freebsd-nq/sys/i386/pci/pci_pir.c
John Baldwin 5264a94f3f Test PCIbios.ventry against 0 to see if we found a PCIbios entry point,
not the 'entry' member.  The entry point is formed from both a base and
a relative entry point.  'entry' is that relative offset.  It is perfectly
valid to have an entry point with a relative offset of 0.  PCIbios.ventry
is the virtual address of the entry point that takes both 'base' and
'entry' into account, thus it is the proper variable to test to see if we
have an entry point or not.
2002-09-05 17:07:07 +00:00

783 lines
18 KiB
C

/*
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
* Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
* Copyright (c) 2000, BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*
*/
#include <sys/param.h> /* XXX trim includes */
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/md_var.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <isa/isavar.h>
#include <machine/nexusvar.h>
#include <machine/pci_cfgreg.h>
#include <machine/segments.h>
#include <machine/pc/bios.h>
#ifdef APIC_IO
#include <machine/smp.h>
#endif /* APIC_IO */
#include "pcib_if.h"
#define PRVERB(a) printf a
static int cfgmech;
static int devmax;
static int usebios;
static int enable_pcibios = 0;
TUNABLE_INT("hw.pci.enable_pcibios", &enable_pcibios);
static int pci_cfgintr_unique(struct PIR_entry *pe, int pin);
static int pci_cfgintr_linked(struct PIR_entry *pe, int pin);
static int pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin);
static int pci_cfgintr_virgin(struct PIR_entry *pe, int pin);
static int pcibios_cfgread(int bus, int slot, int func, int reg, int bytes);
static void pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
static int pcibios_cfgopen(void);
static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes);
static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
static int pcireg_cfgopen(void);
static struct PIR_table *pci_route_table;
static int pci_route_count;
/*
* Some BIOS writers seem to want to ignore the spec and put
* 0 in the intline rather than 255 to indicate none. Some use
* numbers in the range 128-254 to indicate something strange and
* apparently undocumented anywhere. Assume these are completely bogus
* and map them to 255, which means "none".
*/
static __inline__ int
pci_i386_map_intline(int line)
{
if (line == 0 || line >= 128)
return (PCI_INVALID_IRQ);
return (line);
}
int
pci_pcibios_active(void)
{
return (usebios);
}
int
pci_kill_pcibios(void)
{
usebios = 0;
return (pcireg_cfgopen() != 0);
}
static u_int16_t
pcibios_get_version(void)
{
struct bios_regs args;
if (PCIbios.ventry == 0) {
PRVERB(("pcibios: No call entry point\n"));
return (0);
}
args.eax = PCIBIOS_BIOS_PRESENT;
if (bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL))) {
PRVERB(("pcibios: BIOS_PRESENT call failed\n"));
return (0);
}
if (args.edx != 0x20494350) {
PRVERB(("pcibios: BIOS_PRESENT didn't return 'PCI ' in edx\n"));
return (0);
}
return (args.ebx & 0xffff);
}
/*
* Initialise access to PCI configuration space
*/
int
pci_cfgregopen(void)
{
static int opened = 0;
u_long sigaddr;
static struct PIR_table *pt;
u_int8_t ck, *cv;
int i;
if (opened)
return(1);
if (pcibios_cfgopen() != 0)
usebios = 1;
else if (pcireg_cfgopen() != 0)
usebios = 0;
else
return(0);
/*
* Look for the interrupt routing table.
*
* We use PCI BIOS's PIR table if it's available $PIR is the
* standard way to do this. Sadly, some machines are not
* standards conforming and have _PIR instead. We shrug and cope
* by looking for both.
*/
if (pcibios_get_version() >= 0x0210 && pt == NULL) {
sigaddr = bios_sigsearch(0, "$PIR", 4, 16, 0);
if (sigaddr == 0)
sigaddr = bios_sigsearch(0, "_PIR", 4, 16, 0);
if (sigaddr != 0) {
pt = (struct PIR_table *)(uintptr_t)
BIOS_PADDRTOVADDR(sigaddr);
for (cv = (u_int8_t *)pt, ck = 0, i = 0;
i < (pt->pt_header.ph_length); i++) {
ck += cv[i];
}
if (ck == 0) {
pci_route_table = pt;
pci_route_count = (pt->pt_header.ph_length -
sizeof(struct PIR_header)) /
sizeof(struct PIR_entry);
printf("Using $PIR table, %d entries at %p\n",
pci_route_count, pci_route_table);
}
}
}
opened = 1;
return(1);
}
/*
* Read configuration space register
*/
static u_int32_t
pci_do_cfgregread(int bus, int slot, int func, int reg, int bytes)
{
return(usebios ?
pcibios_cfgread(bus, slot, func, reg, bytes) :
pcireg_cfgread(bus, slot, func, reg, bytes));
}
u_int32_t
pci_cfgregread(int bus, int slot, int func, int reg, int bytes)
{
uint32_t line;
#ifdef APIC_IO
uint32_t pin;
/*
* If we are using the APIC, the contents of the intline
* register will probably be wrong (since they are set up for
* use with the PIC. Rather than rewrite these registers
* (maybe that would be smarter) we trap attempts to read them
* and translate to our private vector numbers.
*/
if ((reg == PCIR_INTLINE) && (bytes == 1)) {
pin = pci_do_cfgregread(bus, slot, func, PCIR_INTPIN, 1);
line = pci_do_cfgregread(bus, slot, func, PCIR_INTLINE, 1);
if (pin != 0) {
int airq;
airq = pci_apic_irq(bus, slot, pin);
if (airq >= 0) {
/* PCI specific entry found in MP table */
if (airq != line)
undirect_pci_irq(line);
return(airq);
} else {
/*
* PCI interrupts might be redirected
* to the ISA bus according to some MP
* tables. Use the same methods as
* used by the ISA devices devices to
* find the proper IOAPIC int pin.
*/
airq = isa_apic_irq(line);
if ((airq >= 0) && (airq != line)) {
/* XXX: undirect_pci_irq() ? */
undirect_isa_irq(line);
return(airq);
}
}
}
return(line);
}
#else
/*
* Some BIOS writers seem to want to ignore the spec and put
* 0 in the intline rather than 255 to indicate none. The rest of
* the code uses 255 as an invalid IRQ.
*/
if (reg == PCIR_INTLINE && bytes == 1) {
line = pci_do_cfgregread(bus, slot, func, PCIR_INTLINE, 1);
return pci_i386_map_intline(line);
}
#endif /* APIC_IO */
return(pci_do_cfgregread(bus, slot, func, reg, bytes));
}
/*
* Write configuration space register
*/
void
pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes)
{
return (usebios ?
pcibios_cfgwrite(bus, slot, func, reg, data, bytes) :
pcireg_cfgwrite(bus, slot, func, reg, data, bytes));
}
/*
* Route a PCI interrupt
*
* XXX we don't do anything "right" with the function number in the PIR table
* (because the consumer isn't currently passing it in). We don't care
* anyway, due to the way PCI interrupts are assigned.
*/
int
pci_cfgintr(int bus, int device, int pin)
{
struct PIR_entry *pe;
int i, irq;
struct bios_regs args;
u_int16_t v;
int already = 0;
v = pcibios_get_version();
if (v < 0x0210) {
PRVERB((
"pci_cfgintr: BIOS %x.%02x doesn't support interrupt routing\n",
(v & 0xff00) >> 8, v & 0xff));
return (PCI_INVALID_IRQ);
}
if ((bus < 0) || (bus > 255) || (device < 0) || (device > 255) ||
(pin < 1) || (pin > 4))
return(PCI_INVALID_IRQ);
/*
* Scan the entry table for a contender
*/
for (i = 0, pe = &pci_route_table->pt_entry[0]; i < pci_route_count;
i++, pe++) {
if ((bus != pe->pe_bus) || (device != pe->pe_device))
continue;
irq = pci_cfgintr_linked(pe, pin);
if (irq == PCI_INVALID_IRQ)
irq = pci_cfgintr_unique(pe, pin);
if (irq != PCI_INVALID_IRQ)
already = 1;
if (irq == PCI_INVALID_IRQ)
irq = pci_cfgintr_virgin(pe, pin);
if (irq == PCI_INVALID_IRQ)
break;
/*
* Ask the BIOS to route the interrupt
*/
args.eax = PCIBIOS_ROUTE_INTERRUPT;
args.ebx = (bus << 8) | (device << 3);
/* pin value is 0xa - 0xd */
args.ecx = (irq << 8) | (0xa + pin - 1);
if (!already &&
bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL))) {
/*
* XXX if it fails, we should try to smack the router
* hardware directly.
* XXX Also, there may be other choices that we can
* try that will work.
*/
PRVERB(("pci_cfgintr: ROUTE_INTERRUPT failed.\n"));
return(PCI_INVALID_IRQ);
}
printf("pci_cfgintr: %d:%d INT%c routed to irq %d\n", bus,
device, 'A' + pin - 1, irq);
return(irq);
}
PRVERB(("pci_cfgintr: can't route an interrupt to %d:%d INT%c\n", bus,
device, 'A' + pin - 1));
return(PCI_INVALID_IRQ);
}
/*
* Look to see if the routing table claims this pin is uniquely routed.
*/
static int
pci_cfgintr_unique(struct PIR_entry *pe, int pin)
{
int irq;
uint32_t irqmask;
irqmask = pe->pe_intpin[pin - 1].irqs;
if (irqmask != 0 && powerof2(irqmask)) {
irq = ffs(irqmask) - 1;
PRVERB(("pci_cfgintr_unique: hard-routed to irq %d\n", irq));
return(irq);
}
return(PCI_INVALID_IRQ);
}
/*
* Look for another device which shares the same link byte and
* already has a unique IRQ, or which has had one routed already.
*/
static int
pci_cfgintr_linked(struct PIR_entry *pe, int pin)
{
struct PIR_entry *oe;
struct PIR_intpin *pi;
int i, j, irq;
/*
* Scan table slots.
*/
for (i = 0, oe = &pci_route_table->pt_entry[0]; i < pci_route_count;
i++, oe++) {
/* scan interrupt pins */
for (j = 0, pi = &oe->pe_intpin[0]; j < 4; j++, pi++) {
/* don't look at the entry we're trying to match */
if ((pe == oe) && (i == (pin - 1)))
continue;
/* compare link bytes */
if (pi->link != pe->pe_intpin[pin - 1].link)
continue;
/* link destination mapped to a unique interrupt? */
if (pi->irqs != 0 && powerof2(pi->irqs)) {
irq = ffs(pi->irqs) - 1;
PRVERB(("pci_cfgintr_linked: linked (%x) to hard-routed irq %d\n",
pi->link, irq));
return(irq);
}
/*
* look for the real PCI device that matches this
* table entry
*/
irq = pci_cfgintr_search(pe, oe->pe_bus, oe->pe_device,
j, pin);
if (irq != PCI_INVALID_IRQ)
return(irq);
}
}
return(PCI_INVALID_IRQ);
}
/*
* Scan for the real PCI device at (bus)/(device) using intpin (matchpin) and
* see if it has already been assigned an interrupt.
*/
static int
pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin)
{
devclass_t pci_devclass;
device_t *pci_devices;
int pci_count;
device_t *pci_children;
int pci_childcount;
device_t *busp, *childp;
int i, j, irq;
/*
* Find all the PCI busses.
*/
pci_count = 0;
if ((pci_devclass = devclass_find("pci")) != NULL)
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
/*
* Scan all the PCI busses/devices looking for this one.
*/
irq = PCI_INVALID_IRQ;
for (i = 0, busp = pci_devices; (i < pci_count) && (irq == PCI_INVALID_IRQ);
i++, busp++) {
pci_childcount = 0;
device_get_children(*busp, &pci_children, &pci_childcount);
for (j = 0, childp = pci_children; j < pci_childcount; j++,
childp++) {
if ((pci_get_bus(*childp) == bus) &&
(pci_get_slot(*childp) == device) &&
(pci_get_intpin(*childp) == matchpin)) {
irq = pci_i386_map_intline(pci_get_irq(*childp));
if (irq != PCI_INVALID_IRQ)
PRVERB(("pci_cfgintr_search: linked (%x) to configured irq %d at %d:%d:%d\n",
pe->pe_intpin[pin - 1].link, irq,
pci_get_bus(*childp),
pci_get_slot(*childp),
pci_get_function(*childp)));
break;
}
}
if (pci_children != NULL)
free(pci_children, M_TEMP);
}
if (pci_devices != NULL)
free(pci_devices, M_TEMP);
return(irq);
}
/*
* Pick a suitable IRQ from those listed as routable to this device.
*/
static int
pci_cfgintr_virgin(struct PIR_entry *pe, int pin)
{
int irq, ibit;
/*
* first scan the set of PCI-only interrupts and see if any of these
* are routable
*/
for (irq = 0; irq < 16; irq++) {
ibit = (1 << irq);
/* can we use this interrupt? */
if ((pci_route_table->pt_header.ph_pci_irqs & ibit) &&
(pe->pe_intpin[pin - 1].irqs & ibit)) {
PRVERB(("pci_cfgintr_virgin: using routable PCI-only interrupt %d\n", irq));
return(irq);
}
}
/* life is tough, so just pick an interrupt */
for (irq = 0; irq < 16; irq++) {
ibit = (1 << irq);
if (pe->pe_intpin[pin - 1].irqs & ibit) {
PRVERB(("pci_cfgintr_virgin: using routable interrupt %d\n", irq));
return(irq);
}
}
return(PCI_INVALID_IRQ);
}
/*
* Config space access using BIOS functions
*/
static int
pcibios_cfgread(int bus, int slot, int func, int reg, int bytes)
{
struct bios_regs args;
u_int mask;
switch(bytes) {
case 1:
args.eax = PCIBIOS_READ_CONFIG_BYTE;
mask = 0xff;
break;
case 2:
args.eax = PCIBIOS_READ_CONFIG_WORD;
mask = 0xffff;
break;
case 4:
args.eax = PCIBIOS_READ_CONFIG_DWORD;
mask = 0xffffffff;
break;
default:
return(-1);
}
args.ebx = (bus << 8) | (slot << 3) | func;
args.edi = reg;
bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL));
/* check call results? */
return(args.ecx & mask);
}
static void
pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
{
struct bios_regs args;
switch(bytes) {
case 1:
args.eax = PCIBIOS_WRITE_CONFIG_BYTE;
break;
case 2:
args.eax = PCIBIOS_WRITE_CONFIG_WORD;
break;
case 4:
args.eax = PCIBIOS_WRITE_CONFIG_DWORD;
break;
default:
return;
}
args.ebx = (bus << 8) | (slot << 3) | func;
args.ecx = data;
args.edi = reg;
bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL));
}
/*
* Determine whether there is a PCI BIOS present
*/
static int
pcibios_cfgopen(void)
{
u_int16_t v = 0;
if (PCIbios.ventry != 0 && enable_pcibios) {
v = pcibios_get_version();
if (v > 0)
printf("pcibios: BIOS version %x.%02x\n",
(v & 0xff00) >> 8, v & 0xff);
}
return (v > 0);
}
/*
* Configuration space access using direct register operations
*/
/* enable configuration space accesses and return data port address */
static int
pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes)
{
int dataport = 0;
if (bus <= PCI_BUSMAX
&& slot < devmax
&& func <= PCI_FUNCMAX
&& reg <= PCI_REGMAX
&& bytes != 3
&& (unsigned) bytes <= 4
&& (reg & (bytes -1)) == 0) {
switch (cfgmech) {
case 1:
outl(CONF1_ADDR_PORT, (1 << 31)
| (bus << 16) | (slot << 11)
| (func << 8) | (reg & ~0x03));
dataport = CONF1_DATA_PORT + (reg & 0x03);
break;
case 2:
outb(CONF2_ENABLE_PORT, 0xf0 | (func << 1));
outb(CONF2_FORWARD_PORT, bus);
dataport = 0xc000 | (slot << 8) | reg;
break;
}
}
return (dataport);
}
/* disable configuration space accesses */
static void
pci_cfgdisable(void)
{
switch (cfgmech) {
case 1:
outl(CONF1_ADDR_PORT, 0);
break;
case 2:
outb(CONF2_ENABLE_PORT, 0);
outb(CONF2_FORWARD_PORT, 0);
break;
}
}
static int
pcireg_cfgread(int bus, int slot, int func, int reg, int bytes)
{
int data = -1;
int port;
port = pci_cfgenable(bus, slot, func, reg, bytes);
if (port != 0) {
switch (bytes) {
case 1:
data = inb(port);
break;
case 2:
data = inw(port);
break;
case 4:
data = inl(port);
break;
}
pci_cfgdisable();
}
return (data);
}
static void
pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
{
int port;
port = pci_cfgenable(bus, slot, func, reg, bytes);
if (port != 0) {
switch (bytes) {
case 1:
outb(port, data);
break;
case 2:
outw(port, data);
break;
case 4:
outl(port, data);
break;
}
pci_cfgdisable();
}
}
/* check whether the configuration mechanism has been correctly identified */
static int
pci_cfgcheck(int maxdev)
{
u_char device;
if (bootverbose)
printf("pci_cfgcheck:\tdevice ");
for (device = 0; device < maxdev; device++) {
unsigned id, class, header;
if (bootverbose)
printf("%d ", device);
id = inl(pci_cfgenable(0, device, 0, 0, 4));
if (id == 0 || id == -1)
continue;
class = inl(pci_cfgenable(0, device, 0, 8, 4)) >> 8;
if (bootverbose)
printf("[class=%06x] ", class);
if (class == 0 || (class & 0xf870ff) != 0)
continue;
header = inb(pci_cfgenable(0, device, 0, 14, 1));
if (bootverbose)
printf("[hdr=%02x] ", header);
if ((header & 0x7e) != 0)
continue;
if (bootverbose)
printf("is there (id=%08x)\n", id);
pci_cfgdisable();
return (1);
}
if (bootverbose)
printf("-- nothing found\n");
pci_cfgdisable();
return (0);
}
static int
pcireg_cfgopen(void)
{
unsigned long mode1res,oldval1;
unsigned char mode2res,oldval2;
oldval1 = inl(CONF1_ADDR_PORT);
if (bootverbose) {
printf("pci_open(1):\tmode 1 addr port (0x0cf8) is 0x%08lx\n",
oldval1);
}
if ((oldval1 & CONF1_ENABLE_MSK) == 0) {
cfgmech = 1;
devmax = 32;
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK);
outb(CONF1_ADDR_PORT +3, 0);
mode1res = inl(CONF1_ADDR_PORT);
outl(CONF1_ADDR_PORT, oldval1);
if (bootverbose)
printf("pci_open(1a):\tmode1res=0x%08lx (0x%08lx)\n",
mode1res, CONF1_ENABLE_CHK);
if (mode1res) {
if (pci_cfgcheck(32))
return (cfgmech);
}
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK1);
mode1res = inl(CONF1_ADDR_PORT);
outl(CONF1_ADDR_PORT, oldval1);
if (bootverbose)
printf("pci_open(1b):\tmode1res=0x%08lx (0x%08lx)\n",
mode1res, CONF1_ENABLE_CHK1);
if ((mode1res & CONF1_ENABLE_MSK1) == CONF1_ENABLE_RES1) {
if (pci_cfgcheck(32))
return (cfgmech);
}
}
oldval2 = inb(CONF2_ENABLE_PORT);
if (bootverbose) {
printf("pci_open(2):\tmode 2 enable port (0x0cf8) is 0x%02x\n",
oldval2);
}
if ((oldval2 & 0xf0) == 0) {
cfgmech = 2;
devmax = 16;
outb(CONF2_ENABLE_PORT, CONF2_ENABLE_CHK);
mode2res = inb(CONF2_ENABLE_PORT);
outb(CONF2_ENABLE_PORT, oldval2);
if (bootverbose)
printf("pci_open(2a):\tmode2res=0x%02x (0x%02x)\n",
mode2res, CONF2_ENABLE_CHK);
if (mode2res == CONF2_ENABLE_RES) {
if (bootverbose)
printf("pci_open(2a):\tnow trying mechanism 2\n");
if (pci_cfgcheck(16))
return (cfgmech);
}
}
cfgmech = 0;
devmax = 0;
return (cfgmech);
}