freebsd-nq/sys/dev/msk/if_msk.c
Pyun YongHyeon 79dd979a7d Fix typo.
2009-03-25 07:05:23 +00:00

4245 lines
124 KiB
C

/******************************************************************************
*
* Name : sky2.c
* Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
* Version: $Revision: 1.23 $
* Date : $Date: 2005/12/22 09:04:11 $
* Purpose: Main driver source file
*
*****************************************************************************/
/******************************************************************************
*
* LICENSE:
* Copyright (C) Marvell International Ltd. and/or its affiliates
*
* The computer program files contained in this folder ("Files")
* are provided to you under the BSD-type license terms provided
* below, and any use of such Files and any derivative works
* thereof created by you shall be governed by the following terms
* and conditions:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* - Neither the name of Marvell nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* /LICENSE
*
*****************************************************************************/
/*-
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Device driver for the Marvell Yukon II Ethernet controller.
* Due to lack of documentation, this driver is based on the code from
* sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/msk/if_mskreg.h>
MODULE_DEPEND(msk, pci, 1, 1, 1);
MODULE_DEPEND(msk, ether, 1, 1, 1);
MODULE_DEPEND(msk, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/* Tunables. */
static int msi_disable = 0;
TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
static int legacy_intr = 0;
TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
static int jumbo_disable = 0;
TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
#define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
/*
* Devices supported by this driver.
*/
static struct msk_product {
uint16_t msk_vendorid;
uint16_t msk_deviceid;
const char *msk_name;
} msk_products[] = {
{ VENDORID_SK, DEVICEID_SK_YUKON2,
"SK-9Sxx Gigabit Ethernet" },
{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
"SK-9Exx Gigabit Ethernet"},
{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
"Marvell Yukon 88E8021CU Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
"Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
"Marvell Yukon 88E8022CU Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
"Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
"Marvell Yukon 88E8061CU Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
"Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
"Marvell Yukon 88E8062CU Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
"Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
"Marvell Yukon 88E8035 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
"Marvell Yukon 88E8036 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
"Marvell Yukon 88E8038 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
"Marvell Yukon 88E8039 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
"Marvell Yukon 88E8050 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
"Marvell Yukon 88E8052 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
"Marvell Yukon 88E8053 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
"Marvell Yukon 88E8055 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
"Marvell Yukon 88E8056 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
"Marvell Yukon 88E8058 Gigabit Ethernet" },
{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
"D-Link 550SX Gigabit Ethernet" },
{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
"D-Link 560T Gigabit Ethernet" }
};
static const char *model_name[] = {
"Yukon XL",
"Yukon EC Ultra",
"Yukon Unknown",
"Yukon EC",
"Yukon FE"
};
static int mskc_probe(device_t);
static int mskc_attach(device_t);
static int mskc_detach(device_t);
static int mskc_shutdown(device_t);
static int mskc_setup_rambuffer(struct msk_softc *);
static int mskc_suspend(device_t);
static int mskc_resume(device_t);
static void mskc_reset(struct msk_softc *);
static int msk_probe(device_t);
static int msk_attach(device_t);
static int msk_detach(device_t);
static void msk_tick(void *);
static void msk_legacy_intr(void *);
static int msk_intr(void *);
static void msk_int_task(void *, int);
static void msk_intr_phy(struct msk_if_softc *);
static void msk_intr_gmac(struct msk_if_softc *);
static __inline void msk_rxput(struct msk_if_softc *);
static int msk_handle_events(struct msk_softc *);
static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
static void msk_intr_hwerr(struct msk_softc *);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void msk_fixup_rx(struct mbuf *);
#endif
static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
static void msk_txeof(struct msk_if_softc *, int);
static int msk_encap(struct msk_if_softc *, struct mbuf **);
static void msk_tx_task(void *, int);
static void msk_start(struct ifnet *);
static int msk_ioctl(struct ifnet *, u_long, caddr_t);
static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
static void msk_set_rambuffer(struct msk_if_softc *);
static void msk_init(void *);
static void msk_init_locked(struct msk_if_softc *);
static void msk_stop(struct msk_if_softc *);
static void msk_watchdog(struct msk_if_softc *);
static int msk_mediachange(struct ifnet *);
static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
static void msk_phy_power(struct msk_softc *, int);
static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int msk_status_dma_alloc(struct msk_softc *);
static void msk_status_dma_free(struct msk_softc *);
static int msk_txrx_dma_alloc(struct msk_if_softc *);
static int msk_rx_dma_jalloc(struct msk_if_softc *);
static void msk_txrx_dma_free(struct msk_if_softc *);
static void msk_rx_dma_jfree(struct msk_if_softc *);
static int msk_init_rx_ring(struct msk_if_softc *);
static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
static void msk_init_tx_ring(struct msk_if_softc *);
static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
static int msk_newbuf(struct msk_if_softc *, int);
static int msk_jumbo_newbuf(struct msk_if_softc *, int);
static int msk_phy_readreg(struct msk_if_softc *, int, int);
static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
static int msk_miibus_readreg(device_t, int, int);
static int msk_miibus_writereg(device_t, int, int, int);
static void msk_miibus_statchg(device_t);
static void msk_link_task(void *, int);
static void msk_rxfilter(struct msk_if_softc *);
static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
static void msk_stats_clear(struct msk_if_softc *);
static void msk_stats_update(struct msk_if_softc *);
static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
static void msk_sysctl_node(struct msk_if_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
static device_method_t mskc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mskc_probe),
DEVMETHOD(device_attach, mskc_attach),
DEVMETHOD(device_detach, mskc_detach),
DEVMETHOD(device_suspend, mskc_suspend),
DEVMETHOD(device_resume, mskc_resume),
DEVMETHOD(device_shutdown, mskc_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{ NULL, NULL }
};
static driver_t mskc_driver = {
"mskc",
mskc_methods,
sizeof(struct msk_softc)
};
static devclass_t mskc_devclass;
static device_method_t msk_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, msk_probe),
DEVMETHOD(device_attach, msk_attach),
DEVMETHOD(device_detach, msk_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, msk_miibus_readreg),
DEVMETHOD(miibus_writereg, msk_miibus_writereg),
DEVMETHOD(miibus_statchg, msk_miibus_statchg),
{ NULL, NULL }
};
static driver_t msk_driver = {
"msk",
msk_methods,
sizeof(struct msk_if_softc)
};
static devclass_t msk_devclass;
DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec msk_res_spec_io[] = {
{ SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec msk_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec msk_irq_spec_legacy[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec msk_irq_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec msk_irq_spec_msi2[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ SYS_RES_IRQ, 2, RF_ACTIVE },
{ -1, 0, 0 }
};
static int
msk_miibus_readreg(device_t dev, int phy, int reg)
{
struct msk_if_softc *sc_if;
if (phy != PHY_ADDR_MARV)
return (0);
sc_if = device_get_softc(dev);
return (msk_phy_readreg(sc_if, phy, reg));
}
static int
msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
{
struct msk_softc *sc;
int i, val;
sc = sc_if->msk_softc;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < MSK_TIMEOUT; i++) {
DELAY(1);
val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
if ((val & GM_SMI_CT_RD_VAL) != 0) {
val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
break;
}
}
if (i == MSK_TIMEOUT) {
if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
val = 0;
}
return (val);
}
static int
msk_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct msk_if_softc *sc_if;
if (phy != PHY_ADDR_MARV)
return (0);
sc_if = device_get_softc(dev);
return (msk_phy_writereg(sc_if, phy, reg, val));
}
static int
msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
{
struct msk_softc *sc;
int i;
sc = sc_if->msk_softc;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < MSK_TIMEOUT; i++) {
DELAY(1);
if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
GM_SMI_CT_BUSY) == 0)
break;
}
if (i == MSK_TIMEOUT)
if_printf(sc_if->msk_ifp, "phy write timeout\n");
return (0);
}
static void
msk_miibus_statchg(device_t dev)
{
struct msk_if_softc *sc_if;
sc_if = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
}
static void
msk_link_task(void *arg, int pending)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t gmac;
sc_if = (struct msk_if_softc *)arg;
sc = sc_if->msk_softc;
MSK_IF_LOCK(sc_if);
mii = device_get_softc(sc_if->msk_miibus);
ifp = sc_if->msk_ifp;
if (mii == NULL || ifp == NULL) {
MSK_IF_UNLOCK(sc_if);
return;
}
if (mii->mii_media_status & IFM_ACTIVE) {
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc_if->msk_link = 1;
} else
sc_if->msk_link = 0;
if (sc_if->msk_link != 0) {
/* Enable Tx FIFO Underrun. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
/*
* Because mii(4) notify msk(4) that it detected link status
* change, there is no need to enable automatic
* speed/flow-control/duplex updates.
*/
gmac = GM_GPCR_AU_ALL_DIS;
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_SX:
case IFM_1000_T:
gmac |= GM_GPCR_SPEED_1000;
break;
case IFM_100_TX:
gmac |= GM_GPCR_SPEED_100;
break;
case IFM_10_T:
break;
}
if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
gmac |= GM_GPCR_DUP_FULL;
/* Disable Rx flow control. */
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
gmac |= GM_GPCR_FC_RX_DIS;
/* Disable Tx flow control. */
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
gmac |= GM_GPCR_FC_TX_DIS;
gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
/* Read again to ensure writing. */
GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
gmac = GMC_PAUSE_ON;
if (((mii->mii_media_active & IFM_GMASK) &
(IFM_FLAG0 | IFM_FLAG1)) == 0)
gmac = GMC_PAUSE_OFF;
/* Diable pause for 10/100 Mbps in half-duplex mode. */
if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
(IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
gmac = GMC_PAUSE_OFF;
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
/* Enable PHY interrupt for FIFO underrun/overflow. */
msk_phy_writereg(sc_if, PHY_ADDR_MARV,
PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
} else {
/*
* Link state changed to down.
* Disable PHY interrupts.
*/
msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
/* Disable Rx/Tx MAC. */
gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
/* Read again to ensure writing. */
GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
}
MSK_IF_UNLOCK(sc_if);
}
static void
msk_rxfilter(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t mchash[2];
uint32_t crc;
uint16_t mode;
sc = sc_if->msk_softc;
MSK_IF_LOCK_ASSERT(sc_if);
ifp = sc_if->msk_ifp;
bzero(mchash, sizeof(mchash));
mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
if ((ifp->if_flags & IFF_PROMISC) != 0)
mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
mchash[0] = 0xffff;
mchash[1] = 0xffff;
} else {
mode |= GM_RXCR_UCF_ENA;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 5] |= 1 << (crc & 0x1f);
}
IF_ADDR_UNLOCK(ifp);
if (mchash[0] != 0 || mchash[1] != 0)
mode |= GM_RXCR_MCF_ENA;
}
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
mchash[0] & 0xffff);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
(mchash[0] >> 16) & 0xffff);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
mchash[1] & 0xffff);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
(mchash[1] >> 16) & 0xffff);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
}
static void
msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
{
struct msk_softc *sc;
sc = sc_if->msk_softc;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
RX_VLAN_STRIP_ON);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
TX_VLAN_TAG_ON);
} else {
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
RX_VLAN_STRIP_OFF);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
TX_VLAN_TAG_OFF);
}
}
static int
msk_init_rx_ring(struct msk_if_softc *sc_if)
{
struct msk_ring_data *rd;
struct msk_rxdesc *rxd;
int i, prod;
MSK_IF_LOCK_ASSERT(sc_if);
sc_if->msk_cdata.msk_rx_cons = 0;
sc_if->msk_cdata.msk_rx_prod = 0;
sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
rd = &sc_if->msk_rdata;
bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
prod = sc_if->msk_cdata.msk_rx_prod;
for (i = 0; i < MSK_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
rxd->rx_m = NULL;
rxd->rx_le = &rd->msk_rx_ring[prod];
if (msk_newbuf(sc_if, prod) != 0)
return (ENOBUFS);
MSK_INC(prod, MSK_RX_RING_CNT);
}
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_cdata.msk_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Update prefetch unit. */
sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
CSR_WRITE_2(sc_if->msk_softc,
Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
sc_if->msk_cdata.msk_rx_prod);
return (0);
}
static int
msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
{
struct msk_ring_data *rd;
struct msk_rxdesc *rxd;
int i, prod;
MSK_IF_LOCK_ASSERT(sc_if);
sc_if->msk_cdata.msk_rx_cons = 0;
sc_if->msk_cdata.msk_rx_prod = 0;
sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
rd = &sc_if->msk_rdata;
bzero(rd->msk_jumbo_rx_ring,
sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
prod = sc_if->msk_cdata.msk_rx_prod;
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
rxd->rx_m = NULL;
rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
if (msk_jumbo_newbuf(sc_if, prod) != 0)
return (ENOBUFS);
MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
}
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_cdata.msk_jumbo_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
CSR_WRITE_2(sc_if->msk_softc,
Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
sc_if->msk_cdata.msk_rx_prod);
return (0);
}
static void
msk_init_tx_ring(struct msk_if_softc *sc_if)
{
struct msk_ring_data *rd;
struct msk_txdesc *txd;
int i;
sc_if->msk_cdata.msk_tso_mtu = 0;
sc_if->msk_cdata.msk_tx_prod = 0;
sc_if->msk_cdata.msk_tx_cons = 0;
sc_if->msk_cdata.msk_tx_cnt = 0;
rd = &sc_if->msk_rdata;
bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
for (i = 0; i < MSK_TX_RING_CNT; i++) {
txd = &sc_if->msk_cdata.msk_txdesc[i];
txd->tx_m = NULL;
txd->tx_le = &rd->msk_tx_ring[i];
}
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static __inline void
msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
{
struct msk_rx_desc *rx_le;
struct msk_rxdesc *rxd;
struct mbuf *m;
rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
m = rxd->rx_m;
rx_le = rxd->rx_le;
rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
}
static __inline void
msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx)
{
struct msk_rx_desc *rx_le;
struct msk_rxdesc *rxd;
struct mbuf *m;
rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
m = rxd->rx_m;
rx_le = rxd->rx_le;
rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
}
static int
msk_newbuf(struct msk_if_softc *sc_if, int idx)
{
struct msk_rx_desc *rx_le;
struct msk_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
m_adj(m, ETHER_ALIGN);
#ifndef __NO_STRICT_ALIGNMENT
else
m_adj(m, MSK_RX_BUF_ALIGN);
#endif
if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
sc_if->msk_cdata.msk_rx_sparemap = map;
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rx_le = rxd->rx_le;
rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
rx_le->msk_control =
htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
return (0);
}
static int
msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
{
struct msk_rx_desc *rx_le;
struct msk_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
if (m == NULL)
return (ENOBUFS);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
m->m_len = m->m_pkthdr.len = MJUM9BYTES;
if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
m_adj(m, ETHER_ALIGN);
#ifndef __NO_STRICT_ALIGNMENT
else
m_adj(m, MSK_RX_BUF_ALIGN);
#endif
if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rx_le = rxd->rx_le;
rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
rx_le->msk_control =
htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
return (0);
}
/*
* Set media options.
*/
static int
msk_mediachange(struct ifnet *ifp)
{
struct msk_if_softc *sc_if;
struct mii_data *mii;
sc_if = ifp->if_softc;
MSK_IF_LOCK(sc_if);
mii = device_get_softc(sc_if->msk_miibus);
mii_mediachg(mii);
MSK_IF_UNLOCK(sc_if);
return (0);
}
/*
* Report current media status.
*/
static void
msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct msk_if_softc *sc_if;
struct mii_data *mii;
sc_if = ifp->if_softc;
MSK_IF_LOCK(sc_if);
mii = device_get_softc(sc_if->msk_miibus);
mii_pollstat(mii);
MSK_IF_UNLOCK(sc_if);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static int
msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct msk_if_softc *sc_if;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc_if = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch(command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
if ((sc_if->msk_flags & MSK_FLAG_NOJUMBO) != 0 &&
ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else {
MSK_IF_LOCK(sc_if);
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
msk_init_locked(sc_if);
MSK_IF_UNLOCK(sc_if);
}
}
break;
case SIOCSIFFLAGS:
MSK_IF_LOCK(sc_if);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc_if->msk_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
msk_rxfilter(sc_if);
} else {
if (sc_if->msk_detach == 0)
msk_init_locked(sc_if);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
msk_stop(sc_if);
}
sc_if->msk_if_flags = ifp->if_flags;
MSK_IF_UNLOCK(sc_if);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
MSK_IF_LOCK(sc_if);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
msk_rxfilter(sc_if);
MSK_IF_UNLOCK(sc_if);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc_if->msk_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
MSK_IF_LOCK(sc_if);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0)
ifp->if_hwassist |= MSK_CSUM_FEATURES;
else
ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
}
if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
msk_setvlan(sc_if, ifp);
}
if ((mask & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
(IFCAP_TSO4 & ifp->if_capabilities) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if (ifp->if_mtu > ETHERMTU &&
sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
/*
* In Yukon EC Ultra, TSO & checksum offload is not
* supported for jumbo frame.
*/
ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
}
VLAN_CAPABILITIES(ifp);
MSK_IF_UNLOCK(sc_if);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
mskc_probe(device_t dev)
{
struct msk_product *mp;
uint16_t vendor, devid;
int i;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
mp = msk_products;
for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
i++, mp++) {
if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
device_set_desc(dev, mp->msk_name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
mskc_setup_rambuffer(struct msk_softc *sc)
{
int next;
int i;
/* Get adapter SRAM size. */
sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
if (bootverbose)
device_printf(sc->msk_dev,
"RAM buffer size : %dKB\n", sc->msk_ramsize);
if (sc->msk_ramsize == 0)
return (0);
sc->msk_pflags |= MSK_FLAG_RAMBUF;
/*
* Give receiver 2/3 of memory and round down to the multiple
* of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
* of 1024.
*/
sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
for (i = 0, next = 0; i < sc->msk_num_port; i++) {
sc->msk_rxqstart[i] = next;
sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
next = sc->msk_rxqend[i] + 1;
sc->msk_txqstart[i] = next;
sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
next = sc->msk_txqend[i] + 1;
if (bootverbose) {
device_printf(sc->msk_dev,
"Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
sc->msk_rxqend[i]);
device_printf(sc->msk_dev,
"Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
sc->msk_txqsize / 1024, sc->msk_txqstart[i],
sc->msk_txqend[i]);
}
}
return (0);
}
static void
msk_phy_power(struct msk_softc *sc, int mode)
{
uint32_t val;
int i;
switch (mode) {
case MSK_PHY_POWERUP:
/* Switch power to VCC (WA for VAUX problem). */
CSR_WRITE_1(sc, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* Disable Core Clock Division, set Clock Select to 0. */
CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
val = 0;
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
/* Enable bits are inverted. */
val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
}
/*
* Enable PCI & Core Clock, enable clock gating for both Links.
*/
CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
/* Deassert Low Power for 1st PHY. */
val |= PCI_Y2_PHY1_COMA;
if (sc->msk_num_port > 1)
val |= PCI_Y2_PHY2_COMA;
} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
uint32_t our;
CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
/* Enable all clocks. */
pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
/* Set all bits to 0 except bits 15..12. */
pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
/* Set to default value. */
pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
}
/* Release PHY from PowerDown/COMA mode. */
pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
for (i = 0; i < sc->msk_num_port; i++) {
CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
GMLC_RST_SET);
CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
GMLC_RST_CLR);
}
break;
case MSK_PHY_POWERDOWN:
val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
val &= ~PCI_Y2_PHY1_COMA;
if (sc->msk_num_port > 1)
val &= ~PCI_Y2_PHY2_COMA;
}
pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
/* Enable bits are inverted. */
val = 0;
}
/*
* Disable PCI & Core Clock, disable clock gating for
* both Links.
*/
CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
CSR_WRITE_1(sc, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
break;
default:
break;
}
}
static void
mskc_reset(struct msk_softc *sc)
{
bus_addr_t addr;
uint16_t status;
uint32_t val;
int i;
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
/* Disable ASF. */
if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
}
/*
* Since we disabled ASF, S/W reset is required for Power Management.
*/
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
/* Clear all error bits in the PCI status register. */
status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_write_config(sc->msk_dev, PCIR_STATUS, status |
PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
switch (sc->msk_bustype) {
case MSK_PEX_BUS:
/* Clear all PEX errors. */
CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
if ((val & PEX_RX_OV) != 0) {
sc->msk_intrmask &= ~Y2_IS_HW_ERR;
sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
}
break;
case MSK_PCI_BUS:
case MSK_PCIX_BUS:
/* Set Cache Line Size to 2(8bytes) if configured to 0. */
val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
if (val == 0)
pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
if (sc->msk_bustype == MSK_PCIX_BUS) {
/* Set Cache Line Size opt. */
val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
val |= PCI_CLS_OPT;
pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
}
break;
}
/* Set PHY power state. */
msk_phy_power(sc, MSK_PHY_POWERUP);
/* Reset GPHY/GMAC Control */
for (i = 0; i < sc->msk_num_port; i++) {
/* GPHY Control reset. */
CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
/* GMAC Control reset. */
CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
}
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* LED On. */
CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
/* Clear TWSI IRQ. */
CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
/* Turn off hardware timer. */
CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
/* Turn off descriptor polling. */
CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
/* Turn off time stamps. */
CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
/* Configure timeout values. */
for (i = 0; i < sc->msk_num_port; i++) {
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
MSK_RI_TO_53);
}
/* Disable all interrupts. */
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
CSR_READ_4(sc, B0_HWE_IMSK);
CSR_WRITE_4(sc, B0_IMSK, 0);
CSR_READ_4(sc, B0_IMSK);
/*
* On dual port PCI-X card, there is an problem where status
* can be received out of order due to split transactions.
*/
if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
int pcix;
uint16_t pcix_cmd;
if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
/* Clear Max Outstanding Split Transactions. */
pcix_cmd &= ~0x70;
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
}
if (sc->msk_bustype == MSK_PEX_BUS) {
uint16_t v, width;
v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
/* Change Max. Read Request Size to 4096 bytes. */
v &= ~PEX_DC_MAX_RRS_MSK;
v |= PEX_DC_MAX_RD_RQ_SIZE(5);
pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
width = (width & PEX_LS_LINK_WI_MSK) >> 4;
v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
v = (v & PEX_LS_LINK_WI_MSK) >> 4;
if (v != width)
device_printf(sc->msk_dev,
"negotiated width of link(x%d) != "
"max. width of link(x%d)\n", width, v);
}
/* Clear status list. */
bzero(sc->msk_stat_ring,
sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
sc->msk_stat_cons = 0;
bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
/* Set the status list base address. */
addr = sc->msk_stat_ring_paddr;
CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
/* Set the status list last index. */
CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
/* WA for dev. #4.3 */
CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
/* WA for dev. #4.18 */
CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
} else {
CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
else
CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
}
/*
* Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
*/
CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
/* Enable status unit. */
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
}
static int
msk_probe(device_t dev)
{
struct msk_softc *sc;
char desc[100];
sc = device_get_softc(device_get_parent(dev));
/*
* Not much to do here. We always know there will be
* at least one GMAC present, and if there are two,
* mskc_attach() will create a second device instance
* for us.
*/
snprintf(desc, sizeof(desc),
"Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
sc->msk_hw_rev);
device_set_desc_copy(dev, desc);
return (BUS_PROBE_DEFAULT);
}
static int
msk_attach(device_t dev)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if;
struct ifnet *ifp;
int i, port, error;
uint8_t eaddr[6];
if (dev == NULL)
return (EINVAL);
error = 0;
sc_if = device_get_softc(dev);
sc = device_get_softc(device_get_parent(dev));
port = *(int *)device_get_ivars(dev);
sc_if->msk_if_dev = dev;
sc_if->msk_port = port;
sc_if->msk_softc = sc;
sc_if->msk_flags = sc->msk_pflags;
sc->msk_if[port] = sc_if;
/* Setup Tx/Rx queue register offsets. */
if (port == MSK_PORT_A) {
sc_if->msk_txq = Q_XA1;
sc_if->msk_txsq = Q_XS1;
sc_if->msk_rxq = Q_R1;
} else {
sc_if->msk_txq = Q_XA2;
sc_if->msk_txsq = Q_XS2;
sc_if->msk_rxq = Q_R2;
}
callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
msk_sysctl_node(sc_if);
/* Disable jumbo frame for Yukon FE. */
if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE)
sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
if ((error = msk_txrx_dma_alloc(sc_if) != 0))
goto fail;
msk_rx_dma_jalloc(sc_if);
ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc_if;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
/*
* IFCAP_RXCSUM capability is intentionally disabled as the hardware
* has serious bug in Rx checksum offload for all Yukon II family
* hardware. It seems there is a workaround to make it work somtimes.
* However, the workaround also have to check OP code sequences to
* verify whether the OP code is correct. Sometimes it should compute
* IP/TCP/UDP checksum in driver in order to verify correctness of
* checksum computed by hardware. If you have to compute checksum
* with software to verify the hardware's checksum why have hardware
* compute the checksum? I think there is no reason to spend time to
* make Rx checksum offload work on Yukon II hardware.
*/
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_ioctl = msk_ioctl;
ifp->if_start = msk_start;
ifp->if_timer = 0;
ifp->if_watchdog = NULL;
ifp->if_init = msk_init;
IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
/*
* Get station address for this interface. Note that
* dual port cards actually come with three station
* addresses: one for each port, plus an extra. The
* extra one is used by the SysKonnect driver software
* as a 'virtual' station address for when both ports
* are operating in failover mode. Currently we don't
* use this extra address.
*/
MSK_IF_LOCK(sc_if);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
/*
* Call MI attach routine. Can't hold locks when calling into ether_*.
*/
MSK_IF_UNLOCK(sc_if);
ether_ifattach(ifp, eaddr);
MSK_IF_LOCK(sc_if);
/*
* VLAN capability setup
* Due to Tx checksum offload hardware bugs, msk(4) manually
* computes checksum for short frames. For VLAN tagged frames
* this workaround does not work so disable checksum offload
* for VLAN interface.
*/
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
ifp->if_capenable = ifp->if_capabilities;
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/*
* Do miibus setup.
*/
MSK_IF_UNLOCK(sc_if);
error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
msk_mediastatus);
if (error != 0) {
device_printf(sc_if->msk_if_dev, "no PHY found!\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
fail:
if (error != 0) {
/* Access should be ok even though lock has been dropped */
sc->msk_if[port] = NULL;
msk_detach(dev);
}
return (error);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
mskc_attach(device_t dev)
{
struct msk_softc *sc;
int error, msic, msir, *port, reg;
sc = device_get_softc(dev);
sc->msk_dev = dev;
mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
/* Allocate I/O resource */
#ifdef MSK_USEIOSPACE
sc->msk_res_spec = msk_res_spec_io;
#else
sc->msk_res_spec = msk_res_spec_mem;
#endif
sc->msk_irq_spec = msk_irq_spec_legacy;
error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
if (error) {
if (sc->msk_res_spec == msk_res_spec_mem)
sc->msk_res_spec = msk_res_spec_io;
else
sc->msk_res_spec = msk_res_spec_mem;
error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
if (error) {
device_printf(dev, "couldn't allocate %s resources\n",
sc->msk_res_spec == msk_res_spec_mem ? "memory" :
"I/O");
mtx_destroy(&sc->msk_mtx);
return (ENXIO);
}
}
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
/* Bail out if chip is not recognized. */
if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
sc->msk_hw_id > CHIP_ID_YUKON_FE) {
device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
sc->msk_hw_id, sc->msk_hw_rev);
mtx_destroy(&sc->msk_mtx);
return (ENXIO);
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
&sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
"max number of Rx events to process");
sc->msk_process_limit = MSK_PROC_DEFAULT;
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
"process_limit", &sc->msk_process_limit);
if (error == 0) {
if (sc->msk_process_limit < MSK_PROC_MIN ||
sc->msk_process_limit > MSK_PROC_MAX) {
device_printf(dev, "process_limit value out of range; "
"using default: %d\n", MSK_PROC_DEFAULT);
sc->msk_process_limit = MSK_PROC_DEFAULT;
}
}
/* Soft reset. */
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
sc->msk_coppertype = 0;
else
sc->msk_coppertype = 1;
/* Check number of MACs. */
sc->msk_num_port = 1;
if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
CFG_DUAL_MAC_MSK) {
if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
sc->msk_num_port++;
}
/* Check bus type. */
if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
sc->msk_bustype = MSK_PEX_BUS;
else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
sc->msk_bustype = MSK_PCIX_BUS;
else
sc->msk_bustype = MSK_PCI_BUS;
switch (sc->msk_hw_id) {
case CHIP_ID_YUKON_EC:
case CHIP_ID_YUKON_EC_U:
sc->msk_clock = 125; /* 125 Mhz */
break;
case CHIP_ID_YUKON_FE:
sc->msk_clock = 100; /* 100 Mhz */
break;
case CHIP_ID_YUKON_XL:
sc->msk_clock = 156; /* 156 Mhz */
break;
default:
sc->msk_clock = 156; /* 156 Mhz */
break;
}
/* Allocate IRQ resources. */
msic = pci_msi_count(dev);
if (bootverbose)
device_printf(dev, "MSI count : %d\n", msic);
/*
* The Yukon II reports it can handle two messages, one for each
* possible port. We go ahead and allocate two messages and only
* setup a handler for both if we have a dual port card.
*
* XXX: I haven't untangled the interrupt handler to handle dual
* port cards with separate MSI messages, so for now I disable MSI
* on dual port cards.
*/
if (legacy_intr != 0)
msi_disable = 1;
if (msi_disable == 0) {
switch (msic) {
case 2:
case 1: /* 88E8058 reports 1 MSI message */
msir = msic;
if (sc->msk_num_port == 1 &&
pci_alloc_msi(dev, &msir) == 0) {
if (msic == msir) {
sc->msk_msi = 1;
sc->msk_irq_spec = msic == 2 ?
msk_irq_spec_msi2 :
msk_irq_spec_msi;
} else
pci_release_msi(dev);
}
break;
default:
device_printf(dev,
"Unexpected number of MSI messages : %d\n", msic);
break;
}
}
error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
if (error) {
device_printf(dev, "couldn't allocate IRQ resources\n");
goto fail;
}
if ((error = msk_status_dma_alloc(sc)) != 0)
goto fail;
/* Set base interrupt mask. */
sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
/* Reset the adapter. */
mskc_reset(sc);
if ((error = mskc_setup_rambuffer(sc)) != 0)
goto fail;
sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
if (sc->msk_devs[MSK_PORT_A] == NULL) {
device_printf(dev, "failed to add child for PORT_A\n");
error = ENXIO;
goto fail;
}
port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
if (port == NULL) {
device_printf(dev, "failed to allocate memory for "
"ivars of PORT_A\n");
error = ENXIO;
goto fail;
}
*port = MSK_PORT_A;
device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
if (sc->msk_num_port > 1) {
sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
if (sc->msk_devs[MSK_PORT_B] == NULL) {
device_printf(dev, "failed to add child for PORT_B\n");
error = ENXIO;
goto fail;
}
port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
if (port == NULL) {
device_printf(dev, "failed to allocate memory for "
"ivars of PORT_B\n");
error = ENXIO;
goto fail;
}
*port = MSK_PORT_B;
device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
}
error = bus_generic_attach(dev);
if (error) {
device_printf(dev, "failed to attach port(s)\n");
goto fail;
}
/* Hook interrupt last to avoid having to lock softc. */
if (legacy_intr)
error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
INTR_MPSAFE, NULL, msk_legacy_intr, sc,
&sc->msk_intrhand[0]);
else {
TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->msk_tq);
taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->msk_dev));
error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
}
if (error != 0) {
device_printf(dev, "couldn't set up interrupt handler\n");
if (legacy_intr == 0)
taskqueue_free(sc->msk_tq);
sc->msk_tq = NULL;
goto fail;
}
fail:
if (error != 0)
mskc_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
msk_detach(device_t dev)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if;
struct ifnet *ifp;
sc_if = device_get_softc(dev);
KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
("msk mutex not initialized in msk_detach"));
MSK_IF_LOCK(sc_if);
ifp = sc_if->msk_ifp;
if (device_is_attached(dev)) {
/* XXX */
sc_if->msk_detach = 1;
msk_stop(sc_if);
/* Can't hold locks while calling detach. */
MSK_IF_UNLOCK(sc_if);
callout_drain(&sc_if->msk_tick_ch);
taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
ether_ifdetach(ifp);
MSK_IF_LOCK(sc_if);
}
/*
* We're generally called from mskc_detach() which is using
* device_delete_child() to get to here. It's already trashed
* miibus for us, so don't do it here or we'll panic.
*
* if (sc_if->msk_miibus != NULL) {
* device_delete_child(dev, sc_if->msk_miibus);
* sc_if->msk_miibus = NULL;
* }
*/
msk_rx_dma_jfree(sc_if);
msk_txrx_dma_free(sc_if);
bus_generic_detach(dev);
if (ifp)
if_free(ifp);
sc = sc_if->msk_softc;
sc->msk_if[sc_if->msk_port] = NULL;
MSK_IF_UNLOCK(sc_if);
return (0);
}
static int
mskc_detach(device_t dev)
{
struct msk_softc *sc;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
if (device_is_alive(dev)) {
if (sc->msk_devs[MSK_PORT_A] != NULL) {
free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
M_DEVBUF);
device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
}
if (sc->msk_devs[MSK_PORT_B] != NULL) {
free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
M_DEVBUF);
device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
}
bus_generic_detach(dev);
}
/* Disable all interrupts. */
CSR_WRITE_4(sc, B0_IMSK, 0);
CSR_READ_4(sc, B0_IMSK);
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
CSR_READ_4(sc, B0_HWE_IMSK);
/* LED Off. */
CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
/* Put hardware reset. */
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
msk_status_dma_free(sc);
if (legacy_intr == 0 && sc->msk_tq != NULL) {
taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
taskqueue_free(sc->msk_tq);
sc->msk_tq = NULL;
}
if (sc->msk_intrhand[0]) {
bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
sc->msk_intrhand[0] = NULL;
}
if (sc->msk_intrhand[1]) {
bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
sc->msk_intrhand[1] = NULL;
}
bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
if (sc->msk_msi)
pci_release_msi(dev);
bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
mtx_destroy(&sc->msk_mtx);
return (0);
}
struct msk_dmamap_arg {
bus_addr_t msk_busaddr;
};
static void
msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct msk_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->msk_busaddr = segs[0].ds_addr;
}
/* Create status DMA region. */
static int
msk_status_dma_alloc(struct msk_softc *sc)
{
struct msk_dmamap_arg ctx;
int error;
error = bus_dma_tag_create(
bus_get_dma_tag(sc->msk_dev), /* parent */
MSK_STAT_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_STAT_RING_SZ, /* maxsize */
1, /* nsegments */
MSK_STAT_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->msk_stat_tag);
if (error != 0) {
device_printf(sc->msk_dev,
"failed to create status DMA tag\n");
return (error);
}
/* Allocate DMA'able memory and load the DMA map for status ring. */
error = bus_dmamem_alloc(sc->msk_stat_tag,
(void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
BUS_DMA_ZERO, &sc->msk_stat_map);
if (error != 0) {
device_printf(sc->msk_dev,
"failed to allocate DMA'able memory for status ring\n");
return (error);
}
ctx.msk_busaddr = 0;
error = bus_dmamap_load(sc->msk_stat_tag,
sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
msk_dmamap_cb, &ctx, 0);
if (error != 0) {
device_printf(sc->msk_dev,
"failed to load DMA'able memory for status ring\n");
return (error);
}
sc->msk_stat_ring_paddr = ctx.msk_busaddr;
return (0);
}
static void
msk_status_dma_free(struct msk_softc *sc)
{
/* Destroy status block. */
if (sc->msk_stat_tag) {
if (sc->msk_stat_map) {
bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
if (sc->msk_stat_ring) {
bus_dmamem_free(sc->msk_stat_tag,
sc->msk_stat_ring, sc->msk_stat_map);
sc->msk_stat_ring = NULL;
}
sc->msk_stat_map = NULL;
}
bus_dma_tag_destroy(sc->msk_stat_tag);
sc->msk_stat_tag = NULL;
}
}
static int
msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
{
struct msk_dmamap_arg ctx;
struct msk_txdesc *txd;
struct msk_rxdesc *rxd;
bus_size_t rxalign;
int error, i;
/* Create parent DMA tag. */
/*
* XXX
* It seems that Yukon II supports full 64bits DMA operations. But
* it needs two descriptors(list elements) for 64bits DMA operations.
* Since we don't know what DMA address mappings(32bits or 64bits)
* would be used in advance for each mbufs, we limits its DMA space
* to be in range of 32bits address space. Otherwise, we should check
* what DMA address is used and chain another descriptor for the
* 64bits DMA operation. This also means descriptor ring size is
* variable. Limiting DMA address to be in 32bit address space greatly
* simplyfies descriptor handling and possibly would increase
* performance a bit due to efficient handling of descriptors.
* Apart from harassing checksum offloading mechanisms, it seems
* it's really bad idea to use a seperate descriptor for 64bit
* DMA operation to save small descriptor memory. Anyway, I've
* never seen these exotic scheme on ethernet interface hardware.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc_if->msk_if_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_parent_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create parent DMA tag\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
MSK_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_TX_RING_SZ, /* maxsize */
1, /* nsegments */
MSK_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_tx_ring_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Tx ring DMA tag\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
MSK_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_RX_RING_SZ, /* maxsize */
1, /* nsegments */
MSK_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_rx_ring_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Rx ring DMA tag\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_TSO_MAXSIZE, /* maxsize */
MSK_MAXTXSEGS, /* nsegments */
MSK_TSO_MAXSGSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_tx_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Tx DMA tag\n");
goto fail;
}
rxalign = 1;
/*
* Workaround hardware hang which seems to happen when Rx buffer
* is not aligned on multiple of FIFO word(8 bytes).
*/
if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
rxalign = MSK_RX_BUF_ALIGN;
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
rxalign, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_rx_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Rx DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
(void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.msk_busaddr = 0;
error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
(void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.msk_busaddr = 0;
error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < MSK_TX_RING_CNT; i++) {
txd = &sc_if->msk_cdata.msk_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
&sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < MSK_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static int
msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
{
struct msk_dmamap_arg ctx;
struct msk_rxdesc *jrxd;
bus_size_t rxalign;
int error, i;
if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_NOJUMBO) != 0) {
sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
device_printf(sc_if->msk_if_dev,
"disabling jumbo frame support\n");
sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
return (0);
}
/* Create tag for jumbo Rx ring. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
MSK_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_JUMBO_RX_RING_SZ, /* maxsize */
1, /* nsegments */
MSK_JUMBO_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create jumbo Rx ring DMA tag\n");
goto jumbo_fail;
}
rxalign = 1;
/*
* Workaround hardware hang which seems to happen when Rx buffer
* is not aligned on multiple of FIFO word(8 bytes).
*/
if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
rxalign = MSK_RX_BUF_ALIGN;
/* Create tag for jumbo Rx buffers. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
rxalign, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUM9BYTES, /* maxsize */
1, /* nsegments */
MJUM9BYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_jumbo_rx_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create jumbo Rx DMA tag\n");
goto jumbo_fail;
}
/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
(void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc_if->msk_cdata.msk_jumbo_rx_ring_map);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to allocate DMA'able memory for jumbo Rx ring\n");
goto jumbo_fail;
}
ctx.msk_busaddr = 0;
error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_cdata.msk_jumbo_rx_ring_map,
sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
msk_dmamap_cb, &ctx, 0);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to load DMA'able memory for jumbo Rx ring\n");
goto jumbo_fail;
}
sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
/* Create DMA maps for jumbo Rx buffers. */
if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
&sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create spare jumbo Rx dmamap\n");
goto jumbo_fail;
}
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
jrxd->rx_m = NULL;
jrxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
&jrxd->rx_dmamap);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create jumbo Rx dmamap\n");
goto jumbo_fail;
}
}
return (0);
jumbo_fail:
msk_rx_dma_jfree(sc_if);
device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
"due to resource shortage\n");
sc_if->msk_flags |= MSK_FLAG_NOJUMBO;
return (error);
}
static void
msk_txrx_dma_free(struct msk_if_softc *sc_if)
{
struct msk_txdesc *txd;
struct msk_rxdesc *rxd;
int i;
/* Tx ring. */
if (sc_if->msk_cdata.msk_tx_ring_tag) {
if (sc_if->msk_cdata.msk_tx_ring_map)
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map);
if (sc_if->msk_cdata.msk_tx_ring_map &&
sc_if->msk_rdata.msk_tx_ring)
bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_rdata.msk_tx_ring,
sc_if->msk_cdata.msk_tx_ring_map);
sc_if->msk_rdata.msk_tx_ring = NULL;
sc_if->msk_cdata.msk_tx_ring_map = NULL;
bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
sc_if->msk_cdata.msk_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc_if->msk_cdata.msk_rx_ring_tag) {
if (sc_if->msk_cdata.msk_rx_ring_map)
bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_cdata.msk_rx_ring_map);
if (sc_if->msk_cdata.msk_rx_ring_map &&
sc_if->msk_rdata.msk_rx_ring)
bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_rdata.msk_rx_ring,
sc_if->msk_cdata.msk_rx_ring_map);
sc_if->msk_rdata.msk_rx_ring = NULL;
sc_if->msk_cdata.msk_rx_ring_map = NULL;
bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
sc_if->msk_cdata.msk_rx_ring_tag = NULL;
}
/* Tx buffers. */
if (sc_if->msk_cdata.msk_tx_tag) {
for (i = 0; i < MSK_TX_RING_CNT; i++) {
txd = &sc_if->msk_cdata.msk_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
sc_if->msk_cdata.msk_tx_tag = NULL;
}
/* Rx buffers. */
if (sc_if->msk_cdata.msk_rx_tag) {
for (i = 0; i < MSK_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc_if->msk_cdata.msk_rx_sparemap) {
bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
sc_if->msk_cdata.msk_rx_sparemap);
sc_if->msk_cdata.msk_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
sc_if->msk_cdata.msk_rx_tag = NULL;
}
if (sc_if->msk_cdata.msk_parent_tag) {
bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
sc_if->msk_cdata.msk_parent_tag = NULL;
}
}
static void
msk_rx_dma_jfree(struct msk_if_softc *sc_if)
{
struct msk_rxdesc *jrxd;
int i;
/* Jumbo Rx ring. */
if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_cdata.msk_jumbo_rx_ring_map);
if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
sc_if->msk_rdata.msk_jumbo_rx_ring)
bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_rdata.msk_jumbo_rx_ring,
sc_if->msk_cdata.msk_jumbo_rx_ring_map);
sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
}
/* Jumbo Rx buffers. */
if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
if (jrxd->rx_dmamap) {
bus_dmamap_destroy(
sc_if->msk_cdata.msk_jumbo_rx_tag,
jrxd->rx_dmamap);
jrxd->rx_dmamap = NULL;
}
}
if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
sc_if->msk_cdata.msk_jumbo_rx_sparemap);
sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
}
}
static int
msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
{
struct msk_txdesc *txd, *txd_last;
struct msk_tx_desc *tx_le;
struct mbuf *m;
bus_dmamap_t map;
bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
uint32_t control, prod, si;
uint16_t offset, tcp_offset, tso_mtu;
int error, i, nseg, tso;
MSK_IF_LOCK_ASSERT(sc_if);
tcp_offset = offset = 0;
m = *m_head;
if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
/*
* Since mbuf has no protocol specific structure information
* in it we have to inspect protocol information here to
* setup TSO and checksum offload. I don't know why Marvell
* made a such decision in chip design because other GigE
* hardwares normally takes care of all these chores in
* hardware. However, TSO performance of Yukon II is very
* good such that it's worth to implement it.
*/
struct ether_header *eh;
struct ip *ip;
struct tcphdr *tcp;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_DONTWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
offset = sizeof(struct ether_header);
m = m_pullup(m, offset);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/* Check if hardware VLAN insertion is off. */
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
offset = sizeof(struct ether_vlan_header);
m = m_pullup(m, offset);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, offset + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + offset);
offset += (ip->ip_hl << 2);
tcp_offset = offset;
/*
* It seems that Yukon II has Tx checksum offload bug for
* small TCP packets that's less than 60 bytes in size
* (e.g. TCP window probe packet, pure ACK packet).
* Common work around like padding with zeros to make the
* frame minimum ethernet frame size didn't work at all.
* Instead of disabling checksum offload completely we
* resort to S/W checksum routine when we encounter short
* TCP frames.
* Short UDP packets appear to be handled correctly by
* Yukon II.
*/
if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
(m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
m = m_pullup(m, offset + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*(uint16_t *)(m->m_data + offset +
m->m_pkthdr.csum_data) = in_cksum_skip(m,
m->m_pkthdr.len, offset);
m->m_pkthdr.csum_flags &= ~CSUM_TCP;
}
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
m = m_pullup(m, offset + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
tcp = (struct tcphdr *)(mtod(m, char *) + offset);
offset += (tcp->th_off << 2);
}
*m_head = m;
}
prod = sc_if->msk_cdata.msk_tx_prod;
txd = &sc_if->msk_cdata.msk_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
*m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nseg == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check number of available descriptors. */
if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
(MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
return (ENOBUFS);
}
control = 0;
tso = 0;
tx_le = NULL;
/* Check TSO support. */
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
tso_mtu = offset + m->m_pkthdr.tso_segsz;
if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(tso_mtu);
tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
}
tso++;
}
/* Check if we have a VLAN tag to insert. */
if ((m->m_flags & M_VLANTAG) != 0) {
if (tso == 0) {
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(0);
tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
htons(m->m_pkthdr.ether_vtag));
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
} else {
tx_le->msk_control |= htole32(OP_VLAN |
htons(m->m_pkthdr.ether_vtag));
}
control |= INS_VLAN;
}
/* Check if we have to handle checksum offload. */
if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
& 0xffff) | ((uint32_t)tcp_offset << 16));
tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
control |= UDPTCP;
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
}
si = prod;
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
if (tso == 0)
tx_le->msk_control = htole32(txsegs[0].ds_len | control |
OP_PACKET);
else
tx_le->msk_control = htole32(txsegs[0].ds_len | control |
OP_LARGESEND);
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
for (i = 1; i < nseg; i++) {
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
tx_le->msk_control = htole32(txsegs[i].ds_len | control |
OP_BUFFER | HW_OWNER);
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
}
/* Update producer index. */
sc_if->msk_cdata.msk_tx_prod = prod;
/* Set EOP on the last desciptor. */
prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_control |= htole32(EOP);
/* Turn the first descriptor ownership to hardware. */
tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
tx_le->msk_control |= htole32(HW_OWNER);
txd = &sc_if->msk_cdata.msk_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
/* Sync descriptors. */
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
msk_tx_task(void *arg, int pending)
{
struct ifnet *ifp;
ifp = arg;
msk_start(ifp);
}
static void
msk_start(struct ifnet *ifp)
{
struct msk_if_softc *sc_if;
struct mbuf *m_head;
int enq;
sc_if = ifp->if_softc;
MSK_IF_LOCK(sc_if);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc_if->msk_link == 0) {
MSK_IF_UNLOCK(sc_if);
return;
}
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc_if->msk_cdata.msk_tx_cnt <
(MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (msk_encap(sc_if, &m_head) != 0) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Transmit */
CSR_WRITE_2(sc_if->msk_softc,
Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
sc_if->msk_cdata.msk_tx_prod);
/* Set a timeout in case the chip goes out to lunch. */
sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
}
MSK_IF_UNLOCK(sc_if);
}
static void
msk_watchdog(struct msk_if_softc *sc_if)
{
struct ifnet *ifp;
uint32_t ridx;
int idx;
MSK_IF_LOCK_ASSERT(sc_if);
if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
return;
ifp = sc_if->msk_ifp;
if (sc_if->msk_link == 0) {
if (bootverbose)
if_printf(sc_if->msk_ifp, "watchdog timeout "
"(missed link)\n");
ifp->if_oerrors++;
msk_init_locked(sc_if);
return;
}
/*
* Reclaim first as there is a possibility of losing Tx completion
* interrupts.
*/
ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
idx = CSR_READ_2(sc_if->msk_softc, ridx);
if (sc_if->msk_cdata.msk_tx_cons != idx) {
msk_txeof(sc_if, idx);
if (sc_if->msk_cdata.msk_tx_cnt == 0) {
if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
"-- recovering\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(taskqueue_fast,
&sc_if->msk_tx_task);
return;
}
}
if_printf(ifp, "watchdog timeout\n");
ifp->if_oerrors++;
msk_init_locked(sc_if);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
}
static int
mskc_shutdown(device_t dev)
{
struct msk_softc *sc;
int i;
sc = device_get_softc(dev);
MSK_LOCK(sc);
for (i = 0; i < sc->msk_num_port; i++) {
if (sc->msk_if[i] != NULL)
msk_stop(sc->msk_if[i]);
}
/* Disable all interrupts. */
CSR_WRITE_4(sc, B0_IMSK, 0);
CSR_READ_4(sc, B0_IMSK);
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
CSR_READ_4(sc, B0_HWE_IMSK);
/* Put hardware reset. */
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
MSK_UNLOCK(sc);
return (0);
}
static int
mskc_suspend(device_t dev)
{
struct msk_softc *sc;
int i;
sc = device_get_softc(dev);
MSK_LOCK(sc);
for (i = 0; i < sc->msk_num_port; i++) {
if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
((sc->msk_if[i]->msk_ifp->if_drv_flags &
IFF_DRV_RUNNING) != 0))
msk_stop(sc->msk_if[i]);
}
/* Disable all interrupts. */
CSR_WRITE_4(sc, B0_IMSK, 0);
CSR_READ_4(sc, B0_IMSK);
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
CSR_READ_4(sc, B0_HWE_IMSK);
msk_phy_power(sc, MSK_PHY_POWERDOWN);
/* Put hardware reset. */
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
sc->msk_suspended = 1;
MSK_UNLOCK(sc);
return (0);
}
static int
mskc_resume(device_t dev)
{
struct msk_softc *sc;
int i;
sc = device_get_softc(dev);
MSK_LOCK(sc);
mskc_reset(sc);
for (i = 0; i < sc->msk_num_port; i++) {
if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
msk_init_locked(sc->msk_if[i]);
}
sc->msk_suspended = 0;
MSK_UNLOCK(sc);
return (0);
}
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
msk_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 3;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
}
#endif
static void
msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
{
struct mbuf *m;
struct ifnet *ifp;
struct msk_rxdesc *rxd;
int cons, rxlen;
ifp = sc_if->msk_ifp;
MSK_IF_LOCK_ASSERT(sc_if);
cons = sc_if->msk_cdata.msk_rx_cons;
do {
rxlen = status >> 16;
if ((status & GMR_FS_VLAN) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
rxlen -= ETHER_VLAN_ENCAP_LEN;
if (len > sc_if->msk_framesize ||
((status & GMR_FS_ANY_ERR) != 0) ||
((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
/* Don't count flow-control packet as errors. */
if ((status & GMR_FS_GOOD_FC) == 0)
ifp->if_ierrors++;
msk_discard_rxbuf(sc_if, cons);
break;
}
rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
m = rxd->rx_m;
if (msk_newbuf(sc_if, cons) != 0) {
ifp->if_iqdrops++;
/* Reuse old buffer. */
msk_discard_rxbuf(sc_if, cons);
break;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#ifndef __NO_STRICT_ALIGNMENT
if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
msk_fixup_rx(m);
#endif
ifp->if_ipackets++;
/* Check for VLAN tagged packets. */
if ((status & GMR_FS_VLAN) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
m->m_flags |= M_VLANTAG;
}
MSK_IF_UNLOCK(sc_if);
(*ifp->if_input)(ifp, m);
MSK_IF_LOCK(sc_if);
} while (0);
MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
}
static void
msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
{
struct mbuf *m;
struct ifnet *ifp;
struct msk_rxdesc *jrxd;
int cons, rxlen;
ifp = sc_if->msk_ifp;
MSK_IF_LOCK_ASSERT(sc_if);
cons = sc_if->msk_cdata.msk_rx_cons;
do {
rxlen = status >> 16;
if ((status & GMR_FS_VLAN) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
rxlen -= ETHER_VLAN_ENCAP_LEN;
if (len > sc_if->msk_framesize ||
((status & GMR_FS_ANY_ERR) != 0) ||
((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
/* Don't count flow-control packet as errors. */
if ((status & GMR_FS_GOOD_FC) == 0)
ifp->if_ierrors++;
msk_discard_jumbo_rxbuf(sc_if, cons);
break;
}
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
m = jrxd->rx_m;
if (msk_jumbo_newbuf(sc_if, cons) != 0) {
ifp->if_iqdrops++;
/* Reuse old buffer. */
msk_discard_jumbo_rxbuf(sc_if, cons);
break;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#ifndef __NO_STRICT_ALIGNMENT
if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
msk_fixup_rx(m);
#endif
ifp->if_ipackets++;
/* Check for VLAN tagged packets. */
if ((status & GMR_FS_VLAN) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
m->m_flags |= M_VLANTAG;
}
MSK_IF_UNLOCK(sc_if);
(*ifp->if_input)(ifp, m);
MSK_IF_LOCK(sc_if);
} while (0);
MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
}
static void
msk_txeof(struct msk_if_softc *sc_if, int idx)
{
struct msk_txdesc *txd;
struct msk_tx_desc *cur_tx;
struct ifnet *ifp;
uint32_t control;
int cons, prog;
MSK_IF_LOCK_ASSERT(sc_if);
ifp = sc_if->msk_ifp;
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
cons = sc_if->msk_cdata.msk_tx_cons;
prog = 0;
for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
if (sc_if->msk_cdata.msk_tx_cnt <= 0)
break;
prog++;
cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
control = le32toh(cur_tx->msk_control);
sc_if->msk_cdata.msk_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if ((control & EOP) == 0)
continue;
txd = &sc_if->msk_cdata.msk_txdesc[cons];
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
ifp->if_opackets++;
KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
__func__));
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
if (prog > 0) {
sc_if->msk_cdata.msk_tx_cons = cons;
if (sc_if->msk_cdata.msk_tx_cnt == 0)
sc_if->msk_watchdog_timer = 0;
/* No need to sync LEs as we didn't update LEs. */
}
}
static void
msk_tick(void *xsc_if)
{
struct msk_if_softc *sc_if;
struct mii_data *mii;
sc_if = xsc_if;
MSK_IF_LOCK_ASSERT(sc_if);
mii = device_get_softc(sc_if->msk_miibus);
mii_tick(mii);
msk_watchdog(sc_if);
callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
}
static void
msk_intr_phy(struct msk_if_softc *sc_if)
{
uint16_t status;
msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
/* Handle FIFO Underrun/Overflow? */
if ((status & PHY_M_IS_FIFO_ERROR))
device_printf(sc_if->msk_if_dev,
"PHY FIFO underrun/overflow.\n");
}
static void
msk_intr_gmac(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
uint8_t status;
sc = sc_if->msk_softc;
status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
/* GMAC Rx FIFO overrun. */
if ((status & GM_IS_RX_FF_OR) != 0) {
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
GMF_CLI_RX_FO);
device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
}
/* GMAC Tx FIFO underrun. */
if ((status & GM_IS_TX_FF_UR) != 0) {
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
GMF_CLI_TX_FU);
device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
/*
* XXX
* In case of Tx underrun, we may need to flush/reset
* Tx MAC but that would also require resynchronization
* with status LEs. Reintializing status LEs would
* affect other port in dual MAC configuration so it
* should be avoided as possible as we can.
* Due to lack of documentation it's all vague guess but
* it needs more investigation.
*/
}
}
static void
msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
{
struct msk_softc *sc;
sc = sc_if->msk_softc;
if ((status & Y2_IS_PAR_RD1) != 0) {
device_printf(sc_if->msk_if_dev,
"RAM buffer read parity error\n");
/* Clear IRQ. */
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
RI_CLR_RD_PERR);
}
if ((status & Y2_IS_PAR_WR1) != 0) {
device_printf(sc_if->msk_if_dev,
"RAM buffer write parity error\n");
/* Clear IRQ. */
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
RI_CLR_WR_PERR);
}
if ((status & Y2_IS_PAR_MAC1) != 0) {
device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
/* Clear IRQ. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
GMF_CLI_TX_PE);
}
if ((status & Y2_IS_PAR_RX1) != 0) {
device_printf(sc_if->msk_if_dev, "Rx parity error\n");
/* Clear IRQ. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
}
if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
/* Clear IRQ. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
}
}
static void
msk_intr_hwerr(struct msk_softc *sc)
{
uint32_t status;
uint32_t tlphead[4];
status = CSR_READ_4(sc, B0_HWE_ISRC);
/* Time Stamp timer overflow. */
if ((status & Y2_IS_TIST_OV) != 0)
CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
if ((status & Y2_IS_PCI_NEXP) != 0) {
/*
* PCI Express Error occured which is not described in PEX
* spec.
* This error is also mapped either to Master Abort(
* Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
* can only be cleared there.
*/
device_printf(sc->msk_dev,
"PCI Express protocol violation error\n");
}
if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
uint16_t v16;
if ((status & Y2_IS_MST_ERR) != 0)
device_printf(sc->msk_dev,
"unexpected IRQ Status error\n");
else
device_printf(sc->msk_dev,
"unexpected IRQ Master error\n");
/* Reset all bits in the PCI status register. */
v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
/* Check for PCI Express Uncorrectable Error. */
if ((status & Y2_IS_PCI_EXP) != 0) {
uint32_t v32;
/*
* On PCI Express bus bridges are called root complexes (RC).
* PCI Express errors are recognized by the root complex too,
* which requests the system to handle the problem. After
* error occurence it may be that no access to the adapter
* may be performed any longer.
*/
v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
if ((v32 & PEX_UNSUP_REQ) != 0) {
/* Ignore unsupported request error. */
device_printf(sc->msk_dev,
"Uncorrectable PCI Express error\n");
}
if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
int i;
/* Get TLP header form Log Registers. */
for (i = 0; i < 4; i++)
tlphead[i] = CSR_PCI_READ_4(sc,
PEX_HEADER_LOG + i * 4);
/* Check for vendor defined broadcast message. */
if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
CSR_WRITE_4(sc, B0_HWE_IMSK,
sc->msk_intrhwemask);
CSR_READ_4(sc, B0_HWE_IMSK);
}
}
/* Clear the interrupt. */
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
}
static __inline void
msk_rxput(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
sc = sc_if->msk_softc;
if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
bus_dmamap_sync(
sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_cdata.msk_jumbo_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
else
bus_dmamap_sync(
sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_cdata.msk_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
}
static int
msk_handle_events(struct msk_softc *sc)
{
struct msk_if_softc *sc_if;
int rxput[2];
struct msk_stat_desc *sd;
uint32_t control, status;
int cons, idx, len, port, rxprog;
idx = CSR_READ_2(sc, STAT_PUT_IDX);
if (idx == sc->msk_stat_cons)
return (0);
/* Sync status LEs. */
bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* XXX Sync Rx LEs here. */
rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
rxprog = 0;
for (cons = sc->msk_stat_cons; cons != idx;) {
sd = &sc->msk_stat_ring[cons];
control = le32toh(sd->msk_control);
if ((control & HW_OWNER) == 0)
break;
/*
* Marvell's FreeBSD driver updates status LE after clearing
* HW_OWNER. However we don't have a way to sync single LE
* with bus_dma(9) API. bus_dma(9) provides a way to sync
* an entire DMA map. So don't sync LE until we have a better
* way to sync LEs.
*/
control &= ~HW_OWNER;
sd->msk_control = htole32(control);
status = le32toh(sd->msk_status);
len = control & STLE_LEN_MASK;
port = (control >> 16) & 0x01;
sc_if = sc->msk_if[port];
if (sc_if == NULL) {
device_printf(sc->msk_dev, "invalid port opcode "
"0x%08x\n", control & STLE_OP_MASK);
continue;
}
switch (control & STLE_OP_MASK) {
case OP_RXVLAN:
sc_if->msk_vtag = ntohs(len);
break;
case OP_RXCHKSVLAN:
sc_if->msk_vtag = ntohs(len);
break;
case OP_RXSTAT:
if (sc_if->msk_framesize >
(MCLBYTES - MSK_RX_BUF_ALIGN))
msk_jumbo_rxeof(sc_if, status, len);
else
msk_rxeof(sc_if, status, len);
rxprog++;
/*
* Because there is no way to sync single Rx LE
* put the DMA sync operation off until the end of
* event processing.
*/
rxput[port]++;
/* Update prefetch unit if we've passed water mark. */
if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
msk_rxput(sc_if);
rxput[port] = 0;
}
break;
case OP_TXINDEXLE:
if (sc->msk_if[MSK_PORT_A] != NULL)
msk_txeof(sc->msk_if[MSK_PORT_A],
status & STLE_TXA1_MSKL);
if (sc->msk_if[MSK_PORT_B] != NULL)
msk_txeof(sc->msk_if[MSK_PORT_B],
((status & STLE_TXA2_MSKL) >>
STLE_TXA2_SHIFTL) |
((len & STLE_TXA2_MSKH) <<
STLE_TXA2_SHIFTH));
break;
default:
device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
control & STLE_OP_MASK);
break;
}
MSK_INC(cons, MSK_STAT_RING_CNT);
if (rxprog > sc->msk_process_limit)
break;
}
sc->msk_stat_cons = cons;
/* XXX We should sync status LEs here. See above notes. */
if (rxput[MSK_PORT_A] > 0)
msk_rxput(sc->msk_if[MSK_PORT_A]);
if (rxput[MSK_PORT_B] > 0)
msk_rxput(sc->msk_if[MSK_PORT_B]);
return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
}
/* Legacy interrupt handler for shared interrupt. */
static void
msk_legacy_intr(void *xsc)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if0, *sc_if1;
struct ifnet *ifp0, *ifp1;
uint32_t status;
sc = xsc;
MSK_LOCK(sc);
/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
(status & sc->msk_intrmask) == 0) {
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
return;
}
sc_if0 = sc->msk_if[MSK_PORT_A];
sc_if1 = sc->msk_if[MSK_PORT_B];
ifp0 = ifp1 = NULL;
if (sc_if0 != NULL)
ifp0 = sc_if0->msk_ifp;
if (sc_if1 != NULL)
ifp1 = sc_if1->msk_ifp;
if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
msk_intr_phy(sc_if0);
if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
msk_intr_phy(sc_if1);
if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
msk_intr_gmac(sc_if0);
if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
msk_intr_gmac(sc_if1);
if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
device_printf(sc->msk_dev, "Rx descriptor error\n");
sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
}
if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
device_printf(sc->msk_dev, "Tx descriptor error\n");
sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
}
if ((status & Y2_IS_HW_ERR) != 0)
msk_intr_hwerr(sc);
while (msk_handle_events(sc) != 0)
;
if ((status & Y2_IS_STAT_BMU) != 0)
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
/* Reenable interrupts. */
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
!IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
!IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
MSK_UNLOCK(sc);
}
static int
msk_intr(void *xsc)
{
struct msk_softc *sc;
uint32_t status;
sc = xsc;
status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
if (status == 0 || status == 0xffffffff) {
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
return (FILTER_STRAY);
}
taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
return (FILTER_HANDLED);
}
static void
msk_int_task(void *arg, int pending)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if0, *sc_if1;
struct ifnet *ifp0, *ifp1;
uint32_t status;
int domore;
sc = arg;
MSK_LOCK(sc);
/* Get interrupt source. */
status = CSR_READ_4(sc, B0_ISRC);
if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
(status & sc->msk_intrmask) == 0)
goto done;
sc_if0 = sc->msk_if[MSK_PORT_A];
sc_if1 = sc->msk_if[MSK_PORT_B];
ifp0 = ifp1 = NULL;
if (sc_if0 != NULL)
ifp0 = sc_if0->msk_ifp;
if (sc_if1 != NULL)
ifp1 = sc_if1->msk_ifp;
if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
msk_intr_phy(sc_if0);
if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
msk_intr_phy(sc_if1);
if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
msk_intr_gmac(sc_if0);
if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
msk_intr_gmac(sc_if1);
if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
device_printf(sc->msk_dev, "Rx descriptor error\n");
sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
}
if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
device_printf(sc->msk_dev, "Tx descriptor error\n");
sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
}
if ((status & Y2_IS_HW_ERR) != 0)
msk_intr_hwerr(sc);
domore = msk_handle_events(sc);
if ((status & Y2_IS_STAT_BMU) != 0)
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
!IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
!IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
if (domore > 0) {
taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
MSK_UNLOCK(sc);
return;
}
done:
MSK_UNLOCK(sc);
/* Reenable interrupts. */
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
}
static void
msk_init(void *xsc)
{
struct msk_if_softc *sc_if = xsc;
MSK_IF_LOCK(sc_if);
msk_init_locked(sc_if);
MSK_IF_UNLOCK(sc_if);
}
static void
msk_init_locked(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
uint16_t eaddr[ETHER_ADDR_LEN / 2];
uint16_t gmac;
int error, i;
MSK_IF_LOCK_ASSERT(sc_if);
ifp = sc_if->msk_ifp;
sc = sc_if->msk_softc;
mii = device_get_softc(sc_if->msk_miibus);
error = 0;
/* Cancel pending I/O and free all Rx/Tx buffers. */
msk_stop(sc_if);
if (ifp->if_mtu < ETHERMTU)
sc_if->msk_framesize = ETHERMTU;
else
sc_if->msk_framesize = ifp->if_mtu;
sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
if (ifp->if_mtu > ETHERMTU &&
sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
/*
* In Yukon EC Ultra, TSO & checksum offload is not
* supported for jumbo frame.
*/
ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
}
/*
* Initialize GMAC first.
* Without this initialization, Rx MAC did not work as expected
* and Rx MAC garbled status LEs and it resulted in out-of-order
* or duplicated frame delivery which in turn showed very poor
* Rx performance.(I had to write a packet analysis code that
* could be embeded in driver to diagnose this issue.)
* I've spent almost 2 months to fix this issue. If I have had
* datasheet for Yukon II I wouldn't have encountered this. :-(
*/
gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
/* Dummy read the Interrupt Source Register. */
CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
/* Clear MIB stats. */
msk_stats_clear(sc_if);
/* Disable FCS. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
/* Setup Transmit Control Register. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* Setup Transmit Flow Control Register. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
/* Setup Transmit Parameter Register. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (ifp->if_mtu > ETHERMTU)
gmac |= GM_SMOD_JUMBO_ENA;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
/* Set station address. */
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
for (i = 0; i < ETHER_ADDR_LEN /2; i++)
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
eaddr[i]);
for (i = 0; i < ETHER_ADDR_LEN /2; i++)
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
eaddr[i]);
/* Disable interrupts for counter overflows. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
/* Configure Rx MAC FIFO. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
GMF_OPER_ON | GMF_RX_F_FL_ON);
/* Set receive filter. */
msk_rxfilter(sc_if);
/* Flush Rx MAC FIFO on any flow control or error. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
GMR_FS_ANY_ERR);
/*
* Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
* due to hardware hang on receipt of pause frames.
*/
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
RX_GMF_FL_THR_DEF + 1);
/* Configure Tx MAC FIFO. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
/* Configure hardware VLAN tag insertion/stripping. */
msk_setvlan(sc_if, ifp);
if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
/* Set Rx Pause threshould. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
MSK_ECU_LLPP);
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
MSK_ECU_ULPP);
if (ifp->if_mtu > ETHERMTU) {
/*
* Set Tx GMAC FIFO Almost Empty Threshold.
*/
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
/* Disable Store & Forward mode for Tx. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
TX_JUMBO_ENA | TX_STFW_DIS);
} else {
/* Enable Store & Forward mode for Tx. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
TX_JUMBO_DIS | TX_STFW_ENA);
}
}
/*
* Disable Force Sync bit and Alloc bit in Tx RAM interface
* arbiter as we don't use Sync Tx queue.
*/
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Enable the RAM Interface Arbiter. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
/* Setup RAM buffer. */
msk_set_rambuffer(sc_if);
/* Disable Tx sync Queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
/* Setup Tx Queue Bus Memory Interface. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
/* Fix for Yukon-EC Ultra: set BMU FIFO level */
CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
}
/* Setup Rx Queue Bus Memory Interface. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
/* MAC Rx RAM Read is controlled by hardware. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
}
msk_set_prefetch(sc, sc_if->msk_txq,
sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
msk_init_tx_ring(sc_if);
/* Disable Rx checksum offload and RSS hash. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
msk_set_prefetch(sc, sc_if->msk_rxq,
sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
MSK_JUMBO_RX_RING_CNT - 1);
error = msk_init_jumbo_rx_ring(sc_if);
} else {
msk_set_prefetch(sc, sc_if->msk_rxq,
sc_if->msk_rdata.msk_rx_ring_paddr,
MSK_RX_RING_CNT - 1);
error = msk_init_rx_ring(sc_if);
}
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"initialization failed: no memory for Rx buffers\n");
msk_stop(sc_if);
return;
}
/* Configure interrupt handling. */
if (sc_if->msk_port == MSK_PORT_A) {
sc->msk_intrmask |= Y2_IS_PORT_A;
sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
} else {
sc->msk_intrmask |= Y2_IS_PORT_B;
sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
}
CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
CSR_READ_4(sc, B0_HWE_IMSK);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
sc_if->msk_link = 0;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
}
static void
msk_set_rambuffer(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
int ltpp, utpp;
sc = sc_if->msk_softc;
if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
return;
/* Setup Rx Queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
sc->msk_rxqstart[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
sc->msk_rxqend[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
sc->msk_rxqstart[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
sc->msk_rxqstart[sc_if->msk_port] / 8);
utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
/* Setup Tx Queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
sc->msk_txqstart[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
sc->msk_txqend[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
sc->msk_txqstart[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
sc->msk_txqstart[sc_if->msk_port] / 8);
/* Enable Store & Forward for Tx side. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
}
static void
msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
uint32_t count)
{
/* Reset the prefetch unit. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_SET);
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_CLR);
/* Set LE base address. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
MSK_ADDR_LO(addr));
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
MSK_ADDR_HI(addr));
/* Set the list last index. */
CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
count);
/* Turn on prefetch unit. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
PREF_UNIT_OP_ON);
/* Dummy read to ensure write. */
CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
}
static void
msk_stop(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
struct msk_txdesc *txd;
struct msk_rxdesc *rxd;
struct msk_rxdesc *jrxd;
struct ifnet *ifp;
uint32_t val;
int i;
MSK_IF_LOCK_ASSERT(sc_if);
sc = sc_if->msk_softc;
ifp = sc_if->msk_ifp;
callout_stop(&sc_if->msk_tick_ch);
sc_if->msk_watchdog_timer = 0;
/* Disable interrupts. */
if (sc_if->msk_port == MSK_PORT_A) {
sc->msk_intrmask &= ~Y2_IS_PORT_A;
sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
} else {
sc->msk_intrmask &= ~Y2_IS_PORT_B;
sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
}
CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
CSR_READ_4(sc, B0_HWE_IMSK);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
/* Disable Tx/Rx MAC. */
val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
/* Read again to ensure writing. */
GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
/* Update stats and clear counters. */
msk_stats_update(sc_if);
/* Stop Tx BMU. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
for (i = 0; i < MSK_TIMEOUT; i++) {
if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
BMU_STOP);
val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
} else
break;
DELAY(1);
}
if (i == MSK_TIMEOUT)
device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
RB_RST_SET | RB_DIS_OP_MD);
/* Disable all GMAC interrupt. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
/* Disable PHY interrupt. */
msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
/* Disable the RAM Interface Arbiter. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
/* Reset the PCI FIFO of the async Tx queue */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Tx prefetch units. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_SET);
/* Reset the RAM Buffer async Tx queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
/* Reset Tx MAC FIFO. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
/* Set Pause Off. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
/*
* The Rx Stop command will not work for Yukon-2 if the BMU does not
* reach the end of packet and since we can't make sure that we have
* incoming data, we must reset the BMU while it is not during a DMA
* transfer. Since it is possible that the Rx path is still active,
* the Rx RAM buffer will be stopped first, so any possible incoming
* data will not trigger a DMA. After the RAM buffer is stopped, the
* BMU is polled until any DMA in progress is ended and only then it
* will be reset.
*/
/* Disable the RAM Buffer receive queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
for (i = 0; i < MSK_TIMEOUT; i++) {
if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
break;
DELAY(1);
}
if (i == MSK_TIMEOUT)
device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Rx prefetch unit. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_SET);
/* Reset the RAM Buffer receive queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
/* Reset Rx MAC FIFO. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
/* Free Rx and Tx mbufs still in the queues. */
for (i = 0; i < MSK_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
if (jrxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
jrxd->rx_dmamap);
m_freem(jrxd->rx_m);
jrxd->rx_m = NULL;
}
}
for (i = 0; i < MSK_TX_RING_CNT; i++) {
txd = &sc_if->msk_cdata.msk_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
/*
* Mark the interface down.
*/
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc_if->msk_link = 0;
}
/*
* When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
* counter clears high 16 bits of the counter such that accessing
* lower 16 bits should be the last operation.
*/
#define MSK_READ_MIB32(x, y) \
(((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) + \
(uint32_t)GMAC_READ_2(sc, x, y)
#define MSK_READ_MIB64(x, y) \
(((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) + \
(uint64_t)MSK_READ_MIB32(x, y)
static void
msk_stats_clear(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
uint32_t reg;
uint16_t gmac;
int i;
MSK_IF_LOCK_ASSERT(sc_if);
sc = sc_if->msk_softc;
/* Set MIB Clear Counter Mode. */
gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
/* Read all MIB Counters with Clear Mode set. */
for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i++)
reg = MSK_READ_MIB32(sc_if->msk_port, i);
/* Clear MIB Clear Counter Mode. */
gmac &= ~GM_PAR_MIB_CLR;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
}
static void
msk_stats_update(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
struct ifnet *ifp;
struct msk_hw_stats *stats;
uint16_t gmac;
uint32_t reg;
MSK_IF_LOCK_ASSERT(sc_if);
ifp = sc_if->msk_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc = sc_if->msk_softc;
stats = &sc_if->msk_stats;
/* Set MIB Clear Counter Mode. */
gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
/* Rx stats. */
stats->rx_ucast_frames +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
stats->rx_bcast_frames +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
stats->rx_pause_frames +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
stats->rx_mcast_frames +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
stats->rx_crc_errs +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1);
stats->rx_good_octets +=
MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
stats->rx_bad_octets +=
MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
stats->rx_runts +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
stats->rx_runt_errs +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
stats->rx_pkts_64 +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
stats->rx_pkts_65_127 +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
stats->rx_pkts_128_255 +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
stats->rx_pkts_256_511 +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
stats->rx_pkts_512_1023 +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
stats->rx_pkts_1024_1518 +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
stats->rx_pkts_1519_max +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
stats->rx_pkts_too_long +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
stats->rx_pkts_jabbers +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2);
stats->rx_fifo_oflows +=
MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3);
/* Tx stats. */
stats->tx_ucast_frames +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
stats->tx_bcast_frames +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
stats->tx_pause_frames +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
stats->tx_mcast_frames +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
stats->tx_octets +=
MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
stats->tx_pkts_64 +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
stats->tx_pkts_65_127 +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
stats->tx_pkts_128_255 +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
stats->tx_pkts_256_511 +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
stats->tx_pkts_512_1023 +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
stats->tx_pkts_1024_1518 +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
stats->tx_pkts_1519_max +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1);
stats->tx_colls +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
stats->tx_late_colls +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
stats->tx_excess_colls +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
stats->tx_multi_colls +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
stats->tx_single_colls +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
stats->tx_underflows +=
MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
/* Clear MIB Clear Counter Mode. */
gmac &= ~GM_PAR_MIB_CLR;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
}
static int
msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if;
uint32_t result, *stat;
int off;
sc_if = (struct msk_if_softc *)arg1;
sc = sc_if->msk_softc;
off = arg2;
stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
MSK_IF_LOCK(sc_if);
result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
result += *stat;
MSK_IF_UNLOCK(sc_if);
return (sysctl_handle_int(oidp, &result, 0, req));
}
static int
msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if;
uint64_t result, *stat;
int off;
sc_if = (struct msk_if_softc *)arg1;
sc = sc_if->msk_softc;
off = arg2;
stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
MSK_IF_LOCK(sc_if);
result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
result += *stat;
MSK_IF_UNLOCK(sc_if);
return (sysctl_handle_quad(oidp, &result, 0, req));
}
#undef MSK_READ_MIB32
#undef MSK_READ_MIB64
#define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) \
SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, \
sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32, \
"IU", d)
#define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) \
SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, \
sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64, \
"Q", d)
static void
msk_sysctl_node(struct msk_if_softc *sc_if)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *schild;
struct sysctl_oid *tree;
ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "MSK Statistics");
schild = child = SYSCTL_CHILDREN(tree);
tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "MSK RX Statistics");
child = SYSCTL_CHILDREN(tree);
MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
child, rx_ucast_frames, "Good unicast frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
child, rx_bcast_frames, "Good broadcast frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
child, rx_pause_frames, "Pause frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
child, rx_mcast_frames, "Multicast frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
child, rx_crc_errs, "CRC errors");
MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
child, rx_good_octets, "Good octets");
MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
child, rx_bad_octets, "Bad octets");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
child, rx_pkts_64, "64 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
child, rx_pkts_65_127, "65 to 127 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
child, rx_pkts_128_255, "128 to 255 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
child, rx_pkts_256_511, "256 to 511 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
child, rx_pkts_512_1023, "512 to 1023 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
child, rx_pkts_1519_max, "1519 to max frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
child, rx_pkts_too_long, "frames too long");
MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
child, rx_pkts_jabbers, "Jabber errors");
MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
child, rx_fifo_oflows, "FIFO overflows");
tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "MSK TX Statistics");
child = SYSCTL_CHILDREN(tree);
MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
child, tx_ucast_frames, "Unicast frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
child, tx_bcast_frames, "Broadcast frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
child, tx_pause_frames, "Pause frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
child, tx_mcast_frames, "Multicast frames");
MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
child, tx_octets, "Octets");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
child, tx_pkts_64, "64 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
child, tx_pkts_65_127, "65 to 127 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
child, tx_pkts_128_255, "128 to 255 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
child, tx_pkts_256_511, "256 to 511 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
child, tx_pkts_512_1023, "512 to 1023 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
child, tx_pkts_1519_max, "1519 to max frames");
MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
child, tx_colls, "Collisions");
MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
child, tx_late_colls, "Late collisions");
MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
child, tx_excess_colls, "Excessive collisions");
MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
child, tx_multi_colls, "Multiple collisions");
MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
child, tx_single_colls, "Single collisions");
MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
child, tx_underflows, "FIFO underflows");
}
#undef MSK_SYSCTL_STAT32
#undef MSK_SYSCTL_STAT64
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (!arg1)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
MSK_PROC_MAX));
}