freebsd-nq/sys/vm/vm_reserv.c
Mark Johnston 114484b7ec Flag vm_reserv and vm_phys sysctls as MPSAFE.
Nothing in these subsystems relies on Giant.

MFC after:	1 week
2020-09-23 19:36:07 +00:00

1501 lines
43 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2002-2006 Rice University
* Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Alan L. Cox,
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Superpage reservation management module
*
* Any external functions defined by this module are only to be used by the
* virtual memory system.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_vm.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/rwlock.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/ktr.h>
#include <sys/vmmeter.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>
#include <vm/vm_radix.h>
#include <vm/vm_reserv.h>
/*
* The reservation system supports the speculative allocation of large physical
* pages ("superpages"). Speculative allocation enables the fully automatic
* utilization of superpages by the virtual memory system. In other words, no
* programmatic directives are required to use superpages.
*/
#if VM_NRESERVLEVEL > 0
#ifndef VM_LEVEL_0_ORDER_MAX
#define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER
#endif
/*
* The number of small pages that are contained in a level 0 reservation
*/
#define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER)
#define VM_LEVEL_0_NPAGES_MAX (1 << VM_LEVEL_0_ORDER_MAX)
/*
* The number of bits by which a physical address is shifted to obtain the
* reservation number
*/
#define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
/*
* The size of a level 0 reservation in bytes
*/
#define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT)
/*
* Computes the index of the small page underlying the given (object, pindex)
* within the reservation's array of small pages.
*/
#define VM_RESERV_INDEX(object, pindex) \
(((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
/*
* The size of a population map entry
*/
typedef u_long popmap_t;
/*
* The number of bits in a population map entry
*/
#define NBPOPMAP (NBBY * sizeof(popmap_t))
/*
* The number of population map entries in a reservation
*/
#define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
#define NPOPMAP_MAX howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP)
/*
* Number of elapsed ticks before we update the LRU queue position. Used
* to reduce contention and churn on the list.
*/
#define PARTPOPSLOP 1
/*
* Clear a bit in the population map.
*/
static __inline void
popmap_clear(popmap_t popmap[], int i)
{
popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
}
/*
* Set a bit in the population map.
*/
static __inline void
popmap_set(popmap_t popmap[], int i)
{
popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
}
/*
* Is a bit in the population map clear?
*/
static __inline boolean_t
popmap_is_clear(popmap_t popmap[], int i)
{
return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
}
/*
* Is a bit in the population map set?
*/
static __inline boolean_t
popmap_is_set(popmap_t popmap[], int i)
{
return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
}
/*
* The reservation structure
*
* A reservation structure is constructed whenever a large physical page is
* speculatively allocated to an object. The reservation provides the small
* physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
* within that object. The reservation's "popcnt" tracks the number of these
* small physical pages that are in use at any given time. When and if the
* reservation is not fully utilized, it appears in the queue of partially
* populated reservations. The reservation always appears on the containing
* object's list of reservations.
*
* A partially populated reservation can be broken and reclaimed at any time.
*
* c - constant after boot
* d - vm_reserv_domain_lock
* o - vm_reserv_object_lock
* r - vm_reserv_lock
* s - vm_reserv_domain_scan_lock
*/
struct vm_reserv {
struct mtx lock; /* reservation lock. */
TAILQ_ENTRY(vm_reserv) partpopq; /* (d, r) per-domain queue. */
LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */
vm_object_t object; /* (o, r) containing object */
vm_pindex_t pindex; /* (o, r) offset in object */
vm_page_t pages; /* (c) first page */
uint16_t popcnt; /* (r) # of pages in use */
uint8_t domain; /* (c) NUMA domain. */
char inpartpopq; /* (d, r) */
int lasttick; /* (r) last pop update tick. */
popmap_t popmap[NPOPMAP_MAX]; /* (r) bit vector, used pages */
};
TAILQ_HEAD(vm_reserv_queue, vm_reserv);
#define vm_reserv_lockptr(rv) (&(rv)->lock)
#define vm_reserv_assert_locked(rv) \
mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
#define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv))
#define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv))
#define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv))
/*
* The reservation array
*
* This array is analoguous in function to vm_page_array. It differs in the
* respect that it may contain a greater number of useful reservation
* structures than there are (physical) superpages. These "invalid"
* reservation structures exist to trade-off space for time in the
* implementation of vm_reserv_from_page(). Invalid reservation structures are
* distinguishable from "valid" reservation structures by inspecting the
* reservation's "pages" field. Invalid reservation structures have a NULL
* "pages" field.
*
* vm_reserv_from_page() maps a small (physical) page to an element of this
* array by computing a physical reservation number from the page's physical
* address. The physical reservation number is used as the array index.
*
* An "active" reservation is a valid reservation structure that has a non-NULL
* "object" field and a non-zero "popcnt" field. In other words, every active
* reservation belongs to a particular object. Moreover, every active
* reservation has an entry in the containing object's list of reservations.
*/
static vm_reserv_t vm_reserv_array;
/*
* The per-domain partially populated reservation queues
*
* These queues enable the fast recovery of an unused free small page from a
* partially populated reservation. The reservation at the head of a queue
* is the least recently changed, partially populated reservation.
*
* Access to this queue is synchronized by the per-domain reservation lock.
* Threads reclaiming free pages from the queue must hold the per-domain scan
* lock.
*/
struct vm_reserv_domain {
struct mtx lock;
struct vm_reserv_queue partpop; /* (d) */
struct vm_reserv marker; /* (d, s) scan marker/lock */
} __aligned(CACHE_LINE_SIZE);
static struct vm_reserv_domain vm_rvd[MAXMEMDOM];
#define vm_reserv_domain_lockptr(d) (&vm_rvd[(d)].lock)
#define vm_reserv_domain_assert_locked(d) \
mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED)
#define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d))
#define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d))
#define vm_reserv_domain_scan_lock(d) mtx_lock(&vm_rvd[(d)].marker.lock)
#define vm_reserv_domain_scan_unlock(d) mtx_unlock(&vm_rvd[(d)].marker.lock)
static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Reservation Info");
static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken);
SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
&vm_reserv_broken, "Cumulative number of broken reservations");
static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed);
SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
&vm_reserv_freed, "Cumulative number of freed reservations");
static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD,
NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq,
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
sysctl_vm_reserv_partpopq, "A",
"Partially populated reservation queues");
static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed);
SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
&vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
/*
* The object lock pool is used to synchronize the rvq. We can not use a
* pool mutex because it is required before malloc works.
*
* The "hash" function could be made faster without divide and modulo.
*/
#define VM_RESERV_OBJ_LOCK_COUNT MAXCPU
struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
#define vm_reserv_object_lock_idx(object) \
(((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
#define vm_reserv_object_lock_ptr(object) \
&vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
#define vm_reserv_object_lock(object) \
mtx_lock(vm_reserv_object_lock_ptr((object)))
#define vm_reserv_object_unlock(object) \
mtx_unlock(vm_reserv_object_lock_ptr((object)))
static void vm_reserv_break(vm_reserv_t rv);
static void vm_reserv_depopulate(vm_reserv_t rv, int index);
static vm_reserv_t vm_reserv_from_page(vm_page_t m);
static boolean_t vm_reserv_has_pindex(vm_reserv_t rv,
vm_pindex_t pindex);
static void vm_reserv_populate(vm_reserv_t rv, int index);
static void vm_reserv_reclaim(vm_reserv_t rv);
/*
* Returns the current number of full reservations.
*
* Since the number of full reservations is computed without acquiring any
* locks, the returned value is inexact.
*/
static int
sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
{
vm_paddr_t paddr;
struct vm_phys_seg *seg;
vm_reserv_t rv;
int fullpop, segind;
fullpop = 0;
for (segind = 0; segind < vm_phys_nsegs; segind++) {
seg = &vm_phys_segs[segind];
paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
#ifdef VM_PHYSSEG_SPARSE
rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
(seg->start >> VM_LEVEL_0_SHIFT);
#else
rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
#endif
while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
VM_LEVEL_0_SIZE <= seg->end) {
fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
paddr += VM_LEVEL_0_SIZE;
rv++;
}
}
return (sysctl_handle_int(oidp, &fullpop, 0, req));
}
/*
* Describes the current state of the partially populated reservation queue.
*/
static int
sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
{
struct sbuf sbuf;
vm_reserv_t rv;
int counter, error, domain, level, unused_pages;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n");
for (domain = 0; domain < vm_ndomains; domain++) {
for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
counter = 0;
unused_pages = 0;
vm_reserv_domain_lock(domain);
TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
if (rv == &vm_rvd[domain].marker)
continue;
counter++;
unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
}
vm_reserv_domain_unlock(domain);
sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
domain, level,
unused_pages * ((int)PAGE_SIZE / 1024), counter);
}
}
error = sbuf_finish(&sbuf);
sbuf_delete(&sbuf);
return (error);
}
/*
* Remove a reservation from the object's objq.
*/
static void
vm_reserv_remove(vm_reserv_t rv)
{
vm_object_t object;
vm_reserv_assert_locked(rv);
CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
__FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
KASSERT(rv->object != NULL,
("vm_reserv_remove: reserv %p is free", rv));
KASSERT(!rv->inpartpopq,
("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
object = rv->object;
vm_reserv_object_lock(object);
LIST_REMOVE(rv, objq);
rv->object = NULL;
vm_reserv_object_unlock(object);
}
/*
* Insert a new reservation into the object's objq.
*/
static void
vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
{
int i;
vm_reserv_assert_locked(rv);
CTR6(KTR_VM,
"%s: rv %p(%p) object %p new %p popcnt %d",
__FUNCTION__, rv, rv->pages, rv->object, object,
rv->popcnt);
KASSERT(rv->object == NULL,
("vm_reserv_insert: reserv %p isn't free", rv));
KASSERT(rv->popcnt == 0,
("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
KASSERT(!rv->inpartpopq,
("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
for (i = 0; i < NPOPMAP; i++)
KASSERT(rv->popmap[i] == 0,
("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
vm_reserv_object_lock(object);
rv->pindex = pindex;
rv->object = object;
rv->lasttick = ticks;
LIST_INSERT_HEAD(&object->rvq, rv, objq);
vm_reserv_object_unlock(object);
}
/*
* Reduces the given reservation's population count. If the population count
* becomes zero, the reservation is destroyed. Additionally, moves the
* reservation to the tail of the partially populated reservation queue if the
* population count is non-zero.
*/
static void
vm_reserv_depopulate(vm_reserv_t rv, int index)
{
struct vm_domain *vmd;
vm_reserv_assert_locked(rv);
CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
__FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
KASSERT(rv->object != NULL,
("vm_reserv_depopulate: reserv %p is free", rv));
KASSERT(popmap_is_set(rv->popmap, index),
("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
index));
KASSERT(rv->popcnt > 0,
("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
KASSERT(rv->domain < vm_ndomains,
("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
rv, rv->domain));
if (rv->popcnt == VM_LEVEL_0_NPAGES) {
KASSERT(rv->pages->psind == 1,
("vm_reserv_depopulate: reserv %p is already demoted",
rv));
rv->pages->psind = 0;
}
popmap_clear(rv->popmap, index);
rv->popcnt--;
if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
rv->popcnt == 0) {
vm_reserv_domain_lock(rv->domain);
if (rv->inpartpopq) {
TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
rv->inpartpopq = FALSE;
}
if (rv->popcnt != 0) {
rv->inpartpopq = TRUE;
TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv,
partpopq);
}
vm_reserv_domain_unlock(rv->domain);
rv->lasttick = ticks;
}
vmd = VM_DOMAIN(rv->domain);
if (rv->popcnt == 0) {
vm_reserv_remove(rv);
vm_domain_free_lock(vmd);
vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
vm_domain_free_unlock(vmd);
counter_u64_add(vm_reserv_freed, 1);
}
vm_domain_freecnt_inc(vmd, 1);
}
/*
* Returns the reservation to which the given page might belong.
*/
static __inline vm_reserv_t
vm_reserv_from_page(vm_page_t m)
{
#ifdef VM_PHYSSEG_SPARSE
struct vm_phys_seg *seg;
seg = &vm_phys_segs[m->segind];
return (seg->first_reserv + (VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT) -
(seg->start >> VM_LEVEL_0_SHIFT));
#else
return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
#endif
}
/*
* Returns an existing reservation or NULL and initialized successor pointer.
*/
static vm_reserv_t
vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
vm_page_t mpred, vm_page_t *msuccp)
{
vm_reserv_t rv;
vm_page_t msucc;
msucc = NULL;
if (mpred != NULL) {
KASSERT(mpred->object == object,
("vm_reserv_from_object: object doesn't contain mpred"));
KASSERT(mpred->pindex < pindex,
("vm_reserv_from_object: mpred doesn't precede pindex"));
rv = vm_reserv_from_page(mpred);
if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
goto found;
msucc = TAILQ_NEXT(mpred, listq);
} else
msucc = TAILQ_FIRST(&object->memq);
if (msucc != NULL) {
KASSERT(msucc->pindex > pindex,
("vm_reserv_from_object: msucc doesn't succeed pindex"));
rv = vm_reserv_from_page(msucc);
if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
goto found;
}
rv = NULL;
found:
*msuccp = msucc;
return (rv);
}
/*
* Returns TRUE if the given reservation contains the given page index and
* FALSE otherwise.
*/
static __inline boolean_t
vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
{
return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
}
/*
* Increases the given reservation's population count. Moves the reservation
* to the tail of the partially populated reservation queue.
*/
static void
vm_reserv_populate(vm_reserv_t rv, int index)
{
vm_reserv_assert_locked(rv);
CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
__FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
KASSERT(rv->object != NULL,
("vm_reserv_populate: reserv %p is free", rv));
KASSERT(popmap_is_clear(rv->popmap, index),
("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
index));
KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
("vm_reserv_populate: reserv %p is already full", rv));
KASSERT(rv->pages->psind == 0,
("vm_reserv_populate: reserv %p is already promoted", rv));
KASSERT(rv->domain < vm_ndomains,
("vm_reserv_populate: reserv %p's domain is corrupted %d",
rv, rv->domain));
popmap_set(rv->popmap, index);
rv->popcnt++;
if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
return;
rv->lasttick = ticks;
vm_reserv_domain_lock(rv->domain);
if (rv->inpartpopq) {
TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
rv->inpartpopq = FALSE;
}
if (rv->popcnt < VM_LEVEL_0_NPAGES) {
rv->inpartpopq = TRUE;
TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq);
} else {
KASSERT(rv->pages->psind == 0,
("vm_reserv_populate: reserv %p is already promoted",
rv));
rv->pages->psind = 1;
}
vm_reserv_domain_unlock(rv->domain);
}
/*
* Allocates a contiguous set of physical pages of the given size "npages"
* from existing or newly created reservations. All of the physical pages
* must be at or above the given physical address "low" and below the given
* physical address "high". The given value "alignment" determines the
* alignment of the first physical page in the set. If the given value
* "boundary" is non-zero, then the set of physical pages cannot cross any
* physical address boundary that is a multiple of that value. Both
* "alignment" and "boundary" must be a power of two.
*
* The page "mpred" must immediately precede the offset "pindex" within the
* specified object.
*
* The object must be locked.
*/
vm_page_t
vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain,
int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high,
u_long alignment, vm_paddr_t boundary)
{
struct vm_domain *vmd;
vm_paddr_t pa, size;
vm_page_t m, m_ret, msucc;
vm_pindex_t first, leftcap, rightcap;
vm_reserv_t rv;
u_long allocpages, maxpages, minpages;
int i, index, n;
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
/*
* Is a reservation fundamentally impossible?
*/
if (pindex < VM_RESERV_INDEX(object, pindex) ||
pindex + npages > object->size)
return (NULL);
/*
* All reservations of a particular size have the same alignment.
* Assuming that the first page is allocated from a reservation, the
* least significant bits of its physical address can be determined
* from its offset from the beginning of the reservation and the size
* of the reservation.
*
* Could the specified index within a reservation of the smallest
* possible size satisfy the alignment and boundary requirements?
*/
pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
if ((pa & (alignment - 1)) != 0)
return (NULL);
size = npages << PAGE_SHIFT;
if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
return (NULL);
/*
* Look for an existing reservation.
*/
rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
if (rv != NULL) {
KASSERT(object != kernel_object || rv->domain == domain,
("vm_reserv_alloc_contig: domain mismatch"));
index = VM_RESERV_INDEX(object, pindex);
/* Does the allocation fit within the reservation? */
if (index + npages > VM_LEVEL_0_NPAGES)
return (NULL);
domain = rv->domain;
vmd = VM_DOMAIN(domain);
vm_reserv_lock(rv);
/* Handle reclaim race. */
if (rv->object != object)
goto out;
m = &rv->pages[index];
pa = VM_PAGE_TO_PHYS(m);
if (pa < low || pa + size > high ||
(pa & (alignment - 1)) != 0 ||
((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
goto out;
/* Handle vm_page_rename(m, new_object, ...). */
for (i = 0; i < npages; i++)
if (popmap_is_set(rv->popmap, index + i))
goto out;
if (!vm_domain_allocate(vmd, req, npages))
goto out;
for (i = 0; i < npages; i++)
vm_reserv_populate(rv, index + i);
vm_reserv_unlock(rv);
return (m);
out:
vm_reserv_unlock(rv);
return (NULL);
}
/*
* Could at least one reservation fit between the first index to the
* left that can be used ("leftcap") and the first index to the right
* that cannot be used ("rightcap")?
*
* We must synchronize with the reserv object lock to protect the
* pindex/object of the resulting reservations against rename while
* we are inspecting.
*/
first = pindex - VM_RESERV_INDEX(object, pindex);
minpages = VM_RESERV_INDEX(object, pindex) + npages;
maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
allocpages = maxpages;
vm_reserv_object_lock(object);
if (mpred != NULL) {
if ((rv = vm_reserv_from_page(mpred))->object != object)
leftcap = mpred->pindex + 1;
else
leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
if (leftcap > first) {
vm_reserv_object_unlock(object);
return (NULL);
}
}
if (msucc != NULL) {
if ((rv = vm_reserv_from_page(msucc))->object != object)
rightcap = msucc->pindex;
else
rightcap = rv->pindex;
if (first + maxpages > rightcap) {
if (maxpages == VM_LEVEL_0_NPAGES) {
vm_reserv_object_unlock(object);
return (NULL);
}
/*
* At least one reservation will fit between "leftcap"
* and "rightcap". However, a reservation for the
* last of the requested pages will not fit. Reduce
* the size of the upcoming allocation accordingly.
*/
allocpages = minpages;
}
}
vm_reserv_object_unlock(object);
/*
* Would the last new reservation extend past the end of the object?
*
* If the object is unlikely to grow don't allocate a reservation for
* the tail.
*/
if ((object->flags & OBJ_ANON) == 0 &&
first + maxpages > object->size) {
if (maxpages == VM_LEVEL_0_NPAGES)
return (NULL);
allocpages = minpages;
}
/*
* Allocate the physical pages. The alignment and boundary specified
* for this allocation may be different from the alignment and
* boundary specified for the requested pages. For instance, the
* specified index may not be the first page within the first new
* reservation.
*/
m = NULL;
vmd = VM_DOMAIN(domain);
if (vm_domain_allocate(vmd, req, npages)) {
vm_domain_free_lock(vmd);
m = vm_phys_alloc_contig(domain, allocpages, low, high,
ulmax(alignment, VM_LEVEL_0_SIZE),
boundary > VM_LEVEL_0_SIZE ? boundary : 0);
vm_domain_free_unlock(vmd);
if (m == NULL) {
vm_domain_freecnt_inc(vmd, npages);
return (NULL);
}
} else
return (NULL);
KASSERT(vm_phys_domain(m) == domain,
("vm_reserv_alloc_contig: Page domain does not match requested."));
/*
* The allocated physical pages always begin at a reservation
* boundary, but they do not always end at a reservation boundary.
* Initialize every reservation that is completely covered by the
* allocated physical pages.
*/
m_ret = NULL;
index = VM_RESERV_INDEX(object, pindex);
do {
rv = vm_reserv_from_page(m);
KASSERT(rv->pages == m,
("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
rv));
vm_reserv_lock(rv);
vm_reserv_insert(rv, object, first);
n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
for (i = 0; i < n; i++)
vm_reserv_populate(rv, index + i);
npages -= n;
if (m_ret == NULL) {
m_ret = &rv->pages[index];
index = 0;
}
vm_reserv_unlock(rv);
m += VM_LEVEL_0_NPAGES;
first += VM_LEVEL_0_NPAGES;
allocpages -= VM_LEVEL_0_NPAGES;
} while (allocpages >= VM_LEVEL_0_NPAGES);
return (m_ret);
}
/*
* Allocate a physical page from an existing or newly created reservation.
*
* The page "mpred" must immediately precede the offset "pindex" within the
* specified object.
*
* The object must be locked.
*/
vm_page_t
vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain,
int req, vm_page_t mpred)
{
struct vm_domain *vmd;
vm_page_t m, msucc;
vm_pindex_t first, leftcap, rightcap;
vm_reserv_t rv;
int index;
VM_OBJECT_ASSERT_WLOCKED(object);
/*
* Is a reservation fundamentally impossible?
*/
if (pindex < VM_RESERV_INDEX(object, pindex) ||
pindex >= object->size)
return (NULL);
/*
* Look for an existing reservation.
*/
rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
if (rv != NULL) {
KASSERT(object != kernel_object || rv->domain == domain,
("vm_reserv_alloc_page: domain mismatch"));
domain = rv->domain;
vmd = VM_DOMAIN(domain);
index = VM_RESERV_INDEX(object, pindex);
m = &rv->pages[index];
vm_reserv_lock(rv);
/* Handle reclaim race. */
if (rv->object != object ||
/* Handle vm_page_rename(m, new_object, ...). */
popmap_is_set(rv->popmap, index)) {
m = NULL;
goto out;
}
if (vm_domain_allocate(vmd, req, 1) == 0)
m = NULL;
else
vm_reserv_populate(rv, index);
out:
vm_reserv_unlock(rv);
return (m);
}
/*
* Could a reservation fit between the first index to the left that
* can be used and the first index to the right that cannot be used?
*
* We must synchronize with the reserv object lock to protect the
* pindex/object of the resulting reservations against rename while
* we are inspecting.
*/
first = pindex - VM_RESERV_INDEX(object, pindex);
vm_reserv_object_lock(object);
if (mpred != NULL) {
if ((rv = vm_reserv_from_page(mpred))->object != object)
leftcap = mpred->pindex + 1;
else
leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
if (leftcap > first) {
vm_reserv_object_unlock(object);
return (NULL);
}
}
if (msucc != NULL) {
if ((rv = vm_reserv_from_page(msucc))->object != object)
rightcap = msucc->pindex;
else
rightcap = rv->pindex;
if (first + VM_LEVEL_0_NPAGES > rightcap) {
vm_reserv_object_unlock(object);
return (NULL);
}
}
vm_reserv_object_unlock(object);
/*
* Would the last new reservation extend past the end of the object?
*
* If the object is unlikely to grow don't allocate a reservation for
* the tail.
*/
if ((object->flags & OBJ_ANON) == 0 &&
first + VM_LEVEL_0_NPAGES > object->size)
return (NULL);
/*
* Allocate and populate the new reservation.
*/
m = NULL;
vmd = VM_DOMAIN(domain);
if (vm_domain_allocate(vmd, req, 1)) {
vm_domain_free_lock(vmd);
m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
VM_LEVEL_0_ORDER);
vm_domain_free_unlock(vmd);
if (m == NULL) {
vm_domain_freecnt_inc(vmd, 1);
return (NULL);
}
} else
return (NULL);
rv = vm_reserv_from_page(m);
vm_reserv_lock(rv);
KASSERT(rv->pages == m,
("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
vm_reserv_insert(rv, object, first);
index = VM_RESERV_INDEX(object, pindex);
vm_reserv_populate(rv, index);
vm_reserv_unlock(rv);
return (&rv->pages[index]);
}
/*
* Breaks the given reservation. All free pages in the reservation
* are returned to the physical memory allocator. The reservation's
* population count and map are reset to their initial state.
*
* The given reservation must not be in the partially populated reservation
* queue.
*/
static void
vm_reserv_break(vm_reserv_t rv)
{
u_long changes;
int bitpos, hi, i, lo;
vm_reserv_assert_locked(rv);
CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
__FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
vm_reserv_remove(rv);
rv->pages->psind = 0;
hi = lo = -1;
for (i = 0; i <= NPOPMAP; i++) {
/*
* "changes" is a bitmask that marks where a new sequence of
* 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
* considered to be 1 if and only if lo == hi. The bits of
* popmap[-1] and popmap[NPOPMAP] are considered all 1s.
*/
if (i == NPOPMAP)
changes = lo != hi;
else {
changes = rv->popmap[i];
changes ^= (changes << 1) | (lo == hi);
rv->popmap[i] = 0;
}
while (changes != 0) {
/*
* If the next change marked begins a run of 0s, set
* lo to mark that position. Otherwise set hi and
* free pages from lo up to hi.
*/
bitpos = ffsl(changes) - 1;
changes ^= 1UL << bitpos;
if (lo == hi)
lo = NBPOPMAP * i + bitpos;
else {
hi = NBPOPMAP * i + bitpos;
vm_domain_free_lock(VM_DOMAIN(rv->domain));
vm_phys_enqueue_contig(&rv->pages[lo], hi - lo);
vm_domain_free_unlock(VM_DOMAIN(rv->domain));
lo = hi;
}
}
}
rv->popcnt = 0;
counter_u64_add(vm_reserv_broken, 1);
}
/*
* Breaks all reservations belonging to the given object.
*/
void
vm_reserv_break_all(vm_object_t object)
{
vm_reserv_t rv;
/*
* This access of object->rvq is unsynchronized so that the
* object rvq lock can nest after the domain_free lock. We
* must check for races in the results. However, the object
* lock prevents new additions, so we are guaranteed that when
* it returns NULL the object is properly empty.
*/
while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
vm_reserv_lock(rv);
/* Reclaim race. */
if (rv->object != object) {
vm_reserv_unlock(rv);
continue;
}
vm_reserv_domain_lock(rv->domain);
if (rv->inpartpopq) {
TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
rv->inpartpopq = FALSE;
}
vm_reserv_domain_unlock(rv->domain);
vm_reserv_break(rv);
vm_reserv_unlock(rv);
}
}
/*
* Frees the given page if it belongs to a reservation. Returns TRUE if the
* page is freed and FALSE otherwise.
*/
boolean_t
vm_reserv_free_page(vm_page_t m)
{
vm_reserv_t rv;
boolean_t ret;
rv = vm_reserv_from_page(m);
if (rv->object == NULL)
return (FALSE);
vm_reserv_lock(rv);
/* Re-validate after lock. */
if (rv->object != NULL) {
vm_reserv_depopulate(rv, m - rv->pages);
ret = TRUE;
} else
ret = FALSE;
vm_reserv_unlock(rv);
return (ret);
}
/*
* Initializes the reservation management system. Specifically, initializes
* the reservation array.
*
* Requires that vm_page_array and first_page are initialized!
*/
void
vm_reserv_init(void)
{
vm_paddr_t paddr;
struct vm_phys_seg *seg;
struct vm_reserv *rv;
struct vm_reserv_domain *rvd;
#ifdef VM_PHYSSEG_SPARSE
vm_pindex_t used;
#endif
int i, j, segind;
/*
* Initialize the reservation array. Specifically, initialize the
* "pages" field for every element that has an underlying superpage.
*/
#ifdef VM_PHYSSEG_SPARSE
used = 0;
#endif
for (segind = 0; segind < vm_phys_nsegs; segind++) {
seg = &vm_phys_segs[segind];
#ifdef VM_PHYSSEG_SPARSE
seg->first_reserv = &vm_reserv_array[used];
used += howmany(seg->end, VM_LEVEL_0_SIZE) -
seg->start / VM_LEVEL_0_SIZE;
#else
seg->first_reserv =
&vm_reserv_array[seg->start >> VM_LEVEL_0_SHIFT];
#endif
paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
(seg->start >> VM_LEVEL_0_SHIFT);
while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
VM_LEVEL_0_SIZE <= seg->end) {
rv->pages = PHYS_TO_VM_PAGE(paddr);
rv->domain = seg->domain;
mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
paddr += VM_LEVEL_0_SIZE;
rv++;
}
}
for (i = 0; i < MAXMEMDOM; i++) {
rvd = &vm_rvd[i];
mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF);
TAILQ_INIT(&rvd->partpop);
mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF);
/*
* Fully populated reservations should never be present in the
* partially populated reservation queues.
*/
rvd->marker.popcnt = VM_LEVEL_0_NPAGES;
for (j = 0; j < NBPOPMAP; j++)
popmap_set(rvd->marker.popmap, j);
}
for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
MTX_DEF);
}
/*
* Returns true if the given page belongs to a reservation and that page is
* free. Otherwise, returns false.
*/
bool
vm_reserv_is_page_free(vm_page_t m)
{
vm_reserv_t rv;
rv = vm_reserv_from_page(m);
if (rv->object == NULL)
return (false);
return (popmap_is_clear(rv->popmap, m - rv->pages));
}
/*
* If the given page belongs to a reservation, returns the level of that
* reservation. Otherwise, returns -1.
*/
int
vm_reserv_level(vm_page_t m)
{
vm_reserv_t rv;
rv = vm_reserv_from_page(m);
return (rv->object != NULL ? 0 : -1);
}
/*
* Returns a reservation level if the given page belongs to a fully populated
* reservation and -1 otherwise.
*/
int
vm_reserv_level_iffullpop(vm_page_t m)
{
vm_reserv_t rv;
rv = vm_reserv_from_page(m);
return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
}
/*
* Remove a partially populated reservation from the queue.
*/
static void
vm_reserv_dequeue(vm_reserv_t rv)
{
vm_reserv_domain_assert_locked(rv->domain);
vm_reserv_assert_locked(rv);
CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
__FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
KASSERT(rv->inpartpopq,
("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
rv->inpartpopq = FALSE;
}
/*
* Breaks the given partially populated reservation, releasing its free pages
* to the physical memory allocator.
*/
static void
vm_reserv_reclaim(vm_reserv_t rv)
{
vm_reserv_assert_locked(rv);
CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
__FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
if (rv->inpartpopq) {
vm_reserv_domain_lock(rv->domain);
vm_reserv_dequeue(rv);
vm_reserv_domain_unlock(rv->domain);
}
vm_reserv_break(rv);
counter_u64_add(vm_reserv_reclaimed, 1);
}
/*
* Breaks a reservation near the head of the partially populated reservation
* queue, releasing its free pages to the physical memory allocator. Returns
* TRUE if a reservation is broken and FALSE otherwise.
*/
bool
vm_reserv_reclaim_inactive(int domain)
{
vm_reserv_t rv;
vm_reserv_domain_lock(domain);
TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
/*
* A locked reservation is likely being updated or reclaimed,
* so just skip ahead.
*/
if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) {
vm_reserv_dequeue(rv);
break;
}
}
vm_reserv_domain_unlock(domain);
if (rv != NULL) {
vm_reserv_reclaim(rv);
vm_reserv_unlock(rv);
return (true);
}
return (false);
}
/*
* Determine whether this reservation has free pages that satisfy the given
* request for contiguous physical memory. Start searching from the lower
* bound, defined by low_index.
*/
static bool
vm_reserv_test_contig(vm_reserv_t rv, u_long npages, vm_paddr_t low,
vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
{
vm_paddr_t pa, size;
u_long changes;
int bitpos, bits_left, i, hi, lo, n;
vm_reserv_assert_locked(rv);
size = npages << PAGE_SHIFT;
pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
lo = (pa < low) ?
((low + PAGE_MASK - pa) >> PAGE_SHIFT) : 0;
i = lo / NBPOPMAP;
changes = rv->popmap[i] | ((1UL << (lo % NBPOPMAP)) - 1);
hi = (pa + VM_LEVEL_0_SIZE > high) ?
((high + PAGE_MASK - pa) >> PAGE_SHIFT) : VM_LEVEL_0_NPAGES;
n = hi / NBPOPMAP;
bits_left = hi % NBPOPMAP;
hi = lo = -1;
for (;;) {
/*
* "changes" is a bitmask that marks where a new sequence of
* 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
* considered to be 1 if and only if lo == hi. The bits of
* popmap[-1] and popmap[NPOPMAP] are considered all 1s.
*/
changes ^= (changes << 1) | (lo == hi);
while (changes != 0) {
/*
* If the next change marked begins a run of 0s, set
* lo to mark that position. Otherwise set hi and
* look for a satisfactory first page from lo up to hi.
*/
bitpos = ffsl(changes) - 1;
changes ^= 1UL << bitpos;
if (lo == hi) {
lo = NBPOPMAP * i + bitpos;
continue;
}
hi = NBPOPMAP * i + bitpos;
pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
if ((pa & (alignment - 1)) != 0) {
/* Skip to next aligned page. */
lo += (((pa - 1) | (alignment - 1)) + 1) >>
PAGE_SHIFT;
if (lo >= VM_LEVEL_0_NPAGES)
return (false);
pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
}
if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
/* Skip to next boundary-matching page. */
lo += (((pa - 1) | (boundary - 1)) + 1) >>
PAGE_SHIFT;
if (lo >= VM_LEVEL_0_NPAGES)
return (false);
pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
}
if (lo * PAGE_SIZE + size <= hi * PAGE_SIZE)
return (true);
lo = hi;
}
if (++i < n)
changes = rv->popmap[i];
else if (i == n)
changes = bits_left == 0 ? -1UL :
(rv->popmap[n] | (-1UL << bits_left));
else
return (false);
}
}
/*
* Searches the partially populated reservation queue for the least recently
* changed reservation with free pages that satisfy the given request for
* contiguous physical memory. If a satisfactory reservation is found, it is
* broken. Returns true if a reservation is broken and false otherwise.
*/
bool
vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
{
struct vm_reserv_queue *queue;
vm_paddr_t pa, size;
vm_reserv_t marker, rv, rvn;
if (npages > VM_LEVEL_0_NPAGES - 1)
return (false);
marker = &vm_rvd[domain].marker;
queue = &vm_rvd[domain].partpop;
size = npages << PAGE_SHIFT;
vm_reserv_domain_scan_lock(domain);
vm_reserv_domain_lock(domain);
TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) {
pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
if (pa + VM_LEVEL_0_SIZE - size < low) {
/* This entire reservation is too low; go to next. */
continue;
}
if (pa + size > high) {
/* This entire reservation is too high; go to next. */
continue;
}
if (vm_reserv_trylock(rv) == 0) {
TAILQ_INSERT_AFTER(queue, rv, marker, partpopq);
vm_reserv_domain_unlock(domain);
vm_reserv_lock(rv);
if (!rv->inpartpopq ||
TAILQ_NEXT(rv, partpopq) != marker) {
vm_reserv_unlock(rv);
vm_reserv_domain_lock(domain);
rvn = TAILQ_NEXT(marker, partpopq);
TAILQ_REMOVE(queue, marker, partpopq);
continue;
}
vm_reserv_domain_lock(domain);
TAILQ_REMOVE(queue, marker, partpopq);
}
vm_reserv_domain_unlock(domain);
if (vm_reserv_test_contig(rv, npages, low, high,
alignment, boundary)) {
vm_reserv_domain_scan_unlock(domain);
vm_reserv_reclaim(rv);
vm_reserv_unlock(rv);
return (true);
}
vm_reserv_unlock(rv);
vm_reserv_domain_lock(domain);
}
vm_reserv_domain_unlock(domain);
vm_reserv_domain_scan_unlock(domain);
return (false);
}
/*
* Transfers the reservation underlying the given page to a new object.
*
* The object must be locked.
*/
void
vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
vm_pindex_t old_object_offset)
{
vm_reserv_t rv;
VM_OBJECT_ASSERT_WLOCKED(new_object);
rv = vm_reserv_from_page(m);
if (rv->object == old_object) {
vm_reserv_lock(rv);
CTR6(KTR_VM,
"%s: rv %p object %p new %p popcnt %d inpartpop %d",
__FUNCTION__, rv, rv->object, new_object, rv->popcnt,
rv->inpartpopq);
if (rv->object == old_object) {
vm_reserv_object_lock(old_object);
rv->object = NULL;
LIST_REMOVE(rv, objq);
vm_reserv_object_unlock(old_object);
vm_reserv_object_lock(new_object);
rv->object = new_object;
rv->pindex -= old_object_offset;
LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
vm_reserv_object_unlock(new_object);
}
vm_reserv_unlock(rv);
}
}
/*
* Returns the size (in bytes) of a reservation of the specified level.
*/
int
vm_reserv_size(int level)
{
switch (level) {
case 0:
return (VM_LEVEL_0_SIZE);
case -1:
return (PAGE_SIZE);
default:
return (0);
}
}
/*
* Allocates the virtual and physical memory required by the reservation
* management system's data structures, in particular, the reservation array.
*/
vm_paddr_t
vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end)
{
vm_paddr_t new_end;
vm_pindex_t count;
size_t size;
int i;
count = 0;
for (i = 0; i < vm_phys_nsegs; i++) {
#ifdef VM_PHYSSEG_SPARSE
count += howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE) -
vm_phys_segs[i].start / VM_LEVEL_0_SIZE;
#else
count = MAX(count,
howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE));
#endif
}
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
#ifdef VM_PHYSSEG_SPARSE
count += howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE) -
phys_avail[i] / VM_LEVEL_0_SIZE;
#else
count = MAX(count,
howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE));
#endif
}
/*
* Calculate the size (in bytes) of the reservation array. Rounding up
* for partial superpages at boundaries, as every small page is mapped
* to an element in the reservation array based on its physical address.
* Thus, the number of elements in the reservation array can be greater
* than the number of superpages.
*/
size = count * sizeof(struct vm_reserv);
/*
* Allocate and map the physical memory for the reservation array. The
* next available virtual address is returned by reference.
*/
new_end = end - round_page(size);
vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
VM_PROT_READ | VM_PROT_WRITE);
bzero(vm_reserv_array, size);
/*
* Return the next available physical address.
*/
return (new_end);
}
/*
* Returns the superpage containing the given page.
*/
vm_page_t
vm_reserv_to_superpage(vm_page_t m)
{
vm_reserv_t rv;
VM_OBJECT_ASSERT_LOCKED(m->object);
rv = vm_reserv_from_page(m);
if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
m = rv->pages;
else
m = NULL;
return (m);
}
#endif /* VM_NRESERVLEVEL > 0 */