freebsd-nq/sys/netpfil/ipfw/ip_fw_table.c
2014-10-19 11:15:19 +00:00

3675 lines
82 KiB
C

/*-
* Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko.
* Copyright (c) 2014 Yandex LLC
* Copyright (c) 2014 Alexander V. Chernikov
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Lookup table support for ipfw.
*
* This file contains handlers for all generic tables' operations:
* add/del/flush entries, list/dump tables etc..
*
* Table data modification is protected by both UH and runtime lock
* while reading configuration/data is protected by UH lock.
*
* Lookup algorithms for all table types are located in ip_fw_table_algo.c
*/
#include "opt_ipfw.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/rmlock.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/queue.h>
#include <net/if.h> /* ip_fw.h requires IFNAMSIZ */
#include <netinet/in.h>
#include <netinet/ip_var.h> /* struct ipfw_rule_ref */
#include <netinet/ip_fw.h>
#include <netpfil/ipfw/ip_fw_private.h>
#include <netpfil/ipfw/ip_fw_table.h>
/*
* Table has the following `type` concepts:
*
* `no.type` represents lookup key type (addr, ifp, uid, etc..)
* vmask represents bitmask of table values which are present at the moment.
* Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old
* single-value-for-all approach.
*/
struct table_config {
struct named_object no;
uint8_t tflags; /* type flags */
uint8_t locked; /* 1 if locked from changes */
uint8_t linked; /* 1 if already linked */
uint8_t ochanged; /* used by set swapping */
uint8_t vshared; /* 1 if using shared value array */
uint8_t spare[3];
uint32_t count; /* Number of records */
uint32_t limit; /* Max number of records */
uint32_t vmask; /* bitmask with supported values */
uint32_t ocount; /* used by set swapping */
uint64_t gencnt; /* generation count */
char tablename[64]; /* table name */
struct table_algo *ta; /* Callbacks for given algo */
void *astate; /* algorithm state */
struct table_info ti_copy; /* data to put to table_info */
struct namedobj_instance *vi;
};
static struct table_config *find_table(struct namedobj_instance *ni,
struct tid_info *ti);
static struct table_config *alloc_table_config(struct ip_fw_chain *ch,
struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags);
static void free_table_config(struct namedobj_instance *ni,
struct table_config *tc);
static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref);
static void link_table(struct ip_fw_chain *ch, struct table_config *tc);
static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc);
static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc);
#define OP_ADD 1
#define OP_DEL 0
static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
struct sockopt_data *sd);
static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
ipfw_xtable_info *i);
static int dump_table_tentry(void *e, void *arg);
static int dump_table_xentry(void *e, void *arg);
static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
struct tid_info *b);
static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
struct table_config *tc, struct table_info *ti, uint32_t count);
static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti);
static struct table_algo *find_table_algo(struct tables_config *tableconf,
struct tid_info *ti, char *name);
static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti);
static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti);
static int classify_table_opcode(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype);
#define CHAIN_TO_NI(chain) (CHAIN_TO_TCFG(chain)->namehash)
#define KIDX_TO_TI(ch, k) (&(((struct table_info *)(ch)->tablestate)[k]))
#define TA_BUF_SZ 128 /* On-stack buffer for add/delete state */
void
rollback_toperation_state(struct ip_fw_chain *ch, void *object)
{
struct tables_config *tcfg;
struct op_state *os;
tcfg = CHAIN_TO_TCFG(ch);
TAILQ_FOREACH(os, &tcfg->state_list, next)
os->func(object, os);
}
void
add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
{
struct tables_config *tcfg;
tcfg = CHAIN_TO_TCFG(ch);
TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next);
}
void
del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
{
struct tables_config *tcfg;
tcfg = CHAIN_TO_TCFG(ch);
TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next);
}
void
tc_ref(struct table_config *tc)
{
tc->no.refcnt++;
}
void
tc_unref(struct table_config *tc)
{
tc->no.refcnt--;
}
static struct table_value *
get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx)
{
struct table_value *pval;
pval = (struct table_value *)ch->valuestate;
return (&pval[kidx]);
}
/*
* Checks if we're able to insert/update entry @tei into table
* w.r.t @tc limits.
* May alter @tei to indicate insertion error / insert
* options.
*
* Returns 0 if operation can be performed/
*/
static int
check_table_limit(struct table_config *tc, struct tentry_info *tei)
{
if (tc->limit == 0 || tc->count < tc->limit)
return (0);
if ((tei->flags & TEI_FLAGS_UPDATE) == 0) {
/* Notify userland on error cause */
tei->flags |= TEI_FLAGS_LIMIT;
return (EFBIG);
}
/*
* We have UPDATE flag set.
* Permit updating record (if found),
* but restrict adding new one since we've
* already hit the limit.
*/
tei->flags |= TEI_FLAGS_DONTADD;
return (0);
}
/*
* Convert algorithm callback return code into
* one of pre-defined states known by userland.
*/
static void
store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num)
{
int flag;
flag = 0;
switch (error) {
case 0:
if (op == OP_ADD && num != 0)
flag = TEI_FLAGS_ADDED;
if (op == OP_DEL)
flag = TEI_FLAGS_DELETED;
break;
case ENOENT:
flag = TEI_FLAGS_NOTFOUND;
break;
case EEXIST:
flag = TEI_FLAGS_EXISTS;
break;
default:
flag = TEI_FLAGS_ERROR;
}
tei->flags |= flag;
}
/*
* Creates and references table with default parameters.
* Saves table config, algo and allocated kidx info @ptc, @pta and
* @pkidx if non-zero.
* Used for table auto-creation to support old binaries.
*
* Returns 0 on success.
*/
static int
create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti,
uint16_t *pkidx)
{
ipfw_xtable_info xi;
int error;
memset(&xi, 0, sizeof(xi));
/* Set default value mask for legacy clients */
xi.vmask = IPFW_VTYPE_LEGACY;
error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1);
if (error != 0)
return (error);
return (0);
}
/*
* Find and reference existing table optionally
* creating new one.
*
* Saves found table config into @ptc.
* Note function may drop/acquire UH_WLOCK.
* Returns 0 if table was found/created and referenced
* or non-zero return code.
*/
static int
find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
struct tentry_info *tei, uint32_t count, int op,
struct table_config **ptc)
{
struct namedobj_instance *ni;
struct table_config *tc;
uint16_t kidx;
int error;
IPFW_UH_WLOCK_ASSERT(ch);
ni = CHAIN_TO_NI(ch);
tc = NULL;
if ((tc = find_table(ni, ti)) != NULL) {
/* check table type */
if (tc->no.type != ti->type)
return (EINVAL);
if (tc->locked != 0)
return (EACCES);
/* Try to exit early on limit hit */
if (op == OP_ADD && count == 1 &&
check_table_limit(tc, tei) != 0)
return (EFBIG);
/* Reference and return */
tc->no.refcnt++;
*ptc = tc;
return (0);
}
if (op == OP_DEL)
return (ESRCH);
/* Compability mode: create new table for old clients */
if ((tei->flags & TEI_FLAGS_COMPAT) == 0)
return (ESRCH);
IPFW_UH_WUNLOCK(ch);
error = create_table_compat(ch, ti, &kidx);
IPFW_UH_WLOCK(ch);
if (error != 0)
return (error);
tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx));
/* OK, now we've got referenced table. */
*ptc = tc;
return (0);
}
/*
* Rolls back already @added to @tc entries using state array @ta_buf_m.
* Assume the following layout:
* 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases
* 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1])
* for storing deleted state
*/
static void
rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc,
struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m,
uint32_t count, uint32_t added)
{
struct table_algo *ta;
struct tentry_info *ptei;
caddr_t v, vv;
size_t ta_buf_sz;
int error, i;
uint32_t num;
IPFW_UH_WLOCK_ASSERT(ch);
ta = tc->ta;
ta_buf_sz = ta->ta_buf_size;
v = ta_buf_m;
vv = v + count * ta_buf_sz;
for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) {
ptei = &tei[i];
if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) {
/*
* We have old value stored by previous
* call in @ptei->value. Do add once again
* to restore it.
*/
error = ta->add(tc->astate, tinfo, ptei, v, &num);
KASSERT(error == 0, ("rollback UPDATE fail"));
KASSERT(num == 0, ("rollback UPDATE fail2"));
continue;
}
error = ta->prepare_del(ch, ptei, vv);
KASSERT(error == 0, ("pre-rollback INSERT failed"));
error = ta->del(tc->astate, tinfo, ptei, vv, &num);
KASSERT(error == 0, ("rollback INSERT failed"));
tc->count -= num;
}
}
/*
* Prepares add/del state for all @count entries in @tei.
* Uses either stack buffer (@ta_buf) or allocates a new one.
* Stores pointer to allocated buffer back to @ta_buf.
*
* Returns 0 on success.
*/
static int
prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf)
{
caddr_t ta_buf_m, v;
size_t ta_buf_sz, sz;
struct tentry_info *ptei;
int error, i;
error = 0;
ta_buf_sz = ta->ta_buf_size;
if (count == 1) {
/* Sigle add/delete, use on-stack buffer */
memset(*ta_buf, 0, TA_BUF_SZ);
ta_buf_m = *ta_buf;
} else {
/*
* Multiple adds/deletes, allocate larger buffer
*
* Note we need 2xcount buffer for add case:
* we have hold both ADD state
* and DELETE state (this may be needed
* if we need to rollback all changes)
*/
sz = count * ta_buf_sz;
ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP,
M_WAITOK | M_ZERO);
}
v = ta_buf_m;
for (i = 0; i < count; i++, v += ta_buf_sz) {
ptei = &tei[i];
error = (op == OP_ADD) ?
ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v);
/*
* Some syntax error (incorrect mask, or address, or
* anything). Return error regardless of atomicity
* settings.
*/
if (error != 0)
break;
}
*ta_buf = ta_buf_m;
return (error);
}
/*
* Flushes allocated state for each @count entries in @tei.
* Frees @ta_buf_m if differs from stack buffer @ta_buf.
*/
static void
flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
struct tentry_info *tei, uint32_t count, int rollback,
caddr_t ta_buf_m, caddr_t ta_buf)
{
caddr_t v;
struct tentry_info *ptei;
size_t ta_buf_sz;
int i;
ta_buf_sz = ta->ta_buf_size;
/* Run cleaning callback anyway */
v = ta_buf_m;
for (i = 0; i < count; i++, v += ta_buf_sz) {
ptei = &tei[i];
ta->flush_entry(ch, ptei, v);
if (ptei->ptv != NULL) {
free(ptei->ptv, M_IPFW);
ptei->ptv = NULL;
}
}
/* Clean up "deleted" state in case of rollback */
if (rollback != 0) {
v = ta_buf_m + count * ta_buf_sz;
for (i = 0; i < count; i++, v += ta_buf_sz)
ta->flush_entry(ch, &tei[i], v);
}
if (ta_buf_m != ta_buf)
free(ta_buf_m, M_TEMP);
}
static void
rollback_add_entry(void *object, struct op_state *_state)
{
struct ip_fw_chain *ch;
struct tableop_state *ts;
ts = (struct tableop_state *)_state;
if (ts->tc != object && ts->ch != object)
return;
ch = ts->ch;
IPFW_UH_WLOCK_ASSERT(ch);
/* Call specifid unlockers */
rollback_table_values(ts);
/* Indicate we've called */
ts->modified = 1;
}
/*
* Adds/updates one or more entries in table @ti.
*
* Function may drop/reacquire UH wlock multiple times due to
* items alloc, algorithm callbacks (check_space), value linkage
* (new values, value storage realloc), etc..
* Other processes like other adds (which may involve storage resize),
* table swaps (which changes table data and may change algo type),
* table modify (which may change value mask) may be executed
* simultaneously so we need to deal with it.
*
* The following approach was implemented:
* we have per-chain linked list, protected with UH lock.
* add_table_entry prepares special on-stack structure wthich is passed
* to its descendants. Users add this structure to this list before unlock.
* After performing needed operations and acquiring UH lock back, each user
* checks if structure has changed. If true, it rolls local state back and
* returns without error to the caller.
* add_table_entry() on its own checks if structure has changed and restarts
* its operation from the beginning (goto restart).
*
* Functions which are modifying fields of interest (currently
* resize_shared_value_storage() and swap_tables() )
* traverses given list while holding UH lock immediately before
* performing their operations calling function provided be list entry
* ( currently rollback_add_entry ) which performs rollback for all necessary
* state and sets appropriate values in structure indicating rollback
* has happened.
*
* Algo interaction:
* Function references @ti first to ensure table won't
* disappear or change its type.
* After that, prepare_add callback is called for each @tei entry.
* Next, we try to add each entry under UH+WHLOCK
* using add() callback.
* Finally, we free all state by calling flush_entry callback
* for each @tei.
*
* Returns 0 on success.
*/
int
add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
struct tentry_info *tei, uint8_t flags, uint32_t count)
{
struct table_config *tc;
struct table_algo *ta;
uint16_t kidx;
int error, first_error, i, rollback;
uint32_t num, numadd;
struct tentry_info *ptei;
struct tableop_state ts;
char ta_buf[TA_BUF_SZ];
caddr_t ta_buf_m, v;
memset(&ts, 0, sizeof(ts));
ta = NULL;
IPFW_UH_WLOCK(ch);
/*
* Find and reference existing table.
*/
restart:
if (ts.modified != 0) {
IPFW_UH_WUNLOCK(ch);
flush_batch_buffer(ch, ta, tei, count, rollback,
ta_buf_m, ta_buf);
memset(&ts, 0, sizeof(ts));
ta = NULL;
IPFW_UH_WLOCK(ch);
}
error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc);
if (error != 0) {
IPFW_UH_WUNLOCK(ch);
return (error);
}
ta = tc->ta;
/* Fill in tablestate */
ts.ch = ch;
ts.opstate.func = rollback_add_entry;
ts.tc = tc;
ts.vshared = tc->vshared;
ts.vmask = tc->vmask;
ts.ta = ta;
ts.tei = tei;
ts.count = count;
rollback = 0;
add_toperation_state(ch, &ts);
IPFW_UH_WUNLOCK(ch);
/* Allocate memory and prepare record(s) */
/* Pass stack buffer by default */
ta_buf_m = ta_buf;
error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m);
if (error != 0)
goto cleanup;
IPFW_UH_WLOCK(ch);
/* Drop reference we've used in first search */
tc->no.refcnt--;
/*
* Check if table swap has happened.
* (so table algo might be changed).
* Restart operation to achieve consistent behavior.
*/
del_toperation_state(ch, &ts);
if (ts.modified != 0)
goto restart;
/*
* Link all values values to shared/per-table value array.
*
* May release/reacquire UH_WLOCK.
*/
error = ipfw_link_table_values(ch, &ts);
if (error != 0)
goto cleanup;
if (ts.modified != 0)
goto restart;
/*
* Ensure we are able to add all entries without additional
* memory allocations. May release/reacquire UH_WLOCK.
*/
kidx = tc->no.kidx;
error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count);
if (error != 0)
goto cleanup;
if (ts.modified != 0)
goto restart;
/* We've got valid table in @tc. Let's try to add data */
kidx = tc->no.kidx;
ta = tc->ta;
numadd = 0;
first_error = 0;
IPFW_WLOCK(ch);
v = ta_buf_m;
for (i = 0; i < count; i++, v += ta->ta_buf_size) {
ptei = &tei[i];
num = 0;
/* check limit before adding */
if ((error = check_table_limit(tc, ptei)) == 0) {
error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx),
ptei, v, &num);
/* Set status flag to inform userland */
store_tei_result(ptei, OP_ADD, error, num);
}
if (error == 0) {
/* Update number of records to ease limit checking */
tc->count += num;
numadd += num;
continue;
}
if (first_error == 0)
first_error = error;
/*
* Some error have happened. Check our atomicity
* settings: continue if atomicity is not required,
* rollback changes otherwise.
*/
if ((flags & IPFW_CTF_ATOMIC) == 0)
continue;
rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx),
tei, ta_buf_m, count, i);
rollback = 1;
break;
}
IPFW_WUNLOCK(ch);
ipfw_garbage_table_values(ch, tc, tei, count, rollback);
/* Permit post-add algorithm grow/rehash. */
if (numadd != 0)
check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
/* Return first error to user, if any */
error = first_error;
cleanup:
IPFW_UH_WUNLOCK(ch);
flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf);
return (error);
}
/*
* Deletes one or more entries in table @ti.
*
* Returns 0 on success.
*/
int
del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
struct tentry_info *tei, uint8_t flags, uint32_t count)
{
struct table_config *tc;
struct table_algo *ta;
struct tentry_info *ptei;
uint16_t kidx;
int error, first_error, i;
uint32_t num, numdel;
char ta_buf[TA_BUF_SZ];
caddr_t ta_buf_m, v;
/*
* Find and reference existing table.
*/
IPFW_UH_WLOCK(ch);
error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc);
if (error != 0) {
IPFW_UH_WUNLOCK(ch);
return (error);
}
ta = tc->ta;
IPFW_UH_WUNLOCK(ch);
/* Allocate memory and prepare record(s) */
/* Pass stack buffer by default */
ta_buf_m = ta_buf;
error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m);
if (error != 0)
goto cleanup;
IPFW_UH_WLOCK(ch);
/* Drop reference we've used in first search */
tc->no.refcnt--;
/*
* Check if table algo is still the same.
* (changed ta may be the result of table swap).
*/
if (ta != tc->ta) {
IPFW_UH_WUNLOCK(ch);
error = EINVAL;
goto cleanup;
}
kidx = tc->no.kidx;
numdel = 0;
first_error = 0;
IPFW_WLOCK(ch);
v = ta_buf_m;
for (i = 0; i < count; i++, v += ta->ta_buf_size) {
ptei = &tei[i];
num = 0;
error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v,
&num);
/* Save state for userland */
store_tei_result(ptei, OP_DEL, error, num);
if (error != 0 && first_error == 0)
first_error = error;
tc->count -= num;
numdel += num;
}
IPFW_WUNLOCK(ch);
/* Unlink non-used values */
ipfw_garbage_table_values(ch, tc, tei, count, 0);
if (numdel != 0) {
/* Run post-del hook to permit shrinking */
check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
}
IPFW_UH_WUNLOCK(ch);
/* Return first error to user, if any */
error = first_error;
cleanup:
flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf);
return (error);
}
/*
* Ensure that table @tc has enough space to add @count entries without
* need for reallocation.
*
* Callbacks order:
* 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize.
*
* 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags.
* 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage
* 3) modify (UH_WLOCK + WLOCK) - switch pointers
* 4) flush_modify (UH_WLOCK) - free state, if needed
*
* Returns 0 on success.
*/
static int
check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
struct table_config *tc, struct table_info *ti, uint32_t count)
{
struct table_algo *ta;
uint64_t pflags;
char ta_buf[TA_BUF_SZ];
int error;
IPFW_UH_WLOCK_ASSERT(ch);
error = 0;
ta = tc->ta;
if (ta->need_modify == NULL)
return (0);
/* Acquire reference not to loose @tc between locks/unlocks */
tc->no.refcnt++;
/*
* TODO: think about avoiding race between large add/large delete
* operation on algorithm which implements shrinking along with
* growing.
*/
while (true) {
pflags = 0;
if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
error = 0;
break;
}
/* We have to shrink/grow table */
if (ts != NULL)
add_toperation_state(ch, ts);
IPFW_UH_WUNLOCK(ch);
memset(&ta_buf, 0, sizeof(ta_buf));
error = ta->prepare_mod(ta_buf, &pflags);
IPFW_UH_WLOCK(ch);
if (ts != NULL)
del_toperation_state(ch, ts);
if (error != 0)
break;
if (ts != NULL && ts->modified != 0) {
/*
* Swap operation has happened
* so we're currently operating on other
* table data. Stop doing this.
*/
ta->flush_mod(ta_buf);
break;
}
/* Check if we still need to alter table */
ti = KIDX_TO_TI(ch, tc->no.kidx);
if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
IPFW_UH_WUNLOCK(ch);
/*
* Other thread has already performed resize.
* Flush our state and return.
*/
ta->flush_mod(ta_buf);
break;
}
error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags);
if (error == 0) {
/* Do actual modification */
IPFW_WLOCK(ch);
ta->modify(tc->astate, ti, ta_buf, pflags);
IPFW_WUNLOCK(ch);
}
/* Anyway, flush data and retry */
ta->flush_mod(ta_buf);
}
tc->no.refcnt--;
return (error);
}
/*
* Adds or deletes record in table.
* Data layout (v0):
* Request: [ ip_fw3_opheader ipfw_table_xentry ]
*
* Returns 0 on success
*/
static int
manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
ipfw_table_xentry *xent;
struct tentry_info tei;
struct tid_info ti;
struct table_value v;
int error, hdrlen, read;
hdrlen = offsetof(ipfw_table_xentry, k);
/* Check minimum header size */
if (sd->valsize < (sizeof(*op3) + hdrlen))
return (EINVAL);
read = sizeof(ip_fw3_opheader);
/* Check if xentry len field is valid */
xent = (ipfw_table_xentry *)(op3 + 1);
if (xent->len < hdrlen || xent->len + read > sd->valsize)
return (EINVAL);
memset(&tei, 0, sizeof(tei));
tei.paddr = &xent->k;
tei.masklen = xent->masklen;
ipfw_import_table_value_legacy(xent->value, &v);
tei.pvalue = &v;
/* Old requests compability */
tei.flags = TEI_FLAGS_COMPAT;
if (xent->type == IPFW_TABLE_ADDR) {
if (xent->len - hdrlen == sizeof(in_addr_t))
tei.subtype = AF_INET;
else
tei.subtype = AF_INET6;
}
memset(&ti, 0, sizeof(ti));
ti.uidx = xent->tbl;
ti.type = xent->type;
error = (op3->opcode == IP_FW_TABLE_XADD) ?
add_table_entry(ch, &ti, &tei, 0, 1) :
del_table_entry(ch, &ti, &tei, 0, 1);
return (error);
}
/*
* Adds or deletes record in table.
* Data layout (v1)(current):
* Request: [ ipfw_obj_header
* ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ]
* ]
*
* Returns 0 on success
*/
static int
manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
ipfw_obj_tentry *tent, *ptent;
ipfw_obj_ctlv *ctlv;
ipfw_obj_header *oh;
struct tentry_info *ptei, tei, *tei_buf;
struct tid_info ti;
int error, i, kidx, read;
/* Check minimum header size */
if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv)))
return (EINVAL);
/* Check if passed data is too long */
if (sd->valsize != sd->kavail)
return (EINVAL);
oh = (ipfw_obj_header *)sd->kbuf;
/* Basic length checks for TLVs */
if (oh->ntlv.head.length != sizeof(oh->ntlv))
return (EINVAL);
read = sizeof(*oh);
ctlv = (ipfw_obj_ctlv *)(oh + 1);
if (ctlv->head.length + read != sd->valsize)
return (EINVAL);
read += sizeof(*ctlv);
tent = (ipfw_obj_tentry *)(ctlv + 1);
if (ctlv->count * sizeof(*tent) + read != sd->valsize)
return (EINVAL);
if (ctlv->count == 0)
return (0);
/*
* Mark entire buffer as "read".
* This instructs sopt api write it back
* after function return.
*/
ipfw_get_sopt_header(sd, sd->valsize);
/* Perform basic checks for each entry */
ptent = tent;
kidx = tent->idx;
for (i = 0; i < ctlv->count; i++, ptent++) {
if (ptent->head.length != sizeof(*ptent))
return (EINVAL);
if (ptent->idx != kidx)
return (ENOTSUP);
}
/* Convert data into kernel request objects */
objheader_to_ti(oh, &ti);
ti.type = oh->ntlv.type;
ti.uidx = kidx;
/* Use on-stack buffer for single add/del */
if (ctlv->count == 1) {
memset(&tei, 0, sizeof(tei));
tei_buf = &tei;
} else
tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP,
M_WAITOK | M_ZERO);
ptei = tei_buf;
ptent = tent;
for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
ptei->paddr = &ptent->k;
ptei->subtype = ptent->subtype;
ptei->masklen = ptent->masklen;
if (ptent->head.flags & IPFW_TF_UPDATE)
ptei->flags |= TEI_FLAGS_UPDATE;
ipfw_import_table_value_v1(&ptent->v.value);
ptei->pvalue = (struct table_value *)&ptent->v.value;
}
error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ?
add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) :
del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count);
/* Translate result back to userland */
ptei = tei_buf;
ptent = tent;
for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
if (ptei->flags & TEI_FLAGS_ADDED)
ptent->result = IPFW_TR_ADDED;
else if (ptei->flags & TEI_FLAGS_DELETED)
ptent->result = IPFW_TR_DELETED;
else if (ptei->flags & TEI_FLAGS_UPDATED)
ptent->result = IPFW_TR_UPDATED;
else if (ptei->flags & TEI_FLAGS_LIMIT)
ptent->result = IPFW_TR_LIMIT;
else if (ptei->flags & TEI_FLAGS_ERROR)
ptent->result = IPFW_TR_ERROR;
else if (ptei->flags & TEI_FLAGS_NOTFOUND)
ptent->result = IPFW_TR_NOTFOUND;
else if (ptei->flags & TEI_FLAGS_EXISTS)
ptent->result = IPFW_TR_EXISTS;
ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value);
}
if (tei_buf != &tei)
free(tei_buf, M_TEMP);
return (error);
}
/*
* Looks up an entry in given table.
* Data layout (v0)(current):
* Request: [ ipfw_obj_header ipfw_obj_tentry ]
* Reply: [ ipfw_obj_header ipfw_obj_tentry ]
*
* Returns 0 on success
*/
static int
find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
ipfw_obj_tentry *tent;
ipfw_obj_header *oh;
struct tid_info ti;
struct table_config *tc;
struct table_algo *ta;
struct table_info *kti;
struct namedobj_instance *ni;
int error;
size_t sz;
/* Check minimum header size */
sz = sizeof(*oh) + sizeof(*tent);
if (sd->valsize != sz)
return (EINVAL);
oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
tent = (ipfw_obj_tentry *)(oh + 1);
/* Basic length checks for TLVs */
if (oh->ntlv.head.length != sizeof(oh->ntlv))
return (EINVAL);
objheader_to_ti(oh, &ti);
ti.type = oh->ntlv.type;
ti.uidx = tent->idx;
IPFW_UH_RLOCK(ch);
ni = CHAIN_TO_NI(ch);
/*
* Find existing table and check its type .
*/
ta = NULL;
if ((tc = find_table(ni, &ti)) == NULL) {
IPFW_UH_RUNLOCK(ch);
return (ESRCH);
}
/* check table type */
if (tc->no.type != ti.type) {
IPFW_UH_RUNLOCK(ch);
return (EINVAL);
}
kti = KIDX_TO_TI(ch, tc->no.kidx);
ta = tc->ta;
if (ta->find_tentry == NULL)
return (ENOTSUP);
error = ta->find_tentry(tc->astate, kti, tent);
IPFW_UH_RUNLOCK(ch);
return (error);
}
/*
* Flushes all entries or destroys given table.
* Data layout (v0)(current):
* Request: [ ipfw_obj_header ]
*
* Returns 0 on success
*/
static int
flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
int error;
struct _ipfw_obj_header *oh;
struct tid_info ti;
if (sd->valsize != sizeof(*oh))
return (EINVAL);
oh = (struct _ipfw_obj_header *)op3;
objheader_to_ti(oh, &ti);
if (op3->opcode == IP_FW_TABLE_XDESTROY)
error = destroy_table(ch, &ti);
else if (op3->opcode == IP_FW_TABLE_XFLUSH)
error = flush_table(ch, &ti);
else
return (ENOTSUP);
return (error);
}
static void
restart_flush(void *object, struct op_state *_state)
{
struct tableop_state *ts;
ts = (struct tableop_state *)_state;
if (ts->tc != object)
return;
/* Indicate we've called */
ts->modified = 1;
}
/*
* Flushes given table.
*
* Function create new table instance with the same
* parameters, swaps it with old one and
* flushes state without holding runtime WLOCK.
*
* Returns 0 on success.
*/
int
flush_table(struct ip_fw_chain *ch, struct tid_info *ti)
{
struct namedobj_instance *ni;
struct table_config *tc;
struct table_algo *ta;
struct table_info ti_old, ti_new, *tablestate;
void *astate_old, *astate_new;
char algostate[64], *pstate;
struct tableop_state ts;
int error;
uint16_t kidx;
uint8_t tflags;
/*
* Stage 1: save table algoritm.
* Reference found table to ensure it won't disappear.
*/
IPFW_UH_WLOCK(ch);
ni = CHAIN_TO_NI(ch);
if ((tc = find_table(ni, ti)) == NULL) {
IPFW_UH_WUNLOCK(ch);
return (ESRCH);
}
restart:
/* Set up swap handler */
memset(&ts, 0, sizeof(ts));
ts.opstate.func = restart_flush;
ts.tc = tc;
ta = tc->ta;
/* Do not flush readonly tables */
if ((ta->flags & TA_FLAG_READONLY) != 0) {
IPFW_UH_WUNLOCK(ch);
return (EACCES);
}
/* Save startup algo parameters */
if (ta->print_config != NULL) {
ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx),
algostate, sizeof(algostate));
pstate = algostate;
} else
pstate = NULL;
tflags = tc->tflags;
tc->no.refcnt++;
add_toperation_state(ch, &ts);
IPFW_UH_WUNLOCK(ch);
/*
* Stage 2: allocate new table instance using same algo.
*/
memset(&ti_new, 0, sizeof(struct table_info));
error = ta->init(ch, &astate_new, &ti_new, pstate, tflags);
/*
* Stage 3: swap old state pointers with newly-allocated ones.
* Decrease refcount.
*/
IPFW_UH_WLOCK(ch);
tc->no.refcnt--;
del_toperation_state(ch, &ts);
if (error != 0) {
IPFW_UH_WUNLOCK(ch);
return (error);
}
/*
* Restart operation if table swap has happened:
* even if algo may be the same, algo init parameters
* may change. Restart operation instead of doing
* complex checks.
*/
if (ts.modified != 0) {
ta->destroy(astate_new, &ti_new);
goto restart;
}
ni = CHAIN_TO_NI(ch);
kidx = tc->no.kidx;
tablestate = (struct table_info *)ch->tablestate;
IPFW_WLOCK(ch);
ti_old = tablestate[kidx];
tablestate[kidx] = ti_new;
IPFW_WUNLOCK(ch);
astate_old = tc->astate;
tc->astate = astate_new;
tc->ti_copy = ti_new;
tc->count = 0;
/* Notify algo on real @ti address */
if (ta->change_ti != NULL)
ta->change_ti(tc->astate, &tablestate[kidx]);
/*
* Stage 4: unref values.
*/
ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old);
IPFW_UH_WUNLOCK(ch);
/*
* Stage 5: perform real flush/destroy.
*/
ta->destroy(astate_old, &ti_old);
return (0);
}
/*
* Swaps two tables.
* Data layout (v0)(current):
* Request: [ ipfw_obj_header ipfw_obj_ntlv ]
*
* Returns 0 on success
*/
static int
swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
int error;
struct _ipfw_obj_header *oh;
struct tid_info ti_a, ti_b;
if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv))
return (EINVAL);
oh = (struct _ipfw_obj_header *)op3;
ntlv_to_ti(&oh->ntlv, &ti_a);
ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b);
error = swap_tables(ch, &ti_a, &ti_b);
return (error);
}
/*
* Swaps two tables of the same type/valtype.
*
* Checks if tables are compatible and limits
* permits swap, than actually perform swap.
*
* Each table consists of 2 different parts:
* config:
* @tc (with name, set, kidx) and rule bindings, which is "stable".
* number of items
* table algo
* runtime:
* runtime data @ti (ch->tablestate)
* runtime cache in @tc
* algo-specific data (@tc->astate)
*
* So we switch:
* all runtime data
* number of items
* table algo
*
* After that we call @ti change handler for each table.
*
* Note that referencing @tc won't protect tc->ta from change.
* XXX: Do we need to restrict swap between locked tables?
* XXX: Do we need to exchange ftype?
*
* Returns 0 on success.
*/
static int
swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
struct tid_info *b)
{
struct namedobj_instance *ni;
struct table_config *tc_a, *tc_b;
struct table_algo *ta;
struct table_info ti, *tablestate;
void *astate;
uint32_t count;
/*
* Stage 1: find both tables and ensure they are of
* the same type.
*/
IPFW_UH_WLOCK(ch);
ni = CHAIN_TO_NI(ch);
if ((tc_a = find_table(ni, a)) == NULL) {
IPFW_UH_WUNLOCK(ch);
return (ESRCH);
}
if ((tc_b = find_table(ni, b)) == NULL) {
IPFW_UH_WUNLOCK(ch);
return (ESRCH);
}
/* It is very easy to swap between the same table */
if (tc_a == tc_b) {
IPFW_UH_WUNLOCK(ch);
return (0);
}
/* Check type and value are the same */
if (tc_a->no.type != tc_b->no.type || tc_a->tflags != tc_b->tflags) {
IPFW_UH_WUNLOCK(ch);
return (EINVAL);
}
/* Check limits before swap */
if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) ||
(tc_b->limit != 0 && tc_a->count > tc_b->limit)) {
IPFW_UH_WUNLOCK(ch);
return (EFBIG);
}
/* Check if one of the tables is readonly */
if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) {
IPFW_UH_WUNLOCK(ch);
return (EACCES);
}
/* Notify we're going to swap */
rollback_toperation_state(ch, tc_a);
rollback_toperation_state(ch, tc_b);
/* Everything is fine, prepare to swap */
tablestate = (struct table_info *)ch->tablestate;
ti = tablestate[tc_a->no.kidx];
ta = tc_a->ta;
astate = tc_a->astate;
count = tc_a->count;
IPFW_WLOCK(ch);
/* a <- b */
tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx];
tc_a->ta = tc_b->ta;
tc_a->astate = tc_b->astate;
tc_a->count = tc_b->count;
/* b <- a */
tablestate[tc_b->no.kidx] = ti;
tc_b->ta = ta;
tc_b->astate = astate;
tc_b->count = count;
IPFW_WUNLOCK(ch);
/* Ensure tc.ti copies are in sync */
tc_a->ti_copy = tablestate[tc_a->no.kidx];
tc_b->ti_copy = tablestate[tc_b->no.kidx];
/* Notify both tables on @ti change */
if (tc_a->ta->change_ti != NULL)
tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]);
if (tc_b->ta->change_ti != NULL)
tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]);
IPFW_UH_WUNLOCK(ch);
return (0);
}
/*
* Destroys table specified by @ti.
* Data layout (v0)(current):
* Request: [ ip_fw3_opheader ]
*
* Returns 0 on success
*/
static int
destroy_table(struct ip_fw_chain *ch, struct tid_info *ti)
{
struct namedobj_instance *ni;
struct table_config *tc;
IPFW_UH_WLOCK(ch);
ni = CHAIN_TO_NI(ch);
if ((tc = find_table(ni, ti)) == NULL) {
IPFW_UH_WUNLOCK(ch);
return (ESRCH);
}
/* Do not permit destroying referenced tables */
if (tc->no.refcnt > 0) {
IPFW_UH_WUNLOCK(ch);
return (EBUSY);
}
IPFW_WLOCK(ch);
unlink_table(ch, tc);
IPFW_WUNLOCK(ch);
/* Free obj index */
if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0)
printf("Error unlinking kidx %d from table %s\n",
tc->no.kidx, tc->tablename);
/* Unref values used in tables while holding UH lock */
ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy);
IPFW_UH_WUNLOCK(ch);
free_table_config(ni, tc);
return (0);
}
static uint32_t
roundup2p(uint32_t v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return (v);
}
/*
* Grow tables index.
*
* Returns 0 on success.
*/
int
ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables)
{
unsigned int ntables_old, tbl;
struct namedobj_instance *ni;
void *new_idx, *old_tablestate, *tablestate;
struct table_info *ti;
struct table_config *tc;
int i, new_blocks;
/* Check new value for validity */
if (ntables == 0)
return (EINVAL);
if (ntables > IPFW_TABLES_MAX)
ntables = IPFW_TABLES_MAX;
/* Alight to nearest power of 2 */
ntables = (unsigned int)roundup2p(ntables);
/* Allocate new pointers */
tablestate = malloc(ntables * sizeof(struct table_info),
M_IPFW, M_WAITOK | M_ZERO);
ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks);
IPFW_UH_WLOCK(ch);
tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables;
ni = CHAIN_TO_NI(ch);
/* Temporary restrict decreasing max_tables */
if (ntables < V_fw_tables_max) {
/*
* FIXME: Check if we really can shrink
*/
IPFW_UH_WUNLOCK(ch);
return (EINVAL);
}
/* Copy table info/indices */
memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl);
ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks);
IPFW_WLOCK(ch);
/* Change pointers */
old_tablestate = ch->tablestate;
ch->tablestate = tablestate;
ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks);
ntables_old = V_fw_tables_max;
V_fw_tables_max = ntables;
IPFW_WUNLOCK(ch);
/* Notify all consumers that their @ti pointer has changed */
ti = (struct table_info *)ch->tablestate;
for (i = 0; i < tbl; i++, ti++) {
if (ti->lookup == NULL)
continue;
tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i);
if (tc == NULL || tc->ta->change_ti == NULL)
continue;
tc->ta->change_ti(tc->astate, ti);
}
IPFW_UH_WUNLOCK(ch);
/* Free old pointers */
free(old_tablestate, M_IPFW);
ipfw_objhash_bitmap_free(new_idx, new_blocks);
return (0);
}
/*
* Switch between "set 0" and "rule's set" table binding,
* Check all ruleset bindings and permits changing
* IFF each binding has both rule AND table in default set (set 0).
*
* Returns 0 on success.
*/
int
ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets)
{
struct namedobj_instance *ni;
struct named_object *no;
struct ip_fw *rule;
ipfw_insn *cmd;
int cmdlen, i, l;
uint16_t kidx;
uint8_t type;
IPFW_UH_WLOCK(ch);
if (V_fw_tables_sets == sets) {
IPFW_UH_WUNLOCK(ch);
return (0);
}
ni = CHAIN_TO_NI(ch);
/*
* Scan all rules and examine tables opcodes.
*/
for (i = 0; i < ch->n_rules; i++) {
rule = ch->map[i];
l = rule->cmd_len;
cmd = rule->cmd;
cmdlen = 0;
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (classify_table_opcode(cmd, &kidx, &type) != 0)
continue;
no = ipfw_objhash_lookup_kidx(ni, kidx);
/* Check if both table object and rule has the set 0 */
if (no->set != 0 || rule->set != 0) {
IPFW_UH_WUNLOCK(ch);
return (EBUSY);
}
}
}
V_fw_tables_sets = sets;
IPFW_UH_WUNLOCK(ch);
return (0);
}
/*
* Lookup an IP @addr in table @tbl.
* Stores found value in @val.
*
* Returns 1 if @addr was found.
*/
int
ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
uint32_t *val)
{
struct table_info *ti;
ti = KIDX_TO_TI(ch, tbl);
return (ti->lookup(ti, &addr, sizeof(in_addr_t), val));
}
/*
* Lookup an arbtrary key @paddr of legth @plen in table @tbl.
* Stores found value in @val.
*
* Returns 1 if key was found.
*/
int
ipfw_lookup_table_extended(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen,
void *paddr, uint32_t *val)
{
struct table_info *ti;
ti = KIDX_TO_TI(ch, tbl);
return (ti->lookup(ti, paddr, plen, val));
}
/*
* Info/List/dump support for tables.
*
*/
/*
* High-level 'get' cmds sysctl handlers
*/
/*
* Lists all tables currently available in kernel.
* Data layout (v0)(current):
* Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
* Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ]
*
* Returns 0 on success
*/
static int
list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
struct _ipfw_obj_lheader *olh;
int error;
olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
if (olh == NULL)
return (EINVAL);
if (sd->valsize < olh->size)
return (EINVAL);
IPFW_UH_RLOCK(ch);
error = export_tables(ch, olh, sd);
IPFW_UH_RUNLOCK(ch);
return (error);
}
/*
* Store table info to buffer provided by @sd.
* Data layout (v0)(current):
* Request: [ ipfw_obj_header ipfw_xtable_info(empty)]
* Reply: [ ipfw_obj_header ipfw_xtable_info ]
*
* Returns 0 on success.
*/
static int
describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
struct _ipfw_obj_header *oh;
struct table_config *tc;
struct tid_info ti;
size_t sz;
sz = sizeof(*oh) + sizeof(ipfw_xtable_info);
oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
if (oh == NULL)
return (EINVAL);
objheader_to_ti(oh, &ti);
IPFW_UH_RLOCK(ch);
if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
IPFW_UH_RUNLOCK(ch);
return (ESRCH);
}
export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1));
IPFW_UH_RUNLOCK(ch);
return (0);
}
/*
* Modifies existing table.
* Data layout (v0)(current):
* Request: [ ipfw_obj_header ipfw_xtable_info ]
*
* Returns 0 on success
*/
static int
modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
struct _ipfw_obj_header *oh;
ipfw_xtable_info *i;
char *tname;
struct tid_info ti;
struct namedobj_instance *ni;
struct table_config *tc;
if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
return (EINVAL);
oh = (struct _ipfw_obj_header *)sd->kbuf;
i = (ipfw_xtable_info *)(oh + 1);
/*
* Verify user-supplied strings.
* Check for null-terminated/zero-length strings/
*/
tname = oh->ntlv.name;
if (ipfw_check_table_name(tname) != 0)
return (EINVAL);
objheader_to_ti(oh, &ti);
ti.type = i->type;
IPFW_UH_WLOCK(ch);
ni = CHAIN_TO_NI(ch);
if ((tc = find_table(ni, &ti)) == NULL) {
IPFW_UH_WUNLOCK(ch);
return (ESRCH);
}
/* Do not support any modifications for readonly tables */
if ((tc->ta->flags & TA_FLAG_READONLY) != 0) {
IPFW_UH_WUNLOCK(ch);
return (EACCES);
}
if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0)
tc->limit = i->limit;
if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0)
tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0);
IPFW_UH_WUNLOCK(ch);
return (0);
}
/*
* Creates new table.
* Data layout (v0)(current):
* Request: [ ipfw_obj_header ipfw_xtable_info ]
*
* Returns 0 on success
*/
static int
create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
struct _ipfw_obj_header *oh;
ipfw_xtable_info *i;
char *tname, *aname;
struct tid_info ti;
struct namedobj_instance *ni;
struct table_config *tc;
if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
return (EINVAL);
oh = (struct _ipfw_obj_header *)sd->kbuf;
i = (ipfw_xtable_info *)(oh + 1);
/*
* Verify user-supplied strings.
* Check for null-terminated/zero-length strings/
*/
tname = oh->ntlv.name;
aname = i->algoname;
if (ipfw_check_table_name(tname) != 0 ||
strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname))
return (EINVAL);
if (aname[0] == '\0') {
/* Use default algorithm */
aname = NULL;
}
objheader_to_ti(oh, &ti);
ti.type = i->type;
ni = CHAIN_TO_NI(ch);
IPFW_UH_RLOCK(ch);
if ((tc = find_table(ni, &ti)) != NULL) {
IPFW_UH_RUNLOCK(ch);
return (EEXIST);
}
IPFW_UH_RUNLOCK(ch);
return (create_table_internal(ch, &ti, aname, i, NULL, 0));
}
/*
* Creates new table based on @ti and @aname.
*
* Relies on table name checking inside find_name_tlv()
* Assume @aname to be checked and valid.
* Stores allocated table kidx inside @pkidx (if non-NULL).
* Reference created table if @compat is non-zero.
*
* Returns 0 on success.
*/
static int
create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat)
{
struct namedobj_instance *ni;
struct table_config *tc, *tc_new, *tmp;
struct table_algo *ta;
uint16_t kidx;
ni = CHAIN_TO_NI(ch);
ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname);
if (ta == NULL)
return (ENOTSUP);
tc = alloc_table_config(ch, ti, ta, aname, i->tflags);
if (tc == NULL)
return (ENOMEM);
tc->vmask = i->vmask;
tc->limit = i->limit;
if (ta->flags & TA_FLAG_READONLY)
tc->locked = 1;
else
tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0;
IPFW_UH_WLOCK(ch);
/* Check if table has been already created */
tc_new = find_table(ni, ti);
if (tc_new != NULL) {
/*
* Compat: do not fail if we're
* requesting to create existing table
* which has the same type
*/
if (compat == 0 || tc_new->no.type != tc->no.type) {
IPFW_UH_WUNLOCK(ch);
free_table_config(ni, tc);
return (EEXIST);
}
/* Exchange tc and tc_new for proper refcounting & freeing */
tmp = tc;
tc = tc_new;
tc_new = tmp;
} else {
/* New table */
if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) {
IPFW_UH_WUNLOCK(ch);
printf("Unable to allocate table index."
" Consider increasing net.inet.ip.fw.tables_max");
free_table_config(ni, tc);
return (EBUSY);
}
tc->no.kidx = kidx;
IPFW_WLOCK(ch);
link_table(ch, tc);
IPFW_WUNLOCK(ch);
}
if (compat != 0)
tc->no.refcnt++;
if (pkidx != NULL)
*pkidx = tc->no.kidx;
IPFW_UH_WUNLOCK(ch);
if (tc_new != NULL)
free_table_config(ni, tc_new);
return (0);
}
static void
ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti)
{
memset(ti, 0, sizeof(struct tid_info));
ti->set = ntlv->set;
ti->uidx = ntlv->idx;
ti->tlvs = ntlv;
ti->tlen = ntlv->head.length;
}
static void
objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti)
{
ntlv_to_ti(&oh->ntlv, ti);
}
/*
* Exports basic table info as name TLV.
* Used inside dump_static_rules() to provide info
* about all tables referenced by current ruleset.
*
* Returns 0 on success.
*/
int
ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx,
struct sockopt_data *sd)
{
struct namedobj_instance *ni;
struct named_object *no;
ipfw_obj_ntlv *ntlv;
ni = CHAIN_TO_NI(ch);
no = ipfw_objhash_lookup_kidx(ni, kidx);
KASSERT(no != NULL, ("invalid table kidx passed"));
ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
if (ntlv == NULL)
return (ENOMEM);
ntlv->head.type = IPFW_TLV_TBL_NAME;
ntlv->head.length = sizeof(*ntlv);
ntlv->idx = no->kidx;
strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
return (0);
}
/*
* Marks every table kidx used in @rule with bit in @bmask.
* Used to generate bitmask of referenced tables for given ruleset.
*
* Returns number of newly-referenced tables.
*/
int
ipfw_mark_table_kidx(struct ip_fw_chain *chain, struct ip_fw *rule,
uint32_t *bmask)
{
int cmdlen, l, count;
ipfw_insn *cmd;
uint16_t kidx;
uint8_t type;
l = rule->cmd_len;
cmd = rule->cmd;
cmdlen = 0;
count = 0;
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (classify_table_opcode(cmd, &kidx, &type) != 0)
continue;
if ((bmask[kidx / 32] & (1 << (kidx % 32))) == 0)
count++;
bmask[kidx / 32] |= 1 << (kidx % 32);
}
return (count);
}
struct dump_args {
struct ip_fw_chain *ch;
struct table_info *ti;
struct table_config *tc;
struct sockopt_data *sd;
uint32_t cnt;
uint16_t uidx;
int error;
uint32_t size;
ipfw_table_entry *ent;
ta_foreach_f *f;
void *farg;
ipfw_obj_tentry tent;
};
static int
count_ext_entries(void *e, void *arg)
{
struct dump_args *da;
da = (struct dump_args *)arg;
da->cnt++;
return (0);
}
/*
* Gets number of items from table either using
* internal counter or calling algo callback for
* externally-managed tables.
*
* Returns number of records.
*/
static uint32_t
table_get_count(struct ip_fw_chain *ch, struct table_config *tc)
{
struct table_info *ti;
struct table_algo *ta;
struct dump_args da;
ti = KIDX_TO_TI(ch, tc->no.kidx);
ta = tc->ta;
/* Use internal counter for self-managed tables */
if ((ta->flags & TA_FLAG_READONLY) == 0)
return (tc->count);
/* Use callback to quickly get number of items */
if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0)
return (ta->get_count(tc->astate, ti));
/* Count number of iterms ourselves */
memset(&da, 0, sizeof(da));
ta->foreach(tc->astate, ti, count_ext_entries, &da);
return (da.cnt);
}
/*
* Exports table @tc info into standard ipfw_xtable_info format.
*/
static void
export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
ipfw_xtable_info *i)
{
struct table_info *ti;
struct table_algo *ta;
i->type = tc->no.type;
i->tflags = tc->tflags;
i->vmask = tc->vmask;
i->set = tc->no.set;
i->kidx = tc->no.kidx;
i->refcnt = tc->no.refcnt;
i->count = table_get_count(ch, tc);
i->limit = tc->limit;
i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0;
i->size = tc->count * sizeof(ipfw_obj_tentry);
i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
strlcpy(i->tablename, tc->tablename, sizeof(i->tablename));
ti = KIDX_TO_TI(ch, tc->no.kidx);
ta = tc->ta;
if (ta->print_config != NULL) {
/* Use algo function to print table config to string */
ta->print_config(tc->astate, ti, i->algoname,
sizeof(i->algoname));
} else
strlcpy(i->algoname, ta->name, sizeof(i->algoname));
/* Dump algo-specific data, if possible */
if (ta->dump_tinfo != NULL) {
ta->dump_tinfo(tc->astate, ti, &i->ta_info);
i->ta_info.flags |= IPFW_TATFLAGS_DATA;
}
}
struct dump_table_args {
struct ip_fw_chain *ch;
struct sockopt_data *sd;
};
static void
export_table_internal(struct namedobj_instance *ni, struct named_object *no,
void *arg)
{
ipfw_xtable_info *i;
struct dump_table_args *dta;
dta = (struct dump_table_args *)arg;
i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i));
KASSERT(i != 0, ("previously checked buffer is not enough"));
export_table_info(dta->ch, (struct table_config *)no, i);
}
/*
* Export all tables as ipfw_xtable_info structures to
* storage provided by @sd.
*
* If supplied buffer is too small, fills in required size
* and returns ENOMEM.
* Returns 0 on success.
*/
static int
export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
struct sockopt_data *sd)
{
uint32_t size;
uint32_t count;
struct dump_table_args dta;
count = ipfw_objhash_count(CHAIN_TO_NI(ch));
size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader);
/* Fill in header regadless of buffer size */
olh->count = count;
olh->objsize = sizeof(ipfw_xtable_info);
if (size > olh->size) {
olh->size = size;
return (ENOMEM);
}
olh->size = size;
dta.ch = ch;
dta.sd = sd;
ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta);
return (0);
}
/*
* Dumps all table data
* Data layout (v1)(current):
* Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size
* Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ]
*
* Returns 0 on success
*/
static int
dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
struct _ipfw_obj_header *oh;
ipfw_xtable_info *i;
struct tid_info ti;
struct table_config *tc;
struct table_algo *ta;
struct dump_args da;
uint32_t sz;
sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
if (oh == NULL)
return (EINVAL);
i = (ipfw_xtable_info *)(oh + 1);
objheader_to_ti(oh, &ti);
IPFW_UH_RLOCK(ch);
if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
IPFW_UH_RUNLOCK(ch);
return (ESRCH);
}
export_table_info(ch, tc, i);
if (sd->valsize < i->size) {
/*
* Submitted buffer size is not enough.
* WE've already filled in @i structure with
* relevant table info including size, so we
* can return. Buffer will be flushed automatically.
*/
IPFW_UH_RUNLOCK(ch);
return (ENOMEM);
}
/*
* Do the actual dump in eXtended format
*/
memset(&da, 0, sizeof(da));
da.ch = ch;
da.ti = KIDX_TO_TI(ch, tc->no.kidx);
da.tc = tc;
da.sd = sd;
ta = tc->ta;
ta->foreach(tc->astate, da.ti, dump_table_tentry, &da);
IPFW_UH_RUNLOCK(ch);
return (da.error);
}
/*
* Dumps all table data
* Data layout (version 0)(legacy):
* Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE()
* Reply: [ ipfw_xtable ipfw_table_xentry x N ]
*
* Returns 0 on success
*/
static int
dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
ipfw_xtable *xtbl;
struct tid_info ti;
struct table_config *tc;
struct table_algo *ta;
struct dump_args da;
size_t sz, count;
xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable));
if (xtbl == NULL)
return (EINVAL);
memset(&ti, 0, sizeof(ti));
ti.uidx = xtbl->tbl;
IPFW_UH_RLOCK(ch);
if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
IPFW_UH_RUNLOCK(ch);
return (0);
}
count = table_get_count(ch, tc);
sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable);
xtbl->cnt = count;
xtbl->size = sz;
xtbl->type = tc->no.type;
xtbl->tbl = ti.uidx;
if (sd->valsize < sz) {
/*
* Submitted buffer size is not enough.
* WE've already filled in @i structure with
* relevant table info including size, so we
* can return. Buffer will be flushed automatically.
*/
IPFW_UH_RUNLOCK(ch);
return (ENOMEM);
}
/* Do the actual dump in eXtended format */
memset(&da, 0, sizeof(da));
da.ch = ch;
da.ti = KIDX_TO_TI(ch, tc->no.kidx);
da.tc = tc;
da.sd = sd;
ta = tc->ta;
ta->foreach(tc->astate, da.ti, dump_table_xentry, &da);
IPFW_UH_RUNLOCK(ch);
return (0);
}
/*
* Legacy function to retrieve number of items in table.
*/
static int
get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
uint32_t *tbl;
struct tid_info ti;
size_t sz;
int error;
sz = sizeof(*op3) + sizeof(uint32_t);
op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz);
if (op3 == NULL)
return (EINVAL);
tbl = (uint32_t *)(op3 + 1);
memset(&ti, 0, sizeof(ti));
ti.uidx = *tbl;
IPFW_UH_RLOCK(ch);
error = ipfw_count_xtable(ch, &ti, tbl);
IPFW_UH_RUNLOCK(ch);
return (error);
}
/*
* Legacy IP_FW_TABLE_GETSIZE handler
*/
int
ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
{
struct table_config *tc;
if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
return (ESRCH);
*cnt = table_get_count(ch, tc);
return (0);
}
/*
* Legacy IP_FW_TABLE_XGETSIZE handler
*/
int
ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
{
struct table_config *tc;
uint32_t count;
if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) {
*cnt = 0;
return (0); /* 'table all list' requires success */
}
count = table_get_count(ch, tc);
*cnt = count * sizeof(ipfw_table_xentry);
if (count > 0)
*cnt += sizeof(ipfw_xtable);
return (0);
}
static int
dump_table_entry(void *e, void *arg)
{
struct dump_args *da;
struct table_config *tc;
struct table_algo *ta;
ipfw_table_entry *ent;
struct table_value *pval;
int error;
da = (struct dump_args *)arg;
tc = da->tc;
ta = tc->ta;
/* Out of memory, returning */
if (da->cnt == da->size)
return (1);
ent = da->ent++;
ent->tbl = da->uidx;
da->cnt++;
error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
if (error != 0)
return (error);
ent->addr = da->tent.k.addr.s_addr;
ent->masklen = da->tent.masklen;
pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
ent->value = ipfw_export_table_value_legacy(pval);
return (0);
}
/*
* Dumps table in pre-8.1 legacy format.
*/
int
ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti,
ipfw_table *tbl)
{
struct table_config *tc;
struct table_algo *ta;
struct dump_args da;
tbl->cnt = 0;
if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
return (0); /* XXX: We should return ESRCH */
ta = tc->ta;
/* This dump format supports IPv4 only */
if (tc->no.type != IPFW_TABLE_ADDR)
return (0);
memset(&da, 0, sizeof(da));
da.ch = ch;
da.ti = KIDX_TO_TI(ch, tc->no.kidx);
da.tc = tc;
da.ent = &tbl->ent[0];
da.size = tbl->size;
tbl->cnt = 0;
ta->foreach(tc->astate, da.ti, dump_table_entry, &da);
tbl->cnt = da.cnt;
return (0);
}
/*
* Dumps table entry in eXtended format (v1)(current).
*/
static int
dump_table_tentry(void *e, void *arg)
{
struct dump_args *da;
struct table_config *tc;
struct table_algo *ta;
struct table_value *pval;
ipfw_obj_tentry *tent;
int error;
da = (struct dump_args *)arg;
tc = da->tc;
ta = tc->ta;
tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent));
/* Out of memory, returning */
if (tent == NULL) {
da->error = ENOMEM;
return (1);
}
tent->head.length = sizeof(ipfw_obj_tentry);
tent->idx = da->uidx;
error = ta->dump_tentry(tc->astate, da->ti, e, tent);
if (error != 0)
return (error);
pval = get_table_value(da->ch, da->tc, tent->v.kidx);
ipfw_export_table_value_v1(pval, &tent->v.value);
return (0);
}
/*
* Dumps table entry in eXtended format (v0).
*/
static int
dump_table_xentry(void *e, void *arg)
{
struct dump_args *da;
struct table_config *tc;
struct table_algo *ta;
ipfw_table_xentry *xent;
ipfw_obj_tentry *tent;
struct table_value *pval;
int error;
da = (struct dump_args *)arg;
tc = da->tc;
ta = tc->ta;
xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent));
/* Out of memory, returning */
if (xent == NULL)
return (1);
xent->len = sizeof(ipfw_table_xentry);
xent->tbl = da->uidx;
memset(&da->tent, 0, sizeof(da->tent));
tent = &da->tent;
error = ta->dump_tentry(tc->astate, da->ti, e, tent);
if (error != 0)
return (error);
/* Convert current format to previous one */
xent->masklen = tent->masklen;
pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
xent->value = ipfw_export_table_value_legacy(pval);
/* Apply some hacks */
if (tc->no.type == IPFW_TABLE_ADDR && tent->subtype == AF_INET) {
xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr;
xent->flags = IPFW_TCF_INET;
} else
memcpy(&xent->k, &tent->k, sizeof(xent->k));
return (0);
}
/*
* Helper function to export table algo data
* to tentry format before calling user function.
*
* Returns 0 on success.
*/
static int
prepare_table_tentry(void *e, void *arg)
{
struct dump_args *da;
struct table_config *tc;
struct table_algo *ta;
int error;
da = (struct dump_args *)arg;
tc = da->tc;
ta = tc->ta;
error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
if (error != 0)
return (error);
da->f(&da->tent, da->farg);
return (0);
}
/*
* Allow external consumers to read table entries in standard format.
*/
int
ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx,
ta_foreach_f *f, void *arg)
{
struct namedobj_instance *ni;
struct table_config *tc;
struct table_algo *ta;
struct dump_args da;
ni = CHAIN_TO_NI(ch);
tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
if (tc == NULL)
return (ESRCH);
ta = tc->ta;
memset(&da, 0, sizeof(da));
da.ch = ch;
da.ti = KIDX_TO_TI(ch, tc->no.kidx);
da.tc = tc;
da.f = f;
da.farg = arg;
ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da);
return (0);
}
/*
* Table algorithms
*/
/*
* Finds algoritm by index, table type or supplied name.
*
* Returns pointer to algo or NULL.
*/
static struct table_algo *
find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name)
{
int i, l;
struct table_algo *ta;
if (ti->type > IPFW_TABLE_MAXTYPE)
return (NULL);
/* Search by index */
if (ti->atype != 0) {
if (ti->atype > tcfg->algo_count)
return (NULL);
return (tcfg->algo[ti->atype]);
}
if (name == NULL) {
/* Return default algorithm for given type if set */
return (tcfg->def_algo[ti->type]);
}
/* Search by name */
/* TODO: better search */
for (i = 1; i <= tcfg->algo_count; i++) {
ta = tcfg->algo[i];
/*
* One can supply additional algorithm
* parameters so we compare only the first word
* of supplied name:
* 'addr:chash hsize=32'
* '^^^^^^^^^'
*
*/
l = strlen(ta->name);
if (strncmp(name, ta->name, l) != 0)
continue;
if (name[l] != '\0' && name[l] != ' ')
continue;
/* Check if we're requesting proper table type */
if (ti->type != 0 && ti->type != ta->type)
return (NULL);
return (ta);
}
return (NULL);
}
/*
* Register new table algo @ta.
* Stores algo id inside @idx.
*
* Returns 0 on success.
*/
int
ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size,
int *idx)
{
struct tables_config *tcfg;
struct table_algo *ta_new;
size_t sz;
if (size > sizeof(struct table_algo))
return (EINVAL);
/* Check for the required on-stack size for add/del */
sz = roundup2(ta->ta_buf_size, sizeof(void *));
if (sz > TA_BUF_SZ)
return (EINVAL);
KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE"));
/* Copy algorithm data to stable storage. */
ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO);
memcpy(ta_new, ta, size);
tcfg = CHAIN_TO_TCFG(ch);
KASSERT(tcfg->algo_count < 255, ("Increase algo array size"));
tcfg->algo[++tcfg->algo_count] = ta_new;
ta_new->idx = tcfg->algo_count;
/* Set algorithm as default one for given type */
if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 &&
tcfg->def_algo[ta_new->type] == NULL)
tcfg->def_algo[ta_new->type] = ta_new;
*idx = ta_new->idx;
return (0);
}
/*
* Unregisters table algo using @idx as id.
* XXX: It is NOT safe to call this function in any place
* other than ipfw instance destroy handler.
*/
void
ipfw_del_table_algo(struct ip_fw_chain *ch, int idx)
{
struct tables_config *tcfg;
struct table_algo *ta;
tcfg = CHAIN_TO_TCFG(ch);
KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d",
idx, tcfg->algo_count));
ta = tcfg->algo[idx];
KASSERT(ta != NULL, ("algo idx %d is NULL", idx));
if (tcfg->def_algo[ta->type] == ta)
tcfg->def_algo[ta->type] = NULL;
free(ta, M_IPFW);
}
/*
* Lists all table algorithms currently available.
* Data layout (v0)(current):
* Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
* Reply: [ ipfw_obj_lheader ipfw_ta_info x N ]
*
* Returns 0 on success
*/
static int
list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
struct sockopt_data *sd)
{
struct _ipfw_obj_lheader *olh;
struct tables_config *tcfg;
ipfw_ta_info *i;
struct table_algo *ta;
uint32_t count, n, size;
olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
if (olh == NULL)
return (EINVAL);
if (sd->valsize < olh->size)
return (EINVAL);
IPFW_UH_RLOCK(ch);
tcfg = CHAIN_TO_TCFG(ch);
count = tcfg->algo_count;
size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader);
/* Fill in header regadless of buffer size */
olh->count = count;
olh->objsize = sizeof(ipfw_ta_info);
if (size > olh->size) {
olh->size = size;
IPFW_UH_RUNLOCK(ch);
return (ENOMEM);
}
olh->size = size;
for (n = 1; n <= count; n++) {
i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i));
KASSERT(i != 0, ("previously checked buffer is not enough"));
ta = tcfg->algo[n];
strlcpy(i->algoname, ta->name, sizeof(i->algoname));
i->type = ta->type;
i->refcnt = ta->refcnt;
}
IPFW_UH_RUNLOCK(ch);
return (0);
}
/*
* Tables rewriting code
*/
/*
* Determine table number and lookup type for @cmd.
* Fill @tbl and @type with appropriate values.
* Returns 0 for relevant opcodes, 1 otherwise.
*/
static int
classify_table_opcode(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
{
ipfw_insn_if *cmdif;
int skip;
uint16_t v;
skip = 1;
switch (cmd->opcode) {
case O_IP_SRC_LOOKUP:
case O_IP_DST_LOOKUP:
/* Basic IPv4/IPv6 or u32 lookups */
*puidx = cmd->arg1;
/* Assume ADDR by default */
*ptype = IPFW_TABLE_ADDR;
skip = 0;
if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) {
/*
* generic lookup. The key must be
* in 32bit big-endian format.
*/
v = ((ipfw_insn_u32 *)cmd)->d[1];
switch (v) {
case 0:
case 1:
/* IPv4 src/dst */
break;
case 2:
case 3:
/* src/dst port */
*ptype = IPFW_TABLE_NUMBER;
break;
case 4:
/* uid/gid */
*ptype = IPFW_TABLE_NUMBER;
break;
case 5:
/* jid */
*ptype = IPFW_TABLE_NUMBER;
break;
case 6:
/* dscp */
*ptype = IPFW_TABLE_NUMBER;
break;
}
}
break;
case O_XMIT:
case O_RECV:
case O_VIA:
/* Interface table, possibly */
cmdif = (ipfw_insn_if *)cmd;
if (cmdif->name[0] != '\1')
break;
*ptype = IPFW_TABLE_INTERFACE;
*puidx = cmdif->p.kidx;
skip = 0;
break;
case O_IP_FLOW_LOOKUP:
*puidx = cmd->arg1;
*ptype = IPFW_TABLE_FLOW;
skip = 0;
break;
}
return (skip);
}
/*
* Sets new table value for given opcode.
* Assume the same opcodes as classify_table_opcode()
*/
static void
update_table_opcode(ipfw_insn *cmd, uint16_t idx)
{
ipfw_insn_if *cmdif;
switch (cmd->opcode) {
case O_IP_SRC_LOOKUP:
case O_IP_DST_LOOKUP:
/* Basic IPv4/IPv6 or u32 lookups */
cmd->arg1 = idx;
break;
case O_XMIT:
case O_RECV:
case O_VIA:
/* Interface table, possibly */
cmdif = (ipfw_insn_if *)cmd;
cmdif->p.kidx = idx;
break;
case O_IP_FLOW_LOOKUP:
cmd->arg1 = idx;
break;
}
}
/*
* Checks table name for validity.
* Enforce basic length checks, the rest
* should be done in userland.
*
* Returns 0 if name is considered valid.
*/
int
ipfw_check_table_name(char *name)
{
int nsize;
ipfw_obj_ntlv *ntlv = NULL;
nsize = sizeof(ntlv->name);
if (strnlen(name, nsize) == nsize)
return (EINVAL);
if (name[0] == '\0')
return (EINVAL);
/*
* TODO: do some more complicated checks
*/
return (0);
}
/*
* Find tablename TLV by @uid.
* Check @tlvs for valid data inside.
*
* Returns pointer to found TLV or NULL.
*/
static ipfw_obj_ntlv *
find_name_tlv(void *tlvs, int len, uint16_t uidx)
{
ipfw_obj_ntlv *ntlv;
uintptr_t pa, pe;
int l;
pa = (uintptr_t)tlvs;
pe = pa + len;
l = 0;
for (; pa < pe; pa += l) {
ntlv = (ipfw_obj_ntlv *)pa;
l = ntlv->head.length;
if (l != sizeof(*ntlv))
return (NULL);
if (ntlv->head.type != IPFW_TLV_TBL_NAME)
continue;
if (ntlv->idx != uidx)
continue;
if (ipfw_check_table_name(ntlv->name) != 0)
return (NULL);
return (ntlv);
}
return (NULL);
}
/*
* Finds table config based on either legacy index
* or name in ntlv.
* Note @ti structure contains unchecked data from userland.
*
* Returns pointer to table_config or NULL.
*/
static struct table_config *
find_table(struct namedobj_instance *ni, struct tid_info *ti)
{
char *name, bname[16];
struct named_object *no;
ipfw_obj_ntlv *ntlv;
uint32_t set;
if (ti->tlvs != NULL) {
ntlv = find_name_tlv(ti->tlvs, ti->tlen, ti->uidx);
if (ntlv == NULL)
return (NULL);
name = ntlv->name;
/*
* Use set provided by @ti instead of @ntlv one.
* This is needed due to different sets behavior
* controlled by V_fw_tables_sets.
*/
set = ti->set;
} else {
snprintf(bname, sizeof(bname), "%d", ti->uidx);
name = bname;
set = 0;
}
no = ipfw_objhash_lookup_name(ni, set, name);
return ((struct table_config *)no);
}
/*
* Allocate new table config structure using
* specified @algo and @aname.
*
* Returns pointer to config or NULL.
*/
static struct table_config *
alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti,
struct table_algo *ta, char *aname, uint8_t tflags)
{
char *name, bname[16];
struct table_config *tc;
int error;
ipfw_obj_ntlv *ntlv;
uint32_t set;
if (ti->tlvs != NULL) {
ntlv = find_name_tlv(ti->tlvs, ti->tlen, ti->uidx);
if (ntlv == NULL)
return (NULL);
name = ntlv->name;
set = ntlv->set;
} else {
snprintf(bname, sizeof(bname), "%d", ti->uidx);
name = bname;
set = 0;
}
tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO);
tc->no.name = tc->tablename;
tc->no.type = ta->type;
tc->no.set = set;
tc->tflags = tflags;
tc->ta = ta;
strlcpy(tc->tablename, name, sizeof(tc->tablename));
/* Set "shared" value type by default */
tc->vshared = 1;
if (ti->tlvs == NULL) {
tc->no.compat = 1;
tc->no.uidx = ti->uidx;
}
/* Preallocate data structures for new tables */
error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags);
if (error != 0) {
free(tc, M_IPFW);
return (NULL);
}
return (tc);
}
/*
* Destroys table state and config.
*/
static void
free_table_config(struct namedobj_instance *ni, struct table_config *tc)
{
KASSERT(tc->linked == 0, ("free() on linked config"));
/*
* We're using ta without any locking/referencing.
* TODO: fix this if we're going to use unloadable algos.
*/
tc->ta->destroy(tc->astate, &tc->ti_copy);
free(tc, M_IPFW);
}
/*
* Links @tc to @chain table named instance.
* Sets appropriate type/states in @chain table info.
*/
static void
link_table(struct ip_fw_chain *ch, struct table_config *tc)
{
struct namedobj_instance *ni;
struct table_info *ti;
uint16_t kidx;
IPFW_UH_WLOCK_ASSERT(ch);
IPFW_WLOCK_ASSERT(ch);
ni = CHAIN_TO_NI(ch);
kidx = tc->no.kidx;
ipfw_objhash_add(ni, &tc->no);
ti = KIDX_TO_TI(ch, kidx);
*ti = tc->ti_copy;
/* Notify algo on real @ti address */
if (tc->ta->change_ti != NULL)
tc->ta->change_ti(tc->astate, ti);
tc->linked = 1;
tc->ta->refcnt++;
}
/*
* Unlinks @tc from @chain table named instance.
* Zeroes states in @chain and stores them in @tc.
*/
static void
unlink_table(struct ip_fw_chain *ch, struct table_config *tc)
{
struct namedobj_instance *ni;
struct table_info *ti;
uint16_t kidx;
IPFW_UH_WLOCK_ASSERT(ch);
IPFW_WLOCK_ASSERT(ch);
ni = CHAIN_TO_NI(ch);
kidx = tc->no.kidx;
/* Clear state. @ti copy is already saved inside @tc */
ipfw_objhash_del(ni, &tc->no);
ti = KIDX_TO_TI(ch, kidx);
memset(ti, 0, sizeof(struct table_info));
tc->linked = 0;
tc->ta->refcnt--;
/* Notify algo on real @ti address */
if (tc->ta->change_ti != NULL)
tc->ta->change_ti(tc->astate, NULL);
}
struct swap_table_args {
int set;
int new_set;
int mv;
};
/*
* Change set for each matching table.
*
* Ensure we dispatch each table once by setting/checking ochange
* fields.
*/
static void
swap_table_set(struct namedobj_instance *ni, struct named_object *no,
void *arg)
{
struct table_config *tc;
struct swap_table_args *sta;
tc = (struct table_config *)no;
sta = (struct swap_table_args *)arg;
if (no->set != sta->set && (no->set != sta->new_set || sta->mv != 0))
return;
if (tc->ochanged != 0)
return;
tc->ochanged = 1;
ipfw_objhash_del(ni, no);
if (no->set == sta->set)
no->set = sta->new_set;
else
no->set = sta->set;
ipfw_objhash_add(ni, no);
}
/*
* Cleans up ochange field for all tables.
*/
static void
clean_table_set_data(struct namedobj_instance *ni, struct named_object *no,
void *arg)
{
struct table_config *tc;
struct swap_table_args *sta;
tc = (struct table_config *)no;
sta = (struct swap_table_args *)arg;
tc->ochanged = 0;
}
/*
* Swaps tables within two sets.
*/
void
ipfw_swap_tables_sets(struct ip_fw_chain *ch, uint32_t set,
uint32_t new_set, int mv)
{
struct swap_table_args sta;
IPFW_UH_WLOCK_ASSERT(ch);
sta.set = set;
sta.new_set = new_set;
sta.mv = mv;
ipfw_objhash_foreach(CHAIN_TO_NI(ch), swap_table_set, &sta);
ipfw_objhash_foreach(CHAIN_TO_NI(ch), clean_table_set_data, &sta);
}
/*
* Move all tables which are reference by rules in @rr to set @new_set.
* Makes sure that all relevant tables are referenced ONLLY by given rules.
*
* Retuns 0 on success,
*/
int
ipfw_move_tables_sets(struct ip_fw_chain *ch, ipfw_range_tlv *rt,
uint32_t new_set)
{
struct ip_fw *rule;
struct table_config *tc;
struct named_object *no;
struct namedobj_instance *ni;
int bad, i, l, cmdlen;
uint16_t kidx;
uint8_t type;
ipfw_insn *cmd;
IPFW_UH_WLOCK_ASSERT(ch);
ni = CHAIN_TO_NI(ch);
/* Stage 1: count number of references by given rules */
for (i = 0; i < ch->n_rules - 1; i++) {
rule = ch->map[i];
if (ipfw_match_range(rule, rt) == 0)
continue;
l = rule->cmd_len;
cmd = rule->cmd;
cmdlen = 0;
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (classify_table_opcode(cmd, &kidx, &type) != 0)
continue;
no = ipfw_objhash_lookup_kidx(ni, kidx);
KASSERT(no != NULL,
("objhash lookup failed on index %d", kidx));
tc = (struct table_config *)no;
tc->ocount++;
}
}
/* Stage 2: verify "ownership" */
bad = 0;
for (i = 0; i < ch->n_rules - 1; i++) {
rule = ch->map[i];
if (ipfw_match_range(rule, rt) == 0)
continue;
l = rule->cmd_len;
cmd = rule->cmd;
cmdlen = 0;
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (classify_table_opcode(cmd, &kidx, &type) != 0)
continue;
no = ipfw_objhash_lookup_kidx(ni, kidx);
KASSERT(no != NULL,
("objhash lookup failed on index %d", kidx));
tc = (struct table_config *)no;
if (tc->no.refcnt != tc->ocount) {
/*
* Number of references differ:
* Other rule(s) are holding reference to given
* table, so it is not possible to change its set.
*
* Note that refcnt may account
* references to some going-to-be-added rules.
* Since we don't know their numbers (and event
* if they will be added) it is perfectly OK
* to return error here.
*/
bad = 1;
break;
}
}
if (bad != 0)
break;
}
/* Stage 3: change set or cleanup */
for (i = 0; i < ch->n_rules - 1; i++) {
rule = ch->map[i];
if (ipfw_match_range(rule, rt) == 0)
continue;
l = rule->cmd_len;
cmd = rule->cmd;
cmdlen = 0;
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (classify_table_opcode(cmd, &kidx, &type) != 0)
continue;
no = ipfw_objhash_lookup_kidx(ni, kidx);
KASSERT(no != NULL,
("objhash lookup failed on index %d", kidx));
tc = (struct table_config *)no;
tc->ocount = 0;
if (bad != 0)
continue;
/* Actually change set. */
ipfw_objhash_del(ni, no);
no->set = new_set;
ipfw_objhash_add(ni, no);
}
}
return (bad);
}
/*
* Finds and bumps refcount for tables referenced by given @rule.
* Auto-creates non-existing tables.
* Fills in @oib array with userland/kernel indexes.
* First free oidx pointer is saved back in @oib.
*
* Returns 0 on success.
*/
static int
find_ref_rule_tables(struct ip_fw_chain *ch, struct ip_fw *rule,
struct rule_check_info *ci, struct obj_idx **oib, struct tid_info *ti)
{
struct table_config *tc;
struct namedobj_instance *ni;
struct named_object *no;
int cmdlen, error, l, numnew;
uint16_t kidx;
ipfw_insn *cmd;
struct obj_idx *pidx, *pidx_first, *p;
pidx_first = *oib;
pidx = pidx_first;
l = rule->cmd_len;
cmd = rule->cmd;
cmdlen = 0;
error = 0;
numnew = 0;
IPFW_UH_WLOCK(ch);
ni = CHAIN_TO_NI(ch);
/* Increase refcount on each existing referenced table. */
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (classify_table_opcode(cmd, &ti->uidx, &ti->type) != 0)
continue;
pidx->uidx = ti->uidx;
pidx->type = ti->type;
if ((tc = find_table(ni, ti)) != NULL) {
if (tc->no.type != ti->type) {
/* Incompatible types */
error = EINVAL;
break;
}
/* Reference found table and save kidx */
tc->no.refcnt++;
pidx->kidx = tc->no.kidx;
pidx++;
continue;
}
/*
* Compability stuff for old clients:
* prepare to manually create non-existing tables.
*/
pidx++;
numnew++;
}
if (error != 0) {
/* Unref everything we have already done */
for (p = *oib; p < pidx; p++) {
if (p->kidx == 0)
continue;
/* Find & unref by existing idx */
no = ipfw_objhash_lookup_kidx(ni, p->kidx);
KASSERT(no != NULL, ("Ref'd table %d disappeared",
p->kidx));
no->refcnt--;
}
}
IPFW_UH_WUNLOCK(ch);
if (numnew == 0) {
*oib = pidx;
return (error);
}
/*
* Compatibility stuff: do actual creation for non-existing,
* but referenced tables.
*/
for (p = pidx_first; p < pidx; p++) {
if (p->kidx != 0)
continue;
ti->uidx = p->uidx;
ti->type = p->type;
ti->atype = 0;
error = create_table_compat(ch, ti, &kidx);
if (error == 0) {
p->kidx = kidx;
continue;
}
/* Error. We have to drop references */
IPFW_UH_WLOCK(ch);
for (p = pidx_first; p < pidx; p++) {
if (p->kidx == 0)
continue;
/* Find & unref by existing idx */
no = ipfw_objhash_lookup_kidx(ni, p->kidx);
KASSERT(no != NULL, ("Ref'd table %d disappeared",
p->kidx));
no->refcnt--;
}
IPFW_UH_WUNLOCK(ch);
return (error);
}
*oib = pidx;
return (error);
}
/*
* Remove references from every table used in @rule.
*/
void
ipfw_unref_rule_tables(struct ip_fw_chain *chain, struct ip_fw *rule)
{
int cmdlen, l;
ipfw_insn *cmd;
struct namedobj_instance *ni;
struct named_object *no;
uint16_t kidx;
uint8_t type;
IPFW_UH_WLOCK_ASSERT(chain);
ni = CHAIN_TO_NI(chain);
l = rule->cmd_len;
cmd = rule->cmd;
cmdlen = 0;
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (classify_table_opcode(cmd, &kidx, &type) != 0)
continue;
no = ipfw_objhash_lookup_kidx(ni, kidx);
KASSERT(no != NULL, ("table id %d not found", kidx));
KASSERT(no->type == type, ("wrong type %d (%d) for table id %d",
no->type, type, kidx));
KASSERT(no->refcnt > 0, ("refcount for table %d is %d",
kidx, no->refcnt));
no->refcnt--;
}
}
/*
* Compatibility function for old ipfw(8) binaries.
* Rewrites table kernel indices with userland ones.
* Convert tables matching '/^\d+$/' to their atoi() value.
* Use number 65535 for other tables.
*
* Returns 0 on success.
*/
int
ipfw_rewrite_table_kidx(struct ip_fw_chain *chain, struct ip_fw_rule0 *rule)
{
int cmdlen, error, l;
ipfw_insn *cmd;
uint16_t kidx, uidx;
uint8_t type;
struct named_object *no;
struct namedobj_instance *ni;
ni = CHAIN_TO_NI(chain);
error = 0;
l = rule->cmd_len;
cmd = rule->cmd;
cmdlen = 0;
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (classify_table_opcode(cmd, &kidx, &type) != 0)
continue;
if ((no = ipfw_objhash_lookup_kidx(ni, kidx)) == NULL)
return (1);
uidx = no->uidx;
if (no->compat == 0) {
/*
* We are called via legacy opcode.
* Save error and show table as fake number
* not to make ipfw(8) hang.
*/
uidx = 65535;
error = 2;
}
update_table_opcode(cmd, uidx);
}
return (error);
}
/*
* Checks is opcode is referencing table of appropriate type.
* Adds reference count for found table if true.
* Rewrites user-supplied opcode values with kernel ones.
*
* Returns 0 on success and appropriate error code otherwise.
*/
int
ipfw_rewrite_table_uidx(struct ip_fw_chain *chain,
struct rule_check_info *ci)
{
int cmdlen, error, l;
ipfw_insn *cmd;
uint16_t uidx;
uint8_t type;
struct namedobj_instance *ni;
struct obj_idx *p, *pidx_first, *pidx_last;
struct tid_info ti;
ni = CHAIN_TO_NI(chain);
/*
* Prepare an array for storing opcode indices.
* Use stack allocation by default.
*/
if (ci->table_opcodes <= (sizeof(ci->obuf)/sizeof(ci->obuf[0]))) {
/* Stack */
pidx_first = ci->obuf;
} else
pidx_first = malloc(ci->table_opcodes * sizeof(struct obj_idx),
M_IPFW, M_WAITOK | M_ZERO);
pidx_last = pidx_first;
error = 0;
type = 0;
memset(&ti, 0, sizeof(ti));
/*
* Use default set for looking up tables (old way) or
* use set rule is assigned to (new way).
*/
ti.set = (V_fw_tables_sets != 0) ? ci->krule->set : 0;
if (ci->ctlv != NULL) {
ti.tlvs = (void *)(ci->ctlv + 1);
ti.tlen = ci->ctlv->head.length - sizeof(ipfw_obj_ctlv);
}
/* Reference all used tables */
error = find_ref_rule_tables(chain, ci->krule, ci, &pidx_last, &ti);
if (error != 0)
goto free;
IPFW_UH_WLOCK(chain);
/* Perform rule rewrite */
l = ci->krule->cmd_len;
cmd = ci->krule->cmd;
cmdlen = 0;
p = pidx_first;
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (classify_table_opcode(cmd, &uidx, &type) != 0)
continue;
update_table_opcode(cmd, p->kidx);
p++;
}
IPFW_UH_WUNLOCK(chain);
free:
if (pidx_first != ci->obuf)
free(pidx_first, M_IPFW);
return (error);
}
static struct ipfw_sopt_handler scodes[] = {
{ IP_FW_TABLE_XCREATE, 0, HDIR_SET, create_table },
{ IP_FW_TABLE_XDESTROY, 0, HDIR_SET, flush_table_v0 },
{ IP_FW_TABLE_XFLUSH, 0, HDIR_SET, flush_table_v0 },
{ IP_FW_TABLE_XMODIFY, 0, HDIR_BOTH, modify_table },
{ IP_FW_TABLE_XINFO, 0, HDIR_GET, describe_table },
{ IP_FW_TABLES_XLIST, 0, HDIR_GET, list_tables },
{ IP_FW_TABLE_XLIST, 0, HDIR_GET, dump_table_v0 },
{ IP_FW_TABLE_XLIST, 1, HDIR_GET, dump_table_v1 },
{ IP_FW_TABLE_XADD, 0, HDIR_BOTH, manage_table_ent_v0 },
{ IP_FW_TABLE_XADD, 1, HDIR_BOTH, manage_table_ent_v1 },
{ IP_FW_TABLE_XDEL, 0, HDIR_BOTH, manage_table_ent_v0 },
{ IP_FW_TABLE_XDEL, 1, HDIR_BOTH, manage_table_ent_v1 },
{ IP_FW_TABLE_XFIND, 0, HDIR_GET, find_table_entry },
{ IP_FW_TABLE_XSWAP, 0, HDIR_SET, swap_table },
{ IP_FW_TABLES_ALIST, 0, HDIR_GET, list_table_algo },
{ IP_FW_TABLE_XGETSIZE, 0, HDIR_GET, get_table_size },
};
static void
destroy_table_locked(struct namedobj_instance *ni, struct named_object *no,
void *arg)
{
unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no);
if (ipfw_objhash_free_idx(ni, no->kidx) != 0)
printf("Error unlinking kidx %d from table %s\n",
no->kidx, no->name);
free_table_config(ni, (struct table_config *)no);
}
/*
* Shuts tables module down.
*/
void
ipfw_destroy_tables(struct ip_fw_chain *ch, int last)
{
IPFW_DEL_SOPT_HANDLER(last, scodes);
/* Remove all tables from working set */
IPFW_UH_WLOCK(ch);
IPFW_WLOCK(ch);
ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch);
IPFW_WUNLOCK(ch);
IPFW_UH_WUNLOCK(ch);
/* Free pointers itself */
free(ch->tablestate, M_IPFW);
ipfw_table_value_destroy(ch, last);
ipfw_table_algo_destroy(ch);
ipfw_objhash_destroy(CHAIN_TO_NI(ch));
free(CHAIN_TO_TCFG(ch), M_IPFW);
}
/*
* Starts tables module.
*/
int
ipfw_init_tables(struct ip_fw_chain *ch, int first)
{
struct tables_config *tcfg;
/* Allocate pointers */
ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info),
M_IPFW, M_WAITOK | M_ZERO);
tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO);
tcfg->namehash = ipfw_objhash_create(V_fw_tables_max);
ch->tblcfg = tcfg;
ipfw_table_value_init(ch, first);
ipfw_table_algo_init(ch);
IPFW_ADD_SOPT_HANDLER(first, scodes);
return (0);
}