Ariff Abdullah e4e61333ff Last (again ?!?) major commit for RELENG_7, featuring total Giant
eradication in/from userland path, countless locking fixes, etc.

- General sleep call through msleep(9) has been converted to condvar(9)
  with better consistencies.
- Heavily guard every possible "slow path" entries (open(), close(),
  few ioctl()s, sysctls), but once it entering "fast path" (io, interrupt
  started), they are free to fly on their own.
- Rearrange locking sequences, resulting better concurrency and
  serialization. Large part doesn't even need locking at all, and will be
  removed in future. Less clutter, except in few places due to lock
  ordering.
- Anonymous mixer object creation/deletion to simplify mixer handling
  beyond typical mixer ioctls.
  Submitted by:		chibis (with modifications)
- Add few mix_[get|set|..] functions to avoid calling mixer_ioctl()
  directly using cryptic arguments.
- Locking fixes to avoid possible deadlock with (still under Giant) USB.
- Better simplex/duplex device handling.
- Recover mmap() functionality for recording, which has been lost
  since 2.2.x - 3.x (the introduction of newpcm). Full-duplex mmap still
  doesn't work (due to VM/page design), but people still can mmap
  both by opening each direction separately. mmaped playback is guarantee
  to work either way.
- New sysctl: "hw.snd.compat_linux_mmap" to allow PROT_EXEC page
  mapping, due to recent changes in linux compatibility layer which
  require it. All linux applications that using sound + mmap() (mostly games)
  require this to be enabled. Disabled by default.
- Other goodies.. too many, that will increase releng7 shareholder value
  and make users of releng6 (and below) cry ;)

* This commit should be atomic. If anything goes wrong (not counting problem
  originated from elsewhere), I will not hesitate to revert everything back
  within 12 hours. This substantial changes itself not a rocket science
  and the process has begun for almost 2 years, and lots of incremental
  changes are already in place during that period of time.
* Some issues does occur in snd_emu10kx (note the 'x') due to various
  internal locking issues and it is currently being worked on by chibis.

Tested by:	chibis (Yuriy Tsibizov), joel, Alexandre Vieira,
          	many innocent souls...
2007-06-16 03:37:28 +00:00

1031 lines
27 KiB
C

/*-
* Copyright (c) 2001 Cameron Grant <cg@FreeBSD.org>
* Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Almost entirely rewritten to add multi-format/channels mixing support. */
#include <dev/sound/pcm/sound.h>
#include <dev/sound/pcm/vchan.h>
#include "feeder_if.h"
SND_DECLARE_FILE("$FreeBSD$");
MALLOC_DEFINE(M_VCHANFEEDER, "vchanfeed", "pcm vchan feeder");
typedef uint32_t (*feed_vchan_mixer)(uint8_t *, uint8_t *, uint32_t);
struct vchinfo {
struct pcm_channel *channel;
struct pcmchan_caps caps;
uint32_t fmtlist[2];
int trigger;
};
/* support everything (mono / stereo), except a-law / mu-law */
static struct afmtstr_table vchan_supported_fmts[] = {
{ "u8", AFMT_U8 }, { "s8", AFMT_S8 },
{ "s16le", AFMT_S16_LE }, { "s16be", AFMT_S16_BE },
{ "u16le", AFMT_U16_LE }, { "u16be", AFMT_U16_BE },
{ "s24le", AFMT_S24_LE }, { "s24be", AFMT_S24_BE },
{ "u24le", AFMT_U24_LE }, { "u24be", AFMT_U24_BE },
{ "s32le", AFMT_S32_LE }, { "s32be", AFMT_S32_BE },
{ "u32le", AFMT_U32_LE }, { "u32be", AFMT_U32_BE },
{ NULL, 0 },
};
/* alias table, shorter. */
static const struct {
char *alias, *fmtstr;
} vchan_fmtstralias[] = {
{ "8", "u8" }, { "16", "s16le" },
{ "24", "s24le" }, { "32", "s32le" },
{ NULL, NULL },
};
#define vchan_valid_format(fmt) \
afmt2afmtstr(vchan_supported_fmts, fmt, NULL, 0, 0, \
AFMTSTR_STEREO_RETURN)
#define vchan_valid_strformat(strfmt) \
afmtstr2afmt(vchan_supported_fmts, strfmt, AFMTSTR_STEREO_RETURN);
/*
* Need specialized WRITE macros since 32bit might involved saturation
* if calculation is done within 32bit arithmetic.
*/
#define VCHAN_PCM_WRITE_S8_NE(b8, val) PCM_WRITE_S8(b8, val)
#define VCHAN_PCM_WRITE_S16_LE(b8, val) PCM_WRITE_S16_LE(b8, val)
#define VCHAN_PCM_WRITE_S24_LE(b8, val) PCM_WRITE_S24_LE(b8, val)
#define VCHAN_PCM_WRITE_S32_LE(b8, val) _PCM_WRITE_S32_LE(b8, val)
#define VCHAN_PCM_WRITE_S16_BE(b8, val) PCM_WRITE_S16_BE(b8, val)
#define VCHAN_PCM_WRITE_S24_BE(b8, val) PCM_WRITE_S24_BE(b8, val)
#define VCHAN_PCM_WRITE_S32_BE(b8, val) _PCM_WRITE_S32_BE(b8, val)
#define VCHAN_PCM_WRITE_U8_NE(b8, val) PCM_WRITE_U8(b8, val)
#define VCHAN_PCM_WRITE_U16_LE(b8, val) PCM_WRITE_U16_LE(b8, val)
#define VCHAN_PCM_WRITE_U24_LE(b8, val) PCM_WRITE_U24_LE(b8, val)
#define VCHAN_PCM_WRITE_U32_LE(b8, val) _PCM_WRITE_U32_LE(b8, val)
#define VCHAN_PCM_WRITE_U16_BE(b8, val) PCM_WRITE_U16_BE(b8, val)
#define VCHAN_PCM_WRITE_U24_BE(b8, val) PCM_WRITE_U24_BE(b8, val)
#define VCHAN_PCM_WRITE_U32_BE(b8, val) _PCM_WRITE_U32_BE(b8, val)
#define FEEDER_VCHAN_MIX(FMTBIT, VCHAN_INTCAST, SIGN, SIGNS, ENDIAN, ENDIANS) \
static uint32_t \
feed_vchan_mix_##SIGNS##FMTBIT##ENDIANS(uint8_t *to, uint8_t *tmp, \
uint32_t count) \
{ \
int32_t x, y; \
VCHAN_INTCAST z; \
int i; \
\
i = count; \
tmp += i; \
to += i; \
\
do { \
tmp -= PCM_##FMTBIT##_BPS; \
to -= PCM_##FMTBIT##_BPS; \
i -= PCM_##FMTBIT##_BPS; \
x = PCM_READ_##SIGN##FMTBIT##_##ENDIAN(tmp); \
y = PCM_READ_##SIGN##FMTBIT##_##ENDIAN(to); \
z = (VCHAN_INTCAST)x + y; \
x = PCM_CLAMP_##SIGN##FMTBIT(z); \
VCHAN_PCM_WRITE_##SIGN##FMTBIT##_##ENDIAN(to, x); \
} while (i != 0); \
\
return (count); \
}
FEEDER_VCHAN_MIX(8, int32_t, S, s, NE, ne)
FEEDER_VCHAN_MIX(16, int32_t, S, s, LE, le)
FEEDER_VCHAN_MIX(24, int32_t, S, s, LE, le)
FEEDER_VCHAN_MIX(32, intpcm_t, S, s, LE, le)
FEEDER_VCHAN_MIX(16, int32_t, S, s, BE, be)
FEEDER_VCHAN_MIX(24, int32_t, S, s, BE, be)
FEEDER_VCHAN_MIX(32, intpcm_t, S, s, BE, be)
FEEDER_VCHAN_MIX(8, int32_t, U, u, NE, ne)
FEEDER_VCHAN_MIX(16, int32_t, U, u, LE, le)
FEEDER_VCHAN_MIX(24, int32_t, U, u, LE, le)
FEEDER_VCHAN_MIX(32, intpcm_t, U, u, LE, le)
FEEDER_VCHAN_MIX(16, int32_t, U, u, BE, be)
FEEDER_VCHAN_MIX(24, int32_t, U, u, BE, be)
FEEDER_VCHAN_MIX(32, intpcm_t, U, u, BE, be)
struct feed_vchan_info {
uint32_t format;
int bps;
feed_vchan_mixer mix;
};
static struct feed_vchan_info feed_vchan_info_tbl[] = {
{ AFMT_S8, PCM_8_BPS, feed_vchan_mix_s8ne },
{ AFMT_S16_LE, PCM_16_BPS, feed_vchan_mix_s16le },
{ AFMT_S24_LE, PCM_24_BPS, feed_vchan_mix_s24le },
{ AFMT_S32_LE, PCM_32_BPS, feed_vchan_mix_s32le },
{ AFMT_S16_BE, PCM_16_BPS, feed_vchan_mix_s16be },
{ AFMT_S24_BE, PCM_24_BPS, feed_vchan_mix_s24be },
{ AFMT_S32_BE, PCM_32_BPS, feed_vchan_mix_s32be },
{ AFMT_U8, PCM_8_BPS, feed_vchan_mix_u8ne },
{ AFMT_U16_LE, PCM_16_BPS, feed_vchan_mix_u16le },
{ AFMT_U24_LE, PCM_24_BPS, feed_vchan_mix_u24le },
{ AFMT_U32_LE, PCM_32_BPS, feed_vchan_mix_u32le },
{ AFMT_U16_BE, PCM_16_BPS, feed_vchan_mix_u16be },
{ AFMT_U24_BE, PCM_24_BPS, feed_vchan_mix_u24be },
{ AFMT_U32_BE, PCM_32_BPS, feed_vchan_mix_u32be },
};
#define FVCHAN_DATA(i, c) ((intptr_t)((((i) & 0x1f) << 4) | ((c) & 0xf)))
#define FVCHAN_INFOIDX(m) (((m) >> 4) & 0x1f)
#define FVCHAN_CHANNELS(m) ((m) & 0xf)
static int
feed_vchan_init(struct pcm_feeder *f)
{
int i, channels;
if (f->desc->out != f->desc->in)
return (EINVAL);
channels = (f->desc->out & AFMT_STEREO) ? 2 : 1;
for (i = 0; i < sizeof(feed_vchan_info_tbl) /
sizeof(feed_vchan_info_tbl[0]); i++) {
if ((f->desc->out & ~AFMT_STEREO) ==
feed_vchan_info_tbl[i].format) {
f->data = (void *)FVCHAN_DATA(i, channels);
return (0);
}
}
return (-1);
}
static __inline int
feed_vchan_rec(struct pcm_channel *c)
{
struct pcm_channel *ch;
struct snd_dbuf *b, *bs;
int cnt, rdy;
/*
* Reset ready and moving pointer. We're not using bufsoft
* anywhere since its sole purpose is to become the primary
* distributor for the recorded buffer and also as an interrupt
* threshold progress indicator.
*/
b = c->bufsoft;
b->rp = 0;
b->rl = 0;
cnt = sndbuf_getsize(b);
do {
cnt = FEEDER_FEED(c->feeder->source, c, b->tmpbuf, cnt,
c->bufhard);
if (cnt != 0) {
sndbuf_acquire(b, b->tmpbuf, cnt);
cnt = sndbuf_getfree(b);
}
} while (cnt != 0);
/* Not enough data */
if (b->rl < sndbuf_getbps(b)) {
b->rl = 0;
return (0);
}
/*
* Keep track of ready and moving pointer since we will use
* bufsoft over and over again, pretending nothing has happened.
*/
rdy = b->rl;
CHN_FOREACH(ch, c, children.busy) {
CHN_LOCK(ch);
if (!(ch->flags & CHN_F_TRIGGERED)) {
CHN_UNLOCK(ch);
continue;
}
bs = ch->bufsoft;
if (ch->flags & CHN_F_MAPPED)
sndbuf_dispose(bs, NULL, sndbuf_getready(bs));
cnt = sndbuf_getfree(bs);
if (cnt < sndbuf_getbps(bs)) {
CHN_UNLOCK(ch);
continue;
}
do {
cnt = FEEDER_FEED(ch->feeder, ch, bs->tmpbuf, cnt, b);
if (cnt != 0) {
sndbuf_acquire(bs, bs->tmpbuf, cnt);
cnt = sndbuf_getfree(bs);
}
} while (cnt != 0);
/*
* Not entirely flushed out...
*/
if (b->rl != 0)
ch->xruns++;
CHN_UNLOCK(ch);
/*
* Rewind buffer position for next virtual channel.
*/
b->rp = 0;
b->rl = rdy;
}
/*
* Set ready pointer to indicate that our children are ready
* to be woken up, also as an interrupt threshold progress
* indicator.
*/
b->rl = 1;
/*
* Return 0 to bail out early from sndbuf_feed() loop.
* No need to increase feedcount counter since part of this
* feeder chains already include feed_root().
*/
return (0);
}
static int
feed_vchan(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
uint32_t count, void *source)
{
struct feed_vchan_info *info;
struct snd_dbuf *src = source;
struct pcm_channel *ch;
uint32_t cnt, mcnt, rcnt, sz;
uint8_t *tmp;
if (c->direction == PCMDIR_REC)
return (feed_vchan_rec(c));
sz = sndbuf_getsize(src);
if (sz < count)
count = sz;
info = &feed_vchan_info_tbl[FVCHAN_INFOIDX((intptr_t)f->data)];
sz = info->bps * FVCHAN_CHANNELS((intptr_t)f->data);
count -= count % sz;
if (count < sz)
return (0);
/*
* we are going to use our source as a temporary buffer since it's
* got no other purpose. we obtain our data by traversing the channel
* list of children and calling vchan_mix_* to mix count bytes from
* each into our destination buffer, b
*/
tmp = sndbuf_getbuf(src);
rcnt = 0;
mcnt = 0;
CHN_FOREACH(ch, c, children.busy) {
CHN_LOCK(ch);
if (!(ch->flags & CHN_F_TRIGGERED)) {
CHN_UNLOCK(ch);
continue;
}
if ((ch->flags & CHN_F_MAPPED) && !(ch->flags & CHN_F_CLOSING))
sndbuf_acquire(ch->bufsoft, NULL,
sndbuf_getfree(ch->bufsoft));
if (rcnt == 0) {
rcnt = FEEDER_FEED(ch->feeder, ch, b, count,
ch->bufsoft);
rcnt -= rcnt % sz;
mcnt = count - rcnt;
} else {
cnt = FEEDER_FEED(ch->feeder, ch, tmp, count,
ch->bufsoft);
cnt -= cnt % sz;
if (cnt != 0) {
if (mcnt != 0) {
memset(b + rcnt,
sndbuf_zerodata(f->desc->out),
mcnt);
mcnt = 0;
}
cnt = info->mix(b, tmp, cnt);
if (cnt > rcnt)
rcnt = cnt;
}
}
CHN_UNLOCK(ch);
}
if (++c->feedcount == 0)
c->feedcount = 2;
return (rcnt);
}
static struct pcm_feederdesc feeder_vchan_desc[] = {
{FEEDER_MIXER, AFMT_S8, AFMT_S8, 0},
{FEEDER_MIXER, AFMT_S16_LE, AFMT_S16_LE, 0},
{FEEDER_MIXER, AFMT_S24_LE, AFMT_S24_LE, 0},
{FEEDER_MIXER, AFMT_S32_LE, AFMT_S32_LE, 0},
{FEEDER_MIXER, AFMT_S16_BE, AFMT_S16_BE, 0},
{FEEDER_MIXER, AFMT_S24_BE, AFMT_S24_BE, 0},
{FEEDER_MIXER, AFMT_S32_BE, AFMT_S32_BE, 0},
{FEEDER_MIXER, AFMT_S8 | AFMT_STEREO, AFMT_S8 | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_S16_LE | AFMT_STEREO, AFMT_S16_LE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_S24_LE | AFMT_STEREO, AFMT_S24_LE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_S32_LE | AFMT_STEREO, AFMT_S32_LE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_S16_BE | AFMT_STEREO, AFMT_S16_BE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_S24_BE | AFMT_STEREO, AFMT_S24_BE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_S32_BE | AFMT_STEREO, AFMT_S32_BE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_U8, AFMT_U8, 0},
{FEEDER_MIXER, AFMT_U16_LE, AFMT_U16_LE, 0},
{FEEDER_MIXER, AFMT_U24_LE, AFMT_U24_LE, 0},
{FEEDER_MIXER, AFMT_U32_LE, AFMT_U32_LE, 0},
{FEEDER_MIXER, AFMT_U16_BE, AFMT_U16_BE, 0},
{FEEDER_MIXER, AFMT_U24_BE, AFMT_U24_BE, 0},
{FEEDER_MIXER, AFMT_U32_BE, AFMT_U32_BE, 0},
{FEEDER_MIXER, AFMT_U8 | AFMT_STEREO, AFMT_U8 | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_U16_LE | AFMT_STEREO, AFMT_U16_LE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_U24_LE | AFMT_STEREO, AFMT_U24_LE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_U32_LE | AFMT_STEREO, AFMT_U32_LE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_U16_BE | AFMT_STEREO, AFMT_U16_BE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_U24_BE | AFMT_STEREO, AFMT_U24_BE | AFMT_STEREO, 0},
{FEEDER_MIXER, AFMT_U32_BE | AFMT_STEREO, AFMT_U32_BE | AFMT_STEREO, 0},
{0, 0, 0, 0},
};
static kobj_method_t feeder_vchan_methods[] = {
KOBJMETHOD(feeder_init, feed_vchan_init),
KOBJMETHOD(feeder_feed, feed_vchan),
{0, 0}
};
FEEDER_DECLARE(feeder_vchan, 2, NULL);
/************************************************************/
static void *
vchan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct vchinfo *ch;
KASSERT(dir == PCMDIR_PLAY || dir == PCMDIR_REC,
("vchan_init: bad direction"));
KASSERT(c != NULL && c->parentchannel != NULL,
("vchan_init: bad channels"));
ch = malloc(sizeof(*ch), M_DEVBUF, M_WAITOK | M_ZERO);
ch->channel = c;
ch->trigger = PCMTRIG_STOP;
c->flags |= CHN_F_VIRTUAL;
return (ch);
}
static int
vchan_free(kobj_t obj, void *data)
{
free(data, M_DEVBUF);
return (0);
}
static int
vchan_setformat(kobj_t obj, void *data, uint32_t format)
{
struct vchinfo *ch = data;
if (fmtvalid(format, ch->fmtlist) == 0)
return (-1);
return (0);
}
static int
vchan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
struct vchinfo *ch = data;
struct pcm_channel *p = ch->channel->parentchannel;
return (sndbuf_getspd(p->bufsoft));
}
static int
vchan_trigger(kobj_t obj, void *data, int go)
{
struct vchinfo *ch = data;
struct pcm_channel *c, *p;
int err, otrigger;
if (!PCMTRIG_COMMON(go) || go == ch->trigger)
return (0);
c = ch->channel;
p = c->parentchannel;
otrigger = ch->trigger;
ch->trigger = go;
CHN_UNLOCK(c);
CHN_LOCK(p);
switch (go) {
case PCMTRIG_START:
if (otrigger != PCMTRIG_START) {
CHN_INSERT_HEAD(p, c, children.busy);
}
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
if (otrigger == PCMTRIG_START) {
CHN_REMOVE(p, c, children.busy);
}
break;
default:
break;
}
err = chn_notify(p, CHN_N_TRIGGER);
CHN_UNLOCK(p);
CHN_LOCK(c);
return (err);
}
static struct pcmchan_caps *
vchan_getcaps(kobj_t obj, void *data)
{
struct vchinfo *ch = data;
struct pcm_channel *c, *p;
uint32_t fmt;
c = ch->channel;
p = c->parentchannel;
ch->caps.minspeed = sndbuf_getspd(p->bufsoft);
ch->caps.maxspeed = ch->caps.minspeed;
ch->caps.caps = 0;
ch->fmtlist[1] = 0;
fmt = sndbuf_getfmt(p->bufsoft);
if (fmt != vchan_valid_format(fmt)) {
device_printf(c->dev,
"%s: WARNING: invalid vchan format! (0x%08x)\n",
__func__, fmt);
fmt = VCHAN_DEFAULT_AFMT;
}
ch->fmtlist[0] = fmt;
ch->caps.fmtlist = ch->fmtlist;
return (&ch->caps);
}
static kobj_method_t vchan_methods[] = {
KOBJMETHOD(channel_init, vchan_init),
KOBJMETHOD(channel_free, vchan_free),
KOBJMETHOD(channel_setformat, vchan_setformat),
KOBJMETHOD(channel_setspeed, vchan_setspeed),
KOBJMETHOD(channel_trigger, vchan_trigger),
KOBJMETHOD(channel_getcaps, vchan_getcaps),
{0, 0}
};
CHANNEL_DECLARE(vchan);
/*
* On the fly vchan rate settings
*/
#ifdef SND_DYNSYSCTL
static int
sysctl_hw_snd_vchanrate(SYSCTL_HANDLER_ARGS)
{
struct snddev_info *d;
struct pcm_channel *c, *ch = NULL;
struct pcmchan_caps *caps;
int *vchanrate, vchancount, direction, err, newspd;
d = devclass_get_softc(pcm_devclass, VCHAN_SYSCTL_UNIT(oidp->oid_arg1));
if (!PCM_REGISTERED(d) || !(d->flags & SD_F_AUTOVCHAN))
return (EINVAL);
pcm_lock(d);
PCM_WAIT(d);
switch (VCHAN_SYSCTL_DIR(oidp->oid_arg1)) {
case VCHAN_PLAY:
direction = PCMDIR_PLAY;
vchancount = d->pvchancount;
vchanrate = &d->pvchanrate;
break;
case VCHAN_REC:
direction = PCMDIR_REC;
vchancount = d->rvchancount;
vchanrate = &d->rvchanrate;
break;
default:
pcm_unlock(d);
return (EINVAL);
break;
}
if (vchancount < 1) {
pcm_unlock(d);
return (EINVAL);
}
PCM_ACQUIRE(d);
pcm_unlock(d);
newspd = 0;
CHN_FOREACH(c, d, channels.pcm) {
CHN_LOCK(c);
if (c->direction == direction) {
if (c->flags & CHN_F_VIRTUAL) {
/* Sanity check */
if (ch != NULL && ch != c->parentchannel) {
CHN_UNLOCK(c);
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
} else if (c->flags & CHN_F_HAS_VCHAN) {
/* No way!! */
if (ch != NULL) {
CHN_UNLOCK(c);
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
ch = c;
newspd = ch->speed;
}
}
CHN_UNLOCK(c);
}
if (ch == NULL) {
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
err = sysctl_handle_int(oidp, &newspd, 0, req);
if (err == 0 && req->newptr != NULL) {
if (newspd < 1 || newspd < feeder_rate_min ||
newspd > feeder_rate_max) {
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
CHN_LOCK(ch);
if (feeder_rate_round) {
caps = chn_getcaps(ch);
if (caps == NULL || newspd < caps->minspeed ||
newspd > caps->maxspeed) {
CHN_UNLOCK(ch);
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
}
if (CHN_STOPPED(ch) && newspd != ch->speed) {
err = chn_setspeed(ch, newspd);
/*
* Try to avoid FEEDER_RATE on parent channel if the
* requested value is not supported by the hardware.
*/
if (!err && feeder_rate_round &&
(ch->feederflags & (1 << FEEDER_RATE))) {
newspd = sndbuf_getspd(ch->bufhard);
err = chn_setspeed(ch, newspd);
}
if (err == 0)
*vchanrate = newspd;
}
CHN_UNLOCK(ch);
}
PCM_RELEASE_QUICK(d);
return (err);
}
static int
sysctl_hw_snd_vchanformat(SYSCTL_HANDLER_ARGS)
{
struct snddev_info *d;
struct pcm_channel *c, *ch = NULL;
uint32_t newfmt, spd;
int *vchanformat, vchancount, direction, err, i;
char fmtstr[AFMTSTR_MAXSZ];
d = devclass_get_softc(pcm_devclass, VCHAN_SYSCTL_UNIT(oidp->oid_arg1));
if (!PCM_REGISTERED(d) || !(d->flags & SD_F_AUTOVCHAN))
return (EINVAL);
pcm_lock(d);
PCM_WAIT(d);
switch (VCHAN_SYSCTL_DIR(oidp->oid_arg1)) {
case VCHAN_PLAY:
direction = PCMDIR_PLAY;
vchancount = d->pvchancount;
vchanformat = &d->pvchanformat;
break;
case VCHAN_REC:
direction = PCMDIR_REC;
vchancount = d->rvchancount;
vchanformat = &d->rvchanformat;
break;
default:
pcm_unlock(d);
return (EINVAL);
break;
}
if (vchancount < 1) {
pcm_unlock(d);
return (EINVAL);
}
PCM_ACQUIRE(d);
pcm_unlock(d);
CHN_FOREACH(c, d, channels.pcm) {
CHN_LOCK(c);
if (c->direction == direction) {
if (c->flags & CHN_F_VIRTUAL) {
/* Sanity check */
if (ch != NULL && ch != c->parentchannel) {
CHN_UNLOCK(c);
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
} else if (c->flags & CHN_F_HAS_VCHAN) {
/* No way!! */
if (ch != NULL) {
CHN_UNLOCK(c);
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
ch = c;
if (ch->format !=
afmt2afmtstr(vchan_supported_fmts,
ch->format, fmtstr, sizeof(fmtstr),
AFMTSTR_FULL, AFMTSTR_STEREO_RETURN)) {
strlcpy(fmtstr, VCHAN_DEFAULT_STRFMT,
sizeof(fmtstr));
}
}
}
CHN_UNLOCK(c);
}
if (ch == NULL) {
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
err = sysctl_handle_string(oidp, fmtstr, sizeof(fmtstr), req);
if (err == 0 && req->newptr != NULL) {
for (i = 0; vchan_fmtstralias[i].alias != NULL; i++) {
if (strcmp(fmtstr, vchan_fmtstralias[i].alias) == 0) {
strlcpy(fmtstr, vchan_fmtstralias[i].fmtstr,
sizeof(fmtstr));
break;
}
}
newfmt = vchan_valid_strformat(fmtstr);
if (newfmt == 0) {
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
CHN_LOCK(ch);
if (CHN_STOPPED(ch) && newfmt != ch->format) {
/* Get channel speed, before chn_reset() screw it. */
spd = ch->speed;
err = chn_reset(ch, newfmt);
if (err == 0)
err = chn_setspeed(ch, spd);
if (err == 0)
*vchanformat = newfmt;
}
CHN_UNLOCK(ch);
}
PCM_RELEASE_QUICK(d);
return (err);
}
#endif
/* virtual channel interface */
#define VCHAN_FMT_HINT(x) ((x) == PCMDIR_PLAY_VIRTUAL) ? \
"play.vchanformat" : "rec.vchanformat"
#define VCHAN_SPD_HINT(x) ((x) == PCMDIR_PLAY_VIRTUAL) ? \
"play.vchanrate" : "rec.vchanrate"
int
vchan_create(struct pcm_channel *parent, int num)
{
struct snddev_info *d = parent->parentsnddev;
struct pcm_channel *ch, *tmp, *after;
struct pcmchan_caps *parent_caps;
uint32_t vchanfmt;
int err, first, speed, r;
int direction;
PCM_BUSYASSERT(d);
if (!(parent->flags & CHN_F_BUSY))
return (EBUSY);
if (parent->direction == PCMDIR_PLAY) {
direction = PCMDIR_PLAY_VIRTUAL;
vchanfmt = d->pvchanformat;
speed = d->pvchanrate;
} else if (parent->direction == PCMDIR_REC) {
direction = PCMDIR_REC_VIRTUAL;
vchanfmt = d->rvchanformat;
speed = d->rvchanrate;
} else
return (EINVAL);
CHN_UNLOCK(parent);
/* create a new playback channel */
pcm_lock(d);
ch = pcm_chn_create(d, parent, &vchan_class, direction, num, parent);
if (ch == NULL) {
pcm_unlock(d);
CHN_LOCK(parent);
return (ENODEV);
}
/* add us to our grandparent's channel list */
err = pcm_chn_add(d, ch);
pcm_unlock(d);
if (err) {
pcm_chn_destroy(ch);
CHN_LOCK(parent);
return (err);
}
CHN_LOCK(parent);
/* add us to our parent channel's children */
first = CHN_EMPTY(parent, children);
after = NULL;
CHN_FOREACH(tmp, parent, children) {
if (CHN_CHAN(tmp) > CHN_CHAN(ch))
after = tmp;
else if (CHN_CHAN(tmp) < CHN_CHAN(ch))
break;
}
if (after != NULL) {
CHN_INSERT_AFTER(after, ch, children);
} else {
CHN_INSERT_HEAD(parent, ch, children);
}
parent->flags |= CHN_F_HAS_VCHAN;
if (first) {
parent_caps = chn_getcaps(parent);
if (parent_caps == NULL)
err = EINVAL;
if (!err) {
if (vchanfmt == 0) {
const char *vfmt;
CHN_UNLOCK(parent);
r = resource_string_value(
device_get_name(parent->dev),
device_get_unit(parent->dev),
VCHAN_FMT_HINT(direction),
&vfmt);
CHN_LOCK(parent);
if (r != 0)
vfmt = NULL;
if (vfmt != NULL) {
vchanfmt = vchan_valid_strformat(vfmt);
for (r = 0; vchanfmt == 0 &&
vchan_fmtstralias[r].alias != NULL;
r++) {
if (strcmp(vfmt, vchan_fmtstralias[r].alias) == 0) {
vchanfmt = vchan_valid_strformat(vchan_fmtstralias[r].fmtstr);
break;
}
}
}
if (vchanfmt == 0)
vchanfmt = VCHAN_DEFAULT_AFMT;
}
err = chn_reset(parent, vchanfmt);
}
if (!err) {
/*
* This is very sad. Few soundcards advertised as being
* able to do (insanely) higher/lower speed, but in
* reality, they simply can't. At least, we give user chance
* to set sane value via kernel hints or sysctl.
*/
if (speed < 1) {
CHN_UNLOCK(parent);
r = resource_int_value(
device_get_name(parent->dev),
device_get_unit(parent->dev),
VCHAN_SPD_HINT(direction),
&speed);
CHN_LOCK(parent);
if (r != 0) {
/*
* No saved value, no hint, NOTHING.
*
* Workaround for sb16 running
* poorly at 45k / 49k.
*/
switch (parent_caps->maxspeed) {
case 45000:
case 49000:
speed = 44100;
break;
default:
speed = VCHAN_DEFAULT_SPEED;
if (speed > parent_caps->maxspeed)
speed = parent_caps->maxspeed;
break;
}
if (speed < parent_caps->minspeed)
speed = parent_caps->minspeed;
}
}
if (feeder_rate_round) {
/*
* Limit speed based on driver caps.
* This is supposed to help fixed rate, non-VRA
* AC97 cards, but.. (see below)
*/
if (speed < parent_caps->minspeed)
speed = parent_caps->minspeed;
if (speed > parent_caps->maxspeed)
speed = parent_caps->maxspeed;
}
/*
* We still need to limit the speed between
* feeder_rate_min <-> feeder_rate_max. This is
* just an escape goat if all of the above failed
* miserably.
*/
if (speed < feeder_rate_min)
speed = feeder_rate_min;
if (speed > feeder_rate_max)
speed = feeder_rate_max;
err = chn_setspeed(parent, speed);
/*
* Try to avoid FEEDER_RATE on parent channel if the
* requested value is not supported by the hardware.
*/
if (!err && feeder_rate_round &&
(parent->feederflags & (1 << FEEDER_RATE))) {
speed = sndbuf_getspd(parent->bufhard);
err = chn_setspeed(parent, speed);
}
if (!err) {
/*
* Save new value.
*/
CHN_UNLOCK(parent);
if (direction == PCMDIR_PLAY_VIRTUAL) {
d->pvchanformat = vchanfmt;
d->pvchanrate = speed;
} else {
d->rvchanformat = vchanfmt;
d->rvchanrate = speed;
}
CHN_LOCK(parent);
}
}
if (err) {
CHN_REMOVE(parent, ch, children);
parent->flags &= ~CHN_F_HAS_VCHAN;
CHN_UNLOCK(parent);
pcm_lock(d);
if (pcm_chn_remove(d, ch) == 0) {
pcm_unlock(d);
pcm_chn_destroy(ch);
} else
pcm_unlock(d);
CHN_LOCK(parent);
return (err);
}
}
return (0);
}
int
vchan_destroy(struct pcm_channel *c)
{
struct pcm_channel *parent = c->parentchannel;
struct snddev_info *d = parent->parentsnddev;
uint32_t spd;
int err;
PCM_BUSYASSERT(d);
CHN_LOCK(parent);
if (!(parent->flags & CHN_F_BUSY)) {
CHN_UNLOCK(parent);
return (EBUSY);
}
if (CHN_EMPTY(parent, children)) {
CHN_UNLOCK(parent);
return (EINVAL);
}
/* remove us from our parent's children list */
CHN_REMOVE(parent, c, children);
if (CHN_EMPTY(parent, children)) {
parent->flags &= ~(CHN_F_BUSY | CHN_F_HAS_VCHAN);
spd = parent->speed;
if (chn_reset(parent, parent->format) == 0)
chn_setspeed(parent, spd);
}
CHN_UNLOCK(parent);
/* remove us from our grandparent's channel list */
pcm_lock(d);
err = pcm_chn_remove(d, c);
pcm_unlock(d);
/* destroy ourselves */
if (!err)
err = pcm_chn_destroy(c);
return (err);
}
int
vchan_initsys(device_t dev)
{
#ifdef SND_DYNSYSCTL
struct snddev_info *d;
int unit;
unit = device_get_unit(dev);
d = device_get_softc(dev);
/* Play */
SYSCTL_ADD_PROC(&d->play_sysctl_ctx,
SYSCTL_CHILDREN(d->play_sysctl_tree),
OID_AUTO, "vchans", CTLTYPE_INT | CTLFLAG_RW,
VCHAN_SYSCTL_DATA(unit, PLAY), VCHAN_SYSCTL_DATA_SIZE,
sysctl_hw_snd_vchans, "I", "total allocated virtual channel");
SYSCTL_ADD_PROC(&d->play_sysctl_ctx,
SYSCTL_CHILDREN(d->play_sysctl_tree),
OID_AUTO, "vchanrate", CTLTYPE_INT | CTLFLAG_RW,
VCHAN_SYSCTL_DATA(unit, PLAY), VCHAN_SYSCTL_DATA_SIZE,
sysctl_hw_snd_vchanrate, "I", "virtual channel mixing speed/rate");
SYSCTL_ADD_PROC(&d->play_sysctl_ctx,
SYSCTL_CHILDREN(d->play_sysctl_tree),
OID_AUTO, "vchanformat", CTLTYPE_STRING | CTLFLAG_RW,
VCHAN_SYSCTL_DATA(unit, PLAY), VCHAN_SYSCTL_DATA_SIZE,
sysctl_hw_snd_vchanformat, "A", "virtual channel format");
/* Rec */
SYSCTL_ADD_PROC(&d->rec_sysctl_ctx,
SYSCTL_CHILDREN(d->rec_sysctl_tree),
OID_AUTO, "vchans", CTLTYPE_INT | CTLFLAG_RW,
VCHAN_SYSCTL_DATA(unit, REC), VCHAN_SYSCTL_DATA_SIZE,
sysctl_hw_snd_vchans, "I", "total allocated virtual channel");
SYSCTL_ADD_PROC(&d->rec_sysctl_ctx,
SYSCTL_CHILDREN(d->rec_sysctl_tree),
OID_AUTO, "vchanrate", CTLTYPE_INT | CTLFLAG_RW,
VCHAN_SYSCTL_DATA(unit, REC), VCHAN_SYSCTL_DATA_SIZE,
sysctl_hw_snd_vchanrate, "I", "virtual channel base speed/rate");
SYSCTL_ADD_PROC(&d->rec_sysctl_ctx,
SYSCTL_CHILDREN(d->rec_sysctl_tree),
OID_AUTO, "vchanformat", CTLTYPE_STRING | CTLFLAG_RW,
VCHAN_SYSCTL_DATA(unit, REC), VCHAN_SYSCTL_DATA_SIZE,
sysctl_hw_snd_vchanformat, "A", "virtual channel format");
#endif
return (0);
}