Bryan Venteicher ac4b6bcd17 virtio: Start taskqueues threads after attach cannot fail
If virtio_setup_intr() failed during boot, we would hang in
taskqueue_free() -> taskqueue_terminate() for all the taskq
threads to terminate. This will never happen since the
scheduler is not running by this point.

Reported by:	neel, grehan
Approved by:	grehan (mentor)
2012-12-14 05:27:56 +00:00

2747 lines
64 KiB
C

/*-
* Copyright (c) 2011, Bryan Venteicher <bryanv@daemoninthecloset.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Driver for VirtIO network devices. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/random.h>
#include <sys/sglist.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <vm/uma.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <netinet/sctp.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/virtio/virtio.h>
#include <dev/virtio/virtqueue.h>
#include <dev/virtio/network/virtio_net.h>
#include <dev/virtio/network/if_vtnetvar.h>
#include "virtio_if.h"
static int vtnet_modevent(module_t, int, void *);
static int vtnet_probe(device_t);
static int vtnet_attach(device_t);
static int vtnet_detach(device_t);
static int vtnet_suspend(device_t);
static int vtnet_resume(device_t);
static int vtnet_shutdown(device_t);
static int vtnet_config_change(device_t);
static void vtnet_negotiate_features(struct vtnet_softc *);
static int vtnet_alloc_virtqueues(struct vtnet_softc *);
static void vtnet_get_hwaddr(struct vtnet_softc *);
static void vtnet_set_hwaddr(struct vtnet_softc *);
static int vtnet_is_link_up(struct vtnet_softc *);
static void vtnet_update_link_status(struct vtnet_softc *);
static void vtnet_watchdog(struct vtnet_softc *);
static void vtnet_config_change_task(void *, int);
static int vtnet_change_mtu(struct vtnet_softc *, int);
static int vtnet_ioctl(struct ifnet *, u_long, caddr_t);
static int vtnet_init_rx_vq(struct vtnet_softc *);
static void vtnet_free_rx_mbufs(struct vtnet_softc *);
static void vtnet_free_tx_mbufs(struct vtnet_softc *);
static void vtnet_free_ctrl_vq(struct vtnet_softc *);
#ifdef DEVICE_POLLING
static poll_handler_t vtnet_poll;
#endif
static struct mbuf * vtnet_alloc_rxbuf(struct vtnet_softc *, int,
struct mbuf **);
static int vtnet_replace_rxbuf(struct vtnet_softc *,
struct mbuf *, int);
static int vtnet_newbuf(struct vtnet_softc *);
static void vtnet_discard_merged_rxbuf(struct vtnet_softc *, int);
static void vtnet_discard_rxbuf(struct vtnet_softc *, struct mbuf *);
static int vtnet_enqueue_rxbuf(struct vtnet_softc *, struct mbuf *);
static void vtnet_vlan_tag_remove(struct mbuf *);
static int vtnet_rx_csum(struct vtnet_softc *, struct mbuf *,
struct virtio_net_hdr *);
static int vtnet_rxeof_merged(struct vtnet_softc *, struct mbuf *, int);
static int vtnet_rxeof(struct vtnet_softc *, int, int *);
static void vtnet_rx_intr_task(void *, int);
static int vtnet_rx_vq_intr(void *);
static void vtnet_txeof(struct vtnet_softc *);
static struct mbuf * vtnet_tx_offload(struct vtnet_softc *, struct mbuf *,
struct virtio_net_hdr *);
static int vtnet_enqueue_txbuf(struct vtnet_softc *, struct mbuf **,
struct vtnet_tx_header *);
static int vtnet_encap(struct vtnet_softc *, struct mbuf **);
static void vtnet_start_locked(struct ifnet *);
static void vtnet_start(struct ifnet *);
static void vtnet_tick(void *);
static void vtnet_tx_intr_task(void *, int);
static int vtnet_tx_vq_intr(void *);
static void vtnet_stop(struct vtnet_softc *);
static int vtnet_reinit(struct vtnet_softc *);
static void vtnet_init_locked(struct vtnet_softc *);
static void vtnet_init(void *);
static void vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *,
struct sglist *, int, int);
static void vtnet_rx_filter(struct vtnet_softc *sc);
static int vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int);
static int vtnet_set_promisc(struct vtnet_softc *, int);
static int vtnet_set_allmulti(struct vtnet_softc *, int);
static void vtnet_rx_filter_mac(struct vtnet_softc *);
static int vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t);
static void vtnet_rx_filter_vlan(struct vtnet_softc *);
static void vtnet_set_vlan_filter(struct vtnet_softc *, int, uint16_t);
static void vtnet_register_vlan(void *, struct ifnet *, uint16_t);
static void vtnet_unregister_vlan(void *, struct ifnet *, uint16_t);
static int vtnet_ifmedia_upd(struct ifnet *);
static void vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void vtnet_add_statistics(struct vtnet_softc *);
static int vtnet_enable_rx_intr(struct vtnet_softc *);
static int vtnet_enable_tx_intr(struct vtnet_softc *);
static void vtnet_disable_rx_intr(struct vtnet_softc *);
static void vtnet_disable_tx_intr(struct vtnet_softc *);
/* Tunables. */
static int vtnet_csum_disable = 0;
TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable);
static int vtnet_tso_disable = 0;
TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable);
static int vtnet_lro_disable = 0;
TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable);
/*
* Reducing the number of transmit completed interrupts can
* improve performance. To do so, the define below keeps the
* Tx vq interrupt disabled and adds calls to vtnet_txeof()
* in the start and watchdog paths. The price to pay for this
* is the m_free'ing of transmitted mbufs may be delayed until
* the watchdog fires.
*/
#define VTNET_TX_INTR_MODERATION
static uma_zone_t vtnet_tx_header_zone;
static struct virtio_feature_desc vtnet_feature_desc[] = {
{ VIRTIO_NET_F_CSUM, "TxChecksum" },
{ VIRTIO_NET_F_GUEST_CSUM, "RxChecksum" },
{ VIRTIO_NET_F_MAC, "MacAddress" },
{ VIRTIO_NET_F_GSO, "TxAllGSO" },
{ VIRTIO_NET_F_GUEST_TSO4, "RxTSOv4" },
{ VIRTIO_NET_F_GUEST_TSO6, "RxTSOv6" },
{ VIRTIO_NET_F_GUEST_ECN, "RxECN" },
{ VIRTIO_NET_F_GUEST_UFO, "RxUFO" },
{ VIRTIO_NET_F_HOST_TSO4, "TxTSOv4" },
{ VIRTIO_NET_F_HOST_TSO6, "TxTSOv6" },
{ VIRTIO_NET_F_HOST_ECN, "TxTSOECN" },
{ VIRTIO_NET_F_HOST_UFO, "TxUFO" },
{ VIRTIO_NET_F_MRG_RXBUF, "MrgRxBuf" },
{ VIRTIO_NET_F_STATUS, "Status" },
{ VIRTIO_NET_F_CTRL_VQ, "ControlVq" },
{ VIRTIO_NET_F_CTRL_RX, "RxMode" },
{ VIRTIO_NET_F_CTRL_VLAN, "VLanFilter" },
{ VIRTIO_NET_F_CTRL_RX_EXTRA, "RxModeExtra" },
{ 0, NULL }
};
static device_method_t vtnet_methods[] = {
/* Device methods. */
DEVMETHOD(device_probe, vtnet_probe),
DEVMETHOD(device_attach, vtnet_attach),
DEVMETHOD(device_detach, vtnet_detach),
DEVMETHOD(device_suspend, vtnet_suspend),
DEVMETHOD(device_resume, vtnet_resume),
DEVMETHOD(device_shutdown, vtnet_shutdown),
/* VirtIO methods. */
DEVMETHOD(virtio_config_change, vtnet_config_change),
DEVMETHOD_END
};
static driver_t vtnet_driver = {
"vtnet",
vtnet_methods,
sizeof(struct vtnet_softc)
};
static devclass_t vtnet_devclass;
DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass,
vtnet_modevent, 0);
MODULE_VERSION(vtnet, 1);
MODULE_DEPEND(vtnet, virtio, 1, 1, 1);
static int
vtnet_modevent(module_t mod, int type, void *unused)
{
int error;
error = 0;
switch (type) {
case MOD_LOAD:
vtnet_tx_header_zone = uma_zcreate("vtnet_tx_hdr",
sizeof(struct vtnet_tx_header),
NULL, NULL, NULL, NULL, 0, 0);
break;
case MOD_QUIESCE:
case MOD_UNLOAD:
if (uma_zone_get_cur(vtnet_tx_header_zone) > 0)
error = EBUSY;
else if (type == MOD_UNLOAD) {
uma_zdestroy(vtnet_tx_header_zone);
vtnet_tx_header_zone = NULL;
}
break;
case MOD_SHUTDOWN:
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
static int
vtnet_probe(device_t dev)
{
if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK)
return (ENXIO);
device_set_desc(dev, "VirtIO Networking Adapter");
return (BUS_PROBE_DEFAULT);
}
static int
vtnet_attach(device_t dev)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
int tx_size, error;
sc = device_get_softc(dev);
sc->vtnet_dev = dev;
VTNET_LOCK_INIT(sc);
callout_init_mtx(&sc->vtnet_tick_ch, VTNET_MTX(sc), 0);
ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd,
vtnet_ifmedia_sts);
ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL);
ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE);
vtnet_add_statistics(sc);
virtio_set_feature_desc(dev, vtnet_feature_desc);
vtnet_negotiate_features(sc);
if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) {
sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS;
sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf);
} else
sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr);
sc->vtnet_rx_mbuf_size = MCLBYTES;
sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) {
sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ;
if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX)) {
sc->vtnet_mac_filter = malloc(
sizeof(struct vtnet_mac_filter), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (sc->vtnet_mac_filter == NULL) {
device_printf(dev,
"cannot allocate mac filter table\n");
error = ENOMEM;
goto fail;
}
sc->vtnet_flags |= VTNET_FLAG_CTRL_RX;
}
if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN))
sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER;
}
vtnet_get_hwaddr(sc);
error = vtnet_alloc_virtqueues(sc);
if (error) {
device_printf(dev, "cannot allocate virtqueues\n");
goto fail;
}
ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = vtnet_init;
ifp->if_start = vtnet_start;
ifp->if_ioctl = vtnet_ioctl;
sc->vtnet_rx_size = virtqueue_size(sc->vtnet_rx_vq);
sc->vtnet_rx_process_limit = sc->vtnet_rx_size;
tx_size = virtqueue_size(sc->vtnet_tx_vq);
sc->vtnet_tx_size = tx_size;
IFQ_SET_MAXLEN(&ifp->if_snd, tx_size - 1);
ifp->if_snd.ifq_drv_maxlen = tx_size - 1;
IFQ_SET_READY(&ifp->if_snd);
ether_ifattach(ifp, sc->vtnet_hwaddr);
if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS))
ifp->if_capabilities |= IFCAP_LINKSTATE;
/* Tell the upper layer(s) we support long frames. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU;
if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) {
ifp->if_capabilities |= IFCAP_TXCSUM;
if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4))
ifp->if_capabilities |= IFCAP_TSO4;
if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6))
ifp->if_capabilities |= IFCAP_TSO6;
if (ifp->if_capabilities & IFCAP_TSO)
ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN))
sc->vtnet_flags |= VTNET_FLAG_TSO_ECN;
}
if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) {
ifp->if_capabilities |= IFCAP_RXCSUM;
if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) ||
virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6))
ifp->if_capabilities |= IFCAP_LRO;
}
if (ifp->if_capabilities & IFCAP_HWCSUM) {
/*
* VirtIO does not support VLAN tagging, but we can fake
* it by inserting and removing the 802.1Q header during
* transmit and receive. We are then able to do checksum
* offloading of VLAN frames.
*/
ifp->if_capabilities |=
IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
}
ifp->if_capenable = ifp->if_capabilities;
/*
* Capabilities after here are not enabled by default.
*/
if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) {
ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST);
sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST);
}
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
TASK_INIT(&sc->vtnet_rx_intr_task, 0, vtnet_rx_intr_task, sc);
TASK_INIT(&sc->vtnet_tx_intr_task, 0, vtnet_tx_intr_task, sc);
TASK_INIT(&sc->vtnet_cfgchg_task, 0, vtnet_config_change_task, sc);
sc->vtnet_tq = taskqueue_create_fast("vtnet_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->vtnet_tq);
if (sc->vtnet_tq == NULL) {
error = ENOMEM;
device_printf(dev, "cannot allocate taskqueue\n");
ether_ifdetach(ifp);
goto fail;
}
error = virtio_setup_intr(dev, INTR_TYPE_NET);
if (error) {
device_printf(dev, "cannot setup virtqueue interrupts\n");
ether_ifdetach(ifp);
goto fail;
}
taskqueue_start_threads(&sc->vtnet_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(dev));
/*
* Device defaults to promiscuous mode for backwards
* compatibility. Turn it off if possible.
*/
if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
VTNET_LOCK(sc);
if (vtnet_set_promisc(sc, 0) != 0) {
ifp->if_flags |= IFF_PROMISC;
device_printf(dev,
"cannot disable promiscuous mode\n");
}
VTNET_UNLOCK(sc);
} else
ifp->if_flags |= IFF_PROMISC;
fail:
if (error)
vtnet_detach(dev);
return (error);
}
static int
vtnet_detach(device_t dev)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->vtnet_ifp;
KASSERT(mtx_initialized(VTNET_MTX(sc)),
("vtnet mutex not initialized"));
#ifdef DEVICE_POLLING
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
if (device_is_attached(dev)) {
VTNET_LOCK(sc);
vtnet_stop(sc);
VTNET_UNLOCK(sc);
callout_drain(&sc->vtnet_tick_ch);
taskqueue_drain(taskqueue_fast, &sc->vtnet_cfgchg_task);
ether_ifdetach(ifp);
}
if (sc->vtnet_tq != NULL) {
taskqueue_drain(sc->vtnet_tq, &sc->vtnet_rx_intr_task);
taskqueue_drain(sc->vtnet_tq, &sc->vtnet_tx_intr_task);
taskqueue_free(sc->vtnet_tq);
sc->vtnet_tq = NULL;
}
if (sc->vtnet_vlan_attach != NULL) {
EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach);
sc->vtnet_vlan_attach = NULL;
}
if (sc->vtnet_vlan_detach != NULL) {
EVENTHANDLER_DEREGISTER(vlan_unconfg, sc->vtnet_vlan_detach);
sc->vtnet_vlan_detach = NULL;
}
if (sc->vtnet_mac_filter != NULL) {
free(sc->vtnet_mac_filter, M_DEVBUF);
sc->vtnet_mac_filter = NULL;
}
if (ifp != NULL) {
if_free(ifp);
sc->vtnet_ifp = NULL;
}
if (sc->vtnet_rx_vq != NULL)
vtnet_free_rx_mbufs(sc);
if (sc->vtnet_tx_vq != NULL)
vtnet_free_tx_mbufs(sc);
if (sc->vtnet_ctrl_vq != NULL)
vtnet_free_ctrl_vq(sc);
ifmedia_removeall(&sc->vtnet_media);
VTNET_LOCK_DESTROY(sc);
return (0);
}
static int
vtnet_suspend(device_t dev)
{
struct vtnet_softc *sc;
sc = device_get_softc(dev);
VTNET_LOCK(sc);
vtnet_stop(sc);
sc->vtnet_flags |= VTNET_FLAG_SUSPENDED;
VTNET_UNLOCK(sc);
return (0);
}
static int
vtnet_resume(device_t dev)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->vtnet_ifp;
VTNET_LOCK(sc);
if (ifp->if_flags & IFF_UP)
vtnet_init_locked(sc);
sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED;
VTNET_UNLOCK(sc);
return (0);
}
static int
vtnet_shutdown(device_t dev)
{
/*
* Suspend already does all of what we need to
* do here; we just never expect to be resumed.
*/
return (vtnet_suspend(dev));
}
static int
vtnet_config_change(device_t dev)
{
struct vtnet_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue_fast(taskqueue_fast, &sc->vtnet_cfgchg_task);
return (1);
}
static void
vtnet_negotiate_features(struct vtnet_softc *sc)
{
device_t dev;
uint64_t mask, features;
dev = sc->vtnet_dev;
mask = 0;
if (vtnet_csum_disable)
mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM;
/*
* TSO and LRO are only available when their corresponding
* checksum offload feature is also negotiated.
*/
if (vtnet_csum_disable || vtnet_tso_disable)
mask |= VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
VIRTIO_NET_F_HOST_ECN;
if (vtnet_csum_disable || vtnet_lro_disable)
mask |= VTNET_LRO_FEATURES;
features = VTNET_FEATURES & ~mask;
#ifdef VTNET_TX_INTR_MODERATION
features |= VIRTIO_F_NOTIFY_ON_EMPTY;
#endif
sc->vtnet_features = virtio_negotiate_features(dev, features);
if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0 &&
virtio_with_feature(dev, VTNET_LRO_FEATURES)) {
/*
* LRO without mergeable buffers requires special care. This
* is not ideal because every receive buffer must be large
* enough to hold the maximum TCP packet, the Ethernet header,
* and the vtnet_rx_header. This requires up to 34 descriptors
* when using MCLBYTES clusters. If we do not have indirect
* descriptors, LRO is disabled since the virtqueue will not
* be able to contain very many receive buffers.
*/
if (virtio_with_feature(dev,
VIRTIO_RING_F_INDIRECT_DESC) == 0) {
device_printf(dev,
"LRO disabled due to lack of both mergeable "
"buffers and indirect descriptors\n");
sc->vtnet_features = virtio_negotiate_features(dev,
features & ~VTNET_LRO_FEATURES);
} else
sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG;
}
}
static int
vtnet_alloc_virtqueues(struct vtnet_softc *sc)
{
device_t dev;
struct vq_alloc_info vq_info[3];
int nvqs, rxsegs;
dev = sc->vtnet_dev;
nvqs = 2;
/*
* Indirect descriptors are not needed for the Rx
* virtqueue when mergeable buffers are negotiated.
* The header is placed inline with the data, not
* in a separate descriptor, and mbuf clusters are
* always physically contiguous.
*/
if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
rxsegs = sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG ?
VTNET_MAX_RX_SEGS : VTNET_MIN_RX_SEGS;
} else
rxsegs = 0;
VQ_ALLOC_INFO_INIT(&vq_info[0], rxsegs,
vtnet_rx_vq_intr, sc, &sc->vtnet_rx_vq,
"%s receive", device_get_nameunit(dev));
VQ_ALLOC_INFO_INIT(&vq_info[1], VTNET_MAX_TX_SEGS,
vtnet_tx_vq_intr, sc, &sc->vtnet_tx_vq,
"%s transmit", device_get_nameunit(dev));
if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
nvqs++;
VQ_ALLOC_INFO_INIT(&vq_info[2], 0, NULL, NULL,
&sc->vtnet_ctrl_vq, "%s control",
device_get_nameunit(dev));
}
return (virtio_alloc_virtqueues(dev, 0, nvqs, vq_info));
}
static void
vtnet_get_hwaddr(struct vtnet_softc *sc)
{
device_t dev;
dev = sc->vtnet_dev;
if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) {
virtio_read_device_config(dev,
offsetof(struct virtio_net_config, mac),
sc->vtnet_hwaddr, ETHER_ADDR_LEN);
} else {
/* Generate random locally administered unicast address. */
sc->vtnet_hwaddr[0] = 0xB2;
arc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1, 0);
vtnet_set_hwaddr(sc);
}
}
static void
vtnet_set_hwaddr(struct vtnet_softc *sc)
{
device_t dev;
dev = sc->vtnet_dev;
virtio_write_device_config(dev,
offsetof(struct virtio_net_config, mac),
sc->vtnet_hwaddr, ETHER_ADDR_LEN);
}
static int
vtnet_is_link_up(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
uint16_t status;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
VTNET_LOCK_ASSERT(sc);
if ((ifp->if_capenable & IFCAP_LINKSTATE) == 0)
return (1);
status = virtio_read_dev_config_2(dev,
offsetof(struct virtio_net_config, status));
return ((status & VIRTIO_NET_S_LINK_UP) != 0);
}
static void
vtnet_update_link_status(struct vtnet_softc *sc)
{
struct ifnet *ifp;
int link;
ifp = sc->vtnet_ifp;
link = vtnet_is_link_up(sc);
if (link && ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) {
sc->vtnet_flags |= VTNET_FLAG_LINK;
if_link_state_change(ifp, LINK_STATE_UP);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vtnet_start_locked(ifp);
} else if (!link && (sc->vtnet_flags & VTNET_FLAG_LINK)) {
sc->vtnet_flags &= ~VTNET_FLAG_LINK;
if_link_state_change(ifp, LINK_STATE_DOWN);
}
}
static void
vtnet_watchdog(struct vtnet_softc *sc)
{
struct ifnet *ifp;
ifp = sc->vtnet_ifp;
#ifdef VTNET_TX_INTR_MODERATION
vtnet_txeof(sc);
#endif
if (sc->vtnet_watchdog_timer == 0 || --sc->vtnet_watchdog_timer)
return;
if_printf(ifp, "watchdog timeout -- resetting\n");
#ifdef VTNET_DEBUG
virtqueue_dump(sc->vtnet_tx_vq);
#endif
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vtnet_init_locked(sc);
}
static void
vtnet_config_change_task(void *arg, int pending)
{
struct vtnet_softc *sc;
sc = arg;
VTNET_LOCK(sc);
vtnet_update_link_status(sc);
VTNET_UNLOCK(sc);
}
static int
vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct vtnet_softc *sc;
struct ifreq *ifr;
int reinit, mask, error;
sc = ifp->if_softc;
ifr = (struct ifreq *) data;
reinit = 0;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VTNET_MAX_MTU)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
VTNET_LOCK(sc);
error = vtnet_change_mtu(sc, ifr->ifr_mtu);
VTNET_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
VTNET_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vtnet_stop(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->vtnet_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX)
vtnet_rx_filter(sc);
else
error = ENOTSUP;
}
} else
vtnet_init_locked(sc);
if (error == 0)
sc->vtnet_if_flags = ifp->if_flags;
VTNET_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
VTNET_LOCK(sc);
if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING))
vtnet_rx_filter_mac(sc);
VTNET_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(vtnet_poll, ifp);
if (error)
break;
VTNET_LOCK(sc);
vtnet_disable_rx_intr(sc);
vtnet_disable_tx_intr(sc);
ifp->if_capenable |= IFCAP_POLLING;
VTNET_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts even in error case. */
VTNET_LOCK(sc);
vtnet_enable_tx_intr(sc);
vtnet_enable_rx_intr(sc);
ifp->if_capenable &= ~IFCAP_POLLING;
VTNET_UNLOCK(sc);
}
}
#endif
VTNET_LOCK(sc);
if (mask & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
else
ifp->if_hwassist &= ~VTNET_CSUM_OFFLOAD;
}
if (mask & IFCAP_TSO4) {
ifp->if_capenable ^= IFCAP_TSO4;
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if (mask & IFCAP_RXCSUM) {
ifp->if_capenable ^= IFCAP_RXCSUM;
reinit = 1;
}
if (mask & IFCAP_LRO) {
ifp->if_capenable ^= IFCAP_LRO;
reinit = 1;
}
if (mask & IFCAP_VLAN_HWFILTER) {
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
reinit = 1;
}
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vtnet_init_locked(sc);
}
VLAN_CAPABILITIES(ifp);
VTNET_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
VTNET_LOCK_ASSERT_NOTOWNED(sc);
return (error);
}
static int
vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu)
{
struct ifnet *ifp;
int new_frame_size, clsize;
ifp = sc->vtnet_ifp;
if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
new_frame_size = sizeof(struct vtnet_rx_header) +
sizeof(struct ether_vlan_header) + new_mtu;
if (new_frame_size > MJUM9BYTES)
return (EINVAL);
if (new_frame_size <= MCLBYTES)
clsize = MCLBYTES;
else
clsize = MJUM9BYTES;
} else {
new_frame_size = sizeof(struct virtio_net_hdr_mrg_rxbuf) +
sizeof(struct ether_vlan_header) + new_mtu;
if (new_frame_size <= MCLBYTES)
clsize = MCLBYTES;
else
clsize = MJUMPAGESIZE;
}
sc->vtnet_rx_mbuf_size = clsize;
sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
KASSERT(sc->vtnet_rx_mbuf_count < VTNET_MAX_RX_SEGS,
("too many rx mbufs: %d", sc->vtnet_rx_mbuf_count));
ifp->if_mtu = new_mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vtnet_init_locked(sc);
}
return (0);
}
static int
vtnet_init_rx_vq(struct vtnet_softc *sc)
{
struct virtqueue *vq;
int nbufs, error;
vq = sc->vtnet_rx_vq;
nbufs = 0;
error = ENOSPC;
while (!virtqueue_full(vq)) {
if ((error = vtnet_newbuf(sc)) != 0)
break;
nbufs++;
}
if (nbufs > 0) {
virtqueue_notify(vq);
/*
* EMSGSIZE signifies the virtqueue did not have enough
* entries available to hold the last mbuf. This is not
* an error. We should not get ENOSPC since we check if
* the virtqueue is full before attempting to add a
* buffer.
*/
if (error == EMSGSIZE)
error = 0;
}
return (error);
}
static void
vtnet_free_rx_mbufs(struct vtnet_softc *sc)
{
struct virtqueue *vq;
struct mbuf *m;
int last;
vq = sc->vtnet_rx_vq;
last = 0;
while ((m = virtqueue_drain(vq, &last)) != NULL)
m_freem(m);
KASSERT(virtqueue_empty(vq), ("mbufs remaining in Rx Vq"));
}
static void
vtnet_free_tx_mbufs(struct vtnet_softc *sc)
{
struct virtqueue *vq;
struct vtnet_tx_header *txhdr;
int last;
vq = sc->vtnet_tx_vq;
last = 0;
while ((txhdr = virtqueue_drain(vq, &last)) != NULL) {
m_freem(txhdr->vth_mbuf);
uma_zfree(vtnet_tx_header_zone, txhdr);
}
KASSERT(virtqueue_empty(vq), ("mbufs remaining in Tx Vq"));
}
static void
vtnet_free_ctrl_vq(struct vtnet_softc *sc)
{
/*
* The control virtqueue is only polled, therefore
* it should already be empty.
*/
KASSERT(virtqueue_empty(sc->vtnet_ctrl_vq),
("Ctrl Vq not empty"));
}
#ifdef DEVICE_POLLING
static int
vtnet_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct vtnet_softc *sc;
int rx_done;
sc = ifp->if_softc;
rx_done = 0;
VTNET_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (cmd == POLL_AND_CHECK_STATUS)
vtnet_update_link_status(sc);
if (virtqueue_nused(sc->vtnet_rx_vq) > 0)
vtnet_rxeof(sc, count, &rx_done);
vtnet_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vtnet_start_locked(ifp);
}
VTNET_UNLOCK(sc);
return (rx_done);
}
#endif /* DEVICE_POLLING */
static struct mbuf *
vtnet_alloc_rxbuf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp)
{
struct mbuf *m_head, *m_tail, *m;
int i, clsize;
clsize = sc->vtnet_rx_mbuf_size;
m_head = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, clsize);
if (m_head == NULL)
goto fail;
m_head->m_len = clsize;
m_tail = m_head;
if (nbufs > 1) {
KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
("chained Rx mbuf requested without LRO_NOMRG"));
for (i = 1; i < nbufs; i++) {
m = m_getjcl(M_NOWAIT, MT_DATA, 0, clsize);
if (m == NULL)
goto fail;
m->m_len = clsize;
m_tail->m_next = m;
m_tail = m;
}
}
if (m_tailp != NULL)
*m_tailp = m_tail;
return (m_head);
fail:
sc->vtnet_stats.mbuf_alloc_failed++;
m_freem(m_head);
return (NULL);
}
static int
vtnet_replace_rxbuf(struct vtnet_softc *sc, struct mbuf *m0, int len0)
{
struct mbuf *m, *m_prev;
struct mbuf *m_new, *m_tail;
int len, clsize, nreplace, error;
m = m0;
m_prev = NULL;
len = len0;
m_tail = NULL;
clsize = sc->vtnet_rx_mbuf_size;
nreplace = 0;
KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG ||
m->m_next == NULL, ("chained Rx mbuf without LRO_NOMRG"));
/*
* Since LRO_NOMRG mbuf chains are so large, we want to avoid
* allocating an entire chain for each received frame. When
* the received frame's length is less than that of the chain,
* the unused mbufs are reassigned to the new chain.
*/
while (len > 0) {
/*
* Something is seriously wrong if we received
* a frame larger than the mbuf chain. Drop it.
*/
if (m == NULL) {
sc->vtnet_stats.rx_frame_too_large++;
return (EMSGSIZE);
}
KASSERT(m->m_len == clsize,
("mbuf length not expected cluster size: %d",
m->m_len));
m->m_len = MIN(m->m_len, len);
len -= m->m_len;
m_prev = m;
m = m->m_next;
nreplace++;
}
KASSERT(m_prev != NULL, ("m_prev == NULL"));
KASSERT(nreplace <= sc->vtnet_rx_mbuf_count,
("too many replacement mbufs: %d/%d", nreplace,
sc->vtnet_rx_mbuf_count));
m_new = vtnet_alloc_rxbuf(sc, nreplace, &m_tail);
if (m_new == NULL) {
m_prev->m_len = clsize;
return (ENOBUFS);
}
/*
* Move unused mbufs, if any, from the original chain
* onto the end of the new chain.
*/
if (m_prev->m_next != NULL) {
m_tail->m_next = m_prev->m_next;
m_prev->m_next = NULL;
}
error = vtnet_enqueue_rxbuf(sc, m_new);
if (error) {
/*
* BAD! We could not enqueue the replacement mbuf chain. We
* must restore the m0 chain to the original state if it was
* modified so we can subsequently discard it.
*
* NOTE: The replacement is suppose to be an identical copy
* to the one just dequeued so this is an unexpected error.
*/
sc->vtnet_stats.rx_enq_replacement_failed++;
if (m_tail->m_next != NULL) {
m_prev->m_next = m_tail->m_next;
m_tail->m_next = NULL;
}
m_prev->m_len = clsize;
m_freem(m_new);
}
return (error);
}
static int
vtnet_newbuf(struct vtnet_softc *sc)
{
struct mbuf *m;
int error;
m = vtnet_alloc_rxbuf(sc, sc->vtnet_rx_mbuf_count, NULL);
if (m == NULL)
return (ENOBUFS);
error = vtnet_enqueue_rxbuf(sc, m);
if (error)
m_freem(m);
return (error);
}
static void
vtnet_discard_merged_rxbuf(struct vtnet_softc *sc, int nbufs)
{
struct virtqueue *vq;
struct mbuf *m;
vq = sc->vtnet_rx_vq;
while (--nbufs > 0) {
if ((m = virtqueue_dequeue(vq, NULL)) == NULL)
break;
vtnet_discard_rxbuf(sc, m);
}
}
static void
vtnet_discard_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
{
int error;
/*
* Requeue the discarded mbuf. This should always be
* successful since it was just dequeued.
*/
error = vtnet_enqueue_rxbuf(sc, m);
KASSERT(error == 0, ("cannot requeue discarded mbuf"));
}
static int
vtnet_enqueue_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
{
struct sglist sg;
struct sglist_seg segs[VTNET_MAX_RX_SEGS];
struct vtnet_rx_header *rxhdr;
struct virtio_net_hdr *hdr;
uint8_t *mdata;
int offset, error;
VTNET_LOCK_ASSERT(sc);
KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG ||
m->m_next == NULL, ("chained Rx mbuf without LRO_NOMRG"));
sglist_init(&sg, VTNET_MAX_RX_SEGS, segs);
mdata = mtod(m, uint8_t *);
offset = 0;
if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
rxhdr = (struct vtnet_rx_header *) mdata;
hdr = &rxhdr->vrh_hdr;
offset += sizeof(struct vtnet_rx_header);
error = sglist_append(&sg, hdr, sc->vtnet_hdr_size);
KASSERT(error == 0, ("cannot add header to sglist"));
}
error = sglist_append(&sg, mdata + offset, m->m_len - offset);
if (error)
return (error);
if (m->m_next != NULL) {
error = sglist_append_mbuf(&sg, m->m_next);
if (error)
return (error);
}
return (virtqueue_enqueue(sc->vtnet_rx_vq, m, &sg, 0, sg.sg_nseg));
}
static void
vtnet_vlan_tag_remove(struct mbuf *m)
{
struct ether_vlan_header *evl;
evl = mtod(m, struct ether_vlan_header *);
m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
m->m_flags |= M_VLANTAG;
/* Strip the 802.1Q header. */
bcopy((char *) evl, (char *) evl + ETHER_VLAN_ENCAP_LEN,
ETHER_HDR_LEN - ETHER_TYPE_LEN);
m_adj(m, ETHER_VLAN_ENCAP_LEN);
}
#ifdef notyet
static int
vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m,
struct virtio_net_hdr *hdr)
{
struct ether_header *eh;
struct ether_vlan_header *evh;
struct ip *ip;
struct ip6_hdr *ip6;
struct udphdr *udp;
int ip_offset, csum_start, csum_offset, hlen;
uint16_t eth_type;
uint8_t ip_proto;
/*
* Convert the VirtIO checksum interface to FreeBSD's interface.
* The host only provides us with the offset at which to start
* checksumming, and the offset from that to place the completed
* checksum. While this maps well with how Linux does checksums,
* for FreeBSD, we must parse the received packet in order to set
* the appropriate CSUM_* flags.
*/
/*
* Every mbuf added to the receive virtqueue is always at least
* MCLBYTES big, so assume something is amiss if the first mbuf
* does not contain both the Ethernet and protocol headers.
*/
ip_offset = sizeof(struct ether_header);
if (m->m_len < ip_offset)
return (1);
eh = mtod(m, struct ether_header *);
eth_type = ntohs(eh->ether_type);
if (eth_type == ETHERTYPE_VLAN) {
ip_offset = sizeof(struct ether_vlan_header);
if (m->m_len < ip_offset)
return (1);
evh = mtod(m, struct ether_vlan_header *);
eth_type = ntohs(evh->evl_proto);
}
switch (eth_type) {
case ETHERTYPE_IP:
if (m->m_len < ip_offset + sizeof(struct ip))
return (1);
ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset);
/* Sanity check the IP header. */
if (ip->ip_v != IPVERSION)
return (1);
hlen = ip->ip_hl << 2;
if (hlen < sizeof(struct ip))
return (1);
if (ntohs(ip->ip_len) < hlen)
return (1);
if (ntohs(ip->ip_len) != (m->m_pkthdr.len - ip_offset))
return (1);
ip_proto = ip->ip_p;
csum_start = ip_offset + hlen;
break;
case ETHERTYPE_IPV6:
if (m->m_len < ip_offset + sizeof(struct ip6_hdr))
return (1);
/*
* XXX FreeBSD does not handle any IPv6 checksum offloading
* at the moment.
*/
ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset);
/* XXX Assume no extension headers are present. */
ip_proto = ip6->ip6_nxt;
csum_start = ip_offset + sizeof(struct ip6_hdr);
break;
default:
sc->vtnet_stats.rx_csum_bad_ethtype++;
return (1);
}
/* Assume checksum begins right after the IP header. */
if (hdr->csum_start != csum_start) {
sc->vtnet_stats.rx_csum_bad_start++;
return (1);
}
switch (ip_proto) {
case IPPROTO_TCP:
csum_offset = offsetof(struct tcphdr, th_sum);
break;
case IPPROTO_UDP:
csum_offset = offsetof(struct udphdr, uh_sum);
break;
case IPPROTO_SCTP:
csum_offset = offsetof(struct sctphdr, checksum);
break;
default:
sc->vtnet_stats.rx_csum_bad_ipproto++;
return (1);
}
if (hdr->csum_offset != csum_offset) {
sc->vtnet_stats.rx_csum_bad_offset++;
return (1);
}
/*
* The IP header checksum is almost certainly valid but I'm
* uncertain if that is guaranteed.
*
* m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
*/
switch (ip_proto) {
case IPPROTO_UDP:
if (m->m_len < csum_start + sizeof(struct udphdr))
return (1);
udp = (struct udphdr *)(mtod(m, uint8_t *) + csum_start);
if (udp->uh_sum == 0)
return (0);
/* FALLTHROUGH */
case IPPROTO_TCP:
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
break;
case IPPROTO_SCTP:
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
break;
}
sc->vtnet_stats.rx_csum_offloaded++;
return (0);
}
#endif
/*
* Alternative method of doing receive checksum offloading. Rather
* than parsing the received frame down to the IP header, use the
* csum_offset to determine which CSUM_* flags are appropriate. We
* can get by with doing this only because the checksum offsets are
* unique for the things we care about.
*/
static int
vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m,
struct virtio_net_hdr *hdr)
{
struct ether_header *eh;
struct ether_vlan_header *evh;
struct udphdr *udp;
int csum_len;
uint16_t eth_type;
csum_len = hdr->csum_start + hdr->csum_offset;
if (csum_len < sizeof(struct ether_header) + sizeof(struct ip))
return (1);
if (m->m_len < csum_len)
return (1);
eh = mtod(m, struct ether_header *);
eth_type = ntohs(eh->ether_type);
if (eth_type == ETHERTYPE_VLAN) {
evh = mtod(m, struct ether_vlan_header *);
eth_type = ntohs(evh->evl_proto);
}
if (eth_type != ETHERTYPE_IP && eth_type != ETHERTYPE_IPV6) {
sc->vtnet_stats.rx_csum_bad_ethtype++;
return (1);
}
/* Use the offset to determine the appropriate CSUM_* flags. */
switch (hdr->csum_offset) {
case offsetof(struct udphdr, uh_sum):
if (m->m_len < hdr->csum_start + sizeof(struct udphdr))
return (1);
udp = (struct udphdr *)(mtod(m, uint8_t *) + hdr->csum_start);
if (udp->uh_sum == 0)
return (0);
/* FALLTHROUGH */
case offsetof(struct tcphdr, th_sum):
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
break;
case offsetof(struct sctphdr, checksum):
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
break;
default:
sc->vtnet_stats.rx_csum_bad_offset++;
return (1);
}
sc->vtnet_stats.rx_csum_offloaded++;
return (0);
}
static int
vtnet_rxeof_merged(struct vtnet_softc *sc, struct mbuf *m_head, int nbufs)
{
struct ifnet *ifp;
struct virtqueue *vq;
struct mbuf *m, *m_tail;
int len;
ifp = sc->vtnet_ifp;
vq = sc->vtnet_rx_vq;
m_tail = m_head;
while (--nbufs > 0) {
m = virtqueue_dequeue(vq, &len);
if (m == NULL) {
ifp->if_ierrors++;
goto fail;
}
if (vtnet_newbuf(sc) != 0) {
ifp->if_iqdrops++;
vtnet_discard_rxbuf(sc, m);
if (nbufs > 1)
vtnet_discard_merged_rxbuf(sc, nbufs);
goto fail;
}
if (m->m_len < len)
len = m->m_len;
m->m_len = len;
m->m_flags &= ~M_PKTHDR;
m_head->m_pkthdr.len += len;
m_tail->m_next = m;
m_tail = m;
}
return (0);
fail:
sc->vtnet_stats.rx_mergeable_failed++;
m_freem(m_head);
return (1);
}
static int
vtnet_rxeof(struct vtnet_softc *sc, int count, int *rx_npktsp)
{
struct virtio_net_hdr lhdr;
struct ifnet *ifp;
struct virtqueue *vq;
struct mbuf *m;
struct ether_header *eh;
struct virtio_net_hdr *hdr;
struct virtio_net_hdr_mrg_rxbuf *mhdr;
int len, deq, nbufs, adjsz, rx_npkts;
ifp = sc->vtnet_ifp;
vq = sc->vtnet_rx_vq;
hdr = &lhdr;
deq = 0;
rx_npkts = 0;
VTNET_LOCK_ASSERT(sc);
while (--count >= 0) {
m = virtqueue_dequeue(vq, &len);
if (m == NULL)
break;
deq++;
if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) {
ifp->if_ierrors++;
vtnet_discard_rxbuf(sc, m);
continue;
}
if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
nbufs = 1;
adjsz = sizeof(struct vtnet_rx_header);
/*
* Account for our pad between the header and
* the actual start of the frame.
*/
len += VTNET_RX_HEADER_PAD;
} else {
mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *);
nbufs = mhdr->num_buffers;
adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf);
}
if (vtnet_replace_rxbuf(sc, m, len) != 0) {
ifp->if_iqdrops++;
vtnet_discard_rxbuf(sc, m);
if (nbufs > 1)
vtnet_discard_merged_rxbuf(sc, nbufs);
continue;
}
m->m_pkthdr.len = len;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.csum_flags = 0;
if (nbufs > 1) {
if (vtnet_rxeof_merged(sc, m, nbufs) != 0)
continue;
}
ifp->if_ipackets++;
/*
* Save copy of header before we strip it. For both mergeable
* and non-mergeable, the VirtIO header is placed first in the
* mbuf's data. We no longer need num_buffers, so always use a
* virtio_net_hdr.
*/
memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr));
m_adj(m, adjsz);
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
eh = mtod(m, struct ether_header *);
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
vtnet_vlan_tag_remove(m);
/*
* With the 802.1Q header removed, update the
* checksum starting location accordingly.
*/
if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)
hdr->csum_start -=
ETHER_VLAN_ENCAP_LEN;
}
}
if (ifp->if_capenable & IFCAP_RXCSUM &&
hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
if (vtnet_rx_csum(sc, m, hdr) != 0)
sc->vtnet_stats.rx_csum_failed++;
}
VTNET_UNLOCK(sc);
rx_npkts++;
(*ifp->if_input)(ifp, m);
VTNET_LOCK(sc);
/*
* The interface may have been stopped while we were
* passing the packet up the network stack.
*/
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
}
if (deq > 0)
virtqueue_notify(vq);
if (rx_npktsp != NULL)
*rx_npktsp = rx_npkts;
return (count > 0 ? 0 : EAGAIN);
}
static void
vtnet_rx_intr_task(void *arg, int pending)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
int more;
sc = arg;
ifp = sc->vtnet_ifp;
VTNET_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
VTNET_UNLOCK(sc);
return;
}
#endif
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
vtnet_enable_rx_intr(sc);
VTNET_UNLOCK(sc);
return;
}
more = vtnet_rxeof(sc, sc->vtnet_rx_process_limit, NULL);
if (!more && vtnet_enable_rx_intr(sc) != 0) {
vtnet_disable_rx_intr(sc);
more = 1;
}
VTNET_UNLOCK(sc);
if (more) {
sc->vtnet_stats.rx_task_rescheduled++;
taskqueue_enqueue_fast(sc->vtnet_tq,
&sc->vtnet_rx_intr_task);
}
}
static int
vtnet_rx_vq_intr(void *xsc)
{
struct vtnet_softc *sc;
sc = xsc;
vtnet_disable_rx_intr(sc);
taskqueue_enqueue_fast(sc->vtnet_tq, &sc->vtnet_rx_intr_task);
return (1);
}
static void
vtnet_txeof(struct vtnet_softc *sc)
{
struct virtqueue *vq;
struct ifnet *ifp;
struct vtnet_tx_header *txhdr;
int deq;
vq = sc->vtnet_tx_vq;
ifp = sc->vtnet_ifp;
deq = 0;
VTNET_LOCK_ASSERT(sc);
while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) {
deq++;
ifp->if_opackets++;
m_freem(txhdr->vth_mbuf);
uma_zfree(vtnet_tx_header_zone, txhdr);
}
if (deq > 0) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (virtqueue_empty(vq))
sc->vtnet_watchdog_timer = 0;
}
}
static struct mbuf *
vtnet_tx_offload(struct vtnet_softc *sc, struct mbuf *m,
struct virtio_net_hdr *hdr)
{
struct ifnet *ifp;
struct ether_header *eh;
struct ether_vlan_header *evh;
struct ip *ip;
struct ip6_hdr *ip6;
struct tcphdr *tcp;
int ip_offset;
uint16_t eth_type, csum_start;
uint8_t ip_proto, gso_type;
ifp = sc->vtnet_ifp;
M_ASSERTPKTHDR(m);
ip_offset = sizeof(struct ether_header);
if (m->m_len < ip_offset) {
if ((m = m_pullup(m, ip_offset)) == NULL)
return (NULL);
}
eh = mtod(m, struct ether_header *);
eth_type = ntohs(eh->ether_type);
if (eth_type == ETHERTYPE_VLAN) {
ip_offset = sizeof(struct ether_vlan_header);
if (m->m_len < ip_offset) {
if ((m = m_pullup(m, ip_offset)) == NULL)
return (NULL);
}
evh = mtod(m, struct ether_vlan_header *);
eth_type = ntohs(evh->evl_proto);
}
switch (eth_type) {
case ETHERTYPE_IP:
if (m->m_len < ip_offset + sizeof(struct ip)) {
m = m_pullup(m, ip_offset + sizeof(struct ip));
if (m == NULL)
return (NULL);
}
ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset);
ip_proto = ip->ip_p;
csum_start = ip_offset + (ip->ip_hl << 2);
gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
break;
case ETHERTYPE_IPV6:
if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) {
m = m_pullup(m, ip_offset + sizeof(struct ip6_hdr));
if (m == NULL)
return (NULL);
}
ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset);
/*
* XXX Assume no extension headers are present. Presently,
* this will always be true in the case of TSO, and FreeBSD
* does not perform checksum offloading of IPv6 yet.
*/
ip_proto = ip6->ip6_nxt;
csum_start = ip_offset + sizeof(struct ip6_hdr);
gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
break;
default:
return (m);
}
if (m->m_pkthdr.csum_flags & VTNET_CSUM_OFFLOAD) {
hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM;
hdr->csum_start = csum_start;
hdr->csum_offset = m->m_pkthdr.csum_data;
sc->vtnet_stats.tx_csum_offloaded++;
}
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
if (ip_proto != IPPROTO_TCP)
return (m);
if (m->m_len < csum_start + sizeof(struct tcphdr)) {
m = m_pullup(m, csum_start + sizeof(struct tcphdr));
if (m == NULL)
return (NULL);
}
tcp = (struct tcphdr *)(mtod(m, uint8_t *) + csum_start);
hdr->gso_type = gso_type;
hdr->hdr_len = csum_start + (tcp->th_off << 2);
hdr->gso_size = m->m_pkthdr.tso_segsz;
if (tcp->th_flags & TH_CWR) {
/*
* Drop if we did not negotiate VIRTIO_NET_F_HOST_ECN.
* ECN support is only configurable globally with the
* net.inet.tcp.ecn.enable sysctl knob.
*/
if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) {
if_printf(ifp, "TSO with ECN not supported "
"by host\n");
m_freem(m);
return (NULL);
}
hdr->flags |= VIRTIO_NET_HDR_GSO_ECN;
}
sc->vtnet_stats.tx_tso_offloaded++;
}
return (m);
}
static int
vtnet_enqueue_txbuf(struct vtnet_softc *sc, struct mbuf **m_head,
struct vtnet_tx_header *txhdr)
{
struct sglist sg;
struct sglist_seg segs[VTNET_MAX_TX_SEGS];
struct virtqueue *vq;
struct mbuf *m;
int collapsed, error;
vq = sc->vtnet_tx_vq;
m = *m_head;
collapsed = 0;
sglist_init(&sg, VTNET_MAX_TX_SEGS, segs);
error = sglist_append(&sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size);
KASSERT(error == 0 && sg.sg_nseg == 1,
("cannot add header to sglist"));
again:
error = sglist_append_mbuf(&sg, m);
if (error) {
if (collapsed)
goto fail;
m = m_collapse(m, M_NOWAIT, VTNET_MAX_TX_SEGS - 1);
if (m == NULL)
goto fail;
*m_head = m;
collapsed = 1;
goto again;
}
txhdr->vth_mbuf = m;
return (virtqueue_enqueue(vq, txhdr, &sg, sg.sg_nseg, 0));
fail:
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
static int
vtnet_encap(struct vtnet_softc *sc, struct mbuf **m_head)
{
struct vtnet_tx_header *txhdr;
struct virtio_net_hdr *hdr;
struct mbuf *m;
int error;
m = *m_head;
txhdr = uma_zalloc(vtnet_tx_header_zone, M_NOWAIT | M_ZERO);
if (txhdr == NULL) {
*m_head = NULL;
m_freem(m);
return (ENOMEM);
}
/*
* Always use the non-mergeable header to simplify things. When
* the mergeable feature is negotiated, the num_buffers field
* must be set to zero. We use vtnet_hdr_size later to enqueue
* the correct header size to the host.
*/
hdr = &txhdr->vth_uhdr.hdr;
if (m->m_flags & M_VLANTAG) {
m = ether_vlanencap(m, m->m_pkthdr.ether_vtag);
if ((*m_head = m) == NULL) {
error = ENOBUFS;
goto fail;
}
m->m_flags &= ~M_VLANTAG;
}
if (m->m_pkthdr.csum_flags != 0) {
m = vtnet_tx_offload(sc, m, hdr);
if ((*m_head = m) == NULL) {
error = ENOBUFS;
goto fail;
}
}
error = vtnet_enqueue_txbuf(sc, m_head, txhdr);
fail:
if (error)
uma_zfree(vtnet_tx_header_zone, txhdr);
return (error);
}
static void
vtnet_start(struct ifnet *ifp)
{
struct vtnet_softc *sc;
sc = ifp->if_softc;
VTNET_LOCK(sc);
vtnet_start_locked(ifp);
VTNET_UNLOCK(sc);
}
static void
vtnet_start_locked(struct ifnet *ifp)
{
struct vtnet_softc *sc;
struct virtqueue *vq;
struct mbuf *m0;
int enq;
sc = ifp->if_softc;
vq = sc->vtnet_tx_vq;
enq = 0;
VTNET_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0))
return;
#ifdef VTNET_TX_INTR_MODERATION
if (virtqueue_nused(vq) >= sc->vtnet_tx_size / 2)
vtnet_txeof(sc);
#endif
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
if (virtqueue_full(vq)) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (vtnet_encap(sc, &m0) != 0) {
if (m0 == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
ETHER_BPF_MTAP(ifp, m0);
}
if (enq > 0) {
virtqueue_notify(vq);
sc->vtnet_watchdog_timer = VTNET_WATCHDOG_TIMEOUT;
}
}
static void
vtnet_tick(void *xsc)
{
struct vtnet_softc *sc;
sc = xsc;
VTNET_LOCK_ASSERT(sc);
#ifdef VTNET_DEBUG
virtqueue_dump(sc->vtnet_rx_vq);
virtqueue_dump(sc->vtnet_tx_vq);
#endif
vtnet_watchdog(sc);
callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc);
}
static void
vtnet_tx_intr_task(void *arg, int pending)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
sc = arg;
ifp = sc->vtnet_ifp;
VTNET_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
VTNET_UNLOCK(sc);
return;
}
#endif
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
vtnet_enable_tx_intr(sc);
VTNET_UNLOCK(sc);
return;
}
vtnet_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vtnet_start_locked(ifp);
if (vtnet_enable_tx_intr(sc) != 0) {
vtnet_disable_tx_intr(sc);
sc->vtnet_stats.tx_task_rescheduled++;
VTNET_UNLOCK(sc);
taskqueue_enqueue_fast(sc->vtnet_tq, &sc->vtnet_tx_intr_task);
return;
}
VTNET_UNLOCK(sc);
}
static int
vtnet_tx_vq_intr(void *xsc)
{
struct vtnet_softc *sc;
sc = xsc;
vtnet_disable_tx_intr(sc);
taskqueue_enqueue_fast(sc->vtnet_tq, &sc->vtnet_tx_intr_task);
return (1);
}
static void
vtnet_stop(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
VTNET_LOCK_ASSERT(sc);
sc->vtnet_watchdog_timer = 0;
callout_stop(&sc->vtnet_tick_ch);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
vtnet_disable_rx_intr(sc);
vtnet_disable_tx_intr(sc);
/*
* Stop the host VirtIO adapter. Note this will reset the host
* adapter's state back to the pre-initialized state, so in
* order to make the device usable again, we must drive it
* through virtio_reinit() and virtio_reinit_complete().
*/
virtio_stop(dev);
sc->vtnet_flags &= ~VTNET_FLAG_LINK;
vtnet_free_rx_mbufs(sc);
vtnet_free_tx_mbufs(sc);
}
static int
vtnet_reinit(struct vtnet_softc *sc)
{
struct ifnet *ifp;
uint64_t features;
ifp = sc->vtnet_ifp;
features = sc->vtnet_features;
/*
* Re-negotiate with the host, removing any disabled receive
* features. Transmit features are disabled only on our side
* via if_capenable and if_hwassist.
*/
if (ifp->if_capabilities & IFCAP_RXCSUM) {
if ((ifp->if_capenable & IFCAP_RXCSUM) == 0)
features &= ~VIRTIO_NET_F_GUEST_CSUM;
}
if (ifp->if_capabilities & IFCAP_LRO) {
if ((ifp->if_capenable & IFCAP_LRO) == 0)
features &= ~VTNET_LRO_FEATURES;
}
if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) {
if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0)
features &= ~VIRTIO_NET_F_CTRL_VLAN;
}
return (virtio_reinit(sc->vtnet_dev, features));
}
static void
vtnet_init_locked(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
int error;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
VTNET_LOCK_ASSERT(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
/* Stop host's adapter, cancel any pending I/O. */
vtnet_stop(sc);
/* Reinitialize the host device. */
error = vtnet_reinit(sc);
if (error) {
device_printf(dev,
"reinitialization failed, stopping device...\n");
vtnet_stop(sc);
return;
}
/* Update host with assigned MAC address. */
bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN);
vtnet_set_hwaddr(sc);
ifp->if_hwassist = 0;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= CSUM_TSO;
error = vtnet_init_rx_vq(sc);
if (error) {
device_printf(dev,
"cannot allocate mbufs for Rx virtqueue\n");
vtnet_stop(sc);
return;
}
if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
/* Restore promiscuous and all-multicast modes. */
vtnet_rx_filter(sc);
/* Restore filtered MAC addresses. */
vtnet_rx_filter_mac(sc);
}
/* Restore VLAN filters. */
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
vtnet_rx_filter_vlan(sc);
}
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
vtnet_disable_rx_intr(sc);
vtnet_disable_tx_intr(sc);
} else
#endif
{
vtnet_enable_rx_intr(sc);
vtnet_enable_tx_intr(sc);
}
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
virtio_reinit_complete(dev);
vtnet_update_link_status(sc);
callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc);
}
static void
vtnet_init(void *xsc)
{
struct vtnet_softc *sc;
sc = xsc;
VTNET_LOCK(sc);
vtnet_init_locked(sc);
VTNET_UNLOCK(sc);
}
static void
vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie,
struct sglist *sg, int readable, int writable)
{
struct virtqueue *vq;
void *c;
vq = sc->vtnet_ctrl_vq;
VTNET_LOCK_ASSERT(sc);
KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ,
("no control virtqueue"));
KASSERT(virtqueue_empty(vq),
("control command already enqueued"));
if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0)
return;
virtqueue_notify(vq);
/*
* Poll until the command is complete. Previously, we would
* sleep until the control virtqueue interrupt handler woke
* us up, but dropping the VTNET_MTX leads to serialization
* difficulties.
*
* Furthermore, it appears QEMU/KVM only allocates three MSIX
* vectors. Two of those vectors are needed for the Rx and Tx
* virtqueues. We do not support sharing both a Vq and config
* changed notification on the same MSIX vector.
*/
c = virtqueue_poll(vq, NULL);
KASSERT(c == cookie, ("unexpected control command response"));
}
static void
vtnet_rx_filter(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
VTNET_LOCK_ASSERT(sc);
KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
("CTRL_RX feature not negotiated"));
if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0)
device_printf(dev, "cannot %s promiscuous mode\n",
ifp->if_flags & IFF_PROMISC ? "enable" : "disable");
if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0)
device_printf(dev, "cannot %s all-multicast mode\n",
ifp->if_flags & IFF_ALLMULTI ? "enable" : "disable");
}
static int
vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on)
{
struct virtio_net_ctrl_hdr hdr;
struct sglist_seg segs[3];
struct sglist sg;
uint8_t onoff, ack;
int error;
if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0)
return (ENOTSUP);
error = 0;
hdr.class = VIRTIO_NET_CTRL_RX;
hdr.cmd = cmd;
onoff = !!on;
ack = VIRTIO_NET_ERR;
sglist_init(&sg, 3, segs);
error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
error |= sglist_append(&sg, &onoff, sizeof(uint8_t));
error |= sglist_append(&sg, &ack, sizeof(uint8_t));
KASSERT(error == 0 && sg.sg_nseg == 3,
("error adding Rx filter message to sglist"));
vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
return (ack == VIRTIO_NET_OK ? 0 : EIO);
}
static int
vtnet_set_promisc(struct vtnet_softc *sc, int on)
{
return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on));
}
static int
vtnet_set_allmulti(struct vtnet_softc *sc, int on)
{
return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on));
}
static void
vtnet_rx_filter_mac(struct vtnet_softc *sc)
{
struct virtio_net_ctrl_hdr hdr;
struct vtnet_mac_filter *filter;
struct sglist_seg segs[4];
struct sglist sg;
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifmultiaddr *ifma;
int ucnt, mcnt, promisc, allmulti, error;
uint8_t ack;
ifp = sc->vtnet_ifp;
filter = sc->vtnet_mac_filter;
ucnt = 0;
mcnt = 0;
promisc = 0;
allmulti = 0;
error = 0;
VTNET_LOCK_ASSERT(sc);
KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
("CTRL_RX feature not negotiated"));
/* Unicast MAC addresses: */
if_addr_rlock(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != AF_LINK)
continue;
else if (ucnt == VTNET_MAX_MAC_ENTRIES)
break;
bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
&filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN);
ucnt++;
}
if_addr_runlock(ifp);
if (ucnt >= VTNET_MAX_MAC_ENTRIES) {
promisc = 1;
filter->vmf_unicast.nentries = 0;
if_printf(ifp, "more than %d MAC addresses assigned, "
"falling back to promiscuous mode\n",
VTNET_MAX_MAC_ENTRIES);
} else
filter->vmf_unicast.nentries = ucnt;
/* Multicast MAC addresses: */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
else if (mcnt == VTNET_MAX_MAC_ENTRIES)
break;
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
&filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN);
mcnt++;
}
if_maddr_runlock(ifp);
if (mcnt >= VTNET_MAX_MAC_ENTRIES) {
allmulti = 1;
filter->vmf_multicast.nentries = 0;
if_printf(ifp, "more than %d multicast MAC addresses "
"assigned, falling back to all-multicast mode\n",
VTNET_MAX_MAC_ENTRIES);
} else
filter->vmf_multicast.nentries = mcnt;
if (promisc && allmulti)
goto out;
hdr.class = VIRTIO_NET_CTRL_MAC;
hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
ack = VIRTIO_NET_ERR;
sglist_init(&sg, 4, segs);
error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
error |= sglist_append(&sg, &filter->vmf_unicast,
sizeof(struct vtnet_mac_table));
error |= sglist_append(&sg, &filter->vmf_multicast,
sizeof(struct vtnet_mac_table));
error |= sglist_append(&sg, &ack, sizeof(uint8_t));
KASSERT(error == 0 && sg.sg_nseg == 4,
("error adding MAC filtering message to sglist"));
vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
if (ack != VIRTIO_NET_OK)
if_printf(ifp, "error setting host MAC filter table\n");
out:
if (promisc)
if (vtnet_set_promisc(sc, 1) != 0)
if_printf(ifp, "cannot enable promiscuous mode\n");
if (allmulti)
if (vtnet_set_allmulti(sc, 1) != 0)
if_printf(ifp, "cannot enable all-multicast mode\n");
}
static int
vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
{
struct virtio_net_ctrl_hdr hdr;
struct sglist_seg segs[3];
struct sglist sg;
uint8_t ack;
int error;
hdr.class = VIRTIO_NET_CTRL_VLAN;
hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL;
ack = VIRTIO_NET_ERR;
error = 0;
sglist_init(&sg, 3, segs);
error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
error |= sglist_append(&sg, &tag, sizeof(uint16_t));
error |= sglist_append(&sg, &ack, sizeof(uint8_t));
KASSERT(error == 0 && sg.sg_nseg == 3,
("error adding VLAN control message to sglist"));
vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
return (ack == VIRTIO_NET_OK ? 0 : EIO);
}
static void
vtnet_rx_filter_vlan(struct vtnet_softc *sc)
{
device_t dev;
uint32_t w, mask;
uint16_t tag;
int i, nvlans, error;
VTNET_LOCK_ASSERT(sc);
KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER,
("VLAN_FILTER feature not negotiated"));
dev = sc->vtnet_dev;
nvlans = sc->vtnet_nvlans;
error = 0;
/* Enable filtering for each configured VLAN. */
for (i = 0; i < VTNET_VLAN_SHADOW_SIZE && nvlans > 0; i++) {
w = sc->vtnet_vlan_shadow[i];
for (mask = 1, tag = i * 32; w != 0; mask <<= 1, tag++) {
if ((w & mask) != 0) {
w &= ~mask;
nvlans--;
if (vtnet_exec_vlan_filter(sc, 1, tag) != 0)
error++;
}
}
}
KASSERT(nvlans == 0, ("VLAN count incorrect"));
if (error)
device_printf(dev, "cannot restore VLAN filter table\n");
}
static void
vtnet_set_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
{
struct ifnet *ifp;
int idx, bit;
KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER,
("VLAN_FILTER feature not negotiated"));
if ((tag == 0) || (tag > 4095))
return;
ifp = sc->vtnet_ifp;
idx = (tag >> 5) & 0x7F;
bit = tag & 0x1F;
VTNET_LOCK(sc);
/* Update shadow VLAN table. */
if (add) {
sc->vtnet_nvlans++;
sc->vtnet_vlan_shadow[idx] |= (1 << bit);
} else {
sc->vtnet_nvlans--;
sc->vtnet_vlan_shadow[idx] &= ~(1 << bit);
}
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
if (vtnet_exec_vlan_filter(sc, add, tag) != 0) {
device_printf(sc->vtnet_dev,
"cannot %s VLAN %d %s the host filter table\n",
add ? "add" : "remove", tag,
add ? "to" : "from");
}
}
VTNET_UNLOCK(sc);
}
static void
vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
{
if (ifp->if_softc != arg)
return;
vtnet_set_vlan_filter(arg, 1, tag);
}
static void
vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
{
if (ifp->if_softc != arg)
return;
vtnet_set_vlan_filter(arg, 0, tag);
}
static int
vtnet_ifmedia_upd(struct ifnet *ifp)
{
struct vtnet_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->vtnet_media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
return (0);
}
static void
vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vtnet_softc *sc;
sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
VTNET_LOCK(sc);
if (vtnet_is_link_up(sc) != 0) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= VTNET_MEDIATYPE;
} else
ifmr->ifm_active |= IFM_NONE;
VTNET_UNLOCK(sc);
}
static void
vtnet_add_statistics(struct vtnet_softc *sc)
{
device_t dev;
struct vtnet_statistics *stats;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree;
struct sysctl_oid_list *child;
dev = sc->vtnet_dev;
stats = &sc->vtnet_stats;
ctx = device_get_sysctl_ctx(dev);
tree = device_get_sysctl_tree(dev);
child = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_failed",
CTLFLAG_RD, &stats->mbuf_alloc_failed,
"Mbuf cluster allocation failures");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_frame_too_large",
CTLFLAG_RD, &stats->rx_frame_too_large,
"Received frame larger than the mbuf chain");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_enq_replacement_failed",
CTLFLAG_RD, &stats->rx_enq_replacement_failed,
"Enqueuing the replacement receive mbuf failed");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_mergeable_failed",
CTLFLAG_RD, &stats->rx_mergeable_failed,
"Mergeable buffers receive failures");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ethtype",
CTLFLAG_RD, &stats->rx_csum_bad_ethtype,
"Received checksum offloaded buffer with unsupported "
"Ethernet type");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_start",
CTLFLAG_RD, &stats->rx_csum_bad_start,
"Received checksum offloaded buffer with incorrect start offset");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ipproto",
CTLFLAG_RD, &stats->rx_csum_bad_ipproto,
"Received checksum offloaded buffer with incorrect IP protocol");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_offset",
CTLFLAG_RD, &stats->rx_csum_bad_offset,
"Received checksum offloaded buffer with incorrect offset");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_failed",
CTLFLAG_RD, &stats->rx_csum_failed,
"Received buffer checksum offload failed");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_offloaded",
CTLFLAG_RD, &stats->rx_csum_offloaded,
"Received buffer checksum offload succeeded");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_task_rescheduled",
CTLFLAG_RD, &stats->rx_task_rescheduled,
"Times the receive interrupt task rescheduled itself");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_offloaded",
CTLFLAG_RD, &stats->tx_csum_offloaded,
"Offloaded checksum of transmitted buffer");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_offloaded",
CTLFLAG_RD, &stats->tx_tso_offloaded,
"Segmentation offload of transmitted buffer");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_bad_ethtype",
CTLFLAG_RD, &stats->tx_csum_bad_ethtype,
"Aborted transmit of checksum offloaded buffer with unknown "
"Ethernet type");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_bad_ethtype",
CTLFLAG_RD, &stats->tx_tso_bad_ethtype,
"Aborted transmit of TSO buffer with unknown Ethernet type");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_task_rescheduled",
CTLFLAG_RD, &stats->tx_task_rescheduled,
"Times the transmit interrupt task rescheduled itself");
}
static int
vtnet_enable_rx_intr(struct vtnet_softc *sc)
{
return (virtqueue_enable_intr(sc->vtnet_rx_vq));
}
static void
vtnet_disable_rx_intr(struct vtnet_softc *sc)
{
virtqueue_disable_intr(sc->vtnet_rx_vq);
}
static int
vtnet_enable_tx_intr(struct vtnet_softc *sc)
{
#ifdef VTNET_TX_INTR_MODERATION
return (0);
#else
return (virtqueue_enable_intr(sc->vtnet_tx_vq));
#endif
}
static void
vtnet_disable_tx_intr(struct vtnet_softc *sc)
{
virtqueue_disable_intr(sc->vtnet_tx_vq);
}