freebsd-nq/tests/sys/kern/ptrace_test.c
John Baldwin a9c91abd3b Export a breakpoint() function to userland for arm and arm64.
Enable ptrace() tests using breakpoint() on these architectures.

Reviewed by:	andrew
Differential Revision:	https://reviews.freebsd.org/D15191
2018-07-06 23:49:17 +00:00

3837 lines
106 KiB
C

/*-
* Copyright (c) 2015 John Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/cpuset.h>
#include <sys/event.h>
#include <sys/file.h>
#include <sys/time.h>
#include <sys/procctl.h>
#include <sys/ptrace.h>
#include <sys/queue.h>
#include <sys/runq.h>
#include <sys/syscall.h>
#include <sys/sysctl.h>
#include <sys/user.h>
#include <sys/wait.h>
#include <errno.h>
#include <machine/cpufunc.h>
#include <pthread.h>
#include <sched.h>
#include <semaphore.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <atf-c.h>
/*
* Architectures with a user-visible breakpoint().
*/
#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
defined(__i386__) || defined(__mips__) || defined(__riscv) || \
defined(__sparc64__)
#define HAVE_BREAKPOINT
#endif
/*
* Adjust PC to skip over a breakpoint when stopped for a breakpoint trap.
*/
#ifdef HAVE_BREAKPOINT
#if defined(__aarch64__)
#define SKIP_BREAK(reg) ((reg)->elr += 4)
#elif defined(__amd64__) || defined(__i386__)
#define SKIP_BREAK(reg)
#elif defined(__arm__)
#define SKIP_BREAK(reg) ((reg)->r_pc += 4)
#elif defined(__mips__)
#define SKIP_BREAK(reg) ((reg)->r_regs[PC] += 4)
#elif defined(__riscv)
#define SKIP_BREAK(reg) ((reg)->sepc += 4)
#elif defined(__sparc64__)
#define SKIP_BREAK(reg) do { \
(reg)->r_tpc = (reg)->r_tnpc + 4; \
(reg)->r_tnpc += 8; \
} while (0)
#endif
#endif
/*
* A variant of ATF_REQUIRE that is suitable for use in child
* processes. This only works if the parent process is tripped up by
* the early exit and fails some requirement itself.
*/
#define CHILD_REQUIRE(exp) do { \
if (!(exp)) \
child_fail_require(__FILE__, __LINE__, \
#exp " not met"); \
} while (0)
static __dead2 void
child_fail_require(const char *file, int line, const char *str)
{
char buf[128];
snprintf(buf, sizeof(buf), "%s:%d: %s\n", file, line, str);
write(2, buf, strlen(buf));
_exit(32);
}
static void
trace_me(void)
{
/* Attach the parent process as a tracer of this process. */
CHILD_REQUIRE(ptrace(PT_TRACE_ME, 0, NULL, 0) != -1);
/* Trigger a stop. */
raise(SIGSTOP);
}
static void
attach_child(pid_t pid)
{
pid_t wpid;
int status;
ATF_REQUIRE(ptrace(PT_ATTACH, pid, NULL, 0) == 0);
wpid = waitpid(pid, &status, 0);
ATF_REQUIRE(wpid == pid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
}
static void
wait_for_zombie(pid_t pid)
{
/*
* Wait for a process to exit. This is kind of gross, but
* there is not a better way.
*
* Prior to r325719, the kern.proc.pid.<pid> sysctl failed
* with ESRCH. After that change, a valid struct kinfo_proc
* is returned for zombies with ki_stat set to SZOMB.
*/
for (;;) {
struct kinfo_proc kp;
size_t len;
int mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = pid;
len = sizeof(kp);
if (sysctl(mib, nitems(mib), &kp, &len, NULL, 0) == -1) {
ATF_REQUIRE(errno == ESRCH);
break;
}
if (kp.ki_stat == SZOMB)
break;
usleep(5000);
}
}
/*
* Verify that a parent debugger process "sees" the exit of a debugged
* process exactly once when attached via PT_TRACE_ME.
*/
ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_trace_me);
ATF_TC_BODY(ptrace__parent_wait_after_trace_me, tc)
{
pid_t child, wpid;
int status;
ATF_REQUIRE((child = fork()) != -1);
if (child == 0) {
/* Child process. */
trace_me();
_exit(1);
}
/* Parent process. */
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(child, &status, 0);
ATF_REQUIRE(wpid == child);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
/* The second wait() should report the exit status. */
wpid = waitpid(child, &status, 0);
ATF_REQUIRE(wpid == child);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
/* The child should no longer exist. */
wpid = waitpid(child, &status, 0);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that a parent debugger process "sees" the exit of a debugged
* process exactly once when attached via PT_ATTACH.
*/
ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_attach);
ATF_TC_BODY(ptrace__parent_wait_after_attach, tc)
{
pid_t child, wpid;
int cpipe[2], status;
char c;
ATF_REQUIRE(pipe(cpipe) == 0);
ATF_REQUIRE((child = fork()) != -1);
if (child == 0) {
/* Child process. */
close(cpipe[0]);
/* Wait for the parent to attach. */
CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == 0);
_exit(1);
}
close(cpipe[1]);
/* Parent process. */
/* Attach to the child process. */
attach_child(child);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
/* Signal the child to exit. */
close(cpipe[0]);
/* The second wait() should report the exit status. */
wpid = waitpid(child, &status, 0);
ATF_REQUIRE(wpid == child);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
/* The child should no longer exist. */
wpid = waitpid(child, &status, 0);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that a parent process "sees" the exit of a debugged process only
* after the debugger has seen it.
*/
ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_child_debugger);
ATF_TC_BODY(ptrace__parent_sees_exit_after_child_debugger, tc)
{
pid_t child, debugger, wpid;
int cpipe[2], dpipe[2], status;
char c;
ATF_REQUIRE(pipe(cpipe) == 0);
ATF_REQUIRE((child = fork()) != -1);
if (child == 0) {
/* Child process. */
close(cpipe[0]);
/* Wait for parent to be ready. */
CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c));
_exit(1);
}
close(cpipe[1]);
ATF_REQUIRE(pipe(dpipe) == 0);
ATF_REQUIRE((debugger = fork()) != -1);
if (debugger == 0) {
/* Debugger process. */
close(dpipe[0]);
CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1);
wpid = waitpid(child, &status, 0);
CHILD_REQUIRE(wpid == child);
CHILD_REQUIRE(WIFSTOPPED(status));
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
/* Signal parent that debugger is attached. */
CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c));
/* Wait for parent's failed wait. */
CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == 0);
wpid = waitpid(child, &status, 0);
CHILD_REQUIRE(wpid == child);
CHILD_REQUIRE(WIFEXITED(status));
CHILD_REQUIRE(WEXITSTATUS(status) == 1);
_exit(0);
}
close(dpipe[1]);
/* Parent process. */
/* Wait for the debugger to attach to the child. */
ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c));
/* Release the child. */
ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c));
ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0);
close(cpipe[0]);
wait_for_zombie(child);
/*
* This wait should return a pid of 0 to indicate no status to
* report. The parent should see the child as non-exited
* until the debugger sees the exit.
*/
wpid = waitpid(child, &status, WNOHANG);
ATF_REQUIRE(wpid == 0);
/* Signal the debugger to wait for the child. */
close(dpipe[0]);
/* Wait for the debugger. */
wpid = waitpid(debugger, &status, 0);
ATF_REQUIRE(wpid == debugger);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 0);
/* The child process should now be ready. */
wpid = waitpid(child, &status, WNOHANG);
ATF_REQUIRE(wpid == child);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
}
/*
* Verify that a parent process "sees" the exit of a debugged process
* only after a non-direct-child debugger has seen it. In particular,
* various wait() calls in the parent must avoid failing with ESRCH by
* checking the parent's orphan list for the debugee.
*/
ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_unrelated_debugger);
ATF_TC_BODY(ptrace__parent_sees_exit_after_unrelated_debugger, tc)
{
pid_t child, debugger, fpid, wpid;
int cpipe[2], dpipe[2], status;
char c;
ATF_REQUIRE(pipe(cpipe) == 0);
ATF_REQUIRE((child = fork()) != -1);
if (child == 0) {
/* Child process. */
close(cpipe[0]);
/* Wait for parent to be ready. */
CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c));
_exit(1);
}
close(cpipe[1]);
ATF_REQUIRE(pipe(dpipe) == 0);
ATF_REQUIRE((debugger = fork()) != -1);
if (debugger == 0) {
/* Debugger parent. */
/*
* Fork again and drop the debugger parent so that the
* debugger is not a child of the main parent.
*/
CHILD_REQUIRE((fpid = fork()) != -1);
if (fpid != 0)
_exit(2);
/* Debugger process. */
close(dpipe[0]);
CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1);
wpid = waitpid(child, &status, 0);
CHILD_REQUIRE(wpid == child);
CHILD_REQUIRE(WIFSTOPPED(status));
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
/* Signal parent that debugger is attached. */
CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c));
/* Wait for parent's failed wait. */
CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == sizeof(c));
wpid = waitpid(child, &status, 0);
CHILD_REQUIRE(wpid == child);
CHILD_REQUIRE(WIFEXITED(status));
CHILD_REQUIRE(WEXITSTATUS(status) == 1);
_exit(0);
}
close(dpipe[1]);
/* Parent process. */
/* Wait for the debugger parent process to exit. */
wpid = waitpid(debugger, &status, 0);
ATF_REQUIRE(wpid == debugger);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
/* A WNOHANG wait here should see the non-exited child. */
wpid = waitpid(child, &status, WNOHANG);
ATF_REQUIRE(wpid == 0);
/* Wait for the debugger to attach to the child. */
ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c));
/* Release the child. */
ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c));
ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0);
close(cpipe[0]);
wait_for_zombie(child);
/*
* This wait should return a pid of 0 to indicate no status to
* report. The parent should see the child as non-exited
* until the debugger sees the exit.
*/
wpid = waitpid(child, &status, WNOHANG);
ATF_REQUIRE(wpid == 0);
/* Signal the debugger to wait for the child. */
ATF_REQUIRE(write(dpipe[0], &c, sizeof(c)) == sizeof(c));
/* Wait for the debugger. */
ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == 0);
close(dpipe[0]);
/* The child process should now be ready. */
wpid = waitpid(child, &status, WNOHANG);
ATF_REQUIRE(wpid == child);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
}
/*
* The parent process should always act the same regardless of how the
* debugger is attached to it.
*/
static __dead2 void
follow_fork_parent(bool use_vfork)
{
pid_t fpid, wpid;
int status;
if (use_vfork)
CHILD_REQUIRE((fpid = vfork()) != -1);
else
CHILD_REQUIRE((fpid = fork()) != -1);
if (fpid == 0)
/* Child */
_exit(2);
wpid = waitpid(fpid, &status, 0);
CHILD_REQUIRE(wpid == fpid);
CHILD_REQUIRE(WIFEXITED(status));
CHILD_REQUIRE(WEXITSTATUS(status) == 2);
_exit(1);
}
/*
* Helper routine for follow fork tests. This waits for two stops
* that report both "sides" of a fork. It returns the pid of the new
* child process.
*/
static pid_t
handle_fork_events(pid_t parent, struct ptrace_lwpinfo *ppl)
{
struct ptrace_lwpinfo pl;
bool fork_reported[2];
pid_t child, wpid;
int i, status;
fork_reported[0] = false;
fork_reported[1] = false;
child = -1;
/*
* Each process should report a fork event. The parent should
* report a PL_FLAG_FORKED event, and the child should report
* a PL_FLAG_CHILD event.
*/
for (i = 0; i < 2; i++) {
wpid = wait(&status);
ATF_REQUIRE(wpid > 0);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) !=
0);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) !=
(PL_FLAG_FORKED | PL_FLAG_CHILD));
if (pl.pl_flags & PL_FLAG_CHILD) {
ATF_REQUIRE(wpid != parent);
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(!fork_reported[1]);
if (child == -1)
child = wpid;
else
ATF_REQUIRE(child == wpid);
if (ppl != NULL)
ppl[1] = pl;
fork_reported[1] = true;
} else {
ATF_REQUIRE(wpid == parent);
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(!fork_reported[0]);
if (child == -1)
child = pl.pl_child_pid;
else
ATF_REQUIRE(child == pl.pl_child_pid);
if (ppl != NULL)
ppl[0] = pl;
fork_reported[0] = true;
}
}
return (child);
}
/*
* Verify that a new child process is stopped after a followed fork and
* that the traced parent sees the exit of the child after the debugger
* when both processes remain attached to the debugger.
*/
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached);
ATF_TC_BODY(ptrace__follow_fork_both_attached, tc)
{
pid_t children[2], fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
follow_fork_parent(false);
}
/* Parent process. */
children[0] = fpid;
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(children[0], &status, 0);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
children[1] = handle_fork_events(children[0], NULL);
ATF_REQUIRE(children[1] > 0);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
/*
* The child can't exit until the grandchild reports status, so the
* grandchild should report its exit first to the debugger.
*/
wpid = wait(&status);
ATF_REQUIRE(wpid == children[1]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
wpid = wait(&status);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that a new child process is stopped after a followed fork
* and that the traced parent sees the exit of the child when the new
* child process is detached after it reports its fork.
*/
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached);
ATF_TC_BODY(ptrace__follow_fork_child_detached, tc)
{
pid_t children[2], fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
follow_fork_parent(false);
}
/* Parent process. */
children[0] = fpid;
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(children[0], &status, 0);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
children[1] = handle_fork_events(children[0], NULL);
ATF_REQUIRE(children[1] > 0);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1);
/*
* Should not see any status from the grandchild now, only the
* child.
*/
wpid = wait(&status);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that a new child process is stopped after a followed fork
* and that the traced parent sees the exit of the child when the
* traced parent is detached after the fork.
*/
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached);
ATF_TC_BODY(ptrace__follow_fork_parent_detached, tc)
{
pid_t children[2], fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
follow_fork_parent(false);
}
/* Parent process. */
children[0] = fpid;
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(children[0], &status, 0);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
children[1] = handle_fork_events(children[0], NULL);
ATF_REQUIRE(children[1] > 0);
ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
/*
* The child can't exit until the grandchild reports status, so the
* grandchild should report its exit first to the debugger.
*
* Even though the child process is detached, it is still a
* child of the debugger, so it will still report it's exit
* after the grandchild.
*/
wpid = wait(&status);
ATF_REQUIRE(wpid == children[1]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
wpid = wait(&status);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void
attach_fork_parent(int cpipe[2])
{
pid_t fpid;
close(cpipe[0]);
/* Double-fork to disassociate from the debugger. */
CHILD_REQUIRE((fpid = fork()) != -1);
if (fpid != 0)
_exit(3);
/* Send the pid of the disassociated child to the debugger. */
fpid = getpid();
CHILD_REQUIRE(write(cpipe[1], &fpid, sizeof(fpid)) == sizeof(fpid));
/* Wait for the debugger to attach. */
CHILD_REQUIRE(read(cpipe[1], &fpid, sizeof(fpid)) == 0);
}
/*
* Verify that a new child process is stopped after a followed fork and
* that the traced parent sees the exit of the child after the debugger
* when both processes remain attached to the debugger. In this test
* the parent that forks is not a direct child of the debugger.
*/
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached_unrelated_debugger);
ATF_TC_BODY(ptrace__follow_fork_both_attached_unrelated_debugger, tc)
{
pid_t children[2], fpid, wpid;
int cpipe[2], status;
ATF_REQUIRE(pipe(cpipe) == 0);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
attach_fork_parent(cpipe);
follow_fork_parent(false);
}
/* Parent process. */
close(cpipe[1]);
/* Wait for the direct child to exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 3);
/* Read the pid of the fork parent. */
ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) ==
sizeof(children[0]));
/* Attach to the fork parent. */
attach_child(children[0]);
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
/* Continue the fork parent ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
/* Signal the fork parent to continue. */
close(cpipe[0]);
children[1] = handle_fork_events(children[0], NULL);
ATF_REQUIRE(children[1] > 0);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
/*
* The fork parent can't exit until the child reports status,
* so the child should report its exit first to the debugger.
*/
wpid = wait(&status);
ATF_REQUIRE(wpid == children[1]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
wpid = wait(&status);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that a new child process is stopped after a followed fork
* and that the traced parent sees the exit of the child when the new
* child process is detached after it reports its fork. In this test
* the parent that forks is not a direct child of the debugger.
*/
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached_unrelated_debugger);
ATF_TC_BODY(ptrace__follow_fork_child_detached_unrelated_debugger, tc)
{
pid_t children[2], fpid, wpid;
int cpipe[2], status;
ATF_REQUIRE(pipe(cpipe) == 0);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
attach_fork_parent(cpipe);
follow_fork_parent(false);
}
/* Parent process. */
close(cpipe[1]);
/* Wait for the direct child to exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 3);
/* Read the pid of the fork parent. */
ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) ==
sizeof(children[0]));
/* Attach to the fork parent. */
attach_child(children[0]);
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
/* Continue the fork parent ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
/* Signal the fork parent to continue. */
close(cpipe[0]);
children[1] = handle_fork_events(children[0], NULL);
ATF_REQUIRE(children[1] > 0);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1);
/*
* Should not see any status from the child now, only the fork
* parent.
*/
wpid = wait(&status);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that a new child process is stopped after a followed fork
* and that the traced parent sees the exit of the child when the
* traced parent is detached after the fork. In this test the parent
* that forks is not a direct child of the debugger.
*/
ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached_unrelated_debugger);
ATF_TC_BODY(ptrace__follow_fork_parent_detached_unrelated_debugger, tc)
{
pid_t children[2], fpid, wpid;
int cpipe[2], status;
ATF_REQUIRE(pipe(cpipe) == 0);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
attach_fork_parent(cpipe);
follow_fork_parent(false);
}
/* Parent process. */
close(cpipe[1]);
/* Wait for the direct child to exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 3);
/* Read the pid of the fork parent. */
ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) ==
sizeof(children[0]));
/* Attach to the fork parent. */
attach_child(children[0]);
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
/* Continue the fork parent ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
/* Signal the fork parent to continue. */
close(cpipe[0]);
children[1] = handle_fork_events(children[0], NULL);
ATF_REQUIRE(children[1] > 0);
ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
/*
* Should not see any status from the fork parent now, only
* the child.
*/
wpid = wait(&status);
ATF_REQUIRE(wpid == children[1]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that a child process does not see an unrelated debugger as its
* parent but sees its original parent process.
*/
ATF_TC_WITHOUT_HEAD(ptrace__getppid);
ATF_TC_BODY(ptrace__getppid, tc)
{
pid_t child, debugger, ppid, wpid;
int cpipe[2], dpipe[2], status;
char c;
ATF_REQUIRE(pipe(cpipe) == 0);
ATF_REQUIRE((child = fork()) != -1);
if (child == 0) {
/* Child process. */
close(cpipe[0]);
/* Wait for parent to be ready. */
CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c));
/* Report the parent PID to the parent. */
ppid = getppid();
CHILD_REQUIRE(write(cpipe[1], &ppid, sizeof(ppid)) ==
sizeof(ppid));
_exit(1);
}
close(cpipe[1]);
ATF_REQUIRE(pipe(dpipe) == 0);
ATF_REQUIRE((debugger = fork()) != -1);
if (debugger == 0) {
/* Debugger process. */
close(dpipe[0]);
CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1);
wpid = waitpid(child, &status, 0);
CHILD_REQUIRE(wpid == child);
CHILD_REQUIRE(WIFSTOPPED(status));
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1);
/* Signal parent that debugger is attached. */
CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c));
/* Wait for traced child to exit. */
wpid = waitpid(child, &status, 0);
CHILD_REQUIRE(wpid == child);
CHILD_REQUIRE(WIFEXITED(status));
CHILD_REQUIRE(WEXITSTATUS(status) == 1);
_exit(0);
}
close(dpipe[1]);
/* Parent process. */
/* Wait for the debugger to attach to the child. */
ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c));
/* Release the child. */
ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c));
/* Read the parent PID from the child. */
ATF_REQUIRE(read(cpipe[0], &ppid, sizeof(ppid)) == sizeof(ppid));
close(cpipe[0]);
ATF_REQUIRE(ppid == getpid());
/* Wait for the debugger. */
wpid = waitpid(debugger, &status, 0);
ATF_REQUIRE(wpid == debugger);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 0);
/* The child process should now be ready. */
wpid = waitpid(child, &status, WNOHANG);
ATF_REQUIRE(wpid == child);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
}
/*
* Verify that pl_syscall_code in struct ptrace_lwpinfo for a new
* child process created via fork() reports the correct value.
*/
ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_fork);
ATF_TC_BODY(ptrace__new_child_pl_syscall_code_fork, tc)
{
struct ptrace_lwpinfo pl[2];
pid_t children[2], fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
follow_fork_parent(false);
}
/* Parent process. */
children[0] = fpid;
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(children[0], &status, 0);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
/* Wait for both halves of the fork event to get reported. */
children[1] = handle_fork_events(children[0], pl);
ATF_REQUIRE(children[1] > 0);
ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_SCX) != 0);
ATF_REQUIRE((pl[1].pl_flags & PL_FLAG_SCX) != 0);
ATF_REQUIRE(pl[0].pl_syscall_code == SYS_fork);
ATF_REQUIRE(pl[0].pl_syscall_code == pl[1].pl_syscall_code);
ATF_REQUIRE(pl[0].pl_syscall_narg == pl[1].pl_syscall_narg);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
/*
* The child can't exit until the grandchild reports status, so the
* grandchild should report its exit first to the debugger.
*/
wpid = wait(&status);
ATF_REQUIRE(wpid == children[1]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
wpid = wait(&status);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that pl_syscall_code in struct ptrace_lwpinfo for a new
* child process created via vfork() reports the correct value.
*/
ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_vfork);
ATF_TC_BODY(ptrace__new_child_pl_syscall_code_vfork, tc)
{
struct ptrace_lwpinfo pl[2];
pid_t children[2], fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
follow_fork_parent(true);
}
/* Parent process. */
children[0] = fpid;
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(children[0], &status, 0);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
/* Wait for both halves of the fork event to get reported. */
children[1] = handle_fork_events(children[0], pl);
ATF_REQUIRE(children[1] > 0);
ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_SCX) != 0);
ATF_REQUIRE((pl[1].pl_flags & PL_FLAG_SCX) != 0);
ATF_REQUIRE(pl[0].pl_syscall_code == SYS_vfork);
ATF_REQUIRE(pl[0].pl_syscall_code == pl[1].pl_syscall_code);
ATF_REQUIRE(pl[0].pl_syscall_narg == pl[1].pl_syscall_narg);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
/*
* The child can't exit until the grandchild reports status, so the
* grandchild should report its exit first to the debugger.
*/
wpid = wait(&status);
ATF_REQUIRE(wpid == children[1]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
wpid = wait(&status);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void *
simple_thread(void *arg __unused)
{
pthread_exit(NULL);
}
static __dead2 void
simple_thread_main(void)
{
pthread_t thread;
CHILD_REQUIRE(pthread_create(&thread, NULL, simple_thread, NULL) == 0);
CHILD_REQUIRE(pthread_join(thread, NULL) == 0);
exit(1);
}
/*
* Verify that pl_syscall_code in struct ptrace_lwpinfo for a new
* thread reports the correct value.
*/
ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_thread);
ATF_TC_BODY(ptrace__new_child_pl_syscall_code_thread, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
lwpid_t mainlwp;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
simple_thread_main();
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
mainlwp = pl.pl_lwpid;
/*
* Continue the child ignoring the SIGSTOP and tracing all
* system call exits.
*/
ATF_REQUIRE(ptrace(PT_TO_SCX, fpid, (caddr_t)1, 0) != -1);
/*
* Wait for the new thread to arrive. pthread_create() might
* invoke any number of system calls. For now we just wait
* for the new thread to arrive and make sure it reports a
* valid system call code. If ptrace grows thread event
* reporting then this test can be made more precise.
*/
for (;;) {
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & PL_FLAG_SCX) != 0);
ATF_REQUIRE(pl.pl_syscall_code != 0);
if (pl.pl_lwpid != mainlwp)
/* New thread seen. */
break;
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
}
/* Wait for the child to exit. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
for (;;) {
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
if (WIFEXITED(status))
break;
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
}
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that the expected LWP events are reported for a child thread.
*/
ATF_TC_WITHOUT_HEAD(ptrace__lwp_events);
ATF_TC_BODY(ptrace__lwp_events, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
lwpid_t lwps[2];
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
simple_thread_main();
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
lwps[0] = pl.pl_lwpid;
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The first event should be for the child thread's birth. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
(PL_FLAG_BORN | PL_FLAG_SCX));
ATF_REQUIRE(pl.pl_lwpid != lwps[0]);
lwps[1] = pl.pl_lwpid;
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next event should be for the child thread's death. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXITED | PL_FLAG_SCE)) ==
(PL_FLAG_EXITED | PL_FLAG_SCE));
ATF_REQUIRE(pl.pl_lwpid == lwps[1]);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The last event should be for the child process's exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void *
exec_thread(void *arg __unused)
{
execl("/usr/bin/true", "true", NULL);
exit(127);
}
static __dead2 void
exec_thread_main(void)
{
pthread_t thread;
CHILD_REQUIRE(pthread_create(&thread, NULL, exec_thread, NULL) == 0);
for (;;)
sleep(60);
exit(1);
}
/*
* Verify that the expected LWP events are reported for a multithreaded
* process that calls execve(2).
*/
ATF_TC_WITHOUT_HEAD(ptrace__lwp_events_exec);
ATF_TC_BODY(ptrace__lwp_events_exec, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
lwpid_t lwps[2];
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
exec_thread_main();
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
lwps[0] = pl.pl_lwpid;
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The first event should be for the child thread's birth. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
(PL_FLAG_BORN | PL_FLAG_SCX));
ATF_REQUIRE(pl.pl_lwpid != lwps[0]);
lwps[1] = pl.pl_lwpid;
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/*
* The next event should be for the main thread's death due to
* single threading from execve().
*/
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXITED | PL_FLAG_SCE)) ==
(PL_FLAG_EXITED));
ATF_REQUIRE(pl.pl_lwpid == lwps[0]);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next event should be for the child process's exec. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXEC | PL_FLAG_SCX)) ==
(PL_FLAG_EXEC | PL_FLAG_SCX));
ATF_REQUIRE(pl.pl_lwpid == lwps[1]);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The last event should be for the child process's exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 0);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void
handler(int sig __unused)
{
}
static void
signal_main(void)
{
signal(SIGINFO, handler);
raise(SIGINFO);
exit(0);
}
/*
* Verify that the expected ptrace event is reported for a signal.
*/
ATF_TC_WITHOUT_HEAD(ptrace__siginfo);
ATF_TC_BODY(ptrace__siginfo, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
signal_main();
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next event should be for the SIGINFO. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGINFO);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_event == PL_EVENT_SIGNAL);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
ATF_REQUIRE(pl.pl_siginfo.si_code == SI_LWP);
ATF_REQUIRE(pl.pl_siginfo.si_pid == wpid);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The last event should be for the child process's exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 0);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that the expected ptrace events are reported for PTRACE_EXEC.
*/
ATF_TC_WITHOUT_HEAD(ptrace__ptrace_exec_disable);
ATF_TC_BODY(ptrace__ptrace_exec_disable, tc)
{
pid_t fpid, wpid;
int events, status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
exec_thread(NULL);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
events = 0;
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events,
sizeof(events)) == 0);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* Should get one event at exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 0);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
ATF_TC_WITHOUT_HEAD(ptrace__ptrace_exec_enable);
ATF_TC_BODY(ptrace__ptrace_exec_enable, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int events, status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
exec_thread(NULL);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
events = PTRACE_EXEC;
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events,
sizeof(events)) == 0);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next event should be for the child process's exec. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXEC | PL_FLAG_SCX)) ==
(PL_FLAG_EXEC | PL_FLAG_SCX));
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The last event should be for the child process's exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 0);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
ATF_TC_WITHOUT_HEAD(ptrace__event_mask);
ATF_TC_BODY(ptrace__event_mask, tc)
{
pid_t fpid, wpid;
int events, status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
exit(0);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* PT_FOLLOW_FORK should toggle the state of PTRACE_FORK. */
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, fpid, NULL, 1) != -1);
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
sizeof(events)) == 0);
ATF_REQUIRE(events & PTRACE_FORK);
ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, fpid, NULL, 0) != -1);
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
sizeof(events)) == 0);
ATF_REQUIRE(!(events & PTRACE_FORK));
/* PT_LWP_EVENTS should toggle the state of PTRACE_LWP. */
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, fpid, NULL, 1) != -1);
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
sizeof(events)) == 0);
ATF_REQUIRE(events & PTRACE_LWP);
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, fpid, NULL, 0) != -1);
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
sizeof(events)) == 0);
ATF_REQUIRE(!(events & PTRACE_LWP));
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* Should get one event at exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 0);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that the expected ptrace events are reported for PTRACE_VFORK.
*/
ATF_TC_WITHOUT_HEAD(ptrace__ptrace_vfork);
ATF_TC_BODY(ptrace__ptrace_vfork, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int events, status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
follow_fork_parent(true);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events,
sizeof(events)) == 0);
events |= PTRACE_VFORK;
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events,
sizeof(events)) == 0);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) != -1);
/* The next event should report the end of the vfork. */
wpid = wait(&status);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & PL_FLAG_VFORK_DONE) != 0);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) != -1);
wpid = wait(&status);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
ATF_TC_WITHOUT_HEAD(ptrace__ptrace_vfork_follow);
ATF_TC_BODY(ptrace__ptrace_vfork_follow, tc)
{
struct ptrace_lwpinfo pl[2];
pid_t children[2], fpid, wpid;
int events, status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
follow_fork_parent(true);
}
/* Parent process. */
children[0] = fpid;
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(children[0], &status, 0);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, children[0], (caddr_t)&events,
sizeof(events)) == 0);
events |= PTRACE_FORK | PTRACE_VFORK;
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, children[0], (caddr_t)&events,
sizeof(events)) == 0);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
/* Wait for both halves of the fork event to get reported. */
children[1] = handle_fork_events(children[0], pl);
ATF_REQUIRE(children[1] > 0);
ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_VFORKED) != 0);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1);
/*
* The child can't exit until the grandchild reports status, so the
* grandchild should report its exit first to the debugger.
*/
wpid = waitpid(children[1], &status, 0);
ATF_REQUIRE(wpid == children[1]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
/*
* The child should report it's vfork() completion before it
* exits.
*/
wpid = wait(&status);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl[0], sizeof(pl[0])) !=
-1);
ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_VFORK_DONE) != 0);
ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1);
wpid = wait(&status);
ATF_REQUIRE(wpid == children[0]);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
#ifdef HAVE_BREAKPOINT
/*
* Verify that no more events are reported after PT_KILL except for the
* process exit when stopped due to a breakpoint trap.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_breakpoint);
ATF_TC_BODY(ptrace__PT_KILL_breakpoint, tc)
{
pid_t fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
breakpoint();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The second wait() should report hitting the breakpoint. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
/* Kill the child process. */
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
/* The last wait() should report the SIGKILL. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSIGNALED(status));
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
#endif /* HAVE_BREAKPOINT */
/*
* Verify that no more events are reported after PT_KILL except for the
* process exit when stopped inside of a system call.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_system_call);
ATF_TC_BODY(ptrace__PT_KILL_system_call, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
getpid();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
/* The second wait() should report a system call entry for getpid(). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
/* Kill the child process. */
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
/* The last wait() should report the SIGKILL. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSIGNALED(status));
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that no more events are reported after PT_KILL except for the
* process exit when killing a multithreaded process.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_threads);
ATF_TC_BODY(ptrace__PT_KILL_threads, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
lwpid_t main_lwp;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
simple_thread_main();
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
main_lwp = pl.pl_lwpid;
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The first event should be for the child thread's birth. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
(PL_FLAG_BORN | PL_FLAG_SCX));
ATF_REQUIRE(pl.pl_lwpid != main_lwp);
/* Kill the child process. */
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
/* The last wait() should report the SIGKILL. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSIGNALED(status));
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void *
mask_usr1_thread(void *arg)
{
pthread_barrier_t *pbarrier;
sigset_t sigmask;
pbarrier = (pthread_barrier_t*)arg;
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGUSR1);
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
/* Sync up with other thread after sigmask updated. */
pthread_barrier_wait(pbarrier);
for (;;)
sleep(60);
return (NULL);
}
/*
* Verify that the SIGKILL from PT_KILL takes priority over other signals
* and prevents spurious stops due to those other signals.
*/
ATF_TC(ptrace__PT_KILL_competing_signal);
ATF_TC_HEAD(ptrace__PT_KILL_competing_signal, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(ptrace__PT_KILL_competing_signal, tc)
{
pid_t fpid, wpid;
int status;
cpuset_t setmask;
pthread_t t;
pthread_barrier_t barrier;
struct sched_param sched_param;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
/* Bind to one CPU so only one thread at a time will run. */
CPU_ZERO(&setmask);
CPU_SET(0, &setmask);
cpusetid_t setid;
CHILD_REQUIRE(cpuset(&setid) == 0);
CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET,
CPU_WHICH_CPUSET, setid, sizeof(setmask), &setmask) == 0);
CHILD_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0);
CHILD_REQUIRE(pthread_create(&t, NULL, mask_usr1_thread,
(void*)&barrier) == 0);
/*
* Give the main thread higher priority. The test always
* assumes that, if both threads are able to run, the main
* thread runs first.
*/
sched_param.sched_priority =
(sched_get_priority_max(SCHED_FIFO) +
sched_get_priority_min(SCHED_FIFO)) / 2;
CHILD_REQUIRE(pthread_setschedparam(pthread_self(),
SCHED_FIFO, &sched_param) == 0);
sched_param.sched_priority -= RQ_PPQ;
CHILD_REQUIRE(pthread_setschedparam(t, SCHED_FIFO,
&sched_param) == 0);
sigset_t sigmask;
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGUSR2);
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
/* Sync up with other thread after sigmask updated. */
pthread_barrier_wait(&barrier);
trace_me();
for (;;)
sleep(60);
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* Send a signal that only the second thread can handle. */
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
/* The second wait() should report the SIGUSR2. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
/* Send a signal that only the first thread can handle. */
ATF_REQUIRE(kill(fpid, SIGUSR1) == 0);
/* Replace the SIGUSR2 with a kill. */
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
/* The last wait() should report the SIGKILL (not the SIGUSR signal). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSIGNALED(status));
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that the SIGKILL from PT_KILL takes priority over other stop events
* and prevents spurious stops caused by those events.
*/
ATF_TC(ptrace__PT_KILL_competing_stop);
ATF_TC_HEAD(ptrace__PT_KILL_competing_stop, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(ptrace__PT_KILL_competing_stop, tc)
{
pid_t fpid, wpid;
int status;
cpuset_t setmask;
pthread_t t;
pthread_barrier_t barrier;
lwpid_t main_lwp;
struct ptrace_lwpinfo pl;
struct sched_param sched_param;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
/* Bind to one CPU so only one thread at a time will run. */
CPU_ZERO(&setmask);
CPU_SET(0, &setmask);
cpusetid_t setid;
CHILD_REQUIRE(cpuset(&setid) == 0);
CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET,
CPU_WHICH_CPUSET, setid, sizeof(setmask), &setmask) == 0);
CHILD_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0);
CHILD_REQUIRE(pthread_create(&t, NULL, mask_usr1_thread,
(void*)&barrier) == 0);
/*
* Give the main thread higher priority. The test always
* assumes that, if both threads are able to run, the main
* thread runs first.
*/
sched_param.sched_priority =
(sched_get_priority_max(SCHED_FIFO) +
sched_get_priority_min(SCHED_FIFO)) / 2;
CHILD_REQUIRE(pthread_setschedparam(pthread_self(),
SCHED_FIFO, &sched_param) == 0);
sched_param.sched_priority -= RQ_PPQ;
CHILD_REQUIRE(pthread_setschedparam(t, SCHED_FIFO,
&sched_param) == 0);
sigset_t sigmask;
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGUSR2);
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
/* Sync up with other thread after sigmask updated. */
pthread_barrier_wait(&barrier);
/* Sync up with the test before doing the getpid(). */
raise(SIGSTOP);
getpid();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
main_lwp = pl.pl_lwpid;
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
/*
* Continue until child is done with setup, which is indicated with
* SIGSTOP. Ignore system calls in the meantime.
*/
for (;;) {
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
if (WSTOPSIG(status) == SIGTRAP) {
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
} else {
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
break;
}
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
}
/* Proceed, allowing main thread to hit syscall entry for getpid(). */
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_lwpid == main_lwp);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
/* Prevent the main thread from hitting its syscall exit for now. */
ATF_REQUIRE(ptrace(PT_SUSPEND, main_lwp, 0, 0) == 0);
/*
* Proceed, allowing second thread to hit syscall exit for
* pthread_barrier_wait().
*/
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_lwpid != main_lwp);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX);
/* Send a signal that only the second thread can handle. */
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
/* The next wait() should report the SIGUSR2. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
/* Allow the main thread to try to finish its system call. */
ATF_REQUIRE(ptrace(PT_RESUME, main_lwp, 0, 0) == 0);
/*
* At this point, the main thread is in the middle of a system call and
* has been resumed. The second thread has taken a SIGUSR2 which will
* be replaced with a SIGKILL below. The main thread will get to run
* first. It should notice the kill request (even though the signal
* replacement occurred in the other thread) and exit accordingly. It
* should not stop for the system call exit event.
*/
/* Replace the SIGUSR2 with a kill. */
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
/* The last wait() should report the SIGKILL (not a syscall exit). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSIGNALED(status));
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void
sigusr1_handler(int sig)
{
CHILD_REQUIRE(sig == SIGUSR1);
_exit(2);
}
/*
* Verify that even if the signal queue is full for a child process,
* a PT_KILL will kill the process.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_with_signal_full_sigqueue);
ATF_TC_BODY(ptrace__PT_KILL_with_signal_full_sigqueue, tc)
{
pid_t fpid, wpid;
int status;
int max_pending_per_proc;
size_t len;
int i;
ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
len = sizeof(max_pending_per_proc);
ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc",
&max_pending_per_proc, &len, NULL, 0) == 0);
/* Fill the signal queue. */
for (i = 0; i < max_pending_per_proc; ++i)
ATF_REQUIRE(kill(fpid, SIGUSR1) == 0);
/* Kill the child process. */
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
/* The last wait() should report the SIGKILL. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSIGNALED(status));
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that when stopped at a system call entry, a signal can be
* requested with PT_CONTINUE which will be delivered once the system
* call is complete.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_system_call_entry);
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_system_call_entry, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
getpid();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
/* The second wait() should report a system call entry for getpid(). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
/* Continue the child process with a signal. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
for (;;) {
/*
* The last wait() should report exit 2, i.e., a normal _exit
* from the signal handler. In the meantime, catch and proceed
* past any syscall stops.
*/
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
} else {
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
break;
}
}
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void
sigusr1_counting_handler(int sig)
{
static int counter = 0;
CHILD_REQUIRE(sig == SIGUSR1);
counter++;
if (counter == 2)
_exit(2);
}
/*
* Verify that, when continuing from a stop at system call entry and exit,
* a signal can be requested from both stops, and both will be delivered when
* the system call is complete.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit);
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE(signal(SIGUSR1, sigusr1_counting_handler) != SIG_ERR);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
getpid();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
/* The second wait() should report a system call entry for getpid(). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
/* Continue the child process with a signal. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
/* The third wait() should report a system call exit for getpid(). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX);
/* Continue the child process with a signal. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
for (;;) {
/*
* The last wait() should report exit 2, i.e., a normal _exit
* from the signal handler. In the meantime, catch and proceed
* past any syscall stops.
*/
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
} else {
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
break;
}
}
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that even if the signal queue is full for a child process,
* a PT_CONTINUE with a signal will not result in loss of that signal.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_full_sigqueue);
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_full_sigqueue, tc)
{
pid_t fpid, wpid;
int status;
int max_pending_per_proc;
size_t len;
int i;
ATF_REQUIRE(signal(SIGUSR2, handler) != SIG_ERR);
ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
len = sizeof(max_pending_per_proc);
ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc",
&max_pending_per_proc, &len, NULL, 0) == 0);
/* Fill the signal queue. */
for (i = 0; i < max_pending_per_proc; ++i)
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
/* Continue with signal. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
for (;;) {
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
if (WIFSTOPPED(status)) {
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
} else {
/*
* The last wait() should report normal _exit from the
* SIGUSR1 handler.
*/
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
break;
}
}
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static sem_t sigusr1_sem;
static int got_usr1;
static void
sigusr1_sempost_handler(int sig __unused)
{
got_usr1++;
CHILD_REQUIRE(sem_post(&sigusr1_sem) == 0);
}
/*
* Verify that even if the signal queue is full for a child process,
* and the signal is masked, a PT_CONTINUE with a signal will not
* result in loss of that signal.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_masked_full_sigqueue);
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_masked_full_sigqueue, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status, err;
int max_pending_per_proc;
size_t len;
int i;
sigset_t sigmask;
ATF_REQUIRE(signal(SIGUSR2, handler) != SIG_ERR);
ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0);
ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR);
got_usr1 = 0;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
CHILD_REQUIRE(sigprocmask(SIG_BLOCK, &sigmask, NULL) == 0);
trace_me();
CHILD_REQUIRE(got_usr1 == 0);
/* Allow the pending SIGUSR1 in now. */
CHILD_REQUIRE(sigprocmask(SIG_UNBLOCK, &sigmask, NULL) == 0);
/* Wait to receive the SIGUSR1. */
do {
err = sem_wait(&sigusr1_sem);
CHILD_REQUIRE(err == 0 || errno == EINTR);
} while (err != 0 && errno == EINTR);
CHILD_REQUIRE(got_usr1 == 1);
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
len = sizeof(max_pending_per_proc);
ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc",
&max_pending_per_proc, &len, NULL, 0) == 0);
/* Fill the signal queue. */
for (i = 0; i < max_pending_per_proc; ++i)
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
/* Continue with signal. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
/* Collect and ignore all of the SIGUSR2. */
for (i = 0; i < max_pending_per_proc; ++i) {
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
}
/* Now our PT_CONTINUE'd SIGUSR1 should cause a stop after unmask. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR1);
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGUSR1);
/* Continue the child, ignoring the SIGUSR1. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The last wait() should report exit after receiving SIGUSR1. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that, after stopping due to a signal, that signal can be
* replaced with another signal.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_change_sig);
ATF_TC_BODY(ptrace__PT_CONTINUE_change_sig, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
sleep(20);
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* Send a signal without ptrace. */
ATF_REQUIRE(kill(fpid, SIGINT) == 0);
/* The second wait() should report a SIGINT was received. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGINT);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGINT);
/* Continue the child process with a different signal. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGTERM) == 0);
/*
* The last wait() should report having died due to the new
* signal, SIGTERM.
*/
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSIGNALED(status));
ATF_REQUIRE(WTERMSIG(status) == SIGTERM);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that a signal can be passed through to the child even when there
* was no true signal originally. Such cases arise when a SIGTRAP is
* invented for e.g, system call stops.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_sigtrap_system_call_entry);
ATF_TC_BODY(ptrace__PT_CONTINUE_with_sigtrap_system_call_entry, tc)
{
struct ptrace_lwpinfo pl;
struct rlimit rl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
/* SIGTRAP expected to cause exit on syscall entry. */
rl.rlim_cur = rl.rlim_max = 0;
ATF_REQUIRE(setrlimit(RLIMIT_CORE, &rl) == 0);
getpid();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
/* The second wait() should report a system call entry for getpid(). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
/* Continue the child process with a SIGTRAP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGTRAP) == 0);
for (;;) {
/*
* The last wait() should report exit due to SIGTRAP. In the
* meantime, catch and proceed past any syscall stops.
*/
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
} else {
ATF_REQUIRE(WIFSIGNALED(status));
ATF_REQUIRE(WTERMSIG(status) == SIGTRAP);
break;
}
}
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* A mixed bag PT_CONTINUE with signal test.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_mix);
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_mix, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE(signal(SIGUSR1, sigusr1_counting_handler) != SIG_ERR);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
getpid();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP and tracing system calls. */
ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0);
/* The second wait() should report a system call entry for getpid(). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE);
/* Continue with the first SIGUSR1. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
/* The next wait() should report a system call exit for getpid(). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX);
/* Send an ABRT without ptrace. */
ATF_REQUIRE(kill(fpid, SIGABRT) == 0);
/* Continue normally. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next wait() should report the SIGABRT. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGABRT);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGABRT);
/* Continue, replacing the SIGABRT with another SIGUSR1. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
for (;;) {
/*
* The last wait() should report exit 2, i.e., a normal _exit
* from the signal handler. In the meantime, catch and proceed
* past any syscall stops.
*/
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX));
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
} else {
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 2);
break;
}
}
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify a signal delivered by ptrace is noticed by kevent(2).
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_kqueue);
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_kqueue, tc)
{
pid_t fpid, wpid;
int status, kq, nevents;
struct kevent kev;
ATF_REQUIRE(signal(SIGUSR1, SIG_IGN) != SIG_ERR);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
CHILD_REQUIRE((kq = kqueue()) > 0);
EV_SET(&kev, SIGUSR1, EVFILT_SIGNAL, EV_ADD, 0, 0, 0);
CHILD_REQUIRE(kevent(kq, &kev, 1, NULL, 0, NULL) == 0);
trace_me();
for (;;) {
nevents = kevent(kq, NULL, 0, &kev, 1, NULL);
if (nevents == -1 && errno == EINTR)
continue;
CHILD_REQUIRE(nevents > 0);
CHILD_REQUIRE(kev.filter == EVFILT_SIGNAL);
CHILD_REQUIRE(kev.ident == SIGUSR1);
break;
}
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue with the SIGUSR1. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
/*
* The last wait() should report normal exit with code 1.
*/
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void *
signal_thread(void *arg)
{
int err;
sigset_t sigmask;
pthread_barrier_t *pbarrier = (pthread_barrier_t*)arg;
/* Wait for this thread to receive a SIGUSR1. */
do {
err = sem_wait(&sigusr1_sem);
CHILD_REQUIRE(err == 0 || errno == EINTR);
} while (err != 0 && errno == EINTR);
/* Free our companion thread from the barrier. */
pthread_barrier_wait(pbarrier);
/*
* Swap ignore duties; the next SIGUSR1 should go to the
* other thread.
*/
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
/* Sync up threads after swapping signal masks. */
pthread_barrier_wait(pbarrier);
/* Wait until our companion has received its SIGUSR1. */
pthread_barrier_wait(pbarrier);
return (NULL);
}
/*
* Verify that a traced process with blocked signal received the
* signal from kill() once unmasked.
*/
ATF_TC_WITHOUT_HEAD(ptrace__killed_with_sigmask);
ATF_TC_BODY(ptrace__killed_with_sigmask, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status, err;
sigset_t sigmask;
ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0);
ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR);
got_usr1 = 0;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
CHILD_REQUIRE(sigprocmask(SIG_BLOCK, &sigmask, NULL) == 0);
trace_me();
CHILD_REQUIRE(got_usr1 == 0);
/* Allow the pending SIGUSR1 in now. */
CHILD_REQUIRE(sigprocmask(SIG_UNBLOCK, &sigmask, NULL) == 0);
/* Wait to receive a SIGUSR1. */
do {
err = sem_wait(&sigusr1_sem);
CHILD_REQUIRE(err == 0 || errno == EINTR);
} while (err != 0 && errno == EINTR);
CHILD_REQUIRE(got_usr1 == 1);
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGSTOP);
/* Send blocked SIGUSR1 which should cause a stop. */
ATF_REQUIRE(kill(fpid, SIGUSR1) == 0);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next wait() should report the kill(SIGUSR1) was received. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR1);
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGUSR1);
/* Continue the child, allowing in the SIGUSR1. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
/* The last wait() should report normal exit with code 1. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that a traced process with blocked signal received the
* signal from PT_CONTINUE once unmasked.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_sigmask);
ATF_TC_BODY(ptrace__PT_CONTINUE_with_sigmask, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status, err;
sigset_t sigmask;
ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0);
ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR);
got_usr1 = 0;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
CHILD_REQUIRE(sigprocmask(SIG_BLOCK, &sigmask, NULL) == 0);
trace_me();
CHILD_REQUIRE(got_usr1 == 0);
/* Allow the pending SIGUSR1 in now. */
CHILD_REQUIRE(sigprocmask(SIG_UNBLOCK, &sigmask, NULL) == 0);
/* Wait to receive a SIGUSR1. */
do {
err = sem_wait(&sigusr1_sem);
CHILD_REQUIRE(err == 0 || errno == EINTR);
} while (err != 0 && errno == EINTR);
CHILD_REQUIRE(got_usr1 == 1);
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGSTOP);
/* Continue the child replacing SIGSTOP with SIGUSR1. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
/* The next wait() should report the SIGUSR1 was received. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR1);
ATF_REQUIRE(ptrace(PT_LWPINFO, fpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGUSR1);
/* Continue the child, ignoring the SIGUSR1. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The last wait() should report normal exit with code 1. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
/*
* Verify that if ptrace stops due to a signal but continues with
* a different signal that the new signal is routed to a thread
* that can accept it, and that the thread is awakened by the signal
* in a timely manner.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_thread_sigmask);
ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_thread_sigmask, tc)
{
pid_t fpid, wpid;
int status, err;
pthread_t t;
sigset_t sigmask;
pthread_barrier_t barrier;
ATF_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0);
ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0);
ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR);
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
CHILD_REQUIRE(pthread_create(&t, NULL, signal_thread, (void*)&barrier) == 0);
/* The other thread should receive the first SIGUSR1. */
CHILD_REQUIRE(sigemptyset(&sigmask) == 0);
CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0);
CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0);
trace_me();
/* Wait until other thread has received its SIGUSR1. */
pthread_barrier_wait(&barrier);
/*
* Swap ignore duties; the next SIGUSR1 should go to this
* thread.
*/
CHILD_REQUIRE(pthread_sigmask(SIG_UNBLOCK, &sigmask, NULL) == 0);
/* Sync up threads after swapping signal masks. */
pthread_barrier_wait(&barrier);
/*
* Sync up with test code; we're ready for the next SIGUSR1
* now.
*/
raise(SIGSTOP);
/* Wait for this thread to receive a SIGUSR1. */
do {
err = sem_wait(&sigusr1_sem);
CHILD_REQUIRE(err == 0 || errno == EINTR);
} while (err != 0 && errno == EINTR);
/* Free the other thread from the barrier. */
pthread_barrier_wait(&barrier);
CHILD_REQUIRE(pthread_join(t, NULL) == 0);
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/*
* Send a signal without ptrace that either thread will accept (USR2,
* in this case).
*/
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
/* The second wait() should report a SIGUSR2 was received. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
/* Continue the child, changing the signal to USR1. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
/* The next wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
ATF_REQUIRE(kill(fpid, SIGUSR2) == 0);
/* The next wait() should report a SIGUSR2 was received. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2);
/* Continue the child, changing the signal to USR1. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0);
/* The last wait() should report normal exit with code 1. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void *
raise_sigstop_thread(void *arg __unused)
{
raise(SIGSTOP);
return NULL;
}
static void *
sleep_thread(void *arg __unused)
{
sleep(60);
return NULL;
}
static void
terminate_with_pending_sigstop(bool sigstop_from_main_thread)
{
pid_t fpid, wpid;
int status, i;
cpuset_t setmask;
cpusetid_t setid;
pthread_t t;
/*
* Become the reaper for this process tree. We need to be able to check
* that both child and grandchild have died.
*/
ATF_REQUIRE(procctl(P_PID, getpid(), PROC_REAP_ACQUIRE, NULL) == 0);
fpid = fork();
ATF_REQUIRE(fpid >= 0);
if (fpid == 0) {
fpid = fork();
CHILD_REQUIRE(fpid >= 0);
if (fpid == 0) {
trace_me();
/* Pin to CPU 0 to serialize thread execution. */
CPU_ZERO(&setmask);
CPU_SET(0, &setmask);
CHILD_REQUIRE(cpuset(&setid) == 0);
CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET,
CPU_WHICH_CPUSET, setid,
sizeof(setmask), &setmask) == 0);
if (sigstop_from_main_thread) {
/*
* We expect the SIGKILL sent when our parent
* dies to be delivered to the new thread.
* Raise the SIGSTOP in this thread so the
* threads compete.
*/
CHILD_REQUIRE(pthread_create(&t, NULL,
sleep_thread, NULL) == 0);
raise(SIGSTOP);
} else {
/*
* We expect the SIGKILL to be delivered to
* this thread. After creating the new thread,
* just get off the CPU so the other thread can
* raise the SIGSTOP.
*/
CHILD_REQUIRE(pthread_create(&t, NULL,
raise_sigstop_thread, NULL) == 0);
sleep(60);
}
exit(0);
}
/* First stop is trace_me() immediately after fork. */
wpid = waitpid(fpid, &status, 0);
CHILD_REQUIRE(wpid == fpid);
CHILD_REQUIRE(WIFSTOPPED(status));
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
CHILD_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* Second stop is from the raise(SIGSTOP). */
wpid = waitpid(fpid, &status, 0);
CHILD_REQUIRE(wpid == fpid);
CHILD_REQUIRE(WIFSTOPPED(status));
CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/*
* Terminate tracing process without detaching. Our child
* should be killed.
*/
exit(0);
}
/*
* We should get a normal exit from our immediate child and a SIGKILL
* exit from our grandchild. The latter case is the interesting one.
* Our grandchild should not have stopped due to the SIGSTOP that was
* left dangling when its parent died.
*/
for (i = 0; i < 2; ++i) {
wpid = wait(&status);
if (wpid == fpid)
ATF_REQUIRE(WIFEXITED(status) &&
WEXITSTATUS(status) == 0);
else
ATF_REQUIRE(WIFSIGNALED(status) &&
WTERMSIG(status) == SIGKILL);
}
}
/*
* These two tests ensure that if the tracing process exits without detaching
* just after the child received a SIGSTOP, the child is cleanly killed and
* doesn't go to sleep due to the SIGSTOP. The parent's death will send a
* SIGKILL to the child. If the SIGKILL and the SIGSTOP are handled by
* different threads, the SIGKILL must win. There are two variants of this
* test, designed to catch the case where the SIGKILL is delivered to the
* younger thread (the first test) and the case where the SIGKILL is delivered
* to the older thread (the second test). This behavior has changed in the
* past, so make no assumption.
*/
ATF_TC(ptrace__parent_terminate_with_pending_sigstop1);
ATF_TC_HEAD(ptrace__parent_terminate_with_pending_sigstop1, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(ptrace__parent_terminate_with_pending_sigstop1, tc)
{
terminate_with_pending_sigstop(true);
}
ATF_TC(ptrace__parent_terminate_with_pending_sigstop2);
ATF_TC_HEAD(ptrace__parent_terminate_with_pending_sigstop2, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(ptrace__parent_terminate_with_pending_sigstop2, tc)
{
terminate_with_pending_sigstop(false);
}
/*
* Verify that after ptrace() discards a SIGKILL signal, the event mask
* is not modified.
*/
ATF_TC_WITHOUT_HEAD(ptrace__event_mask_sigkill_discard);
ATF_TC_BODY(ptrace__event_mask_sigkill_discard, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status, event_mask, new_event_mask;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
raise(SIGSTOP);
exit(0);
}
/* The first wait() should report the stop from trace_me(). */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Set several unobtrusive event bits. */
event_mask = PTRACE_EXEC | PTRACE_FORK | PTRACE_LWP;
ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, wpid, (caddr_t)&event_mask,
sizeof(event_mask)) == 0);
/* Send a SIGKILL without using ptrace. */
ATF_REQUIRE(kill(fpid, SIGKILL) == 0);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next stop should be due to the SIGKILL. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGKILL);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGKILL);
/* Continue the child ignoring the SIGKILL. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Check the current event mask. It should not have changed. */
new_event_mask = 0;
ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, wpid, (caddr_t)&new_event_mask,
sizeof(new_event_mask)) == 0);
ATF_REQUIRE(event_mask == new_event_mask);
/* Continue the child to let it exit. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The last event should be for the child process's exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 0);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
static void *
flock_thread(void *arg)
{
int fd;
fd = *(int *)arg;
(void)flock(fd, LOCK_EX);
(void)flock(fd, LOCK_UN);
return (NULL);
}
/*
* Verify that PT_ATTACH will suspend threads sleeping in an SBDRY section.
* We rely on the fact that the lockf implementation sets SBDRY before blocking
* on a lock. This is a regression test for r318191.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_ATTACH_with_SBDRY_thread);
ATF_TC_BODY(ptrace__PT_ATTACH_with_SBDRY_thread, tc)
{
pthread_barrier_t barrier;
pthread_barrierattr_t battr;
char tmpfile[64];
pid_t child, wpid;
int error, fd, i, status;
ATF_REQUIRE(pthread_barrierattr_init(&battr) == 0);
ATF_REQUIRE(pthread_barrierattr_setpshared(&battr,
PTHREAD_PROCESS_SHARED) == 0);
ATF_REQUIRE(pthread_barrier_init(&barrier, &battr, 2) == 0);
(void)snprintf(tmpfile, sizeof(tmpfile), "./ptrace.XXXXXX");
fd = mkstemp(tmpfile);
ATF_REQUIRE(fd >= 0);
ATF_REQUIRE((child = fork()) != -1);
if (child == 0) {
pthread_t t[2];
int cfd;
error = pthread_barrier_wait(&barrier);
if (error != 0 && error != PTHREAD_BARRIER_SERIAL_THREAD)
_exit(1);
cfd = open(tmpfile, O_RDONLY);
if (cfd < 0)
_exit(1);
/*
* We want at least two threads blocked on the file lock since
* the SIGSTOP from PT_ATTACH may kick one of them out of
* sleep.
*/
if (pthread_create(&t[0], NULL, flock_thread, &cfd) != 0)
_exit(1);
if (pthread_create(&t[1], NULL, flock_thread, &cfd) != 0)
_exit(1);
if (pthread_join(t[0], NULL) != 0)
_exit(1);
if (pthread_join(t[1], NULL) != 0)
_exit(1);
_exit(0);
}
ATF_REQUIRE(flock(fd, LOCK_EX) == 0);
error = pthread_barrier_wait(&barrier);
ATF_REQUIRE(error == 0 || error == PTHREAD_BARRIER_SERIAL_THREAD);
/*
* Give the child some time to block. Is there a better way to do this?
*/
sleep(1);
/*
* Attach and give the child 3 seconds to stop.
*/
ATF_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) == 0);
for (i = 0; i < 3; i++) {
wpid = waitpid(child, &status, WNOHANG);
if (wpid == child && WIFSTOPPED(status) &&
WSTOPSIG(status) == SIGSTOP)
break;
sleep(1);
}
ATF_REQUIRE_MSG(i < 3, "failed to stop child process after PT_ATTACH");
ATF_REQUIRE(ptrace(PT_DETACH, child, NULL, 0) == 0);
ATF_REQUIRE(flock(fd, LOCK_UN) == 0);
ATF_REQUIRE(unlink(tmpfile) == 0);
ATF_REQUIRE(close(fd) == 0);
}
static void
sigusr1_step_handler(int sig)
{
CHILD_REQUIRE(sig == SIGUSR1);
raise(SIGABRT);
}
/*
* Verify that PT_STEP with a signal invokes the signal before
* stepping the next instruction (and that the next instruction is
* stepped correctly).
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_STEP_with_signal);
ATF_TC_BODY(ptrace__PT_STEP_with_signal, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
signal(SIGUSR1, sigusr1_step_handler);
raise(SIGABRT);
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next stop should report the SIGABRT in the child body. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGABRT);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGABRT);
/* Step the child process inserting SIGUSR1. */
ATF_REQUIRE(ptrace(PT_STEP, fpid, (caddr_t)1, SIGUSR1) == 0);
/* The next stop should report the SIGABRT in the signal handler. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGABRT);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGABRT);
/* Continue the child process discarding the signal. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The next stop should report a trace trap from PT_STEP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGTRAP);
ATF_REQUIRE(pl.pl_siginfo.si_code == TRAP_TRACE);
/* Continue the child to let it exit. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The last event should be for the child process's exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
#ifdef HAVE_BREAKPOINT
/*
* Verify that a SIGTRAP event with the TRAP_BRKPT code is reported
* for a breakpoint trap.
*/
ATF_TC_WITHOUT_HEAD(ptrace__breakpoint_siginfo);
ATF_TC_BODY(ptrace__breakpoint_siginfo, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
breakpoint();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The second wait() should report hitting the breakpoint. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & PL_FLAG_SI) != 0);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGTRAP);
ATF_REQUIRE(pl.pl_siginfo.si_code == TRAP_BRKPT);
/* Kill the child process. */
ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0);
/* The last wait() should report the SIGKILL. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSIGNALED(status));
ATF_REQUIRE(WTERMSIG(status) == SIGKILL);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
#endif /* HAVE_BREAKPOINT */
/*
* Verify that a SIGTRAP event with the TRAP_TRACE code is reported
* for a single-step trap from PT_STEP.
*/
ATF_TC_WITHOUT_HEAD(ptrace__step_siginfo);
ATF_TC_BODY(ptrace__step_siginfo, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
int status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
exit(1);
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
/* Step the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_STEP, fpid, (caddr_t)1, 0) == 0);
/* The second wait() should report a single-step trap. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & PL_FLAG_SI) != 0);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGTRAP);
ATF_REQUIRE(pl.pl_siginfo.si_code == TRAP_TRACE);
/* Continue the child process. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* The last event should be for the child process's exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
#if defined(HAVE_BREAKPOINT) && defined(SKIP_BREAK)
static void *
continue_thread(void *arg __unused)
{
breakpoint();
return (NULL);
}
static __dead2 void
continue_thread_main(void)
{
pthread_t threads[2];
CHILD_REQUIRE(pthread_create(&threads[0], NULL, continue_thread,
NULL) == 0);
CHILD_REQUIRE(pthread_create(&threads[1], NULL, continue_thread,
NULL) == 0);
CHILD_REQUIRE(pthread_join(threads[0], NULL) == 0);
CHILD_REQUIRE(pthread_join(threads[1], NULL) == 0);
exit(1);
}
/*
* Ensure that PT_CONTINUE clears the status of the thread that
* triggered the stop even if a different thread's LWP was passed to
* PT_CONTINUE.
*/
ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_different_thread);
ATF_TC_BODY(ptrace__PT_CONTINUE_different_thread, tc)
{
struct ptrace_lwpinfo pl;
pid_t fpid, wpid;
lwpid_t lwps[2];
bool hit_break[2];
struct reg reg;
int i, j, status;
ATF_REQUIRE((fpid = fork()) != -1);
if (fpid == 0) {
trace_me();
continue_thread_main();
}
/* The first wait() should report the stop from SIGSTOP. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0);
/* Continue the child ignoring the SIGSTOP. */
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* One of the new threads should report it's birth. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
(PL_FLAG_BORN | PL_FLAG_SCX));
lwps[0] = pl.pl_lwpid;
/*
* Suspend this thread to ensure both threads are alive before
* hitting the breakpoint.
*/
ATF_REQUIRE(ptrace(PT_SUSPEND, lwps[0], NULL, 0) != -1);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* Second thread should report it's birth. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) ==
(PL_FLAG_BORN | PL_FLAG_SCX));
ATF_REQUIRE(pl.pl_lwpid != lwps[0]);
lwps[1] = pl.pl_lwpid;
/* Resume both threads waiting for breakpoint events. */
hit_break[0] = hit_break[1] = false;
ATF_REQUIRE(ptrace(PT_RESUME, lwps[0], NULL, 0) != -1);
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
/* One thread should report a breakpoint. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1);
ATF_REQUIRE((pl.pl_flags & PL_FLAG_SI) != 0);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGTRAP &&
pl.pl_siginfo.si_code == TRAP_BRKPT);
if (pl.pl_lwpid == lwps[0])
i = 0;
else
i = 1;
hit_break[i] = true;
ATF_REQUIRE(ptrace(PT_GETREGS, pl.pl_lwpid, (caddr_t)&reg, 0) != -1);
SKIP_BREAK(&reg);
ATF_REQUIRE(ptrace(PT_SETREGS, pl.pl_lwpid, (caddr_t)&reg, 0) != -1);
/*
* Resume both threads but pass the other thread's LWPID to
* PT_CONTINUE.
*/
ATF_REQUIRE(ptrace(PT_CONTINUE, lwps[i ^ 1], (caddr_t)1, 0) == 0);
/*
* Will now get two thread exit events and one more breakpoint
* event.
*/
for (j = 0; j < 3; j++) {
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(wpid == fpid);
ATF_REQUIRE(WIFSTOPPED(status));
ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP);
ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl,
sizeof(pl)) != -1);
if (pl.pl_lwpid == lwps[0])
i = 0;
else
i = 1;
ATF_REQUIRE_MSG(lwps[i] != 0, "event for exited thread");
if (pl.pl_flags & PL_FLAG_EXITED) {
ATF_REQUIRE_MSG(hit_break[i],
"exited thread did not report breakpoint");
lwps[i] = 0;
} else {
ATF_REQUIRE((pl.pl_flags & PL_FLAG_SI) != 0);
ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGTRAP &&
pl.pl_siginfo.si_code == TRAP_BRKPT);
ATF_REQUIRE_MSG(!hit_break[i],
"double breakpoint event");
hit_break[i] = true;
ATF_REQUIRE(ptrace(PT_GETREGS, pl.pl_lwpid, (caddr_t)&reg,
0) != -1);
SKIP_BREAK(&reg);
ATF_REQUIRE(ptrace(PT_SETREGS, pl.pl_lwpid, (caddr_t)&reg,
0) != -1);
}
ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0);
}
/* Both threads should have exited. */
ATF_REQUIRE(lwps[0] == 0);
ATF_REQUIRE(lwps[1] == 0);
/* The last event should be for the child process's exit. */
wpid = waitpid(fpid, &status, 0);
ATF_REQUIRE(WIFEXITED(status));
ATF_REQUIRE(WEXITSTATUS(status) == 1);
wpid = wait(&status);
ATF_REQUIRE(wpid == -1);
ATF_REQUIRE(errno == ECHILD);
}
#endif
ATF_TP_ADD_TCS(tp)
{
ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_trace_me);
ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_attach);
ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_child_debugger);
ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_unrelated_debugger);
ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached);
ATF_TP_ADD_TC(tp, ptrace__follow_fork_child_detached);
ATF_TP_ADD_TC(tp, ptrace__follow_fork_parent_detached);
ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached_unrelated_debugger);
ATF_TP_ADD_TC(tp,
ptrace__follow_fork_child_detached_unrelated_debugger);
ATF_TP_ADD_TC(tp,
ptrace__follow_fork_parent_detached_unrelated_debugger);
ATF_TP_ADD_TC(tp, ptrace__getppid);
ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_fork);
ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_vfork);
ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_thread);
ATF_TP_ADD_TC(tp, ptrace__lwp_events);
ATF_TP_ADD_TC(tp, ptrace__lwp_events_exec);
ATF_TP_ADD_TC(tp, ptrace__siginfo);
ATF_TP_ADD_TC(tp, ptrace__ptrace_exec_disable);
ATF_TP_ADD_TC(tp, ptrace__ptrace_exec_enable);
ATF_TP_ADD_TC(tp, ptrace__event_mask);
ATF_TP_ADD_TC(tp, ptrace__ptrace_vfork);
ATF_TP_ADD_TC(tp, ptrace__ptrace_vfork_follow);
#ifdef HAVE_BREAKPOINT
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_breakpoint);
#endif
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_system_call);
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_threads);
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_competing_signal);
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_competing_stop);
ATF_TP_ADD_TC(tp, ptrace__PT_KILL_with_signal_full_sigqueue);
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_system_call_entry);
ATF_TP_ADD_TC(tp,
ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit);
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_full_sigqueue);
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_masked_full_sigqueue);
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_change_sig);
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_sigtrap_system_call_entry);
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_mix);
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_kqueue);
ATF_TP_ADD_TC(tp, ptrace__killed_with_sigmask);
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_sigmask);
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_thread_sigmask);
ATF_TP_ADD_TC(tp, ptrace__parent_terminate_with_pending_sigstop1);
ATF_TP_ADD_TC(tp, ptrace__parent_terminate_with_pending_sigstop2);
ATF_TP_ADD_TC(tp, ptrace__event_mask_sigkill_discard);
ATF_TP_ADD_TC(tp, ptrace__PT_ATTACH_with_SBDRY_thread);
ATF_TP_ADD_TC(tp, ptrace__PT_STEP_with_signal);
#ifdef HAVE_BREAKPOINT
ATF_TP_ADD_TC(tp, ptrace__breakpoint_siginfo);
#endif
ATF_TP_ADD_TC(tp, ptrace__step_siginfo);
#if defined(HAVE_BREAKPOINT) && defined(SKIP_BREAK)
ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_different_thread);
#endif
return (atf_no_error());
}