max((base + hz / 2) / hz, 1);
hz = (base + singlemul / 2) / singlemul;
if (base <= 128)
stathz = base;
else {
div = base / 128;
if (div >= singlemul && (div % singlemul) == 0)
div++;
stathz = base / div;
}
profhz = stathz;
while ((profhz + stathz) <= 128 * 64)
profhz += stathz;
profhz = round_freq(timer[0], profhz);
} else {
hz = round_freq(timer[0], hz);
stathz = round_freq(timer[1], 127);
profhz = round_freq(timer[1], stathz * 64);
}
ET_LOCK();
cpu_restartclocks();
ET_UNLOCK();
}
/* Start per-CPU event timers on APs. */
void
cpu_initclocks_ap(void)
{
ET_LOCK();
if (timer[0]->et_flags & ET_FLAGS_PERCPU)
et_start(timer[0], NULL, &timerperiod[0]);
if (timer[1] && timer[1]->et_flags & ET_FLAGS_PERCPU)
et_start(timer[1], NULL, &timerperiod[1]);
ET_UNLOCK();
}
/* Reconfigure and restart event timers after configuration changes. */
static void
cpu_restartclocks(void)
{
/* Stop all event timers. */
timertest = 0;
if (timer1hz) {
timer1hz = 0;
configtimer(0);
}
if (timer[1] && timer2hz) {
timer2hz = 0;
configtimer(1);
}
/* Calculate new event timers parameters. */
if (timer[1] == NULL) {
timer1hz = hz * singlemul;
while (timer1hz < (profiling_on ? profhz : stathz))
timer1hz += hz;
timer2hz = 0;
} else {
timer1hz = hz;
timer2hz = profiling_on ? profhz : stathz;
timer2hz = round_freq(timer[1], timer2hz);
}
timer1hz = round_freq(timer[0], timer1hz);
printf("Starting kernel event timers: %s @ %dHz, %s @ %dHz\n",
timer[0]->et_name, timer1hz,
timer[1] ? timer[1]->et_name : "NONE", timer2hz);
/* Restart event timers. */
FREQ2BT(timer1hz, &timerperiod[0]);
configtimer(0);
if (timer[1]) {
timerticks[0] = 0;
timerticks[1] = 0;
FREQ2BT(timer2hz, &timerperiod[1]);
configtimer(1);
timertest = 1;
}
}
/* Switch to profiling clock rates. */
void
cpu_startprofclock(void)
{
ET_LOCK();
profiling_on = 1;
cpu_restartclocks();
ET_UNLOCK();
}
/* Switch to regular clock rates. */
void
cpu_stopprofclock(void)
{
ET_LOCK();
profiling_on = 0;
cpu_restartclocks();
ET_UNLOCK();
}
/* Report or change the active event timers hardware. */
static int
sysctl_kern_eventtimer_timer1(SYSCTL_HANDLER_ARGS)
{
char buf[32];
struct eventtimer *et;
int error;
ET_LOCK();
et = timer[0];
snprintf(buf, sizeof(buf), "%s", et->et_name);
ET_UNLOCK();
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
ET_LOCK();
et = timer[0];
if (error != 0 || req->newptr == NULL ||
strcmp(buf, et->et_name) == 0) {
ET_UNLOCK();
return (error);
}
et = et_find(buf, ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
if (et == NULL) {
ET_UNLOCK();
return (ENOENT);
}
timer1hz = 0;
configtimer(0);
et_free(timer[0]);
timer[0] = et;
et_init(timer[0], timer1cb, NULL, NULL);
cpu_restartclocks();
ET_UNLOCK();
return (error);
}
SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer1,
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
0, 0, sysctl_kern_eventtimer_timer1, "A", "Primary event timer");
static int
sysctl_kern_eventtimer_timer2(SYSCTL_HANDLER_ARGS)
{
char buf[32];
struct eventtimer *et;
int error;
ET_LOCK();
et = timer[1];
if (et == NULL)
snprintf(buf, sizeof(buf), "NONE");
else
snprintf(buf, sizeof(buf), "%s", et->et_name);
ET_UNLOCK();
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
ET_LOCK();
et = timer[1];
if (error != 0 || req->newptr == NULL ||
strcmp(buf, et ? et->et_name : "NONE") == 0) {
ET_UNLOCK();
return (error);
}
et = et_find(buf, ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
if (et == NULL && strcasecmp(buf, "NONE") != 0) {
ET_UNLOCK();
return (ENOENT);
}
if (timer[1] != NULL) {
timer2hz = 0;
configtimer(1);
et_free(timer[1]);
}
timer[1] = et;
if (timer[1] != NULL)
et_init(timer[1], timer2cb, NULL, NULL);
cpu_restartclocks();
ET_UNLOCK();
return (error);
}
SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer2,
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
0, 0, sysctl_kern_eventtimer_timer2, "A", "Secondary event timer");
#endif