151ba7933a
This reduces noise when kernel is compiled by newer GCC versions, such as one used by external toolchain ports. Reviewed by: kib, andrew(sys/arm and sys/arm64), emaste(partial), erj(partial) Reviewed by: jhb (sys/dev/pci/* sys/kern/vfs_aio.c and sys/kern/kern_synch.c) Differential Revision: https://reviews.freebsd.org/D10385
2277 lines
59 KiB
C
2277 lines
59 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
|
|
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/types.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/devicestat.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_queue.h>
|
|
#include <cam/cam_xpt.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_debug.h>
|
|
#include <cam/cam_compat.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_pass.h>
|
|
|
|
typedef enum {
|
|
PASS_FLAG_OPEN = 0x01,
|
|
PASS_FLAG_LOCKED = 0x02,
|
|
PASS_FLAG_INVALID = 0x04,
|
|
PASS_FLAG_INITIAL_PHYSPATH = 0x08,
|
|
PASS_FLAG_ZONE_INPROG = 0x10,
|
|
PASS_FLAG_ZONE_VALID = 0x20,
|
|
PASS_FLAG_UNMAPPED_CAPABLE = 0x40,
|
|
PASS_FLAG_ABANDONED_REF_SET = 0x80
|
|
} pass_flags;
|
|
|
|
typedef enum {
|
|
PASS_STATE_NORMAL
|
|
} pass_state;
|
|
|
|
typedef enum {
|
|
PASS_CCB_BUFFER_IO,
|
|
PASS_CCB_QUEUED_IO
|
|
} pass_ccb_types;
|
|
|
|
#define ccb_type ppriv_field0
|
|
#define ccb_ioreq ppriv_ptr1
|
|
|
|
/*
|
|
* The maximum number of memory segments we preallocate.
|
|
*/
|
|
#define PASS_MAX_SEGS 16
|
|
|
|
typedef enum {
|
|
PASS_IO_NONE = 0x00,
|
|
PASS_IO_USER_SEG_MALLOC = 0x01,
|
|
PASS_IO_KERN_SEG_MALLOC = 0x02,
|
|
PASS_IO_ABANDONED = 0x04
|
|
} pass_io_flags;
|
|
|
|
struct pass_io_req {
|
|
union ccb ccb;
|
|
union ccb *alloced_ccb;
|
|
union ccb *user_ccb_ptr;
|
|
camq_entry user_periph_links;
|
|
ccb_ppriv_area user_periph_priv;
|
|
struct cam_periph_map_info mapinfo;
|
|
pass_io_flags flags;
|
|
ccb_flags data_flags;
|
|
int num_user_segs;
|
|
bus_dma_segment_t user_segs[PASS_MAX_SEGS];
|
|
int num_kern_segs;
|
|
bus_dma_segment_t kern_segs[PASS_MAX_SEGS];
|
|
bus_dma_segment_t *user_segptr;
|
|
bus_dma_segment_t *kern_segptr;
|
|
int num_bufs;
|
|
uint32_t dirs[CAM_PERIPH_MAXMAPS];
|
|
uint32_t lengths[CAM_PERIPH_MAXMAPS];
|
|
uint8_t *user_bufs[CAM_PERIPH_MAXMAPS];
|
|
uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS];
|
|
struct bintime start_time;
|
|
TAILQ_ENTRY(pass_io_req) links;
|
|
};
|
|
|
|
struct pass_softc {
|
|
pass_state state;
|
|
pass_flags flags;
|
|
u_int8_t pd_type;
|
|
union ccb saved_ccb;
|
|
int open_count;
|
|
u_int maxio;
|
|
struct devstat *device_stats;
|
|
struct cdev *dev;
|
|
struct cdev *alias_dev;
|
|
struct task add_physpath_task;
|
|
struct task shutdown_kqueue_task;
|
|
struct selinfo read_select;
|
|
TAILQ_HEAD(, pass_io_req) incoming_queue;
|
|
TAILQ_HEAD(, pass_io_req) active_queue;
|
|
TAILQ_HEAD(, pass_io_req) abandoned_queue;
|
|
TAILQ_HEAD(, pass_io_req) done_queue;
|
|
struct cam_periph *periph;
|
|
char zone_name[12];
|
|
char io_zone_name[12];
|
|
uma_zone_t pass_zone;
|
|
uma_zone_t pass_io_zone;
|
|
size_t io_zone_size;
|
|
};
|
|
|
|
static d_open_t passopen;
|
|
static d_close_t passclose;
|
|
static d_ioctl_t passioctl;
|
|
static d_ioctl_t passdoioctl;
|
|
static d_poll_t passpoll;
|
|
static d_kqfilter_t passkqfilter;
|
|
static void passreadfiltdetach(struct knote *kn);
|
|
static int passreadfilt(struct knote *kn, long hint);
|
|
|
|
static periph_init_t passinit;
|
|
static periph_ctor_t passregister;
|
|
static periph_oninv_t passoninvalidate;
|
|
static periph_dtor_t passcleanup;
|
|
static periph_start_t passstart;
|
|
static void pass_shutdown_kqueue(void *context, int pending);
|
|
static void pass_add_physpath(void *context, int pending);
|
|
static void passasync(void *callback_arg, u_int32_t code,
|
|
struct cam_path *path, void *arg);
|
|
static void passdone(struct cam_periph *periph,
|
|
union ccb *done_ccb);
|
|
static int passcreatezone(struct cam_periph *periph);
|
|
static void passiocleanup(struct pass_softc *softc,
|
|
struct pass_io_req *io_req);
|
|
static int passcopysglist(struct cam_periph *periph,
|
|
struct pass_io_req *io_req,
|
|
ccb_flags direction);
|
|
static int passmemsetup(struct cam_periph *periph,
|
|
struct pass_io_req *io_req);
|
|
static int passmemdone(struct cam_periph *periph,
|
|
struct pass_io_req *io_req);
|
|
static int passerror(union ccb *ccb, u_int32_t cam_flags,
|
|
u_int32_t sense_flags);
|
|
static int passsendccb(struct cam_periph *periph, union ccb *ccb,
|
|
union ccb *inccb);
|
|
|
|
static struct periph_driver passdriver =
|
|
{
|
|
passinit, "pass",
|
|
TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
|
|
};
|
|
|
|
PERIPHDRIVER_DECLARE(pass, passdriver);
|
|
|
|
static struct cdevsw pass_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_flags = D_TRACKCLOSE,
|
|
.d_open = passopen,
|
|
.d_close = passclose,
|
|
.d_ioctl = passioctl,
|
|
.d_poll = passpoll,
|
|
.d_kqfilter = passkqfilter,
|
|
.d_name = "pass",
|
|
};
|
|
|
|
static struct filterops passread_filtops = {
|
|
.f_isfd = 1,
|
|
.f_detach = passreadfiltdetach,
|
|
.f_event = passreadfilt
|
|
};
|
|
|
|
static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
|
|
|
|
static void
|
|
passinit(void)
|
|
{
|
|
cam_status status;
|
|
|
|
/*
|
|
* Install a global async callback. This callback will
|
|
* receive async callbacks like "new device found".
|
|
*/
|
|
status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
printf("pass: Failed to attach master async callback "
|
|
"due to status 0x%x!\n", status);
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
passrejectios(struct cam_periph *periph)
|
|
{
|
|
struct pass_io_req *io_req, *io_req2;
|
|
struct pass_softc *softc;
|
|
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
/*
|
|
* The user can no longer get status for I/O on the done queue, so
|
|
* clean up all outstanding I/O on the done queue.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
|
|
TAILQ_REMOVE(&softc->done_queue, io_req, links);
|
|
passiocleanup(softc, io_req);
|
|
uma_zfree(softc->pass_zone, io_req);
|
|
}
|
|
|
|
/*
|
|
* The underlying device is gone, so we can't issue these I/Os.
|
|
* The devfs node has been shut down, so we can't return status to
|
|
* the user. Free any I/O left on the incoming queue.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
|
|
TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
|
|
passiocleanup(softc, io_req);
|
|
uma_zfree(softc->pass_zone, io_req);
|
|
}
|
|
|
|
/*
|
|
* Normally we would put I/Os on the abandoned queue and acquire a
|
|
* reference when we saw the final close. But, the device went
|
|
* away and devfs may have moved everything off to deadfs by the
|
|
* time the I/O done callback is called; as a result, we won't see
|
|
* any more closes. So, if we have any active I/Os, we need to put
|
|
* them on the abandoned queue. When the abandoned queue is empty,
|
|
* we'll release the remaining reference (see below) to the peripheral.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
|
|
TAILQ_REMOVE(&softc->active_queue, io_req, links);
|
|
io_req->flags |= PASS_IO_ABANDONED;
|
|
TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
|
|
}
|
|
|
|
/*
|
|
* If we put any I/O on the abandoned queue, acquire a reference.
|
|
*/
|
|
if ((!TAILQ_EMPTY(&softc->abandoned_queue))
|
|
&& ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
|
|
cam_periph_doacquire(periph);
|
|
softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
|
|
}
|
|
}
|
|
|
|
static void
|
|
passdevgonecb(void *arg)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct mtx *mtx;
|
|
struct pass_softc *softc;
|
|
int i;
|
|
|
|
periph = (struct cam_periph *)arg;
|
|
mtx = cam_periph_mtx(periph);
|
|
mtx_lock(mtx);
|
|
|
|
softc = (struct pass_softc *)periph->softc;
|
|
KASSERT(softc->open_count >= 0, ("Negative open count %d",
|
|
softc->open_count));
|
|
|
|
/*
|
|
* When we get this callback, we will get no more close calls from
|
|
* devfs. So if we have any dangling opens, we need to release the
|
|
* reference held for that particular context.
|
|
*/
|
|
for (i = 0; i < softc->open_count; i++)
|
|
cam_periph_release_locked(periph);
|
|
|
|
softc->open_count = 0;
|
|
|
|
/*
|
|
* Release the reference held for the device node, it is gone now.
|
|
* Accordingly, inform all queued I/Os of their fate.
|
|
*/
|
|
cam_periph_release_locked(periph);
|
|
passrejectios(periph);
|
|
|
|
/*
|
|
* We reference the SIM lock directly here, instead of using
|
|
* cam_periph_unlock(). The reason is that the final call to
|
|
* cam_periph_release_locked() above could result in the periph
|
|
* getting freed. If that is the case, dereferencing the periph
|
|
* with a cam_periph_unlock() call would cause a page fault.
|
|
*/
|
|
mtx_unlock(mtx);
|
|
|
|
/*
|
|
* We have to remove our kqueue context from a thread because it
|
|
* may sleep. It would be nice if we could get a callback from
|
|
* kqueue when it is done cleaning up resources.
|
|
*/
|
|
taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
|
|
}
|
|
|
|
static void
|
|
passoninvalidate(struct cam_periph *periph)
|
|
{
|
|
struct pass_softc *softc;
|
|
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
/*
|
|
* De-register any async callbacks.
|
|
*/
|
|
xpt_register_async(0, passasync, periph, periph->path);
|
|
|
|
softc->flags |= PASS_FLAG_INVALID;
|
|
|
|
/*
|
|
* Tell devfs this device has gone away, and ask for a callback
|
|
* when it has cleaned up its state.
|
|
*/
|
|
destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
|
|
}
|
|
|
|
static void
|
|
passcleanup(struct cam_periph *periph)
|
|
{
|
|
struct pass_softc *softc;
|
|
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
KASSERT(TAILQ_EMPTY(&softc->active_queue),
|
|
("%s called when there are commands on the active queue!\n",
|
|
__func__));
|
|
KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
|
|
("%s called when there are commands on the abandoned queue!\n",
|
|
__func__));
|
|
KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
|
|
("%s called when there are commands on the incoming queue!\n",
|
|
__func__));
|
|
KASSERT(TAILQ_EMPTY(&softc->done_queue),
|
|
("%s called when there are commands on the done queue!\n",
|
|
__func__));
|
|
|
|
devstat_remove_entry(softc->device_stats);
|
|
|
|
cam_periph_unlock(periph);
|
|
|
|
/*
|
|
* We call taskqueue_drain() for the physpath task to make sure it
|
|
* is complete. We drop the lock because this can potentially
|
|
* sleep. XXX KDM that is bad. Need a way to get a callback when
|
|
* a taskqueue is drained.
|
|
*
|
|
* Note that we don't drain the kqueue shutdown task queue. This
|
|
* is because we hold a reference on the periph for kqueue, and
|
|
* release that reference from the kqueue shutdown task queue. So
|
|
* we cannot come into this routine unless we've released that
|
|
* reference. Also, because that could be the last reference, we
|
|
* could be called from the cam_periph_release() call in
|
|
* pass_shutdown_kqueue(). In that case, the taskqueue_drain()
|
|
* would deadlock. It would be preferable if we had a way to
|
|
* get a callback when a taskqueue is done.
|
|
*/
|
|
taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
|
|
|
|
cam_periph_lock(periph);
|
|
|
|
free(softc, M_DEVBUF);
|
|
}
|
|
|
|
static void
|
|
pass_shutdown_kqueue(void *context, int pending)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
|
|
periph = context;
|
|
softc = periph->softc;
|
|
|
|
knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
|
|
knlist_destroy(&softc->read_select.si_note);
|
|
|
|
/*
|
|
* Release the reference we held for kqueue.
|
|
*/
|
|
cam_periph_release(periph);
|
|
}
|
|
|
|
static void
|
|
pass_add_physpath(void *context, int pending)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
struct mtx *mtx;
|
|
char *physpath;
|
|
|
|
/*
|
|
* If we have one, create a devfs alias for our
|
|
* physical path.
|
|
*/
|
|
periph = context;
|
|
softc = periph->softc;
|
|
physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
|
|
mtx = cam_periph_mtx(periph);
|
|
mtx_lock(mtx);
|
|
|
|
if (periph->flags & CAM_PERIPH_INVALID)
|
|
goto out;
|
|
|
|
if (xpt_getattr(physpath, MAXPATHLEN,
|
|
"GEOM::physpath", periph->path) == 0
|
|
&& strlen(physpath) != 0) {
|
|
|
|
mtx_unlock(mtx);
|
|
make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
|
|
softc->dev, softc->alias_dev, physpath);
|
|
mtx_lock(mtx);
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* Now that we've made our alias, we no longer have to have a
|
|
* reference to the device.
|
|
*/
|
|
if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
|
|
softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
|
|
|
|
/*
|
|
* We always acquire a reference to the periph before queueing this
|
|
* task queue function, so it won't go away before we run.
|
|
*/
|
|
while (pending-- > 0)
|
|
cam_periph_release_locked(periph);
|
|
mtx_unlock(mtx);
|
|
|
|
free(physpath, M_DEVBUF);
|
|
}
|
|
|
|
static void
|
|
passasync(void *callback_arg, u_int32_t code,
|
|
struct cam_path *path, void *arg)
|
|
{
|
|
struct cam_periph *periph;
|
|
|
|
periph = (struct cam_periph *)callback_arg;
|
|
|
|
switch (code) {
|
|
case AC_FOUND_DEVICE:
|
|
{
|
|
struct ccb_getdev *cgd;
|
|
cam_status status;
|
|
|
|
cgd = (struct ccb_getdev *)arg;
|
|
if (cgd == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Allocate a peripheral instance for
|
|
* this device and start the probe
|
|
* process.
|
|
*/
|
|
status = cam_periph_alloc(passregister, passoninvalidate,
|
|
passcleanup, passstart, "pass",
|
|
CAM_PERIPH_BIO, path,
|
|
passasync, AC_FOUND_DEVICE, cgd);
|
|
|
|
if (status != CAM_REQ_CMP
|
|
&& status != CAM_REQ_INPROG) {
|
|
const struct cam_status_entry *entry;
|
|
|
|
entry = cam_fetch_status_entry(status);
|
|
|
|
printf("passasync: Unable to attach new device "
|
|
"due to status %#x: %s\n", status, entry ?
|
|
entry->status_text : "Unknown");
|
|
}
|
|
|
|
break;
|
|
}
|
|
case AC_ADVINFO_CHANGED:
|
|
{
|
|
uintptr_t buftype;
|
|
|
|
buftype = (uintptr_t)arg;
|
|
if (buftype == CDAI_TYPE_PHYS_PATH) {
|
|
struct pass_softc *softc;
|
|
cam_status status;
|
|
|
|
softc = (struct pass_softc *)periph->softc;
|
|
/*
|
|
* Acquire a reference to the periph before we
|
|
* start the taskqueue, so that we don't run into
|
|
* a situation where the periph goes away before
|
|
* the task queue has a chance to run.
|
|
*/
|
|
status = cam_periph_acquire(periph);
|
|
if (status != CAM_REQ_CMP)
|
|
break;
|
|
|
|
taskqueue_enqueue(taskqueue_thread,
|
|
&softc->add_physpath_task);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
cam_periph_async(periph, code, path, arg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static cam_status
|
|
passregister(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct pass_softc *softc;
|
|
struct ccb_getdev *cgd;
|
|
struct ccb_pathinq cpi;
|
|
struct make_dev_args args;
|
|
int error, no_tags;
|
|
|
|
cgd = (struct ccb_getdev *)arg;
|
|
if (cgd == NULL) {
|
|
printf("%s: no getdev CCB, can't register device\n", __func__);
|
|
return(CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
softc = (struct pass_softc *)malloc(sizeof(*softc),
|
|
M_DEVBUF, M_NOWAIT);
|
|
|
|
if (softc == NULL) {
|
|
printf("%s: Unable to probe new device. "
|
|
"Unable to allocate softc\n", __func__);
|
|
return(CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
bzero(softc, sizeof(*softc));
|
|
softc->state = PASS_STATE_NORMAL;
|
|
if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
|
|
softc->pd_type = SID_TYPE(&cgd->inq_data);
|
|
else if (cgd->protocol == PROTO_SATAPM)
|
|
softc->pd_type = T_ENCLOSURE;
|
|
else
|
|
softc->pd_type = T_DIRECT;
|
|
|
|
periph->softc = softc;
|
|
softc->periph = periph;
|
|
TAILQ_INIT(&softc->incoming_queue);
|
|
TAILQ_INIT(&softc->active_queue);
|
|
TAILQ_INIT(&softc->abandoned_queue);
|
|
TAILQ_INIT(&softc->done_queue);
|
|
snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
|
|
periph->periph_name, periph->unit_number);
|
|
snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
|
|
periph->periph_name, periph->unit_number);
|
|
softc->io_zone_size = MAXPHYS;
|
|
knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
|
|
|
|
xpt_path_inq(&cpi, periph->path);
|
|
|
|
if (cpi.maxio == 0)
|
|
softc->maxio = DFLTPHYS; /* traditional default */
|
|
else if (cpi.maxio > MAXPHYS)
|
|
softc->maxio = MAXPHYS; /* for safety */
|
|
else
|
|
softc->maxio = cpi.maxio; /* real value */
|
|
|
|
if (cpi.hba_misc & PIM_UNMAPPED)
|
|
softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
|
|
|
|
/*
|
|
* We pass in 0 for a blocksize, since we don't
|
|
* know what the blocksize of this device is, if
|
|
* it even has a blocksize.
|
|
*/
|
|
cam_periph_unlock(periph);
|
|
no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
|
|
softc->device_stats = devstat_new_entry("pass",
|
|
periph->unit_number, 0,
|
|
DEVSTAT_NO_BLOCKSIZE
|
|
| (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
|
|
softc->pd_type |
|
|
XPORT_DEVSTAT_TYPE(cpi.transport) |
|
|
DEVSTAT_TYPE_PASS,
|
|
DEVSTAT_PRIORITY_PASS);
|
|
|
|
/*
|
|
* Initialize the taskqueue handler for shutting down kqueue.
|
|
*/
|
|
TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
|
|
pass_shutdown_kqueue, periph);
|
|
|
|
/*
|
|
* Acquire a reference to the periph that we can release once we've
|
|
* cleaned up the kqueue.
|
|
*/
|
|
if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
|
|
xpt_print(periph->path, "%s: lost periph during "
|
|
"registration!\n", __func__);
|
|
cam_periph_lock(periph);
|
|
return (CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
/*
|
|
* Acquire a reference to the periph before we create the devfs
|
|
* instance for it. We'll release this reference once the devfs
|
|
* instance has been freed.
|
|
*/
|
|
if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
|
|
xpt_print(periph->path, "%s: lost periph during "
|
|
"registration!\n", __func__);
|
|
cam_periph_lock(periph);
|
|
return (CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
/* Register the device */
|
|
make_dev_args_init(&args);
|
|
args.mda_devsw = &pass_cdevsw;
|
|
args.mda_unit = periph->unit_number;
|
|
args.mda_uid = UID_ROOT;
|
|
args.mda_gid = GID_OPERATOR;
|
|
args.mda_mode = 0600;
|
|
args.mda_si_drv1 = periph;
|
|
error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
|
|
periph->unit_number);
|
|
if (error != 0) {
|
|
cam_periph_lock(periph);
|
|
cam_periph_release_locked(periph);
|
|
return (CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
/*
|
|
* Hold a reference to the periph before we create the physical
|
|
* path alias so it can't go away.
|
|
*/
|
|
if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
|
|
xpt_print(periph->path, "%s: lost periph during "
|
|
"registration!\n", __func__);
|
|
cam_periph_lock(periph);
|
|
return (CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
cam_periph_lock(periph);
|
|
|
|
TASK_INIT(&softc->add_physpath_task, /*priority*/0,
|
|
pass_add_physpath, periph);
|
|
|
|
/*
|
|
* See if physical path information is already available.
|
|
*/
|
|
taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
|
|
|
|
/*
|
|
* Add an async callback so that we get notified if
|
|
* this device goes away or its physical path
|
|
* (stored in the advanced info data of the EDT) has
|
|
* changed.
|
|
*/
|
|
xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
|
|
passasync, periph, periph->path);
|
|
|
|
if (bootverbose)
|
|
xpt_announce_periph(periph, NULL);
|
|
|
|
return(CAM_REQ_CMP);
|
|
}
|
|
|
|
static int
|
|
passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
int error;
|
|
|
|
periph = (struct cam_periph *)dev->si_drv1;
|
|
if (cam_periph_acquire(periph) != CAM_REQ_CMP)
|
|
return (ENXIO);
|
|
|
|
cam_periph_lock(periph);
|
|
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
if (softc->flags & PASS_FLAG_INVALID) {
|
|
cam_periph_release_locked(periph);
|
|
cam_periph_unlock(periph);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Don't allow access when we're running at a high securelevel.
|
|
*/
|
|
error = securelevel_gt(td->td_ucred, 1);
|
|
if (error) {
|
|
cam_periph_release_locked(periph);
|
|
cam_periph_unlock(periph);
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Only allow read-write access.
|
|
*/
|
|
if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
|
|
cam_periph_release_locked(periph);
|
|
cam_periph_unlock(periph);
|
|
return(EPERM);
|
|
}
|
|
|
|
/*
|
|
* We don't allow nonblocking access.
|
|
*/
|
|
if ((flags & O_NONBLOCK) != 0) {
|
|
xpt_print(periph->path, "can't do nonblocking access\n");
|
|
cam_periph_release_locked(periph);
|
|
cam_periph_unlock(periph);
|
|
return(EINVAL);
|
|
}
|
|
|
|
softc->open_count++;
|
|
|
|
cam_periph_unlock(periph);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
struct mtx *mtx;
|
|
|
|
periph = (struct cam_periph *)dev->si_drv1;
|
|
mtx = cam_periph_mtx(periph);
|
|
mtx_lock(mtx);
|
|
|
|
softc = periph->softc;
|
|
softc->open_count--;
|
|
|
|
if (softc->open_count == 0) {
|
|
struct pass_io_req *io_req, *io_req2;
|
|
|
|
TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
|
|
TAILQ_REMOVE(&softc->done_queue, io_req, links);
|
|
passiocleanup(softc, io_req);
|
|
uma_zfree(softc->pass_zone, io_req);
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
|
|
io_req2) {
|
|
TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
|
|
passiocleanup(softc, io_req);
|
|
uma_zfree(softc->pass_zone, io_req);
|
|
}
|
|
|
|
/*
|
|
* If there are any active I/Os, we need to forcibly acquire a
|
|
* reference to the peripheral so that we don't go away
|
|
* before they complete. We'll release the reference when
|
|
* the abandoned queue is empty.
|
|
*/
|
|
io_req = TAILQ_FIRST(&softc->active_queue);
|
|
if ((io_req != NULL)
|
|
&& (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
|
|
cam_periph_doacquire(periph);
|
|
softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
|
|
}
|
|
|
|
/*
|
|
* Since the I/O in the active queue is not under our
|
|
* control, just set a flag so that we can clean it up when
|
|
* it completes and put it on the abandoned queue. This
|
|
* will prevent our sending spurious completions in the
|
|
* event that the device is opened again before these I/Os
|
|
* complete.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
|
|
io_req2) {
|
|
TAILQ_REMOVE(&softc->active_queue, io_req, links);
|
|
io_req->flags |= PASS_IO_ABANDONED;
|
|
TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
|
|
links);
|
|
}
|
|
}
|
|
|
|
cam_periph_release_locked(periph);
|
|
|
|
/*
|
|
* We reference the lock directly here, instead of using
|
|
* cam_periph_unlock(). The reason is that the call to
|
|
* cam_periph_release_locked() above could result in the periph
|
|
* getting freed. If that is the case, dereferencing the periph
|
|
* with a cam_periph_unlock() call would cause a page fault.
|
|
*
|
|
* cam_periph_release() avoids this problem using the same method,
|
|
* but we're manually acquiring and dropping the lock here to
|
|
* protect the open count and avoid another lock acquisition and
|
|
* release.
|
|
*/
|
|
mtx_unlock(mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static void
|
|
passstart(struct cam_periph *periph, union ccb *start_ccb)
|
|
{
|
|
struct pass_softc *softc;
|
|
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
switch (softc->state) {
|
|
case PASS_STATE_NORMAL: {
|
|
struct pass_io_req *io_req;
|
|
|
|
/*
|
|
* Check for any queued I/O requests that require an
|
|
* allocated slot.
|
|
*/
|
|
io_req = TAILQ_FIRST(&softc->incoming_queue);
|
|
if (io_req == NULL) {
|
|
xpt_release_ccb(start_ccb);
|
|
break;
|
|
}
|
|
TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
|
|
TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
|
|
/*
|
|
* Merge the user's CCB into the allocated CCB.
|
|
*/
|
|
xpt_merge_ccb(start_ccb, &io_req->ccb);
|
|
start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
|
|
start_ccb->ccb_h.ccb_ioreq = io_req;
|
|
start_ccb->ccb_h.cbfcnp = passdone;
|
|
io_req->alloced_ccb = start_ccb;
|
|
binuptime(&io_req->start_time);
|
|
devstat_start_transaction(softc->device_stats,
|
|
&io_req->start_time);
|
|
|
|
xpt_action(start_ccb);
|
|
|
|
/*
|
|
* If we have any more I/O waiting, schedule ourselves again.
|
|
*/
|
|
if (!TAILQ_EMPTY(&softc->incoming_queue))
|
|
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
passdone(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
struct pass_softc *softc;
|
|
struct ccb_scsiio *csio;
|
|
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
|
|
csio = &done_ccb->csio;
|
|
switch (csio->ccb_h.ccb_type) {
|
|
case PASS_CCB_QUEUED_IO: {
|
|
struct pass_io_req *io_req;
|
|
|
|
io_req = done_ccb->ccb_h.ccb_ioreq;
|
|
#if 0
|
|
xpt_print(periph->path, "%s: called for user CCB %p\n",
|
|
__func__, io_req->user_ccb_ptr);
|
|
#endif
|
|
if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
|
|
&& (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
|
|
&& ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
|
|
int error;
|
|
|
|
error = passerror(done_ccb, CAM_RETRY_SELTO,
|
|
SF_RETRY_UA | SF_NO_PRINT);
|
|
|
|
if (error == ERESTART) {
|
|
/*
|
|
* A retry was scheduled, so
|
|
* just return.
|
|
*/
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy the allocated CCB contents back to the malloced CCB
|
|
* so we can give status back to the user when he requests it.
|
|
*/
|
|
bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
|
|
|
|
/*
|
|
* Log data/transaction completion with devstat(9).
|
|
*/
|
|
switch (done_ccb->ccb_h.func_code) {
|
|
case XPT_SCSI_IO:
|
|
devstat_end_transaction(softc->device_stats,
|
|
done_ccb->csio.dxfer_len - done_ccb->csio.resid,
|
|
done_ccb->csio.tag_action & 0x3,
|
|
((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
|
|
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
|
|
(done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
|
|
DEVSTAT_WRITE : DEVSTAT_READ, NULL,
|
|
&io_req->start_time);
|
|
break;
|
|
case XPT_ATA_IO:
|
|
devstat_end_transaction(softc->device_stats,
|
|
done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
|
|
0, /* Not used in ATA */
|
|
((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
|
|
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
|
|
(done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
|
|
DEVSTAT_WRITE : DEVSTAT_READ, NULL,
|
|
&io_req->start_time);
|
|
break;
|
|
case XPT_SMP_IO:
|
|
/*
|
|
* XXX KDM this isn't quite right, but there isn't
|
|
* currently an easy way to represent a bidirectional
|
|
* transfer in devstat. The only way to do it
|
|
* and have the byte counts come out right would
|
|
* mean that we would have to record two
|
|
* transactions, one for the request and one for the
|
|
* response. For now, so that we report something,
|
|
* just treat the entire thing as a read.
|
|
*/
|
|
devstat_end_transaction(softc->device_stats,
|
|
done_ccb->smpio.smp_request_len +
|
|
done_ccb->smpio.smp_response_len,
|
|
DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
|
|
&io_req->start_time);
|
|
break;
|
|
default:
|
|
devstat_end_transaction(softc->device_stats, 0,
|
|
DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
|
|
&io_req->start_time);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* In the normal case, take the completed I/O off of the
|
|
* active queue and put it on the done queue. Notitfy the
|
|
* user that we have a completed I/O.
|
|
*/
|
|
if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
|
|
TAILQ_REMOVE(&softc->active_queue, io_req, links);
|
|
TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
|
|
selwakeuppri(&softc->read_select, PRIBIO);
|
|
KNOTE_LOCKED(&softc->read_select.si_note, 0);
|
|
} else {
|
|
/*
|
|
* In the case of an abandoned I/O (final close
|
|
* without fetching the I/O), take it off of the
|
|
* abandoned queue and free it.
|
|
*/
|
|
TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
|
|
passiocleanup(softc, io_req);
|
|
uma_zfree(softc->pass_zone, io_req);
|
|
|
|
/*
|
|
* Release the done_ccb here, since we may wind up
|
|
* freeing the peripheral when we decrement the
|
|
* reference count below.
|
|
*/
|
|
xpt_release_ccb(done_ccb);
|
|
|
|
/*
|
|
* If the abandoned queue is empty, we can release
|
|
* our reference to the periph since we won't have
|
|
* any more completions coming.
|
|
*/
|
|
if ((TAILQ_EMPTY(&softc->abandoned_queue))
|
|
&& (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
|
|
softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
|
|
cam_periph_release_locked(periph);
|
|
}
|
|
|
|
/*
|
|
* We have already released the CCB, so we can
|
|
* return.
|
|
*/
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
xpt_release_ccb(done_ccb);
|
|
}
|
|
|
|
static int
|
|
passcreatezone(struct cam_periph *periph)
|
|
{
|
|
struct pass_softc *softc;
|
|
int error;
|
|
|
|
error = 0;
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
|
|
("%s called when the pass(4) zone is valid!\n", __func__));
|
|
KASSERT((softc->pass_zone == NULL),
|
|
("%s called when the pass(4) zone is allocated!\n", __func__));
|
|
|
|
if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
|
|
|
|
/*
|
|
* We're the first context through, so we need to create
|
|
* the pass(4) UMA zone for I/O requests.
|
|
*/
|
|
softc->flags |= PASS_FLAG_ZONE_INPROG;
|
|
|
|
/*
|
|
* uma_zcreate() does a blocking (M_WAITOK) allocation,
|
|
* so we cannot hold a mutex while we call it.
|
|
*/
|
|
cam_periph_unlock(periph);
|
|
|
|
softc->pass_zone = uma_zcreate(softc->zone_name,
|
|
sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
|
|
/*align*/ 0, /*flags*/ 0);
|
|
|
|
softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
|
|
softc->io_zone_size, NULL, NULL, NULL, NULL,
|
|
/*align*/ 0, /*flags*/ 0);
|
|
|
|
cam_periph_lock(periph);
|
|
|
|
if ((softc->pass_zone == NULL)
|
|
|| (softc->pass_io_zone == NULL)) {
|
|
if (softc->pass_zone == NULL)
|
|
xpt_print(periph->path, "unable to allocate "
|
|
"IO Req UMA zone\n");
|
|
else
|
|
xpt_print(periph->path, "unable to allocate "
|
|
"IO UMA zone\n");
|
|
softc->flags &= ~PASS_FLAG_ZONE_INPROG;
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* Set the flags appropriately and notify any other waiters.
|
|
*/
|
|
softc->flags &= PASS_FLAG_ZONE_INPROG;
|
|
softc->flags |= PASS_FLAG_ZONE_VALID;
|
|
wakeup(&softc->pass_zone);
|
|
} else {
|
|
/*
|
|
* In this case, the UMA zone has not yet been created, but
|
|
* another context is in the process of creating it. We
|
|
* need to sleep until the creation is either done or has
|
|
* failed.
|
|
*/
|
|
while ((softc->flags & PASS_FLAG_ZONE_INPROG)
|
|
&& ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
|
|
error = msleep(&softc->pass_zone,
|
|
cam_periph_mtx(periph), PRIBIO,
|
|
"paszon", 0);
|
|
if (error != 0)
|
|
goto bailout;
|
|
}
|
|
/*
|
|
* If the zone creation failed, no luck for the user.
|
|
*/
|
|
if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
|
|
error = ENOMEM;
|
|
goto bailout;
|
|
}
|
|
}
|
|
bailout:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
|
|
{
|
|
union ccb *ccb;
|
|
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
|
|
int i, numbufs;
|
|
|
|
ccb = &io_req->ccb;
|
|
|
|
switch (ccb->ccb_h.func_code) {
|
|
case XPT_DEV_MATCH:
|
|
numbufs = min(io_req->num_bufs, 2);
|
|
|
|
if (numbufs == 1) {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
|
|
} else {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
|
|
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
|
|
}
|
|
break;
|
|
case XPT_SCSI_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
data_ptrs[0] = &ccb->csio.data_ptr;
|
|
numbufs = min(io_req->num_bufs, 1);
|
|
break;
|
|
case XPT_ATA_IO:
|
|
data_ptrs[0] = &ccb->ataio.data_ptr;
|
|
numbufs = min(io_req->num_bufs, 1);
|
|
break;
|
|
case XPT_SMP_IO:
|
|
numbufs = min(io_req->num_bufs, 2);
|
|
data_ptrs[0] = &ccb->smpio.smp_request;
|
|
data_ptrs[1] = &ccb->smpio.smp_response;
|
|
break;
|
|
case XPT_DEV_ADVINFO:
|
|
numbufs = min(io_req->num_bufs, 1);
|
|
data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
|
|
break;
|
|
case XPT_NVME_IO:
|
|
case XPT_NVME_ADMIN:
|
|
data_ptrs[0] = &ccb->nvmeio.data_ptr;
|
|
numbufs = min(io_req->num_bufs, 1);
|
|
break;
|
|
default:
|
|
/* allow ourselves to be swapped once again */
|
|
return;
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
|
|
free(io_req->user_segptr, M_SCSIPASS);
|
|
io_req->user_segptr = NULL;
|
|
}
|
|
|
|
/*
|
|
* We only want to free memory we malloced.
|
|
*/
|
|
if (io_req->data_flags == CAM_DATA_VADDR) {
|
|
for (i = 0; i < io_req->num_bufs; i++) {
|
|
if (io_req->kern_bufs[i] == NULL)
|
|
continue;
|
|
|
|
free(io_req->kern_bufs[i], M_SCSIPASS);
|
|
io_req->kern_bufs[i] = NULL;
|
|
}
|
|
} else if (io_req->data_flags == CAM_DATA_SG) {
|
|
for (i = 0; i < io_req->num_kern_segs; i++) {
|
|
if ((uint8_t *)(uintptr_t)
|
|
io_req->kern_segptr[i].ds_addr == NULL)
|
|
continue;
|
|
|
|
uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
|
|
io_req->kern_segptr[i].ds_addr);
|
|
io_req->kern_segptr[i].ds_addr = 0;
|
|
}
|
|
}
|
|
|
|
if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
|
|
free(io_req->kern_segptr, M_SCSIPASS);
|
|
io_req->kern_segptr = NULL;
|
|
}
|
|
|
|
if (io_req->data_flags != CAM_DATA_PADDR) {
|
|
for (i = 0; i < numbufs; i++) {
|
|
/*
|
|
* Restore the user's buffer pointers to their
|
|
* previous values.
|
|
*/
|
|
if (io_req->user_bufs[i] != NULL)
|
|
*data_ptrs[i] = io_req->user_bufs[i];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
|
|
ccb_flags direction)
|
|
{
|
|
bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
|
|
bus_dma_segment_t *user_sglist, *kern_sglist;
|
|
int i, j, error;
|
|
|
|
error = 0;
|
|
kern_watermark = 0;
|
|
user_watermark = 0;
|
|
len_to_copy = 0;
|
|
len_copied = 0;
|
|
user_sglist = io_req->user_segptr;
|
|
kern_sglist = io_req->kern_segptr;
|
|
|
|
for (i = 0, j = 0; i < io_req->num_user_segs &&
|
|
j < io_req->num_kern_segs;) {
|
|
uint8_t *user_ptr, *kern_ptr;
|
|
|
|
len_to_copy = min(user_sglist[i].ds_len -user_watermark,
|
|
kern_sglist[j].ds_len - kern_watermark);
|
|
|
|
user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
|
|
user_ptr = user_ptr + user_watermark;
|
|
kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
|
|
kern_ptr = kern_ptr + kern_watermark;
|
|
|
|
user_watermark += len_to_copy;
|
|
kern_watermark += len_to_copy;
|
|
|
|
if (!useracc(user_ptr, len_to_copy,
|
|
(direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
|
|
xpt_print(periph->path, "%s: unable to access user "
|
|
"S/G list element %p len %zu\n", __func__,
|
|
user_ptr, len_to_copy);
|
|
error = EFAULT;
|
|
goto bailout;
|
|
}
|
|
|
|
if (direction == CAM_DIR_IN) {
|
|
error = copyout(kern_ptr, user_ptr, len_to_copy);
|
|
if (error != 0) {
|
|
xpt_print(periph->path, "%s: copyout of %u "
|
|
"bytes from %p to %p failed with "
|
|
"error %d\n", __func__, len_to_copy,
|
|
kern_ptr, user_ptr, error);
|
|
goto bailout;
|
|
}
|
|
} else {
|
|
error = copyin(user_ptr, kern_ptr, len_to_copy);
|
|
if (error != 0) {
|
|
xpt_print(periph->path, "%s: copyin of %u "
|
|
"bytes from %p to %p failed with "
|
|
"error %d\n", __func__, len_to_copy,
|
|
user_ptr, kern_ptr, error);
|
|
goto bailout;
|
|
}
|
|
}
|
|
|
|
len_copied += len_to_copy;
|
|
|
|
if (user_sglist[i].ds_len == user_watermark) {
|
|
i++;
|
|
user_watermark = 0;
|
|
}
|
|
|
|
if (kern_sglist[j].ds_len == kern_watermark) {
|
|
j++;
|
|
kern_watermark = 0;
|
|
}
|
|
}
|
|
|
|
bailout:
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
|
|
{
|
|
union ccb *ccb;
|
|
struct pass_softc *softc;
|
|
int numbufs, i;
|
|
uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
|
|
uint32_t lengths[CAM_PERIPH_MAXMAPS];
|
|
uint32_t dirs[CAM_PERIPH_MAXMAPS];
|
|
uint32_t num_segs;
|
|
uint16_t *seg_cnt_ptr;
|
|
size_t maxmap;
|
|
int error;
|
|
|
|
cam_periph_assert(periph, MA_NOTOWNED);
|
|
|
|
softc = periph->softc;
|
|
|
|
error = 0;
|
|
ccb = &io_req->ccb;
|
|
maxmap = 0;
|
|
num_segs = 0;
|
|
seg_cnt_ptr = NULL;
|
|
|
|
switch(ccb->ccb_h.func_code) {
|
|
case XPT_DEV_MATCH:
|
|
if (ccb->cdm.match_buf_len == 0) {
|
|
printf("%s: invalid match buffer length 0\n", __func__);
|
|
return(EINVAL);
|
|
}
|
|
if (ccb->cdm.pattern_buf_len > 0) {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
|
|
lengths[0] = ccb->cdm.pattern_buf_len;
|
|
dirs[0] = CAM_DIR_OUT;
|
|
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
|
|
lengths[1] = ccb->cdm.match_buf_len;
|
|
dirs[1] = CAM_DIR_IN;
|
|
numbufs = 2;
|
|
} else {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
|
|
lengths[0] = ccb->cdm.match_buf_len;
|
|
dirs[0] = CAM_DIR_IN;
|
|
numbufs = 1;
|
|
}
|
|
io_req->data_flags = CAM_DATA_VADDR;
|
|
break;
|
|
case XPT_SCSI_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
|
|
return(0);
|
|
|
|
/*
|
|
* The user shouldn't be able to supply a bio.
|
|
*/
|
|
if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
|
|
return (EINVAL);
|
|
|
|
io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
|
|
|
|
data_ptrs[0] = &ccb->csio.data_ptr;
|
|
lengths[0] = ccb->csio.dxfer_len;
|
|
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
|
|
num_segs = ccb->csio.sglist_cnt;
|
|
seg_cnt_ptr = &ccb->csio.sglist_cnt;
|
|
numbufs = 1;
|
|
maxmap = softc->maxio;
|
|
break;
|
|
case XPT_ATA_IO:
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
|
|
return(0);
|
|
|
|
/*
|
|
* We only support a single virtual address for ATA I/O.
|
|
*/
|
|
if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
|
|
return (EINVAL);
|
|
|
|
io_req->data_flags = CAM_DATA_VADDR;
|
|
|
|
data_ptrs[0] = &ccb->ataio.data_ptr;
|
|
lengths[0] = ccb->ataio.dxfer_len;
|
|
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
|
|
numbufs = 1;
|
|
maxmap = softc->maxio;
|
|
break;
|
|
case XPT_SMP_IO:
|
|
io_req->data_flags = CAM_DATA_VADDR;
|
|
|
|
data_ptrs[0] = &ccb->smpio.smp_request;
|
|
lengths[0] = ccb->smpio.smp_request_len;
|
|
dirs[0] = CAM_DIR_OUT;
|
|
data_ptrs[1] = &ccb->smpio.smp_response;
|
|
lengths[1] = ccb->smpio.smp_response_len;
|
|
dirs[1] = CAM_DIR_IN;
|
|
numbufs = 2;
|
|
maxmap = softc->maxio;
|
|
break;
|
|
case XPT_DEV_ADVINFO:
|
|
if (ccb->cdai.bufsiz == 0)
|
|
return (0);
|
|
|
|
io_req->data_flags = CAM_DATA_VADDR;
|
|
|
|
data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
|
|
lengths[0] = ccb->cdai.bufsiz;
|
|
dirs[0] = CAM_DIR_IN;
|
|
numbufs = 1;
|
|
break;
|
|
case XPT_NVME_ADMIN:
|
|
case XPT_NVME_IO:
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
|
|
return (0);
|
|
|
|
io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
|
|
|
|
data_ptrs[0] = &ccb->nvmeio.data_ptr;
|
|
lengths[0] = ccb->nvmeio.dxfer_len;
|
|
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
|
|
num_segs = ccb->nvmeio.sglist_cnt;
|
|
seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
|
|
numbufs = 1;
|
|
maxmap = softc->maxio;
|
|
break;
|
|
default:
|
|
return(EINVAL);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
io_req->num_bufs = numbufs;
|
|
|
|
/*
|
|
* If there is a maximum, check to make sure that the user's
|
|
* request fits within the limit. In general, we should only have
|
|
* a maximum length for requests that go to hardware. Otherwise it
|
|
* is whatever we're able to malloc.
|
|
*/
|
|
for (i = 0; i < numbufs; i++) {
|
|
io_req->user_bufs[i] = *data_ptrs[i];
|
|
io_req->dirs[i] = dirs[i];
|
|
io_req->lengths[i] = lengths[i];
|
|
|
|
if (maxmap == 0)
|
|
continue;
|
|
|
|
if (lengths[i] <= maxmap)
|
|
continue;
|
|
|
|
xpt_print(periph->path, "%s: data length %u > max allowed %u "
|
|
"bytes\n", __func__, lengths[i], maxmap);
|
|
error = EINVAL;
|
|
goto bailout;
|
|
}
|
|
|
|
switch (io_req->data_flags) {
|
|
case CAM_DATA_VADDR:
|
|
/* Map or copy the buffer into kernel address space */
|
|
for (i = 0; i < numbufs; i++) {
|
|
uint8_t *tmp_buf;
|
|
|
|
/*
|
|
* If for some reason no length is specified, we
|
|
* don't need to allocate anything.
|
|
*/
|
|
if (io_req->lengths[i] == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Make sure that the user's buffer is accessible
|
|
* to that process.
|
|
*/
|
|
if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
|
|
(io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
|
|
VM_PROT_READ)) {
|
|
xpt_print(periph->path, "%s: user address %p "
|
|
"length %u is not accessible\n", __func__,
|
|
io_req->user_bufs[i], io_req->lengths[i]);
|
|
error = EFAULT;
|
|
goto bailout;
|
|
}
|
|
|
|
tmp_buf = malloc(lengths[i], M_SCSIPASS,
|
|
M_WAITOK | M_ZERO);
|
|
io_req->kern_bufs[i] = tmp_buf;
|
|
*data_ptrs[i] = tmp_buf;
|
|
|
|
#if 0
|
|
xpt_print(periph->path, "%s: malloced %p len %u, user "
|
|
"buffer %p, operation: %s\n", __func__,
|
|
tmp_buf, lengths[i], io_req->user_bufs[i],
|
|
(dirs[i] == CAM_DIR_IN) ? "read" : "write");
|
|
#endif
|
|
/*
|
|
* We only need to copy in if the user is writing.
|
|
*/
|
|
if (dirs[i] != CAM_DIR_OUT)
|
|
continue;
|
|
|
|
error = copyin(io_req->user_bufs[i],
|
|
io_req->kern_bufs[i], lengths[i]);
|
|
if (error != 0) {
|
|
xpt_print(periph->path, "%s: copy of user "
|
|
"buffer from %p to %p failed with "
|
|
"error %d\n", __func__,
|
|
io_req->user_bufs[i],
|
|
io_req->kern_bufs[i], error);
|
|
goto bailout;
|
|
}
|
|
}
|
|
break;
|
|
case CAM_DATA_PADDR:
|
|
/* Pass down the pointer as-is */
|
|
break;
|
|
case CAM_DATA_SG: {
|
|
size_t sg_length, size_to_go, alloc_size;
|
|
uint32_t num_segs_needed;
|
|
|
|
/*
|
|
* Copy the user S/G list in, and then copy in the
|
|
* individual segments.
|
|
*/
|
|
/*
|
|
* We shouldn't see this, but check just in case.
|
|
*/
|
|
if (numbufs != 1) {
|
|
xpt_print(periph->path, "%s: cannot currently handle "
|
|
"more than one S/G list per CCB\n", __func__);
|
|
error = EINVAL;
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* We have to have at least one segment.
|
|
*/
|
|
if (num_segs == 0) {
|
|
xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
|
|
"but sglist_cnt=0!\n", __func__);
|
|
error = EINVAL;
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* Make sure the user specified the total length and didn't
|
|
* just leave it to us to decode the S/G list.
|
|
*/
|
|
if (lengths[0] == 0) {
|
|
xpt_print(periph->path, "%s: no dxfer_len specified, "
|
|
"but CAM_DATA_SG flag is set!\n", __func__);
|
|
error = EINVAL;
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* We allocate buffers in io_zone_size increments for an
|
|
* S/G list. This will generally be MAXPHYS.
|
|
*/
|
|
if (lengths[0] <= softc->io_zone_size)
|
|
num_segs_needed = 1;
|
|
else {
|
|
num_segs_needed = lengths[0] / softc->io_zone_size;
|
|
if ((lengths[0] % softc->io_zone_size) != 0)
|
|
num_segs_needed++;
|
|
}
|
|
|
|
/* Figure out the size of the S/G list */
|
|
sg_length = num_segs * sizeof(bus_dma_segment_t);
|
|
io_req->num_user_segs = num_segs;
|
|
io_req->num_kern_segs = num_segs_needed;
|
|
|
|
/* Save the user's S/G list pointer for later restoration */
|
|
io_req->user_bufs[0] = *data_ptrs[0];
|
|
|
|
/*
|
|
* If we have enough segments allocated by default to handle
|
|
* the length of the user's S/G list,
|
|
*/
|
|
if (num_segs > PASS_MAX_SEGS) {
|
|
io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
|
|
num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
|
|
io_req->flags |= PASS_IO_USER_SEG_MALLOC;
|
|
} else
|
|
io_req->user_segptr = io_req->user_segs;
|
|
|
|
if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
|
|
xpt_print(periph->path, "%s: unable to access user "
|
|
"S/G list at %p\n", __func__, *data_ptrs[0]);
|
|
error = EFAULT;
|
|
goto bailout;
|
|
}
|
|
|
|
error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
|
|
if (error != 0) {
|
|
xpt_print(periph->path, "%s: copy of user S/G list "
|
|
"from %p to %p failed with error %d\n",
|
|
__func__, *data_ptrs[0], io_req->user_segptr,
|
|
error);
|
|
goto bailout;
|
|
}
|
|
|
|
if (num_segs_needed > PASS_MAX_SEGS) {
|
|
io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
|
|
num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
|
|
io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
|
|
} else {
|
|
io_req->kern_segptr = io_req->kern_segs;
|
|
}
|
|
|
|
/*
|
|
* Allocate the kernel S/G list.
|
|
*/
|
|
for (size_to_go = lengths[0], i = 0;
|
|
size_to_go > 0 && i < num_segs_needed;
|
|
i++, size_to_go -= alloc_size) {
|
|
uint8_t *kern_ptr;
|
|
|
|
alloc_size = min(size_to_go, softc->io_zone_size);
|
|
kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
|
|
io_req->kern_segptr[i].ds_addr =
|
|
(bus_addr_t)(uintptr_t)kern_ptr;
|
|
io_req->kern_segptr[i].ds_len = alloc_size;
|
|
}
|
|
if (size_to_go > 0) {
|
|
printf("%s: size_to_go = %zu, software error!\n",
|
|
__func__, size_to_go);
|
|
error = EINVAL;
|
|
goto bailout;
|
|
}
|
|
|
|
*data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
|
|
*seg_cnt_ptr = io_req->num_kern_segs;
|
|
|
|
/*
|
|
* We only need to copy data here if the user is writing.
|
|
*/
|
|
if (dirs[0] == CAM_DIR_OUT)
|
|
error = passcopysglist(periph, io_req, dirs[0]);
|
|
break;
|
|
}
|
|
case CAM_DATA_SG_PADDR: {
|
|
size_t sg_length;
|
|
|
|
/*
|
|
* We shouldn't see this, but check just in case.
|
|
*/
|
|
if (numbufs != 1) {
|
|
printf("%s: cannot currently handle more than one "
|
|
"S/G list per CCB\n", __func__);
|
|
error = EINVAL;
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* We have to have at least one segment.
|
|
*/
|
|
if (num_segs == 0) {
|
|
xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
|
|
"set, but sglist_cnt=0!\n", __func__);
|
|
error = EINVAL;
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* Make sure the user specified the total length and didn't
|
|
* just leave it to us to decode the S/G list.
|
|
*/
|
|
if (lengths[0] == 0) {
|
|
xpt_print(periph->path, "%s: no dxfer_len specified, "
|
|
"but CAM_DATA_SG flag is set!\n", __func__);
|
|
error = EINVAL;
|
|
goto bailout;
|
|
}
|
|
|
|
/* Figure out the size of the S/G list */
|
|
sg_length = num_segs * sizeof(bus_dma_segment_t);
|
|
io_req->num_user_segs = num_segs;
|
|
io_req->num_kern_segs = io_req->num_user_segs;
|
|
|
|
/* Save the user's S/G list pointer for later restoration */
|
|
io_req->user_bufs[0] = *data_ptrs[0];
|
|
|
|
if (num_segs > PASS_MAX_SEGS) {
|
|
io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
|
|
num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
|
|
io_req->flags |= PASS_IO_USER_SEG_MALLOC;
|
|
} else
|
|
io_req->user_segptr = io_req->user_segs;
|
|
|
|
io_req->kern_segptr = io_req->user_segptr;
|
|
|
|
error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
|
|
if (error != 0) {
|
|
xpt_print(periph->path, "%s: copy of user S/G list "
|
|
"from %p to %p failed with error %d\n",
|
|
__func__, *data_ptrs[0], io_req->user_segptr,
|
|
error);
|
|
goto bailout;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
case CAM_DATA_BIO:
|
|
/*
|
|
* A user shouldn't be attaching a bio to the CCB. It
|
|
* isn't a user-accessible structure.
|
|
*/
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
bailout:
|
|
if (error != 0)
|
|
passiocleanup(softc, io_req);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
|
|
{
|
|
struct pass_softc *softc;
|
|
int error;
|
|
int i;
|
|
|
|
error = 0;
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
switch (io_req->data_flags) {
|
|
case CAM_DATA_VADDR:
|
|
/*
|
|
* Copy back to the user buffer if this was a read.
|
|
*/
|
|
for (i = 0; i < io_req->num_bufs; i++) {
|
|
if (io_req->dirs[i] != CAM_DIR_IN)
|
|
continue;
|
|
|
|
error = copyout(io_req->kern_bufs[i],
|
|
io_req->user_bufs[i], io_req->lengths[i]);
|
|
if (error != 0) {
|
|
xpt_print(periph->path, "Unable to copy %u "
|
|
"bytes from %p to user address %p\n",
|
|
io_req->lengths[i],
|
|
io_req->kern_bufs[i],
|
|
io_req->user_bufs[i]);
|
|
goto bailout;
|
|
}
|
|
|
|
}
|
|
break;
|
|
case CAM_DATA_PADDR:
|
|
/* Do nothing. The pointer is a physical address already */
|
|
break;
|
|
case CAM_DATA_SG:
|
|
/*
|
|
* Copy back to the user buffer if this was a read.
|
|
* Restore the user's S/G list buffer pointer.
|
|
*/
|
|
if (io_req->dirs[0] == CAM_DIR_IN)
|
|
error = passcopysglist(periph, io_req, io_req->dirs[0]);
|
|
break;
|
|
case CAM_DATA_SG_PADDR:
|
|
/*
|
|
* Restore the user's S/G list buffer pointer. No need to
|
|
* copy.
|
|
*/
|
|
break;
|
|
default:
|
|
case CAM_DATA_BIO:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
bailout:
|
|
/*
|
|
* Reset the user's pointers to their original values and free
|
|
* allocated memory.
|
|
*/
|
|
passiocleanup(softc, io_req);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
|
|
error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
int error;
|
|
uint32_t priority;
|
|
|
|
periph = (struct cam_periph *)dev->si_drv1;
|
|
cam_periph_lock(periph);
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
error = 0;
|
|
|
|
switch (cmd) {
|
|
|
|
case CAMIOCOMMAND:
|
|
{
|
|
union ccb *inccb;
|
|
union ccb *ccb;
|
|
int ccb_malloced;
|
|
|
|
inccb = (union ccb *)addr;
|
|
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
|
|
if (inccb->ccb_h.func_code == XPT_SCSI_IO)
|
|
inccb->csio.bio = NULL;
|
|
#endif
|
|
|
|
if (inccb->ccb_h.flags & CAM_UNLOCKED) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Some CCB types, like scan bus and scan lun can only go
|
|
* through the transport layer device.
|
|
*/
|
|
if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
|
|
xpt_print(periph->path, "CCB function code %#x is "
|
|
"restricted to the XPT device\n",
|
|
inccb->ccb_h.func_code);
|
|
error = ENODEV;
|
|
break;
|
|
}
|
|
|
|
/* Compatibility for RL/priority-unaware code. */
|
|
priority = inccb->ccb_h.pinfo.priority;
|
|
if (priority <= CAM_PRIORITY_OOB)
|
|
priority += CAM_PRIORITY_OOB + 1;
|
|
|
|
/*
|
|
* Non-immediate CCBs need a CCB from the per-device pool
|
|
* of CCBs, which is scheduled by the transport layer.
|
|
* Immediate CCBs and user-supplied CCBs should just be
|
|
* malloced.
|
|
*/
|
|
if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
|
|
&& ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
|
|
ccb = cam_periph_getccb(periph, priority);
|
|
ccb_malloced = 0;
|
|
} else {
|
|
ccb = xpt_alloc_ccb_nowait();
|
|
|
|
if (ccb != NULL)
|
|
xpt_setup_ccb(&ccb->ccb_h, periph->path,
|
|
priority);
|
|
ccb_malloced = 1;
|
|
}
|
|
|
|
if (ccb == NULL) {
|
|
xpt_print(periph->path, "unable to allocate CCB\n");
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
|
|
error = passsendccb(periph, ccb, inccb);
|
|
|
|
if (ccb_malloced)
|
|
xpt_free_ccb(ccb);
|
|
else
|
|
xpt_release_ccb(ccb);
|
|
|
|
break;
|
|
}
|
|
case CAMIOQUEUE:
|
|
{
|
|
struct pass_io_req *io_req;
|
|
union ccb **user_ccb, *ccb;
|
|
xpt_opcode fc;
|
|
|
|
if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
|
|
error = passcreatezone(periph);
|
|
if (error != 0)
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* We're going to do a blocking allocation for this I/O
|
|
* request, so we have to drop the lock.
|
|
*/
|
|
cam_periph_unlock(periph);
|
|
|
|
io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
|
|
ccb = &io_req->ccb;
|
|
user_ccb = (union ccb **)addr;
|
|
|
|
/*
|
|
* Unlike the CAMIOCOMMAND ioctl above, we only have a
|
|
* pointer to the user's CCB, so we have to copy the whole
|
|
* thing in to a buffer we have allocated (above) instead
|
|
* of allowing the ioctl code to malloc a buffer and copy
|
|
* it in.
|
|
*
|
|
* This is an advantage for this asynchronous interface,
|
|
* since we don't want the memory to get freed while the
|
|
* CCB is outstanding.
|
|
*/
|
|
#if 0
|
|
xpt_print(periph->path, "Copying user CCB %p to "
|
|
"kernel address %p\n", *user_ccb, ccb);
|
|
#endif
|
|
error = copyin(*user_ccb, ccb, sizeof(*ccb));
|
|
if (error != 0) {
|
|
xpt_print(periph->path, "Copy of user CCB %p to "
|
|
"kernel address %p failed with error %d\n",
|
|
*user_ccb, ccb, error);
|
|
goto camioqueue_error;
|
|
}
|
|
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
|
|
if (ccb->ccb_h.func_code == XPT_SCSI_IO)
|
|
ccb->csio.bio = NULL;
|
|
#endif
|
|
|
|
if (ccb->ccb_h.flags & CAM_UNLOCKED) {
|
|
error = EINVAL;
|
|
goto camioqueue_error;
|
|
}
|
|
|
|
if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
|
|
if (ccb->csio.cdb_len > IOCDBLEN) {
|
|
error = EINVAL;
|
|
goto camioqueue_error;
|
|
}
|
|
error = copyin(ccb->csio.cdb_io.cdb_ptr,
|
|
ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
|
|
if (error != 0)
|
|
goto camioqueue_error;
|
|
ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
|
|
}
|
|
|
|
/*
|
|
* Some CCB types, like scan bus and scan lun can only go
|
|
* through the transport layer device.
|
|
*/
|
|
if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
|
|
xpt_print(periph->path, "CCB function code %#x is "
|
|
"restricted to the XPT device\n",
|
|
ccb->ccb_h.func_code);
|
|
error = ENODEV;
|
|
goto camioqueue_error;
|
|
}
|
|
|
|
/*
|
|
* Save the user's CCB pointer as well as his linked list
|
|
* pointers and peripheral private area so that we can
|
|
* restore these later.
|
|
*/
|
|
io_req->user_ccb_ptr = *user_ccb;
|
|
io_req->user_periph_links = ccb->ccb_h.periph_links;
|
|
io_req->user_periph_priv = ccb->ccb_h.periph_priv;
|
|
|
|
/*
|
|
* Now that we've saved the user's values, we can set our
|
|
* own peripheral private entry.
|
|
*/
|
|
ccb->ccb_h.ccb_ioreq = io_req;
|
|
|
|
/* Compatibility for RL/priority-unaware code. */
|
|
priority = ccb->ccb_h.pinfo.priority;
|
|
if (priority <= CAM_PRIORITY_OOB)
|
|
priority += CAM_PRIORITY_OOB + 1;
|
|
|
|
/*
|
|
* Setup fields in the CCB like the path and the priority.
|
|
* The path in particular cannot be done in userland, since
|
|
* it is a pointer to a kernel data structure.
|
|
*/
|
|
xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
|
|
ccb->ccb_h.flags);
|
|
|
|
/*
|
|
* Setup our done routine. There is no way for the user to
|
|
* have a valid pointer here.
|
|
*/
|
|
ccb->ccb_h.cbfcnp = passdone;
|
|
|
|
fc = ccb->ccb_h.func_code;
|
|
/*
|
|
* If this function code has memory that can be mapped in
|
|
* or out, we need to call passmemsetup().
|
|
*/
|
|
if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
|
|
|| (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
|
|
|| (fc == XPT_DEV_ADVINFO)
|
|
|| (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
|
|
error = passmemsetup(periph, io_req);
|
|
if (error != 0)
|
|
goto camioqueue_error;
|
|
} else
|
|
io_req->mapinfo.num_bufs_used = 0;
|
|
|
|
cam_periph_lock(periph);
|
|
|
|
/*
|
|
* Everything goes on the incoming queue initially.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
|
|
|
|
/*
|
|
* If the CCB is queued, and is not a user CCB, then
|
|
* we need to allocate a slot for it. Call xpt_schedule()
|
|
* so that our start routine will get called when a CCB is
|
|
* available.
|
|
*/
|
|
if ((fc & XPT_FC_QUEUED)
|
|
&& ((fc & XPT_FC_USER_CCB) == 0)) {
|
|
xpt_schedule(periph, priority);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* At this point, the CCB in question is either an
|
|
* immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
|
|
* and therefore should be malloced, not allocated via a slot.
|
|
* Remove the CCB from the incoming queue and add it to the
|
|
* active queue.
|
|
*/
|
|
TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
|
|
TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
|
|
|
|
xpt_action(ccb);
|
|
|
|
/*
|
|
* If this is not a queued CCB (i.e. it is an immediate CCB),
|
|
* then it is already done. We need to put it on the done
|
|
* queue for the user to fetch.
|
|
*/
|
|
if ((fc & XPT_FC_QUEUED) == 0) {
|
|
TAILQ_REMOVE(&softc->active_queue, io_req, links);
|
|
TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
|
|
}
|
|
break;
|
|
|
|
camioqueue_error:
|
|
uma_zfree(softc->pass_zone, io_req);
|
|
cam_periph_lock(periph);
|
|
break;
|
|
}
|
|
case CAMIOGET:
|
|
{
|
|
union ccb **user_ccb;
|
|
struct pass_io_req *io_req;
|
|
int old_error;
|
|
|
|
user_ccb = (union ccb **)addr;
|
|
old_error = 0;
|
|
|
|
io_req = TAILQ_FIRST(&softc->done_queue);
|
|
if (io_req == NULL) {
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Remove the I/O from the done queue.
|
|
*/
|
|
TAILQ_REMOVE(&softc->done_queue, io_req, links);
|
|
|
|
/*
|
|
* We have to drop the lock during the copyout because the
|
|
* copyout can result in VM faults that require sleeping.
|
|
*/
|
|
cam_periph_unlock(periph);
|
|
|
|
/*
|
|
* Do any needed copies (e.g. for reads) and revert the
|
|
* pointers in the CCB back to the user's pointers.
|
|
*/
|
|
error = passmemdone(periph, io_req);
|
|
|
|
old_error = error;
|
|
|
|
io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
|
|
io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
|
|
|
|
#if 0
|
|
xpt_print(periph->path, "Copying to user CCB %p from "
|
|
"kernel address %p\n", *user_ccb, &io_req->ccb);
|
|
#endif
|
|
|
|
error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
|
|
if (error != 0) {
|
|
xpt_print(periph->path, "Copy to user CCB %p from "
|
|
"kernel address %p failed with error %d\n",
|
|
*user_ccb, &io_req->ccb, error);
|
|
}
|
|
|
|
/*
|
|
* Prefer the first error we got back, and make sure we
|
|
* don't overwrite bad status with good.
|
|
*/
|
|
if (old_error != 0)
|
|
error = old_error;
|
|
|
|
cam_periph_lock(periph);
|
|
|
|
/*
|
|
* At this point, if there was an error, we could potentially
|
|
* re-queue the I/O and try again. But why? The error
|
|
* would almost certainly happen again. We might as well
|
|
* not leak memory.
|
|
*/
|
|
uma_zfree(softc->pass_zone, io_req);
|
|
break;
|
|
}
|
|
default:
|
|
error = cam_periph_ioctl(periph, cmd, addr, passerror);
|
|
break;
|
|
}
|
|
|
|
bailout:
|
|
cam_periph_unlock(periph);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static int
|
|
passpoll(struct cdev *dev, int poll_events, struct thread *td)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
int revents;
|
|
|
|
periph = (struct cam_periph *)dev->si_drv1;
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
revents = poll_events & (POLLOUT | POLLWRNORM);
|
|
if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
|
|
cam_periph_lock(periph);
|
|
|
|
if (!TAILQ_EMPTY(&softc->done_queue)) {
|
|
revents |= poll_events & (POLLIN | POLLRDNORM);
|
|
}
|
|
cam_periph_unlock(periph);
|
|
if (revents == 0)
|
|
selrecord(td, &softc->read_select);
|
|
}
|
|
|
|
return (revents);
|
|
}
|
|
|
|
static int
|
|
passkqfilter(struct cdev *dev, struct knote *kn)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
|
|
periph = (struct cam_periph *)dev->si_drv1;
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
kn->kn_hook = (caddr_t)periph;
|
|
kn->kn_fop = &passread_filtops;
|
|
knlist_add(&softc->read_select.si_note, kn, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
passreadfiltdetach(struct knote *kn)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
|
|
periph = (struct cam_periph *)kn->kn_hook;
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
knlist_remove(&softc->read_select.si_note, kn, 0);
|
|
}
|
|
|
|
static int
|
|
passreadfilt(struct knote *kn, long hint)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
int retval;
|
|
|
|
periph = (struct cam_periph *)kn->kn_hook;
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
|
|
if (TAILQ_EMPTY(&softc->done_queue))
|
|
retval = 0;
|
|
else
|
|
retval = 1;
|
|
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Generally, "ccb" should be the CCB supplied by the kernel. "inccb"
|
|
* should be the CCB that is copied in from the user.
|
|
*/
|
|
static int
|
|
passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
|
|
{
|
|
struct pass_softc *softc;
|
|
struct cam_periph_map_info mapinfo;
|
|
uint8_t *cmd;
|
|
xpt_opcode fc;
|
|
int error;
|
|
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
/*
|
|
* There are some fields in the CCB header that need to be
|
|
* preserved, the rest we get from the user.
|
|
*/
|
|
xpt_merge_ccb(ccb, inccb);
|
|
|
|
if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
|
|
cmd = __builtin_alloca(ccb->csio.cdb_len);
|
|
error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
|
|
if (error)
|
|
return (error);
|
|
ccb->csio.cdb_io.cdb_ptr = cmd;
|
|
}
|
|
|
|
/*
|
|
*/
|
|
ccb->ccb_h.cbfcnp = passdone;
|
|
|
|
/*
|
|
* Let cam_periph_mapmem do a sanity check on the data pointer format.
|
|
* Even if no data transfer is needed, it's a cheap check and it
|
|
* simplifies the code.
|
|
*/
|
|
fc = ccb->ccb_h.func_code;
|
|
if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
|
|
|| (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
|
|
|| (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
|
|
|
|
bzero(&mapinfo, sizeof(mapinfo));
|
|
|
|
/*
|
|
* cam_periph_mapmem calls into proc and vm functions that can
|
|
* sleep as well as trigger I/O, so we can't hold the lock.
|
|
* Dropping it here is reasonably safe.
|
|
*/
|
|
cam_periph_unlock(periph);
|
|
error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
|
|
cam_periph_lock(periph);
|
|
|
|
/*
|
|
* cam_periph_mapmem returned an error, we can't continue.
|
|
* Return the error to the user.
|
|
*/
|
|
if (error)
|
|
return(error);
|
|
} else
|
|
/* Ensure that the unmap call later on is a no-op. */
|
|
mapinfo.num_bufs_used = 0;
|
|
|
|
/*
|
|
* If the user wants us to perform any error recovery, then honor
|
|
* that request. Otherwise, it's up to the user to perform any
|
|
* error recovery.
|
|
*/
|
|
cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ?
|
|
passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
|
|
/* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
|
|
softc->device_stats);
|
|
|
|
cam_periph_unmapmem(ccb, &mapinfo);
|
|
|
|
ccb->ccb_h.cbfcnp = NULL;
|
|
ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
|
|
bcopy(ccb, inccb, sizeof(union ccb));
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct pass_softc *softc;
|
|
|
|
periph = xpt_path_periph(ccb->ccb_h.path);
|
|
softc = (struct pass_softc *)periph->softc;
|
|
|
|
return(cam_periph_error(ccb, cam_flags, sense_flags));
|
|
}
|