freebsd-nq/sys/dev/usb/wlan/if_uath.c
Sam Leffler 5463c4a485 Overhaul monitor mode handling:
o replace DLT_IEEE802_11 support in net80211 with DLT_IEEE802_11_RADIO
  and remove explicit bpf support from wireless drivers; drivers now
  use ieee80211_radiotap_attach to setup shared data structures that
  hold the radiotap header for each packet tx/rx
o remove rx timestamp from the rx path; it was used only by the tdma support
  for debugging and was mostly useless due to it being 32-bits and mostly
  unavailable
o track DLT_IEEE80211_RADIO bpf attachments and maintain per-vap and
  per-com state when there are active taps
o track the number of monitor mode vaps
o use bpf tap and monitor mode vap state to decide when to collect radiotap
  state and dispatch frames; drivers no longer explicitly directly check
  bpf state or use bpf calls to tap frames
o handle radiotap state updates on channel change in net80211; drivers
  should not do this (unless they bypass net80211 which is almost always
  a mistake)
o update various drivers to be more consistent/correct in handling radiotap
o update ral to include TSF in radiotap'd frames
o add promisc mode callback to wi

Reviewed by:	cbzimmer, rpaulo, thompsa
2009-05-20 20:00:40 +00:00

2859 lines
76 KiB
C

/*-
* Copyright (c) 2006 Sam Leffler, Errno Consulting
* Copyright (c) 2008-2009 Weongyo Jeong <weongyo@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
/*
* This driver is distantly derived from a driver of the same name
* by Damien Bergamini. The original copyright is included below:
*
* Copyright (c) 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Driver for Atheros AR5523 USB parts.
*
* The driver requires firmware to be loaded into the device. This
* is done on device discovery from a user application (uathload)
* that is launched by devd when a device with suitable product ID
* is recognized. Once firmware has been loaded the device will
* reset the USB port and re-attach with the original product ID+1
* and this driver will be attached. The firmware is licensed for
* general use (royalty free) and may be incorporated in products.
* Note that the firmware normally packaged with the NDIS drivers
* for these devices does not work in this way and so does not work
* with this driver.
*/
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kdb.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#endif
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/usb/usb.h>
#include <dev/usb/usb_core.h>
#include <dev/usb/usb_busdma.h>
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_error.h>
#include <dev/usb/usb_lookup.h>
#include <dev/usb/usb_util.h>
#include "usbdevs.h"
#include <dev/usb/wlan/if_uathreg.h>
#include <dev/usb/wlan/if_uathvar.h>
SYSCTL_NODE(_hw_usb2, OID_AUTO, uath, CTLFLAG_RW, 0, "USB Atheros");
static int uath_countrycode = CTRY_DEFAULT; /* country code */
SYSCTL_INT(_hw_usb2_uath, OID_AUTO, countrycode, CTLFLAG_RW, &uath_countrycode,
0, "country code");
TUNABLE_INT("hw.usb2.uath.countrycode", &uath_countrycode);
static int uath_regdomain = 0; /* regulatory domain */
SYSCTL_INT(_hw_usb2_uath, OID_AUTO, regdomain, CTLFLAG_RD, &uath_regdomain,
0, "regulatory domain");
#ifdef UATH_DEBUG
int uath_debug = 0;
SYSCTL_INT(_hw_usb2_uath, OID_AUTO, debug, CTLFLAG_RW, &uath_debug, 0,
"uath debug level");
TUNABLE_INT("hw.usb.uath.debug", &uath_debug);
enum {
UATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
UATH_DEBUG_XMIT_DUMP = 0x00000002, /* xmit dump */
UATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
UATH_DEBUG_TX_PROC = 0x00000008, /* tx ISR proc */
UATH_DEBUG_RX_PROC = 0x00000010, /* rx ISR proc */
UATH_DEBUG_RECV_ALL = 0x00000020, /* trace all frames (beacons) */
UATH_DEBUG_INIT = 0x00000040, /* initialization of dev */
UATH_DEBUG_DEVCAP = 0x00000080, /* dev caps */
UATH_DEBUG_CMDS = 0x00000100, /* commands */
UATH_DEBUG_CMDS_DUMP = 0x00000200, /* command buffer dump */
UATH_DEBUG_RESET = 0x00000400, /* reset processing */
UATH_DEBUG_STATE = 0x00000800, /* 802.11 state transitions */
UATH_DEBUG_MULTICAST = 0x00001000, /* multicast */
UATH_DEBUG_WME = 0x00002000, /* WME */
UATH_DEBUG_CHANNEL = 0x00004000, /* channel */
UATH_DEBUG_RATES = 0x00008000, /* rates */
UATH_DEBUG_CRYPTO = 0x00010000, /* crypto */
UATH_DEBUG_LED = 0x00020000, /* LED */
UATH_DEBUG_ANY = 0xffffffff
};
#define DPRINTF(sc, m, fmt, ...) do { \
if (sc->sc_debug & (m)) \
printf(fmt, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(sc, m, fmt, ...) do { \
(void) sc; \
} while (0)
#endif
/* unaligned little endian access */
#define LE_READ_2(p) \
((u_int16_t) \
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
#define LE_READ_4(p) \
((u_int32_t) \
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
(((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
/* recognized device vendors/products */
static const struct usb2_device_id uath_devs[] = {
#define UATH_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
UATH_DEV(ATHEROS, AR5523),
UATH_DEV(ATHEROS2, AR5523_1),
UATH_DEV(ATHEROS2, AR5523_2),
UATH_DEV(ATHEROS2, AR5523_3),
UATH_DEV(CONCEPTRONIC, AR5523_1),
UATH_DEV(CONCEPTRONIC, AR5523_2),
UATH_DEV(DLINK, DWLAG122),
UATH_DEV(DLINK, DWLAG132),
UATH_DEV(DLINK, DWLG132),
UATH_DEV(GIGASET, AR5523),
UATH_DEV(GIGASET, SMCWUSBTG),
UATH_DEV(GLOBALSUN, AR5523_1),
UATH_DEV(GLOBALSUN, AR5523_2),
UATH_DEV(NETGEAR, WG111U),
UATH_DEV(NETGEAR3, WG111T),
UATH_DEV(NETGEAR3, WPN111),
UATH_DEV(UMEDIA, TEW444UBEU),
UATH_DEV(UMEDIA, AR5523_2),
UATH_DEV(UMEDIA, AR5523_3),
UATH_DEV(WISTRONNEWEB, AR5523_1),
UATH_DEV(WISTRONNEWEB, AR5523_2),
UATH_DEV(ZCOM, AR5523)
#undef UATH_DEV
};
static usb2_callback_t uath_intr_rx_callback;
static usb2_callback_t uath_intr_tx_callback;
static usb2_callback_t uath_bulk_rx_callback;
static usb2_callback_t uath_bulk_tx_callback;
static const struct usb2_config uath_usbconfig[UATH_N_XFERS] = {
[UATH_INTR_RX] = {
.type = UE_BULK,
.endpoint = 0x1,
.direction = UE_DIR_IN,
.bufsize = UATH_MAX_CMDSZ,
.flags = {
.pipe_bof = 1,
.short_xfer_ok = 1
},
.callback = uath_intr_rx_callback
},
[UATH_INTR_TX] = {
.type = UE_BULK,
.endpoint = 0x1,
.direction = UE_DIR_OUT,
.bufsize = UATH_MAX_CMDSZ,
.flags = {
.ext_buffer = 1,
.force_short_xfer = 1,
.pipe_bof = 1,
},
.callback = uath_intr_tx_callback,
.timeout = UATH_CMD_TIMEOUT
},
[UATH_BULK_RX] = {
.type = UE_BULK,
.endpoint = 0x2,
.direction = UE_DIR_IN,
.bufsize = MCLBYTES,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.short_xfer_ok = 1
},
.callback = uath_bulk_rx_callback
},
[UATH_BULK_TX] = {
.type = UE_BULK,
.endpoint = 0x2,
.direction = UE_DIR_OUT,
.bufsize = UATH_MAX_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.force_short_xfer = 1,
.pipe_bof = 1
},
.callback = uath_bulk_tx_callback,
.timeout = UATH_DATA_TIMEOUT
}
};
static struct ieee80211vap *uath_vap_create(struct ieee80211com *,
const char name[IFNAMSIZ], int unit, int opmode,
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void uath_vap_delete(struct ieee80211vap *);
static int uath_alloc_cmd_list(struct uath_softc *, struct uath_cmd [],
int, int);
static void uath_free_cmd_list(struct uath_softc *, struct uath_cmd [],
int);
static int uath_host_available(struct uath_softc *);
static int uath_get_capability(struct uath_softc *, uint32_t, uint32_t *);
static int uath_get_devcap(struct uath_softc *);
static struct uath_cmd *
uath_get_cmdbuf(struct uath_softc *);
static int uath_cmd_read(struct uath_softc *, uint32_t, const void *,
int, void *, int, int);
static int uath_cmd_write(struct uath_softc *, uint32_t, const void *,
int, int);
static void uath_stat(void *);
#ifdef UATH_DEBUG
static void uath_dump_cmd(const uint8_t *, int, char);
static const char *
uath_codename(int);
#endif
static int uath_get_devstatus(struct uath_softc *,
uint8_t macaddr[IEEE80211_ADDR_LEN]);
static int uath_get_status(struct uath_softc *, uint32_t, void *, int);
static int uath_alloc_rx_data_list(struct uath_softc *);
static int uath_alloc_tx_data_list(struct uath_softc *);
static void uath_free_rx_data_list(struct uath_softc *);
static void uath_free_tx_data_list(struct uath_softc *);
static int uath_init_locked(void *);
static void uath_init(void *);
static void uath_stop_locked(struct ifnet *);
static void uath_stop(struct ifnet *);
static int uath_ioctl(struct ifnet *, u_long, caddr_t);
static void uath_start(struct ifnet *);
static int uath_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void uath_scan_start(struct ieee80211com *);
static void uath_scan_end(struct ieee80211com *);
static void uath_set_channel(struct ieee80211com *);
static void uath_update_mcast(struct ifnet *);
static void uath_update_promisc(struct ifnet *);
static int uath_config(struct uath_softc *, uint32_t, uint32_t);
static int uath_config_multi(struct uath_softc *, uint32_t, const void *,
int);
static int uath_switch_channel(struct uath_softc *,
struct ieee80211_channel *);
static int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t);
static void uath_watchdog(void *);
static void uath_abort_xfers(struct uath_softc *);
static int uath_dataflush(struct uath_softc *);
static int uath_cmdflush(struct uath_softc *);
static int uath_flush(struct uath_softc *);
static int uath_set_ledstate(struct uath_softc *, int);
static int uath_set_chan(struct uath_softc *, struct ieee80211_channel *);
static int uath_reset_tx_queues(struct uath_softc *);
static int uath_wme_init(struct uath_softc *);
static struct uath_data *
uath_getbuf(struct uath_softc *);
static int uath_newstate(struct ieee80211vap *, enum ieee80211_state,
int);
static int uath_set_key(struct uath_softc *,
const struct ieee80211_key *, int);
static int uath_set_keys(struct uath_softc *, struct ieee80211vap *);
static void uath_sysctl_node(struct uath_softc *);
static int
uath_match(device_t dev)
{
struct usb2_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb2_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != UATH_CONFIG_INDEX)
return (ENXIO);
if (uaa->info.bIfaceIndex != UATH_IFACE_INDEX)
return (ENXIO);
return (usb2_lookup_id_by_uaa(uath_devs, sizeof(uath_devs), uaa));
}
static int
uath_attach(device_t dev)
{
struct uath_softc *sc = device_get_softc(dev);
struct usb2_attach_arg *uaa = device_get_ivars(dev);
struct ieee80211com *ic;
struct ifnet *ifp;
uint8_t bands, iface_index = UATH_IFACE_INDEX; /* XXX */
usb2_error_t error;
uint8_t macaddr[IEEE80211_ADDR_LEN];
sc->sc_dev = dev;
sc->sc_udev = uaa->device;
#ifdef UATH_DEBUG
sc->sc_debug = uath_debug;
#endif
/*
* Only post-firmware devices here.
*/
mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init(&sc->stat_ch, 0);
callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
/*
* Allocate xfers for firmware commands.
*/
error = uath_alloc_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT,
UATH_MAX_CMDSZ);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate Tx command list\n");
goto fail;
}
error = usb2_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
uath_usbconfig, UATH_N_XFERS, sc, &sc->sc_mtx);
if (error) {
device_printf(dev, "could not allocate USB transfers, "
"err=%s\n", usb2_errstr(error));
goto fail1;
}
/*
* We're now ready to send+receive firmware commands.
*/
UATH_LOCK(sc);
error = uath_host_available(sc);
if (error != 0) {
device_printf(sc->sc_dev, "could not initialize adapter\n");
goto fail3;
}
error = uath_get_devcap(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"could not get device capabilities\n");
goto fail3;
}
UATH_UNLOCK(sc);
/* Create device sysctl node. */
uath_sysctl_node(sc);
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not allocate ifnet\n");
error = ENXIO;
goto fail2;
}
UATH_LOCK(sc);
error = uath_get_devstatus(sc, macaddr);
if (error != 0) {
device_printf(sc->sc_dev, "could not get device status\n");
goto fail4;
}
/*
* Allocate xfers for Rx/Tx data pipes.
*/
error = uath_alloc_rx_data_list(sc);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Rx data list\n");
goto fail4;
}
error = uath_alloc_tx_data_list(sc);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Tx data list\n");
goto fail4;
}
UATH_UNLOCK(sc);
ifp->if_softc = sc;
if_initname(ifp, "uath", device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = uath_init;
ifp->if_ioctl = uath_ioctl;
ifp->if_start = uath_start;
/* XXX UATH_TX_DATA_LIST_COUNT */
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ic = ifp->if_l2com;
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA | /* station mode */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WPA | /* 802.11i */
IEEE80211_C_BGSCAN | /* capable of bg scanning */
IEEE80211_C_TXFRAG; /* handle tx frags */
/* put a regulatory domain to reveal informations. */
uath_regdomain = sc->sc_devcap.regDomain;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
if ((sc->sc_devcap.analog5GhzRevision & 0xf0) == 0x30)
setbit(&bands, IEEE80211_MODE_11A);
/* XXX turbo */
ieee80211_init_channels(ic, NULL, &bands);
ieee80211_ifattach(ic, macaddr);
ic->ic_raw_xmit = uath_raw_xmit;
ic->ic_scan_start = uath_scan_start;
ic->ic_scan_end = uath_scan_end;
ic->ic_set_channel = uath_set_channel;
ic->ic_vap_create = uath_vap_create;
ic->ic_vap_delete = uath_vap_delete;
ic->ic_update_mcast = uath_update_mcast;
ic->ic_update_promisc = uath_update_promisc;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
UATH_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
UATH_RX_RADIOTAP_PRESENT);
if (bootverbose)
ieee80211_announce(ic);
return (0);
fail4: if_free(ifp);
fail3: UATH_UNLOCK(sc);
fail2: usb2_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS);
fail1: uath_free_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT);
fail:
return (error);
}
static int
uath_detach(device_t dev)
{
struct uath_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
if (!device_is_attached(dev))
return (0);
sc->sc_flags |= UATH_FLAG_INVALID;
uath_stop(ifp);
callout_drain(&sc->stat_ch);
callout_drain(&sc->watchdog_ch);
usb2_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS);
ieee80211_ifdetach(ic);
/* free buffers */
UATH_LOCK(sc);
uath_free_rx_data_list(sc);
uath_free_tx_data_list(sc);
uath_free_cmd_list(sc, sc->sc_cmd, UATH_CMD_LIST_COUNT);
UATH_UNLOCK(sc);
if_free(ifp);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static void
uath_free_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[], int ncmd)
{
int i;
for (i = 0; i < ncmd; i++)
if (cmds[i].buf != NULL)
free(cmds[i].buf, M_USBDEV);
}
static int
uath_alloc_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[],
int ncmd, int maxsz)
{
int i, error;
STAILQ_INIT(&sc->sc_cmd_active);
STAILQ_INIT(&sc->sc_cmd_pending);
STAILQ_INIT(&sc->sc_cmd_waiting);
STAILQ_INIT(&sc->sc_cmd_inactive);
for (i = 0; i < ncmd; i++) {
struct uath_cmd *cmd = &cmds[i];
cmd->sc = sc; /* backpointer for callbacks */
cmd->msgid = i;
cmd->buf = malloc(maxsz, M_USBDEV, M_NOWAIT);
if (cmd->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate xfer buffer\n");
error = ENOMEM;
goto fail;
}
STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next);
UATH_STAT_INC(sc, st_cmd_inactive);
}
return (0);
fail: uath_free_cmd_list(sc, cmds, ncmd);
return (error);
}
static int
uath_host_available(struct uath_softc *sc)
{
struct uath_cmd_host_available setup;
UATH_ASSERT_LOCKED(sc);
/* inform target the host is available */
setup.sw_ver_major = htobe32(ATH_SW_VER_MAJOR);
setup.sw_ver_minor = htobe32(ATH_SW_VER_MINOR);
setup.sw_ver_patch = htobe32(ATH_SW_VER_PATCH);
setup.sw_ver_build = htobe32(ATH_SW_VER_BUILD);
return uath_cmd_read(sc, WDCMSG_HOST_AVAILABLE,
&setup, sizeof setup, NULL, 0, 0);
}
#ifdef UATH_DEBUG
static void
uath_dump_cmd(const uint8_t *buf, int len, char prefix)
{
const char *sep = "";
int i;
for (i = 0; i < len; i++) {
if ((i % 16) == 0) {
printf("%s%c ", sep, prefix);
sep = "\n";
}
else if ((i % 4) == 0)
printf(" ");
printf("%02x", buf[i]);
}
printf("\n");
}
static const char *
uath_codename(int code)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
static const char *names[] = {
"0x00",
"HOST_AVAILABLE",
"BIND",
"TARGET_RESET",
"TARGET_GET_CAPABILITY",
"TARGET_SET_CONFIG",
"TARGET_GET_STATUS",
"TARGET_GET_STATS",
"TARGET_START",
"TARGET_STOP",
"TARGET_ENABLE",
"TARGET_DISABLE",
"CREATE_CONNECTION",
"UPDATE_CONNECT_ATTR",
"DELETE_CONNECT",
"SEND",
"FLUSH",
"STATS_UPDATE",
"BMISS",
"DEVICE_AVAIL",
"SEND_COMPLETE",
"DATA_AVAIL",
"SET_PWR_MODE",
"BMISS_ACK",
"SET_LED_STEADY",
"SET_LED_BLINK",
"SETUP_BEACON_DESC",
"BEACON_INIT",
"RESET_KEY_CACHE",
"RESET_KEY_CACHE_ENTRY",
"SET_KEY_CACHE_ENTRY",
"SET_DECOMP_MASK",
"SET_REGULATORY_DOMAIN",
"SET_LED_STATE",
"WRITE_ASSOCID",
"SET_STA_BEACON_TIMERS",
"GET_TSF",
"RESET_TSF",
"SET_ADHOC_MODE",
"SET_BASIC_RATE",
"MIB_CONTROL",
"GET_CHANNEL_DATA",
"GET_CUR_RSSI",
"SET_ANTENNA_SWITCH",
"0x2c", "0x2d", "0x2e",
"USE_SHORT_SLOT_TIME",
"SET_POWER_MODE",
"SETUP_PSPOLL_DESC",
"SET_RX_MULTICAST_FILTER",
"RX_FILTER",
"PER_CALIBRATION",
"RESET",
"DISABLE",
"PHY_DISABLE",
"SET_TX_POWER_LIMIT",
"SET_TX_QUEUE_PARAMS",
"SETUP_TX_QUEUE",
"RELEASE_TX_QUEUE",
};
static char buf[8];
if (code < N(names))
return names[code];
if (code == WDCMSG_SET_DEFAULT_KEY)
return "SET_DEFAULT_KEY";
snprintf(buf, sizeof(buf), "0x%02x", code);
return buf;
#undef N
}
#endif
/*
* Low-level function to send read or write commands to the firmware.
*/
static int
uath_cmdsend(struct uath_softc *sc, uint32_t code, const void *idata, int ilen,
void *odata, int olen, int flags)
{
struct uath_cmd_hdr *hdr;
struct uath_cmd *cmd;
int error;
UATH_ASSERT_LOCKED(sc);
/* grab a xfer */
cmd = uath_get_cmdbuf(sc);
if (cmd == NULL) {
device_printf(sc->sc_dev, "%s: empty inactive queue\n",
__func__);
return (ENOBUFS);
}
cmd->flags = flags;
/* always bulk-out a multiple of 4 bytes */
cmd->buflen = roundup2(sizeof(struct uath_cmd_hdr) + ilen, 4);
hdr = (struct uath_cmd_hdr *)cmd->buf;
bzero(hdr, sizeof (struct uath_cmd_hdr)); /* XXX not needed */
hdr->len = htobe32(cmd->buflen);
hdr->code = htobe32(code);
hdr->msgid = cmd->msgid; /* don't care about endianness */
hdr->magic = htobe32((cmd->flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0);
bcopy(idata, (uint8_t *)(hdr + 1), ilen);
#ifdef UATH_DEBUG
if (sc->sc_debug & UATH_DEBUG_CMDS) {
printf("%s: send %s [flags 0x%x] olen %d\n",
__func__, uath_codename(code), cmd->flags, olen);
if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP)
uath_dump_cmd(cmd->buf, cmd->buflen, '+');
}
#endif
cmd->odata = odata;
KASSERT(odata == NULL ||
olen < UATH_MAX_CMDSZ - sizeof(*hdr) + sizeof(uint32_t),
("odata %p olen %u", odata, olen));
cmd->olen = olen;
STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next);
UATH_STAT_INC(sc, st_cmd_pending);
usb2_transfer_start(sc->sc_xfer[UATH_INTR_TX]);
if (cmd->flags & UATH_CMD_FLAG_READ) {
usb2_transfer_start(sc->sc_xfer[UATH_INTR_RX]);
/* wait at most two seconds for command reply */
error = mtx_sleep(cmd, &sc->sc_mtx, 0, "uathcmd", 2 * hz);
cmd->odata = NULL; /* in case reply comes too late */
if (error != 0) {
device_printf(sc->sc_dev, "timeout waiting for reply "
"to cmd 0x%x (%u)\n", code, code);
} else if (cmd->olen != olen) {
device_printf(sc->sc_dev, "unexpected reply data count "
"to cmd 0x%x (%u), got %u, expected %u\n",
code, code, cmd->olen, olen);
error = EINVAL;
}
return (error);
}
return (0);
}
static int
uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata,
int ilen, void *odata, int olen, int flags)
{
flags |= UATH_CMD_FLAG_READ;
return uath_cmdsend(sc, code, idata, ilen, odata, olen, flags);
}
static int
uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len,
int flags)
{
flags &= ~UATH_CMD_FLAG_READ;
return uath_cmdsend(sc, code, data, len, NULL, 0, flags);
}
static struct uath_cmd *
uath_get_cmdbuf(struct uath_softc *sc)
{
struct uath_cmd *uc;
UATH_ASSERT_LOCKED(sc);
uc = STAILQ_FIRST(&sc->sc_cmd_inactive);
if (uc != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next);
UATH_STAT_DEC(sc, st_cmd_inactive);
} else
uc = NULL;
if (uc == NULL)
DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__,
"out of command xmit buffers");
return (uc);
}
/*
* This function is called periodically (every second) when associated to
* query device statistics.
*/
static void
uath_stat(void *arg)
{
struct uath_softc *sc = arg;
int error;
UATH_LOCK(sc);
/*
* Send request for statistics asynchronously. The timer will be
* restarted when we'll get the stats notification.
*/
error = uath_cmd_write(sc, WDCMSG_TARGET_GET_STATS, NULL, 0,
UATH_CMD_FLAG_ASYNC);
if (error != 0) {
device_printf(sc->sc_dev,
"could not query stats, error %d\n", error);
}
UATH_UNLOCK(sc);
}
static int
uath_get_capability(struct uath_softc *sc, uint32_t cap, uint32_t *val)
{
int error;
cap = htobe32(cap);
error = uath_cmd_read(sc, WDCMSG_TARGET_GET_CAPABILITY,
&cap, sizeof cap, val, sizeof(uint32_t), UATH_CMD_FLAG_MAGIC);
if (error != 0) {
device_printf(sc->sc_dev, "could not read capability %u\n",
be32toh(cap));
return (error);
}
*val = be32toh(*val);
return (error);
}
static int
uath_get_devcap(struct uath_softc *sc)
{
#define GETCAP(x, v) do { \
error = uath_get_capability(sc, x, &v); \
if (error != 0) \
return (error); \
DPRINTF(sc, UATH_DEBUG_DEVCAP, \
"%s: %s=0x%08x\n", __func__, #x, v); \
} while (0)
struct uath_devcap *cap = &sc->sc_devcap;
int error;
/* collect device capabilities */
GETCAP(CAP_TARGET_VERSION, cap->targetVersion);
GETCAP(CAP_TARGET_REVISION, cap->targetRevision);
GETCAP(CAP_MAC_VERSION, cap->macVersion);
GETCAP(CAP_MAC_REVISION, cap->macRevision);
GETCAP(CAP_PHY_REVISION, cap->phyRevision);
GETCAP(CAP_ANALOG_5GHz_REVISION, cap->analog5GhzRevision);
GETCAP(CAP_ANALOG_2GHz_REVISION, cap->analog2GhzRevision);
GETCAP(CAP_REG_DOMAIN, cap->regDomain);
GETCAP(CAP_REG_CAP_BITS, cap->regCapBits);
#if 0
/* NB: not supported in rev 1.5 */
GETCAP(CAP_COUNTRY_CODE, cap->countryCode);
#endif
GETCAP(CAP_WIRELESS_MODES, cap->wirelessModes);
GETCAP(CAP_CHAN_SPREAD_SUPPORT, cap->chanSpreadSupport);
GETCAP(CAP_COMPRESS_SUPPORT, cap->compressSupport);
GETCAP(CAP_BURST_SUPPORT, cap->burstSupport);
GETCAP(CAP_FAST_FRAMES_SUPPORT, cap->fastFramesSupport);
GETCAP(CAP_CHAP_TUNING_SUPPORT, cap->chapTuningSupport);
GETCAP(CAP_TURBOG_SUPPORT, cap->turboGSupport);
GETCAP(CAP_TURBO_PRIME_SUPPORT, cap->turboPrimeSupport);
GETCAP(CAP_DEVICE_TYPE, cap->deviceType);
GETCAP(CAP_WME_SUPPORT, cap->wmeSupport);
GETCAP(CAP_TOTAL_QUEUES, cap->numTxQueues);
GETCAP(CAP_CONNECTION_ID_MAX, cap->connectionIdMax);
GETCAP(CAP_LOW_5GHZ_CHAN, cap->low5GhzChan);
GETCAP(CAP_HIGH_5GHZ_CHAN, cap->high5GhzChan);
GETCAP(CAP_LOW_2GHZ_CHAN, cap->low2GhzChan);
GETCAP(CAP_HIGH_2GHZ_CHAN, cap->high2GhzChan);
GETCAP(CAP_TWICE_ANTENNAGAIN_5G, cap->twiceAntennaGain5G);
GETCAP(CAP_TWICE_ANTENNAGAIN_2G, cap->twiceAntennaGain2G);
GETCAP(CAP_CIPHER_AES_CCM, cap->supportCipherAES_CCM);
GETCAP(CAP_CIPHER_TKIP, cap->supportCipherTKIP);
GETCAP(CAP_MIC_TKIP, cap->supportMicTKIP);
cap->supportCipherWEP = 1; /* NB: always available */
return (0);
}
static int
uath_get_devstatus(struct uath_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
{
int error;
/* retrieve MAC address */
error = uath_get_status(sc, ST_MAC_ADDR, macaddr, IEEE80211_ADDR_LEN);
if (error != 0) {
device_printf(sc->sc_dev, "could not read MAC address\n");
return (error);
}
error = uath_get_status(sc, ST_SERIAL_NUMBER,
&sc->sc_serial[0], sizeof(sc->sc_serial));
if (error != 0) {
device_printf(sc->sc_dev,
"could not read device serial number\n");
return (error);
}
return (0);
}
static int
uath_get_status(struct uath_softc *sc, uint32_t which, void *odata, int olen)
{
int error;
which = htobe32(which);
error = uath_cmd_read(sc, WDCMSG_TARGET_GET_STATUS,
&which, sizeof(which), odata, olen, UATH_CMD_FLAG_MAGIC);
if (error != 0)
device_printf(sc->sc_dev,
"could not read EEPROM offset 0x%02x\n", be32toh(which));
return (error);
}
static void
uath_free_data_list(struct uath_softc *sc, struct uath_data data[], int ndata,
int fillmbuf)
{
int i;
for (i = 0; i < ndata; i++) {
struct uath_data *dp = &data[i];
if (fillmbuf == 1) {
if (dp->m != NULL) {
m_freem(dp->m);
dp->m = NULL;
dp->buf = NULL;
}
} else {
if (dp->buf != NULL) {
free(dp->buf, M_USBDEV);
dp->buf = NULL;
}
}
#ifdef UATH_DEBUG
if (dp->ni != NULL)
device_printf(sc->sc_dev, "Node isn't NULL\n");
#endif
}
}
static int
uath_alloc_data_list(struct uath_softc *sc, struct uath_data data[],
int ndata, int maxsz, int fillmbuf)
{
int i, error;
for (i = 0; i < ndata; i++) {
struct uath_data *dp = &data[i];
dp->sc = sc;
if (fillmbuf) {
/* XXX check maxsz */
dp->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (dp->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
dp->buf = mtod(dp->m, uint8_t *);
} else {
dp->m = NULL;
dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT);
if (dp->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate buffer\n");
error = ENOMEM;
goto fail;
}
}
dp->ni = NULL;
}
return (0);
fail: uath_free_data_list(sc, data, ndata, fillmbuf);
return (error);
}
static int
uath_alloc_rx_data_list(struct uath_softc *sc)
{
int error, i;
/* XXX is it enough to store the RX packet with MCLBYTES bytes? */
error = uath_alloc_data_list(sc,
sc->sc_rx, UATH_RX_DATA_LIST_COUNT, MCLBYTES,
1 /* setup mbufs */);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_rx_active);
STAILQ_INIT(&sc->sc_rx_inactive);
for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i],
next);
UATH_STAT_INC(sc, st_rx_inactive);
}
return (0);
}
static int
uath_alloc_tx_data_list(struct uath_softc *sc)
{
int error, i;
error = uath_alloc_data_list(sc,
sc->sc_tx, UATH_TX_DATA_LIST_COUNT, UATH_MAX_TXBUFSZ,
0 /* no mbufs */);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_tx_active);
STAILQ_INIT(&sc->sc_tx_inactive);
STAILQ_INIT(&sc->sc_tx_pending);
for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) {
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i],
next);
UATH_STAT_INC(sc, st_tx_inactive);
}
return (0);
}
static void
uath_free_rx_data_list(struct uath_softc *sc)
{
STAILQ_INIT(&sc->sc_rx_active);
STAILQ_INIT(&sc->sc_rx_inactive);
uath_free_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT,
1 /* free mbufs */);
}
static void
uath_free_tx_data_list(struct uath_softc *sc)
{
STAILQ_INIT(&sc->sc_tx_active);
STAILQ_INIT(&sc->sc_tx_inactive);
STAILQ_INIT(&sc->sc_tx_pending);
uath_free_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT,
0 /* no mbufs */);
}
static struct ieee80211vap *
uath_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct uath_vap *uvp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return (NULL);
uvp = (struct uath_vap *) malloc(sizeof(struct uath_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (uvp == NULL)
return (NULL);
vap = &uvp->vap;
/* enable s/w bmiss handling for sta mode */
ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
/* override state transition machine */
uvp->newstate = vap->iv_newstate;
vap->iv_newstate = uath_newstate;
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change,
ieee80211_media_status);
ic->ic_opmode = opmode;
return (vap);
}
static void
uath_vap_delete(struct ieee80211vap *vap)
{
struct uath_vap *uvp = UATH_VAP(vap);
ieee80211_vap_detach(vap);
free(uvp, M_80211_VAP);
}
static int
uath_init_locked(void *arg)
{
struct uath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t val;
int error;
UATH_ASSERT_LOCKED(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
uath_stop_locked(ifp);
/* reset variables */
sc->sc_intrx_nextnum = sc->sc_msgid = 0;
val = htobe32(0);
uath_cmd_write(sc, WDCMSG_BIND, &val, sizeof val, 0);
/* set MAC address */
uath_config_multi(sc, CFG_MAC_ADDR, IF_LLADDR(ifp), IEEE80211_ADDR_LEN);
/* XXX honor net80211 state */
uath_config(sc, CFG_RATE_CONTROL_ENABLE, 0x00000001);
uath_config(sc, CFG_DIVERSITY_CTL, 0x00000001);
uath_config(sc, CFG_ABOLT, 0x0000003f);
uath_config(sc, CFG_WME_ENABLED, 0x00000001);
uath_config(sc, CFG_SERVICE_TYPE, 1);
uath_config(sc, CFG_TP_SCALE, 0x00000000);
uath_config(sc, CFG_TPC_HALF_DBM5, 0x0000003c);
uath_config(sc, CFG_TPC_HALF_DBM2, 0x0000003c);
uath_config(sc, CFG_OVERRD_TX_POWER, 0x00000000);
uath_config(sc, CFG_GMODE_PROTECTION, 0x00000000);
uath_config(sc, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003);
uath_config(sc, CFG_PROTECTION_TYPE, 0x00000000);
uath_config(sc, CFG_MODE_CTS, 0x00000002);
error = uath_cmd_read(sc, WDCMSG_TARGET_START, NULL, 0,
&val, sizeof(val), UATH_CMD_FLAG_MAGIC);
if (error) {
device_printf(sc->sc_dev,
"could not start target, error %d\n", error);
goto fail;
}
DPRINTF(sc, UATH_DEBUG_INIT, "%s returns handle: 0x%x\n",
uath_codename(WDCMSG_TARGET_START), be32toh(val));
/* set default channel */
error = uath_switch_channel(sc, ic->ic_curchan);
if (error) {
device_printf(sc->sc_dev,
"could not switch channel, error %d\n", error);
goto fail;
}
val = htobe32(TARGET_DEVICE_AWAKE);
uath_cmd_write(sc, WDCMSG_SET_PWR_MODE, &val, sizeof val, 0);
/* XXX? check */
uath_cmd_write(sc, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0);
usb2_transfer_start(sc->sc_xfer[UATH_BULK_RX]);
/* enable Rx */
uath_set_rxfilter(sc, 0x0, UATH_FILTER_OP_INIT);
uath_set_rxfilter(sc,
UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST |
UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON,
UATH_FILTER_OP_SET);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_flags |= UATH_FLAG_INITDONE;
callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc);
return (0);
fail:
uath_stop_locked(ifp);
return (error);
}
static void
uath_init(void *arg)
{
struct uath_softc *sc = arg;
UATH_LOCK(sc);
(void)uath_init_locked(sc);
UATH_UNLOCK(sc);
}
static void
uath_stop_locked(struct ifnet *ifp)
{
struct uath_softc *sc = ifp->if_softc;
UATH_ASSERT_LOCKED(sc);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_flags &= ~UATH_FLAG_INITDONE;
callout_stop(&sc->stat_ch);
callout_stop(&sc->watchdog_ch);
sc->sc_tx_timer = 0;
/* abort pending transmits */
uath_abort_xfers(sc);
/* flush data & control requests into the target */
(void)uath_flush(sc);
/* set a LED status to the disconnected. */
uath_set_ledstate(sc, 0);
/* stop the target */
uath_cmd_write(sc, WDCMSG_TARGET_STOP, NULL, 0, 0);
}
static void
uath_stop(struct ifnet *ifp)
{
struct uath_softc *sc = ifp->if_softc;
UATH_LOCK(sc);
uath_stop_locked(ifp);
UATH_UNLOCK(sc);
}
static int
uath_config(struct uath_softc *sc, uint32_t reg, uint32_t val)
{
struct uath_write_mac write;
int error;
write.reg = htobe32(reg);
write.len = htobe32(0); /* 0 = single write */
*(uint32_t *)write.data = htobe32(val);
error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write,
3 * sizeof (uint32_t), 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not write register 0x%02x\n",
reg);
}
return (error);
}
static int
uath_config_multi(struct uath_softc *sc, uint32_t reg, const void *data,
int len)
{
struct uath_write_mac write;
int error;
write.reg = htobe32(reg);
write.len = htobe32(len);
bcopy(data, write.data, len);
/* properly handle the case where len is zero (reset) */
error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write,
(len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not write %d bytes to register 0x%02x\n", len, reg);
}
return (error);
}
static int
uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c)
{
int error;
UATH_ASSERT_LOCKED(sc);
/* set radio frequency */
error = uath_set_chan(sc, c);
if (error) {
device_printf(sc->sc_dev,
"could not set channel, error %d\n", error);
goto failed;
}
/* reset Tx rings */
error = uath_reset_tx_queues(sc);
if (error) {
device_printf(sc->sc_dev,
"could not reset Tx queues, error %d\n", error);
goto failed;
}
/* set Tx rings WME properties */
error = uath_wme_init(sc);
if (error) {
device_printf(sc->sc_dev,
"could not init Tx queues, error %d\n", error);
goto failed;
}
error = uath_set_ledstate(sc, 0);
if (error) {
device_printf(sc->sc_dev,
"could not set led state, error %d\n", error);
goto failed;
}
error = uath_flush(sc);
if (error) {
device_printf(sc->sc_dev,
"could not flush pipes, error %d\n", error);
goto failed;
}
failed:
return (error);
}
static int
uath_set_rxfilter(struct uath_softc *sc, uint32_t bits, uint32_t op)
{
struct uath_cmd_rx_filter rxfilter;
rxfilter.bits = htobe32(bits);
rxfilter.op = htobe32(op);
DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL,
"setting Rx filter=0x%x flags=0x%x\n", bits, op);
return uath_cmd_write(sc, WDCMSG_RX_FILTER, &rxfilter,
sizeof rxfilter, 0);
}
static void
uath_watchdog(void *arg)
{
struct uath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
/*uath_init(ifp); XXX needs a process context! */
ifp->if_oerrors++;
return;
}
callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc);
}
}
static void
uath_abort_xfers(struct uath_softc *sc)
{
int i;
UATH_ASSERT_LOCKED(sc);
/* abort any pending transfers */
for (i = 0; i < UATH_N_XFERS; i++)
usb2_transfer_stop(sc->sc_xfer[i]);
}
static int
uath_flush(struct uath_softc *sc)
{
int error;
error = uath_dataflush(sc);
if (error != 0)
goto failed;
error = uath_cmdflush(sc);
if (error != 0)
goto failed;
failed:
return (error);
}
static int
uath_cmdflush(struct uath_softc *sc)
{
return uath_cmd_write(sc, WDCMSG_FLUSH, NULL, 0, 0);
}
static int
uath_dataflush(struct uath_softc *sc)
{
struct uath_data *data;
struct uath_chunk *chunk;
struct uath_tx_desc *desc;
UATH_ASSERT_LOCKED(sc);
data = uath_getbuf(sc);
if (data == NULL)
return (ENOBUFS);
data->buflen = sizeof(struct uath_chunk) + sizeof(struct uath_tx_desc);
data->m = NULL;
data->ni = NULL;
chunk = (struct uath_chunk *)data->buf;
desc = (struct uath_tx_desc *)(chunk + 1);
/* one chunk only */
chunk->seqnum = 0;
chunk->flags = UATH_CFLAGS_FINAL;
chunk->length = htobe16(sizeof (struct uath_tx_desc));
bzero(desc, sizeof(struct uath_tx_desc));
desc->msglen = htobe32(sizeof(struct uath_tx_desc));
desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */
desc->type = htobe32(WDCMSG_FLUSH);
desc->txqid = htobe32(0);
desc->connid = htobe32(0);
desc->flags = htobe32(0);
#ifdef UATH_DEBUG
if (sc->sc_debug & UATH_DEBUG_CMDS) {
DPRINTF(sc, UATH_DEBUG_RESET, "send flush ix %d\n",
desc->msgid);
if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP)
uath_dump_cmd(data->buf, data->buflen, '+');
}
#endif
STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
UATH_STAT_INC(sc, st_tx_pending);
sc->sc_tx_timer = 5;
usb2_transfer_start(sc->sc_xfer[UATH_BULK_TX]);
return (0);
}
static struct uath_data *
_uath_getbuf(struct uath_softc *sc)
{
struct uath_data *bf;
bf = STAILQ_FIRST(&sc->sc_tx_inactive);
if (bf != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
UATH_STAT_DEC(sc, st_tx_inactive);
} else
bf = NULL;
if (bf == NULL)
DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__,
"out of xmit buffers");
return (bf);
}
static struct uath_data *
uath_getbuf(struct uath_softc *sc)
{
struct uath_data *bf;
UATH_ASSERT_LOCKED(sc);
bf = _uath_getbuf(sc);
if (bf == NULL) {
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, UATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
return (bf);
}
static int
uath_set_ledstate(struct uath_softc *sc, int connected)
{
DPRINTF(sc, UATH_DEBUG_LED,
"set led state %sconnected\n", connected ? "" : "!");
connected = htobe32(connected);
return uath_cmd_write(sc, WDCMSG_SET_LED_STATE,
&connected, sizeof connected, 0);
}
static int
uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c)
{
#ifdef UATH_DEBUG
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
#endif
struct uath_cmd_reset reset;
bzero(&reset, sizeof reset);
if (IEEE80211_IS_CHAN_2GHZ(c))
reset.flags |= htobe32(UATH_CHAN_2GHZ);
if (IEEE80211_IS_CHAN_5GHZ(c))
reset.flags |= htobe32(UATH_CHAN_5GHZ);
/* NB: 11g =>'s 11b so don't specify both OFDM and CCK */
if (IEEE80211_IS_CHAN_OFDM(c))
reset.flags |= htobe32(UATH_CHAN_OFDM);
else if (IEEE80211_IS_CHAN_CCK(c))
reset.flags |= htobe32(UATH_CHAN_CCK);
/* turbo can be used in either 2GHz or 5GHz */
if (c->ic_flags & IEEE80211_CHAN_TURBO)
reset.flags |= htobe32(UATH_CHAN_TURBO);
reset.freq = htobe32(c->ic_freq);
reset.maxrdpower = htobe32(50); /* XXX */
reset.channelchange = htobe32(1);
reset.keeprccontent = htobe32(0);
DPRINTF(sc, UATH_DEBUG_CHANNEL, "set channel %d, flags 0x%x freq %u\n",
ieee80211_chan2ieee(ic, c),
be32toh(reset.flags), be32toh(reset.freq));
return uath_cmd_write(sc, WDCMSG_RESET, &reset, sizeof reset, 0);
}
static int
uath_reset_tx_queues(struct uath_softc *sc)
{
int ac, error;
DPRINTF(sc, UATH_DEBUG_RESET, "%s: reset Tx queues\n", __func__);
for (ac = 0; ac < 4; ac++) {
const uint32_t qid = htobe32(ac);
error = uath_cmd_write(sc, WDCMSG_RELEASE_TX_QUEUE, &qid,
sizeof qid, 0);
if (error != 0)
break;
}
return (error);
}
static int
uath_wme_init(struct uath_softc *sc)
{
/* XXX get from net80211 */
static const struct uath_wme_settings uath_wme_11g[4] = {
{ 7, 4, 10, 0, 0 }, /* Background */
{ 3, 4, 10, 0, 0 }, /* Best-Effort */
{ 3, 3, 4, 26, 0 }, /* Video */
{ 2, 2, 3, 47, 0 } /* Voice */
};
struct uath_cmd_txq_setup qinfo;
int ac, error;
DPRINTF(sc, UATH_DEBUG_WME, "%s: setup Tx queues\n", __func__);
for (ac = 0; ac < 4; ac++) {
qinfo.qid = htobe32(ac);
qinfo.len = htobe32(sizeof(qinfo.attr));
qinfo.attr.priority = htobe32(ac); /* XXX */
qinfo.attr.aifs = htobe32(uath_wme_11g[ac].aifsn);
qinfo.attr.logcwmin = htobe32(uath_wme_11g[ac].logcwmin);
qinfo.attr.logcwmax = htobe32(uath_wme_11g[ac].logcwmax);
qinfo.attr.bursttime = htobe32(UATH_TXOP_TO_US(
uath_wme_11g[ac].txop));
qinfo.attr.mode = htobe32(uath_wme_11g[ac].acm);/*XXX? */
qinfo.attr.qflags = htobe32(1); /* XXX? */
error = uath_cmd_write(sc, WDCMSG_SETUP_TX_QUEUE, &qinfo,
sizeof qinfo, 0);
if (error != 0)
break;
}
return (error);
}
static int
uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
uath_init(ifp->if_softc);
startall = 1;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
uath_stop(ifp);
}
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return (error);
}
static int
uath_tx_start(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
struct uath_data *data)
{
struct ieee80211vap *vap = ni->ni_vap;
struct uath_chunk *chunk;
struct uath_tx_desc *desc;
const struct ieee80211_frame *wh;
struct ieee80211_key *k;
int framelen, msglen;
UATH_ASSERT_LOCKED(sc);
data->ni = ni;
data->m = m0;
chunk = (struct uath_chunk *)data->buf;
desc = (struct uath_tx_desc *)(chunk + 1);
if (ieee80211_radiotap_active_vap(vap)) {
struct uath_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
if (m0->m_flags & M_FRAG)
tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
ieee80211_radiotap_tx(vap, m0);
}
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return (ENOBUFS);
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1));
framelen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
msglen = framelen + sizeof (struct uath_tx_desc);
data->buflen = msglen + sizeof (struct uath_chunk);
/* one chunk only for now */
chunk->seqnum = sc->sc_seqnum++;
chunk->flags = (m0->m_flags & M_FRAG) ? 0 : UATH_CFLAGS_FINAL;
if (m0->m_flags & M_LASTFRAG)
chunk->flags |= UATH_CFLAGS_FINAL;
chunk->flags = UATH_CFLAGS_FINAL;
chunk->length = htobe16(msglen);
/* fill Tx descriptor */
desc->msglen = htobe32(msglen);
/* NB: to get UATH_TX_NOTIFY reply, `msgid' must be larger than 0 */
desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */
desc->type = htobe32(WDCMSG_SEND);
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_CTL:
case IEEE80211_FC0_TYPE_MGT:
/* NB: force all management frames to highest queue */
if (ni->ni_flags & IEEE80211_NODE_QOS) {
/* NB: force all management frames to highest queue */
desc->txqid = htobe32(WME_AC_VO | UATH_TXQID_MINRATE);
} else
desc->txqid = htobe32(WME_AC_BE | UATH_TXQID_MINRATE);
break;
case IEEE80211_FC0_TYPE_DATA:
/* XXX multicast frames should honor mcastrate */
desc->txqid = htobe32(M_WME_GETAC(m0));
break;
default:
device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
m_freem(m0);
return (EIO);
}
if (vap->iv_state == IEEE80211_S_AUTH ||
vap->iv_state == IEEE80211_S_ASSOC ||
vap->iv_state == IEEE80211_S_RUN)
desc->connid = htobe32(UATH_ID_BSS);
else
desc->connid = htobe32(UATH_ID_INVALID);
desc->flags = htobe32(0 /* no UATH_TX_NOTIFY */);
desc->buflen = htobe32(m0->m_pkthdr.len);
#ifdef UATH_DEBUG
DPRINTF(sc, UATH_DEBUG_XMIT,
"send frame ix %u framelen %d msglen %d connid 0x%x txqid 0x%x\n",
desc->msgid, framelen, msglen, be32toh(desc->connid),
be32toh(desc->txqid));
if (sc->sc_debug & UATH_DEBUG_XMIT_DUMP)
uath_dump_cmd(data->buf, data->buflen, '+');
#endif
STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
UATH_STAT_INC(sc, st_tx_pending);
usb2_transfer_start(sc->sc_xfer[UATH_BULK_TX]);
return (0);
}
/*
* Cleanup driver resources when we run out of buffers while processing
* fragments; return the tx buffers allocated and drop node references.
*/
static void
uath_txfrag_cleanup(struct uath_softc *sc,
uath_datahead *frags, struct ieee80211_node *ni)
{
struct uath_data *bf, *next;
UATH_ASSERT_LOCKED(sc);
STAILQ_FOREACH_SAFE(bf, frags, next, next) {
/* NB: bf assumed clean */
STAILQ_REMOVE_HEAD(frags, next);
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
UATH_STAT_INC(sc, st_tx_inactive);
ieee80211_node_decref(ni);
}
}
/*
* Setup xmit of a fragmented frame. Allocate a buffer for each frag and bump
* the node reference count to reflect the held reference to be setup by
* uath_tx_start.
*/
static int
uath_txfrag_setup(struct uath_softc *sc, uath_datahead *frags,
struct mbuf *m0, struct ieee80211_node *ni)
{
struct mbuf *m;
struct uath_data *bf;
UATH_ASSERT_LOCKED(sc);
for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
bf = uath_getbuf(sc);
if (bf == NULL) { /* out of buffers, cleanup */
uath_txfrag_cleanup(sc, frags, ni);
break;
}
ieee80211_node_incref(ni);
STAILQ_INSERT_TAIL(frags, bf, next);
}
return !STAILQ_EMPTY(frags);
}
/*
* Reclaim mbuf resources. For fragmented frames we need to claim each frag
* chained with m_nextpkt.
*/
static void
uath_freetx(struct mbuf *m)
{
struct mbuf *next;
do {
next = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
} while ((m = next) != NULL);
}
static void
uath_start(struct ifnet *ifp)
{
struct uath_data *bf;
struct uath_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct mbuf *m, *next;
uath_datahead frags;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
(sc->sc_flags & UATH_FLAG_INVALID))
return;
UATH_LOCK(sc);
for (;;) {
bf = uath_getbuf(sc);
if (bf == NULL)
break;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
UATH_STAT_INC(sc, st_tx_inactive);
break;
}
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
/*
* Check for fragmentation. If this frame has been broken up
* verify we have enough buffers to send all the fragments
* so all go out or none...
*/
STAILQ_INIT(&frags);
if ((m->m_flags & M_FRAG) &&
!uath_txfrag_setup(sc, &frags, m, ni)) {
DPRINTF(sc, UATH_DEBUG_XMIT,
"%s: out of txfrag buffers\n", __func__);
uath_freetx(m);
goto bad;
}
sc->sc_seqnum = 0;
nextfrag:
/*
* Pass the frame to the h/w for transmission.
* Fragmented frames have each frag chained together
* with m_nextpkt. We know there are sufficient uath_data's
* to send all the frags because of work done by
* uath_txfrag_setup.
*/
next = m->m_nextpkt;
if (uath_tx_start(sc, m, ni, bf) != 0) {
bad:
ifp->if_oerrors++;
reclaim:
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
UATH_STAT_INC(sc, st_tx_inactive);
uath_txfrag_cleanup(sc, &frags, ni);
ieee80211_free_node(ni);
continue;
}
if (next != NULL) {
/*
* Beware of state changing between frags.
XXX check sta power-save state?
*/
if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
DPRINTF(sc, UATH_DEBUG_XMIT,
"%s: flush fragmented packet, state %s\n",
__func__,
ieee80211_state_name[ni->ni_vap->iv_state]);
uath_freetx(next);
goto reclaim;
}
m = next;
bf = STAILQ_FIRST(&frags);
KASSERT(bf != NULL, ("no buf for txfrag"));
STAILQ_REMOVE_HEAD(&frags, next);
goto nextfrag;
}
sc->sc_tx_timer = 5;
}
UATH_UNLOCK(sc);
}
static int
uath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct uath_data *bf;
struct uath_softc *sc = ifp->if_softc;
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
m_freem(m);
ieee80211_free_node(ni);
return (ENETDOWN);
}
UATH_LOCK(sc);
/* grab a TX buffer */
bf = uath_getbuf(sc);
if (bf == NULL) {
ieee80211_free_node(ni);
m_freem(m);
UATH_UNLOCK(sc);
return (ENOBUFS);
}
sc->sc_seqnum = 0;
if (uath_tx_start(sc, m, ni, bf) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
UATH_STAT_INC(sc, st_tx_inactive);
UATH_UNLOCK(sc);
return (EIO);
}
UATH_UNLOCK(sc);
sc->sc_tx_timer = 5;
return (0);
}
static void
uath_scan_start(struct ieee80211com *ic)
{
/* do nothing */
}
static void
uath_scan_end(struct ieee80211com *ic)
{
/* do nothing */
}
static void
uath_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct uath_softc *sc = ifp->if_softc;
UATH_LOCK(sc);
(void)uath_switch_channel(sc, ic->ic_curchan);
UATH_UNLOCK(sc);
}
static int
uath_set_rxmulti_filter(struct uath_softc *sc)
{
/* XXX broken */
return (0);
}
static void
uath_update_mcast(struct ifnet *ifp)
{
struct uath_softc *sc = ifp->if_softc;
UATH_LOCK(sc);
/*
* this is for avoiding the race condition when we're try to
* connect to the AP with WPA.
*/
if (sc->sc_flags & UATH_FLAG_INITDONE)
(void)uath_set_rxmulti_filter(sc);
UATH_UNLOCK(sc);
}
static void
uath_update_promisc(struct ifnet *ifp)
{
struct uath_softc *sc = ifp->if_softc;
UATH_LOCK(sc);
if (sc->sc_flags & UATH_FLAG_INITDONE) {
uath_set_rxfilter(sc,
UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST |
UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON |
UATH_FILTER_RX_PROM, UATH_FILTER_OP_SET);
}
UATH_UNLOCK(sc);
}
static int
uath_create_connection(struct uath_softc *sc, uint32_t connid)
{
const struct ieee80211_rateset *rs;
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_node *ni = vap->iv_bss;
struct uath_cmd_create_connection create;
bzero(&create, sizeof create);
create.connid = htobe32(connid);
create.bssid = htobe32(0);
/* XXX packed or not? */
create.size = htobe32(sizeof(struct uath_cmd_rateset));
rs = &ni->ni_rates;
create.connattr.rateset.length = rs->rs_nrates;
bcopy(rs->rs_rates, &create.connattr.rateset.set[0],
rs->rs_nrates);
/* XXX turbo */
if (IEEE80211_IS_CHAN_A(ni->ni_chan))
create.connattr.wlanmode = htobe32(WLAN_MODE_11a);
else if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan))
create.connattr.wlanmode = htobe32(WLAN_MODE_11g);
else
create.connattr.wlanmode = htobe32(WLAN_MODE_11b);
return uath_cmd_write(sc, WDCMSG_CREATE_CONNECTION, &create,
sizeof create, 0);
}
static int
uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs)
{
struct uath_cmd_rates rates;
bzero(&rates, sizeof rates);
rates.connid = htobe32(UATH_ID_BSS); /* XXX */
rates.size = htobe32(sizeof(struct uath_cmd_rateset));
/* XXX bounds check rs->rs_nrates */
rates.rateset.length = rs->rs_nrates;
bcopy(rs->rs_rates, &rates.rateset.set[0], rs->rs_nrates);
DPRINTF(sc, UATH_DEBUG_RATES,
"setting supported rates nrates=%d\n", rs->rs_nrates);
return uath_cmd_write(sc, WDCMSG_SET_BASIC_RATE,
&rates, sizeof rates, 0);
}
static int
uath_write_associd(struct uath_softc *sc)
{
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_node *ni = vap->iv_bss;
struct uath_cmd_set_associd associd;
bzero(&associd, sizeof associd);
associd.defaultrateix = htobe32(1); /* XXX */
associd.associd = htobe32(ni->ni_associd);
associd.timoffset = htobe32(0x3b); /* XXX */
IEEE80211_ADDR_COPY(associd.bssid, ni->ni_bssid);
return uath_cmd_write(sc, WDCMSG_WRITE_ASSOCID, &associd,
sizeof associd, 0);
}
static int
uath_set_ledsteady(struct uath_softc *sc, int lednum, int ledmode)
{
struct uath_cmd_ledsteady led;
led.lednum = htobe32(lednum);
led.ledmode = htobe32(ledmode);
DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (steady)\n",
(lednum == UATH_LED_LINK) ? "link" : "activity",
ledmode ? "on" : "off");
return uath_cmd_write(sc, WDCMSG_SET_LED_STEADY, &led, sizeof led, 0);
}
static int
uath_set_ledblink(struct uath_softc *sc, int lednum, int ledmode,
int blinkrate, int slowmode)
{
struct uath_cmd_ledblink led;
led.lednum = htobe32(lednum);
led.ledmode = htobe32(ledmode);
led.blinkrate = htobe32(blinkrate);
led.slowmode = htobe32(slowmode);
DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (blink)\n",
(lednum == UATH_LED_LINK) ? "link" : "activity",
ledmode ? "on" : "off");
return uath_cmd_write(sc, WDCMSG_SET_LED_BLINK, &led, sizeof led, 0);
}
static int
uath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
enum ieee80211_state ostate = vap->iv_state;
int error;
struct ieee80211_node *ni = vap->iv_bss;
struct ieee80211com *ic = vap->iv_ic;
struct uath_softc *sc = ic->ic_ifp->if_softc;
struct uath_vap *uvp = UATH_VAP(vap);
DPRINTF(sc, UATH_DEBUG_STATE,
"%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
UATH_LOCK(sc);
callout_stop(&sc->stat_ch);
callout_stop(&sc->watchdog_ch);
switch (nstate) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* turn link and activity LEDs off */
uath_set_ledstate(sc, 0);
}
break;
case IEEE80211_S_SCAN:
break;
case IEEE80211_S_AUTH:
/* XXX good place? set RTS threshold */
uath_config(sc, CFG_USER_RTS_THRESHOLD, vap->iv_rtsthreshold);
/* XXX bad place */
error = uath_set_keys(sc, vap);
if (error != 0) {
device_printf(sc->sc_dev,
"could not set crypto keys, error %d\n", error);
break;
}
if (uath_switch_channel(sc, ni->ni_chan) != 0) {
device_printf(sc->sc_dev, "could not switch channel\n");
break;
}
if (uath_create_connection(sc, UATH_ID_BSS) != 0) {
device_printf(sc->sc_dev,
"could not create connection\n");
break;
}
break;
case IEEE80211_S_ASSOC:
if (uath_set_rates(sc, &ni->ni_rates) != 0) {
device_printf(sc->sc_dev,
"could not set negotiated rate set\n");
break;
}
break;
case IEEE80211_S_RUN:
/* XXX monitor mode doesn't be tested */
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
uath_set_ledstate(sc, 1);
break;
}
/*
* Tx rate is controlled by firmware, report the maximum
* negotiated rate in ifconfig output.
*/
ni->ni_txrate = ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates-1];
if (uath_write_associd(sc) != 0) {
device_printf(sc->sc_dev,
"could not write association id\n");
break;
}
/* turn link LED on */
uath_set_ledsteady(sc, UATH_LED_LINK, UATH_LED_ON);
/* make activity LED blink */
uath_set_ledblink(sc, UATH_LED_ACTIVITY, UATH_LED_ON, 1, 2);
/* set state to associated */
uath_set_ledstate(sc, 1);
/* start statistics timer */
callout_reset(&sc->stat_ch, hz, uath_stat, sc);
break;
default:
break;
}
UATH_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (uvp->newstate(vap, nstate, arg));
}
static int
uath_set_key(struct uath_softc *sc, const struct ieee80211_key *wk,
int index)
{
#if 0
struct uath_cmd_crypto crypto;
int i;
bzero(&crypto, sizeof crypto);
crypto.keyidx = htobe32(index);
crypto.magic1 = htobe32(1);
crypto.size = htobe32(368);
crypto.mask = htobe32(0xffff);
crypto.flags = htobe32(0x80000068);
if (index != UATH_DEFAULT_KEY)
crypto.flags |= htobe32(index << 16);
memset(crypto.magic2, 0xff, sizeof crypto.magic2);
/*
* Each byte of the key must be XOR'ed with 10101010 before being
* transmitted to the firmware.
*/
for (i = 0; i < wk->wk_keylen; i++)
crypto.key[i] = wk->wk_key[i] ^ 0xaa;
DPRINTF(sc, UATH_DEBUG_CRYPTO,
"setting crypto key index=%d len=%d\n", index, wk->wk_keylen);
return uath_cmd_write(sc, WDCMSG_SET_KEY_CACHE_ENTRY, &crypto,
sizeof crypto, 0);
#else
/* XXX support H/W cryto */
return (0);
#endif
}
static int
uath_set_keys(struct uath_softc *sc, struct ieee80211vap *vap)
{
int i, error;
error = 0;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
const struct ieee80211_key *wk = &vap->iv_nw_keys[i];
if (wk->wk_flags & (IEEE80211_KEY_XMIT|IEEE80211_KEY_RECV)) {
error = uath_set_key(sc, wk, i);
if (error)
return (error);
}
}
if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) {
error = uath_set_key(sc, &vap->iv_nw_keys[vap->iv_def_txkey],
UATH_DEFAULT_KEY);
}
return (error);
}
#define UATH_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
static void
uath_sysctl_node(struct uath_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child;
struct sysctl_oid *tree;
struct uath_stat *stats;
stats = &sc->sc_stat;
ctx = device_get_sysctl_ctx(sc->sc_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "UATH statistics");
child = SYSCTL_CHILDREN(tree);
UATH_SYSCTL_STAT_ADD32(ctx, child, "badchunkseqnum",
&stats->st_badchunkseqnum, "Bad chunk sequence numbers");
UATH_SYSCTL_STAT_ADD32(ctx, child, "invalidlen", &stats->st_invalidlen,
"Invalid length");
UATH_SYSCTL_STAT_ADD32(ctx, child, "multichunk", &stats->st_multichunk,
"Multi chunks");
UATH_SYSCTL_STAT_ADD32(ctx, child, "toobigrxpkt",
&stats->st_toobigrxpkt, "Too big rx packets");
UATH_SYSCTL_STAT_ADD32(ctx, child, "stopinprogress",
&stats->st_stopinprogress, "Stop in progress");
UATH_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", &stats->st_crcerr,
"CRC errors");
UATH_SYSCTL_STAT_ADD32(ctx, child, "phyerr", &stats->st_phyerr,
"PHY errors");
UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_crcerr",
&stats->st_decrypt_crcerr, "Decryption CRC errors");
UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_micerr",
&stats->st_decrypt_micerr, "Decryption Misc errors");
UATH_SYSCTL_STAT_ADD32(ctx, child, "decomperr", &stats->st_decomperr,
"Decomp errors");
UATH_SYSCTL_STAT_ADD32(ctx, child, "keyerr", &stats->st_keyerr,
"Key errors");
UATH_SYSCTL_STAT_ADD32(ctx, child, "err", &stats->st_err,
"Unknown errors");
UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_active",
&stats->st_cmd_active, "Active numbers in Command queue");
UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_inactive",
&stats->st_cmd_inactive, "Inactive numbers in Command queue");
UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_pending",
&stats->st_cmd_pending, "Pending numbers in Command queue");
UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_waiting",
&stats->st_cmd_waiting, "Waiting numbers in Command queue");
UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_active",
&stats->st_rx_active, "Active numbers in RX queue");
UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_inactive",
&stats->st_rx_inactive, "Inactive numbers in RX queue");
UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
&stats->st_tx_active, "Active numbers in TX queue");
UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
&stats->st_tx_inactive, "Inactive numbers in TX queue");
UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
&stats->st_tx_pending, "Pending numbers in TX queue");
}
#undef UATH_SYSCTL_STAT_ADD32
static void
uath_cmdeof(struct uath_softc *sc, struct uath_cmd *cmd)
{
struct uath_cmd_hdr *hdr;
int dlen;
hdr = (struct uath_cmd_hdr *)cmd->buf;
/* NB: msgid is passed thru w/o byte swapping */
#ifdef UATH_DEBUG
if (sc->sc_debug & UATH_DEBUG_CMDS) {
int len = be32toh(hdr->len);
printf("%s: %s [ix %u] len %u status %u\n",
__func__, uath_codename(be32toh(hdr->code)),
hdr->msgid, len, be32toh(hdr->magic));
if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP)
uath_dump_cmd(cmd->buf,
len > UATH_MAX_CMDSZ ? sizeof(*hdr) : len, '-');
}
#endif
hdr->code = be32toh(hdr->code);
hdr->len = be32toh(hdr->len);
hdr->magic = be32toh(hdr->magic); /* target status on return */
switch (hdr->code & 0xff) {
/* reply to a read command */
default:
dlen = hdr->len - sizeof(*hdr);
DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL,
"%s: code %d data len %u\n",
__func__, hdr->code & 0xff, dlen);
/*
* The first response from the target after the
* HOST_AVAILABLE has an invalid msgid so we must
* treat it specially.
*/
if (hdr->msgid < UATH_CMD_LIST_COUNT) {
uint32_t *rp = (uint32_t *)(hdr+1);
u_int olen;
if (!(sizeof(*hdr) <= hdr->len &&
hdr->len < UATH_MAX_CMDSZ)) {
device_printf(sc->sc_dev,
"%s: invalid WDC msg length %u; "
"msg ignored\n", __func__, hdr->len);
return;
}
/*
* Calculate return/receive payload size; the
* first word, if present, always gives the
* number of bytes--unless it's 0 in which
* case a single 32-bit word should be present.
*/
if (dlen >= sizeof(uint32_t)) {
olen = be32toh(rp[0]);
dlen -= sizeof(uint32_t);
if (olen == 0) {
/* convention is 0 =>'s one word */
olen = sizeof(uint32_t);
/* XXX KASSERT(olen == dlen ) */
}
} else
olen = 0;
if (cmd->odata != NULL) {
/* NB: cmd->olen validated in uath_cmd */
if (olen > cmd->olen) {
/* XXX complain? */
device_printf(sc->sc_dev,
"%s: cmd 0x%x olen %u cmd olen %u\n",
__func__, hdr->code, olen,
cmd->olen);
olen = cmd->olen;
}
if (olen > dlen) {
/* XXX complain, shouldn't happen */
device_printf(sc->sc_dev,
"%s: cmd 0x%x olen %u dlen %u\n",
__func__, hdr->code, olen, dlen);
olen = dlen;
}
/* XXX have submitter do this */
/* copy answer into caller's supplied buffer */
bcopy(&rp[1], cmd->odata, olen);
cmd->olen = olen;
}
}
wakeup_one(cmd); /* wake up caller */
break;
case WDCMSG_TARGET_START:
if (hdr->msgid >= UATH_CMD_LIST_COUNT) {
/* XXX */
return;
}
dlen = hdr->len - sizeof(*hdr);
if (dlen != sizeof(uint32_t)) {
/* XXX something wrong */
return;
}
/* XXX have submitter do this */
/* copy answer into caller's supplied buffer */
bcopy(hdr+1, cmd->odata, sizeof(uint32_t));
cmd->olen = sizeof(uint32_t);
wakeup_one(cmd); /* wake up caller */
break;
case WDCMSG_SEND_COMPLETE:
/* this notification is sent when UATH_TX_NOTIFY is set */
DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL,
"%s: received Tx notification\n", __func__);
break;
case WDCMSG_TARGET_GET_STATS:
DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL,
"%s: received device statistics\n", __func__);
callout_reset(&sc->stat_ch, hz, uath_stat, sc);
break;
}
}
static void
uath_intr_rx_callback(struct usb2_xfer *xfer)
{
struct uath_softc *sc = xfer->priv_sc;
struct uath_cmd *cmd;
UATH_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
cmd = STAILQ_FIRST(&sc->sc_cmd_waiting);
if (cmd == NULL)
goto setup;
STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next);
UATH_STAT_DEC(sc, st_cmd_waiting);
STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next);
UATH_STAT_INC(sc, st_cmd_inactive);
KASSERT(xfer->actlen >= sizeof(struct uath_cmd_hdr),
("short xfer error"));
usb2_copy_out(xfer->frbuffers, 0, cmd->buf, xfer->actlen);
uath_cmdeof(sc, cmd);
case USB_ST_SETUP:
setup:
xfer->frlengths[0] = xfer->max_data_length;
usb2_start_hardware(xfer);
break;
default:
if (xfer->error != USB_ERR_CANCELLED) {
xfer->flags.stall_pipe = 1;
goto setup;
}
break;
}
}
static void
uath_intr_tx_callback(struct usb2_xfer *xfer)
{
struct uath_softc *sc = xfer->priv_sc;
struct uath_cmd *cmd;
UATH_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
cmd = STAILQ_FIRST(&sc->sc_cmd_active);
if (cmd == NULL)
goto setup;
STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next);
UATH_STAT_DEC(sc, st_cmd_active);
STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_READ) ?
&sc->sc_cmd_waiting : &sc->sc_cmd_inactive, cmd, next);
if (cmd->flags & UATH_CMD_FLAG_READ)
UATH_STAT_INC(sc, st_cmd_waiting);
else
UATH_STAT_INC(sc, st_cmd_inactive);
/* FALLTHROUGH */
case USB_ST_SETUP:
setup:
cmd = STAILQ_FIRST(&sc->sc_cmd_pending);
if (cmd == NULL) {
DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n",
__func__);
return;
}
STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next);
UATH_STAT_DEC(sc, st_cmd_pending);
STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_ASYNC) ?
&sc->sc_cmd_inactive : &sc->sc_cmd_active, cmd, next);
if (cmd->flags & UATH_CMD_FLAG_ASYNC)
UATH_STAT_INC(sc, st_cmd_inactive);
else
UATH_STAT_INC(sc, st_cmd_active);
usb2_set_frame_data(xfer, cmd->buf, 0);
xfer->frlengths[0] = cmd->buflen;
usb2_start_hardware(xfer);
break;
default:
if (xfer->error != USB_ERR_CANCELLED) {
xfer->flags.stall_pipe = 1;
goto setup;
}
break;
}
}
static void
uath_update_rxstat(struct uath_softc *sc, uint32_t status)
{
switch (status) {
case UATH_STATUS_STOP_IN_PROGRESS:
UATH_STAT_INC(sc, st_stopinprogress);
break;
case UATH_STATUS_CRC_ERR:
UATH_STAT_INC(sc, st_crcerr);
break;
case UATH_STATUS_PHY_ERR:
UATH_STAT_INC(sc, st_phyerr);
break;
case UATH_STATUS_DECRYPT_CRC_ERR:
UATH_STAT_INC(sc, st_decrypt_crcerr);
break;
case UATH_STATUS_DECRYPT_MIC_ERR:
UATH_STAT_INC(sc, st_decrypt_micerr);
break;
case UATH_STATUS_DECOMP_ERR:
UATH_STAT_INC(sc, st_decomperr);
break;
case UATH_STATUS_KEY_ERR:
UATH_STAT_INC(sc, st_keyerr);
break;
case UATH_STATUS_ERR:
UATH_STAT_INC(sc, st_err);
break;
default:
break;
}
}
static struct mbuf *
uath_data_rxeof(struct usb2_xfer *xfer, struct uath_data *data,
struct uath_rx_desc **pdesc)
{
struct uath_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct uath_chunk *chunk;
struct uath_rx_desc *desc;
struct mbuf *m = data->m, *mnew, *mp;
uint16_t chunklen;
if (xfer->actlen < UATH_MIN_RXBUFSZ) {
DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL,
"%s: wrong xfer size (len=%d)\n", __func__, xfer->actlen);
ifp->if_ierrors++;
return (NULL);
}
chunk = (struct uath_chunk *)data->buf;
if (chunk->seqnum == 0 && chunk->flags == 0 && chunk->length == 0) {
device_printf(sc->sc_dev, "%s: strange response\n", __func__);
ifp->if_ierrors++;
UATH_RESET_INTRX(sc);
return (NULL);
}
if (chunk->seqnum != sc->sc_intrx_nextnum) {
DPRINTF(sc, UATH_DEBUG_XMIT, "invalid seqnum %d, expected %d\n",
chunk->seqnum, sc->sc_intrx_nextnum);
UATH_STAT_INC(sc, st_badchunkseqnum);
if (sc->sc_intrx_head != NULL)
m_freem(sc->sc_intrx_head);
UATH_RESET_INTRX(sc);
return (NULL);
}
/* check multi-chunk frames */
if ((chunk->seqnum == 0 && !(chunk->flags & UATH_CFLAGS_FINAL)) ||
(chunk->seqnum != 0 && (chunk->flags & UATH_CFLAGS_FINAL)) ||
chunk->flags & UATH_CFLAGS_RXMSG)
UATH_STAT_INC(sc, st_multichunk);
chunklen = be16toh(chunk->length);
if (chunk->flags & UATH_CFLAGS_FINAL)
chunklen -= sizeof(struct uath_rx_desc);
if (chunklen > 0 &&
(!(chunk->flags & UATH_CFLAGS_FINAL) || !(chunk->seqnum == 0))) {
/* we should use intermediate RX buffer */
if (chunk->seqnum == 0)
UATH_RESET_INTRX(sc);
if ((sc->sc_intrx_len + sizeof(struct uath_rx_desc) +
chunklen) > UATH_MAX_INTRX_SIZE) {
UATH_STAT_INC(sc, st_invalidlen);
ifp->if_iqdrops++;
if (sc->sc_intrx_head != NULL)
m_freem(sc->sc_intrx_head);
UATH_RESET_INTRX(sc);
return (NULL);
}
m->m_len = chunklen;
m->m_data += sizeof(struct uath_chunk);
if (sc->sc_intrx_head == NULL) {
sc->sc_intrx_head = m;
sc->sc_intrx_tail = m;
} else {
m->m_flags &= ~M_PKTHDR;
sc->sc_intrx_tail->m_next = m;
sc->sc_intrx_tail = m;
}
}
sc->sc_intrx_len += chunklen;
mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL,
"%s: can't get new mbuf, drop frame\n", __func__);
ifp->if_ierrors++;
if (sc->sc_intrx_head != NULL)
m_freem(sc->sc_intrx_head);
UATH_RESET_INTRX(sc);
return (NULL);
}
data->m = mnew;
data->buf = mtod(mnew, uint8_t *);
/* if the frame is not final continue the transfer */
if (!(chunk->flags & UATH_CFLAGS_FINAL)) {
sc->sc_intrx_nextnum++;
UATH_RESET_INTRX(sc);
return (NULL);
}
/*
* if the frame is not set UATH_CFLAGS_RXMSG, then rx descriptor is
* located at the end, 32-bit aligned
*/
desc = (chunk->flags & UATH_CFLAGS_RXMSG) ?
(struct uath_rx_desc *)(chunk + 1) :
(struct uath_rx_desc *)(((uint8_t *)chunk) +
sizeof(struct uath_chunk) + be16toh(chunk->length) -
sizeof(struct uath_rx_desc));
*pdesc = desc;
DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL,
"%s: frame len %u code %u status %u rate %u antenna %u "
"rssi %d channel %u phyerror %u connix %u decrypterror %u "
"keycachemiss %u\n", __func__, be32toh(desc->framelen)
, be32toh(desc->code), be32toh(desc->status), be32toh(desc->rate)
, be32toh(desc->antenna), be32toh(desc->rssi), be32toh(desc->channel)
, be32toh(desc->phyerror), be32toh(desc->connix)
, be32toh(desc->decrypterror), be32toh(desc->keycachemiss));
if (be32toh(desc->len) > MCLBYTES) {
DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL,
"%s: bad descriptor (len=%d)\n", __func__,
be32toh(desc->len));
ifp->if_iqdrops++;
UATH_STAT_INC(sc, st_toobigrxpkt);
if (sc->sc_intrx_head != NULL)
m_freem(sc->sc_intrx_head);
UATH_RESET_INTRX(sc);
return (NULL);
}
uath_update_rxstat(sc, be32toh(desc->status));
/* finalize mbuf */
if (sc->sc_intrx_head == NULL) {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len =
be32toh(desc->framelen) - UATH_RX_DUMMYSIZE;
m->m_data += sizeof(struct uath_chunk);
} else {
mp = sc->sc_intrx_head;
mp->m_pkthdr.rcvif = ifp;
mp->m_flags |= M_PKTHDR;
mp->m_pkthdr.len = sc->sc_intrx_len;
m = mp;
}
/* there are a lot more fields in the RX descriptor */
if (ieee80211_radiotap_active(ic)) {
struct uath_rx_radiotap_header *tap = &sc->sc_rxtap;
uint32_t tsf_hi = be32toh(desc->tstamp_high);
uint32_t tsf_lo = be32toh(desc->tstamp_low);
/* XXX only get low order 24bits of tsf from h/w */
tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
tap->wr_flags = 0;
if (be32toh(desc->status) == UATH_STATUS_CRC_ERR)
tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
/* XXX map other status to BADFCS? */
/* XXX ath h/w rate code, need to map */
tap->wr_rate = be32toh(desc->rate);
tap->wr_antenna = be32toh(desc->antenna);
tap->wr_antsignal = -95 + be32toh(desc->rssi);
tap->wr_antnoise = -95;
}
ifp->if_ipackets++;
UATH_RESET_INTRX(sc);
return (m);
}
static void
uath_bulk_rx_callback(struct usb2_xfer *xfer)
{
struct uath_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m = NULL;
struct uath_data *data;
struct uath_rx_desc *desc = NULL;
int8_t nf;
UATH_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data == NULL)
goto setup;
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
UATH_STAT_DEC(sc, st_rx_active);
m = uath_data_rxeof(xfer, data, &desc);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
UATH_STAT_INC(sc, st_rx_inactive);
/* FALLTHROUGH */
case USB_ST_SETUP:
setup:
data = STAILQ_FIRST(&sc->sc_rx_inactive);
if (data == NULL)
return;
STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
UATH_STAT_DEC(sc, st_rx_inactive);
STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
UATH_STAT_INC(sc, st_rx_active);
usb2_set_frame_data(xfer, data->buf, 0);
xfer->frlengths[0] = xfer->max_data_length;
usb2_start_hardware(xfer);
/*
* To avoid LOR we should unlock our private mutex here to call
* ieee80211_input() because here is at the end of a USB
* callback and safe to unlock.
*/
UATH_UNLOCK(sc);
if (m != NULL && desc != NULL) {
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
nf = -95; /* XXX */
if (ni != NULL) {
(void) ieee80211_input(ni, m,
(int)be32toh(desc->rssi), nf);
/* node is no longer needed */
ieee80211_free_node(ni);
} else
(void) ieee80211_input_all(ic, m,
(int)be32toh(desc->rssi), nf);
m = NULL;
desc = NULL;
}
UATH_LOCK(sc);
break;
default:
/* needs it to the inactive queue due to a error. */
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
UATH_STAT_DEC(sc, st_rx_active);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
UATH_STAT_INC(sc, st_rx_inactive);
}
if (xfer->error != USB_ERR_CANCELLED) {
xfer->flags.stall_pipe = 1;
ifp->if_ierrors++;
goto setup;
}
break;
}
}
static void
uath_data_txeof(struct usb2_xfer *xfer, struct uath_data *data)
{
struct uath_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
UATH_ASSERT_LOCKED(sc);
/*
* Do any tx complete callback. Note this must be done before releasing
* the node reference.
*/
if (data->m) {
m = data->m;
if (m->m_flags & M_TXCB) {
/* XXX status? */
ieee80211_process_callback(data->ni, m, 0);
}
m_freem(m);
data->m = NULL;
}
if (data->ni) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
sc->sc_tx_timer = 0;
ifp->if_opackets++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
uath_bulk_tx_callback(struct usb2_xfer *xfer)
{
struct uath_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct uath_data *data;
UATH_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_tx_active);
if (data == NULL)
goto setup;
STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
UATH_STAT_DEC(sc, st_tx_active);
uath_data_txeof(xfer, data);
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
UATH_STAT_INC(sc, st_tx_inactive);
/* FALLTHROUGH */
case USB_ST_SETUP:
setup:
data = STAILQ_FIRST(&sc->sc_tx_pending);
if (data == NULL) {
DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n",
__func__);
return;
}
STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
UATH_STAT_DEC(sc, st_tx_pending);
STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
UATH_STAT_INC(sc, st_tx_active);
usb2_set_frame_data(xfer, data->buf, 0);
xfer->frlengths[0] = data->buflen;
usb2_start_hardware(xfer);
UATH_UNLOCK(sc);
uath_start(ifp);
UATH_LOCK(sc);
break;
default:
data = STAILQ_FIRST(&sc->sc_tx_active);
if (data == NULL)
goto setup;
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
ifp->if_oerrors++;
}
if (xfer->error != USB_ERR_CANCELLED) {
xfer->flags.stall_pipe = 1;
goto setup;
}
break;
}
}
static device_method_t uath_methods[] = {
DEVMETHOD(device_probe, uath_match),
DEVMETHOD(device_attach, uath_attach),
DEVMETHOD(device_detach, uath_detach),
{ 0, 0 }
};
static driver_t uath_driver = {
"uath",
uath_methods,
sizeof(struct uath_softc)
};
static devclass_t uath_devclass;
DRIVER_MODULE(uath, uhub, uath_driver, uath_devclass, NULL, 0);
MODULE_DEPEND(uath, wlan, 1, 1, 1);
MODULE_DEPEND(uath, usb, 1, 1, 1);