982d11f836
- Use thread_lock() rather than sched_lock for per-thread scheduling sychronization. - Use the per-process spinlock rather than the sched_lock for per-process scheduling synchronization. Tested by: kris, current@ Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc. Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
3556 lines
96 KiB
C
3556 lines
96 KiB
C
/*-
|
|
* Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <vm/uma.h>
|
|
#include <geom/geom.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/sched.h>
|
|
#include <geom/raid3/g_raid3.h>
|
|
|
|
|
|
static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
|
|
|
|
SYSCTL_DECL(_kern_geom);
|
|
SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff");
|
|
u_int g_raid3_debug = 0;
|
|
TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug);
|
|
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0,
|
|
"Debug level");
|
|
static u_int g_raid3_timeout = 4;
|
|
TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout);
|
|
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout,
|
|
0, "Time to wait on all raid3 components");
|
|
static u_int g_raid3_idletime = 5;
|
|
TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime);
|
|
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW,
|
|
&g_raid3_idletime, 0, "Mark components as clean when idling");
|
|
static u_int g_raid3_disconnect_on_failure = 1;
|
|
TUNABLE_INT("kern.geom.raid3.disconnect_on_failure",
|
|
&g_raid3_disconnect_on_failure);
|
|
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
|
|
&g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
|
|
static u_int g_raid3_syncreqs = 2;
|
|
TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs);
|
|
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
|
|
&g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
|
|
static u_int g_raid3_use_malloc = 0;
|
|
TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc);
|
|
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
|
|
&g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
|
|
|
|
static u_int g_raid3_n64k = 50;
|
|
TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k);
|
|
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0,
|
|
"Maximum number of 64kB allocations");
|
|
static u_int g_raid3_n16k = 200;
|
|
TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k);
|
|
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0,
|
|
"Maximum number of 16kB allocations");
|
|
static u_int g_raid3_n4k = 1200;
|
|
TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k);
|
|
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0,
|
|
"Maximum number of 4kB allocations");
|
|
|
|
SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
|
|
"GEOM_RAID3 statistics");
|
|
static u_int g_raid3_parity_mismatch = 0;
|
|
SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
|
|
&g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
|
|
|
|
#define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \
|
|
G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \
|
|
msleep((ident), (mtx), (priority), (wmesg), (timeout)); \
|
|
G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \
|
|
} while (0)
|
|
|
|
static eventhandler_tag g_raid3_pre_sync = NULL;
|
|
|
|
static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
|
|
struct g_geom *gp);
|
|
static g_taste_t g_raid3_taste;
|
|
static void g_raid3_init(struct g_class *mp);
|
|
static void g_raid3_fini(struct g_class *mp);
|
|
|
|
struct g_class g_raid3_class = {
|
|
.name = G_RAID3_CLASS_NAME,
|
|
.version = G_VERSION,
|
|
.ctlreq = g_raid3_config,
|
|
.taste = g_raid3_taste,
|
|
.destroy_geom = g_raid3_destroy_geom,
|
|
.init = g_raid3_init,
|
|
.fini = g_raid3_fini
|
|
};
|
|
|
|
|
|
static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
|
|
static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
|
|
static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
|
|
static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
|
|
struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
|
|
static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
|
|
static int g_raid3_register_request(struct bio *pbp);
|
|
static void g_raid3_sync_release(struct g_raid3_softc *sc);
|
|
|
|
|
|
static const char *
|
|
g_raid3_disk_state2str(int state)
|
|
{
|
|
|
|
switch (state) {
|
|
case G_RAID3_DISK_STATE_NODISK:
|
|
return ("NODISK");
|
|
case G_RAID3_DISK_STATE_NONE:
|
|
return ("NONE");
|
|
case G_RAID3_DISK_STATE_NEW:
|
|
return ("NEW");
|
|
case G_RAID3_DISK_STATE_ACTIVE:
|
|
return ("ACTIVE");
|
|
case G_RAID3_DISK_STATE_STALE:
|
|
return ("STALE");
|
|
case G_RAID3_DISK_STATE_SYNCHRONIZING:
|
|
return ("SYNCHRONIZING");
|
|
case G_RAID3_DISK_STATE_DISCONNECTED:
|
|
return ("DISCONNECTED");
|
|
default:
|
|
return ("INVALID");
|
|
}
|
|
}
|
|
|
|
static const char *
|
|
g_raid3_device_state2str(int state)
|
|
{
|
|
|
|
switch (state) {
|
|
case G_RAID3_DEVICE_STATE_STARTING:
|
|
return ("STARTING");
|
|
case G_RAID3_DEVICE_STATE_DEGRADED:
|
|
return ("DEGRADED");
|
|
case G_RAID3_DEVICE_STATE_COMPLETE:
|
|
return ("COMPLETE");
|
|
default:
|
|
return ("INVALID");
|
|
}
|
|
}
|
|
|
|
const char *
|
|
g_raid3_get_diskname(struct g_raid3_disk *disk)
|
|
{
|
|
|
|
if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
|
|
return ("[unknown]");
|
|
return (disk->d_name);
|
|
}
|
|
|
|
static void *
|
|
g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
|
|
{
|
|
void *ptr;
|
|
|
|
if (g_raid3_use_malloc)
|
|
ptr = malloc(size, M_RAID3, flags);
|
|
else {
|
|
ptr = uma_zalloc_arg(sc->sc_zones[g_raid3_zone(size)].sz_zone,
|
|
&sc->sc_zones[g_raid3_zone(size)], flags);
|
|
sc->sc_zones[g_raid3_zone(size)].sz_requested++;
|
|
if (ptr == NULL)
|
|
sc->sc_zones[g_raid3_zone(size)].sz_failed++;
|
|
}
|
|
return (ptr);
|
|
}
|
|
|
|
static void
|
|
g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
|
|
{
|
|
|
|
if (g_raid3_use_malloc)
|
|
free(ptr, M_RAID3);
|
|
else {
|
|
uma_zfree_arg(sc->sc_zones[g_raid3_zone(size)].sz_zone,
|
|
ptr, &sc->sc_zones[g_raid3_zone(size)]);
|
|
}
|
|
}
|
|
|
|
static int
|
|
g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
|
|
{
|
|
struct g_raid3_zone *sz = arg;
|
|
|
|
if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
|
|
return (ENOMEM);
|
|
sz->sz_inuse++;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
g_raid3_uma_dtor(void *mem, int size, void *arg)
|
|
{
|
|
struct g_raid3_zone *sz = arg;
|
|
|
|
sz->sz_inuse--;
|
|
}
|
|
|
|
#define g_raid3_xor(src1, src2, dst, size) \
|
|
_g_raid3_xor((uint64_t *)(src1), (uint64_t *)(src2), \
|
|
(uint64_t *)(dst), (size_t)size)
|
|
static void
|
|
_g_raid3_xor(uint64_t *src1, uint64_t *src2, uint64_t *dst, size_t size)
|
|
{
|
|
|
|
KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
|
|
for (; size > 0; size -= 128) {
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
*dst++ = (*src1++) ^ (*src2++);
|
|
}
|
|
}
|
|
|
|
static int
|
|
g_raid3_is_zero(struct bio *bp)
|
|
{
|
|
static const uint64_t zeros[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
u_char *addr;
|
|
ssize_t size;
|
|
|
|
size = bp->bio_length;
|
|
addr = (u_char *)bp->bio_data;
|
|
for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
|
|
if (bcmp(addr, zeros, sizeof(zeros)) != 0)
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* --- Events handling functions ---
|
|
* Events in geom_raid3 are used to maintain disks and device status
|
|
* from one thread to simplify locking.
|
|
*/
|
|
static void
|
|
g_raid3_event_free(struct g_raid3_event *ep)
|
|
{
|
|
|
|
free(ep, M_RAID3);
|
|
}
|
|
|
|
int
|
|
g_raid3_event_send(void *arg, int state, int flags)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_raid3_disk *disk;
|
|
struct g_raid3_event *ep;
|
|
int error;
|
|
|
|
ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
|
|
G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
|
|
if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
|
|
disk = NULL;
|
|
sc = arg;
|
|
} else {
|
|
disk = arg;
|
|
sc = disk->d_softc;
|
|
}
|
|
ep->e_disk = disk;
|
|
ep->e_state = state;
|
|
ep->e_flags = flags;
|
|
ep->e_error = 0;
|
|
mtx_lock(&sc->sc_events_mtx);
|
|
TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
|
|
mtx_unlock(&sc->sc_events_mtx);
|
|
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
wakeup(sc);
|
|
wakeup(&sc->sc_queue);
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
|
|
return (0);
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
|
|
sx_xunlock(&sc->sc_lock);
|
|
while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
|
|
mtx_lock(&sc->sc_events_mtx);
|
|
MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
|
|
hz * 5);
|
|
}
|
|
error = ep->e_error;
|
|
g_raid3_event_free(ep);
|
|
sx_xlock(&sc->sc_lock);
|
|
return (error);
|
|
}
|
|
|
|
static struct g_raid3_event *
|
|
g_raid3_event_get(struct g_raid3_softc *sc)
|
|
{
|
|
struct g_raid3_event *ep;
|
|
|
|
mtx_lock(&sc->sc_events_mtx);
|
|
ep = TAILQ_FIRST(&sc->sc_events);
|
|
mtx_unlock(&sc->sc_events_mtx);
|
|
return (ep);
|
|
}
|
|
|
|
static void
|
|
g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
|
|
{
|
|
|
|
mtx_lock(&sc->sc_events_mtx);
|
|
TAILQ_REMOVE(&sc->sc_events, ep, e_next);
|
|
mtx_unlock(&sc->sc_events_mtx);
|
|
}
|
|
|
|
static void
|
|
g_raid3_event_cancel(struct g_raid3_disk *disk)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_raid3_event *ep, *tmpep;
|
|
|
|
sc = disk->d_softc;
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
mtx_lock(&sc->sc_events_mtx);
|
|
TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
|
|
if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
|
|
continue;
|
|
if (ep->e_disk != disk)
|
|
continue;
|
|
TAILQ_REMOVE(&sc->sc_events, ep, e_next);
|
|
if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
|
|
g_raid3_event_free(ep);
|
|
else {
|
|
ep->e_error = ECANCELED;
|
|
wakeup(ep);
|
|
}
|
|
}
|
|
mtx_unlock(&sc->sc_events_mtx);
|
|
}
|
|
|
|
/*
|
|
* Return the number of disks in the given state.
|
|
* If state is equal to -1, count all connected disks.
|
|
*/
|
|
u_int
|
|
g_raid3_ndisks(struct g_raid3_softc *sc, int state)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
u_int n, ndisks;
|
|
|
|
sx_assert(&sc->sc_lock, SX_LOCKED);
|
|
|
|
for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
|
|
continue;
|
|
if (state == -1 || disk->d_state == state)
|
|
ndisks++;
|
|
}
|
|
return (ndisks);
|
|
}
|
|
|
|
static u_int
|
|
g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
|
|
{
|
|
struct bio *bp;
|
|
u_int nreqs = 0;
|
|
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
|
|
if (bp->bio_from == cp)
|
|
nreqs++;
|
|
}
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
return (nreqs);
|
|
}
|
|
|
|
static int
|
|
g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
|
|
{
|
|
|
|
if (cp->index > 0) {
|
|
G_RAID3_DEBUG(2,
|
|
"I/O requests for %s exist, can't destroy it now.",
|
|
cp->provider->name);
|
|
return (1);
|
|
}
|
|
if (g_raid3_nrequests(sc, cp) > 0) {
|
|
G_RAID3_DEBUG(2,
|
|
"I/O requests for %s in queue, can't destroy it now.",
|
|
cp->provider->name);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
g_raid3_destroy_consumer(void *arg, int flags __unused)
|
|
{
|
|
struct g_consumer *cp;
|
|
|
|
g_topology_assert();
|
|
|
|
cp = arg;
|
|
G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
|
|
g_detach(cp);
|
|
g_destroy_consumer(cp);
|
|
}
|
|
|
|
static void
|
|
g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
|
|
{
|
|
struct g_provider *pp;
|
|
int retaste_wait;
|
|
|
|
g_topology_assert();
|
|
|
|
cp->private = NULL;
|
|
if (g_raid3_is_busy(sc, cp))
|
|
return;
|
|
G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
|
|
pp = cp->provider;
|
|
retaste_wait = 0;
|
|
if (cp->acw == 1) {
|
|
if ((pp->geom->flags & G_GEOM_WITHER) == 0)
|
|
retaste_wait = 1;
|
|
}
|
|
G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
|
|
-cp->acw, -cp->ace, 0);
|
|
if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
|
|
g_access(cp, -cp->acr, -cp->acw, -cp->ace);
|
|
if (retaste_wait) {
|
|
/*
|
|
* After retaste event was send (inside g_access()), we can send
|
|
* event to detach and destroy consumer.
|
|
* A class, which has consumer to the given provider connected
|
|
* will not receive retaste event for the provider.
|
|
* This is the way how I ignore retaste events when I close
|
|
* consumers opened for write: I detach and destroy consumer
|
|
* after retaste event is sent.
|
|
*/
|
|
g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
|
|
return;
|
|
}
|
|
G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
|
|
g_detach(cp);
|
|
g_destroy_consumer(cp);
|
|
}
|
|
|
|
static int
|
|
g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
|
|
{
|
|
struct g_consumer *cp;
|
|
int error;
|
|
|
|
g_topology_assert_not();
|
|
KASSERT(disk->d_consumer == NULL,
|
|
("Disk already connected (device %s).", disk->d_softc->sc_name));
|
|
|
|
g_topology_lock();
|
|
cp = g_new_consumer(disk->d_softc->sc_geom);
|
|
error = g_attach(cp, pp);
|
|
if (error != 0) {
|
|
g_destroy_consumer(cp);
|
|
g_topology_unlock();
|
|
return (error);
|
|
}
|
|
error = g_access(cp, 1, 1, 1);
|
|
g_topology_unlock();
|
|
if (error != 0) {
|
|
g_detach(cp);
|
|
g_destroy_consumer(cp);
|
|
G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
|
|
pp->name, error);
|
|
return (error);
|
|
}
|
|
disk->d_consumer = cp;
|
|
disk->d_consumer->private = disk;
|
|
disk->d_consumer->index = 0;
|
|
G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
|
|
{
|
|
|
|
g_topology_assert();
|
|
|
|
if (cp == NULL)
|
|
return;
|
|
if (cp->provider != NULL)
|
|
g_raid3_kill_consumer(sc, cp);
|
|
else
|
|
g_destroy_consumer(cp);
|
|
}
|
|
|
|
/*
|
|
* Initialize disk. This means allocate memory, create consumer, attach it
|
|
* to the provider and open access (r1w1e1) to it.
|
|
*/
|
|
static struct g_raid3_disk *
|
|
g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
|
|
struct g_raid3_metadata *md, int *errorp)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
int error;
|
|
|
|
disk = &sc->sc_disks[md->md_no];
|
|
error = g_raid3_connect_disk(disk, pp);
|
|
if (error != 0) {
|
|
if (errorp != NULL)
|
|
*errorp = error;
|
|
return (NULL);
|
|
}
|
|
disk->d_state = G_RAID3_DISK_STATE_NONE;
|
|
disk->d_flags = md->md_dflags;
|
|
if (md->md_provider[0] != '\0')
|
|
disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
|
|
disk->d_sync.ds_consumer = NULL;
|
|
disk->d_sync.ds_offset = md->md_sync_offset;
|
|
disk->d_sync.ds_offset_done = md->md_sync_offset;
|
|
disk->d_genid = md->md_genid;
|
|
disk->d_sync.ds_syncid = md->md_syncid;
|
|
if (errorp != NULL)
|
|
*errorp = 0;
|
|
return (disk);
|
|
}
|
|
|
|
static void
|
|
g_raid3_destroy_disk(struct g_raid3_disk *disk)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
|
|
g_topology_assert_not();
|
|
sc = disk->d_softc;
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
|
|
return;
|
|
g_raid3_event_cancel(disk);
|
|
switch (disk->d_state) {
|
|
case G_RAID3_DISK_STATE_SYNCHRONIZING:
|
|
if (sc->sc_syncdisk != NULL)
|
|
g_raid3_sync_stop(sc, 1);
|
|
/* FALLTHROUGH */
|
|
case G_RAID3_DISK_STATE_NEW:
|
|
case G_RAID3_DISK_STATE_STALE:
|
|
case G_RAID3_DISK_STATE_ACTIVE:
|
|
g_topology_lock();
|
|
g_raid3_disconnect_consumer(sc, disk->d_consumer);
|
|
g_topology_unlock();
|
|
disk->d_consumer = NULL;
|
|
break;
|
|
default:
|
|
KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
|
|
g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
}
|
|
disk->d_state = G_RAID3_DISK_STATE_NODISK;
|
|
}
|
|
|
|
static void
|
|
g_raid3_destroy_device(struct g_raid3_softc *sc)
|
|
{
|
|
struct g_raid3_event *ep;
|
|
struct g_raid3_disk *disk;
|
|
struct g_geom *gp;
|
|
struct g_consumer *cp;
|
|
u_int n;
|
|
|
|
g_topology_assert_not();
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
gp = sc->sc_geom;
|
|
if (sc->sc_provider != NULL)
|
|
g_raid3_destroy_provider(sc);
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
|
|
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
|
|
g_raid3_update_metadata(disk);
|
|
g_raid3_destroy_disk(disk);
|
|
}
|
|
}
|
|
while ((ep = g_raid3_event_get(sc)) != NULL) {
|
|
g_raid3_event_remove(sc, ep);
|
|
if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
|
|
g_raid3_event_free(ep);
|
|
else {
|
|
ep->e_error = ECANCELED;
|
|
ep->e_flags |= G_RAID3_EVENT_DONE;
|
|
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
|
|
mtx_lock(&sc->sc_events_mtx);
|
|
wakeup(ep);
|
|
mtx_unlock(&sc->sc_events_mtx);
|
|
}
|
|
}
|
|
callout_drain(&sc->sc_callout);
|
|
cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
|
|
g_topology_lock();
|
|
if (cp != NULL)
|
|
g_raid3_disconnect_consumer(sc, cp);
|
|
g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
|
|
G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
|
|
g_wither_geom(gp, ENXIO);
|
|
g_topology_unlock();
|
|
if (!g_raid3_use_malloc) {
|
|
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
|
|
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
|
|
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
|
|
}
|
|
mtx_destroy(&sc->sc_queue_mtx);
|
|
mtx_destroy(&sc->sc_events_mtx);
|
|
sx_xunlock(&sc->sc_lock);
|
|
sx_destroy(&sc->sc_lock);
|
|
}
|
|
|
|
static void
|
|
g_raid3_orphan(struct g_consumer *cp)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
|
|
g_topology_assert();
|
|
|
|
disk = cp->private;
|
|
if (disk == NULL)
|
|
return;
|
|
disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
|
|
g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
|
|
G_RAID3_EVENT_DONTWAIT);
|
|
}
|
|
|
|
static int
|
|
g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_consumer *cp;
|
|
off_t offset, length;
|
|
u_char *sector;
|
|
int error = 0;
|
|
|
|
g_topology_assert_not();
|
|
sc = disk->d_softc;
|
|
sx_assert(&sc->sc_lock, SX_LOCKED);
|
|
|
|
cp = disk->d_consumer;
|
|
KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
|
|
KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
|
|
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
|
|
("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
|
|
cp->acw, cp->ace));
|
|
length = cp->provider->sectorsize;
|
|
offset = cp->provider->mediasize - length;
|
|
sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
|
|
if (md != NULL)
|
|
raid3_metadata_encode(md, sector);
|
|
error = g_write_data(cp, offset, sector, length);
|
|
free(sector, M_RAID3);
|
|
if (error != 0) {
|
|
if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
|
|
G_RAID3_DEBUG(0, "Cannot write metadata on %s "
|
|
"(device=%s, error=%d).",
|
|
g_raid3_get_diskname(disk), sc->sc_name, error);
|
|
disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
|
|
} else {
|
|
G_RAID3_DEBUG(1, "Cannot write metadata on %s "
|
|
"(device=%s, error=%d).",
|
|
g_raid3_get_diskname(disk), sc->sc_name, error);
|
|
}
|
|
if (g_raid3_disconnect_on_failure &&
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
|
|
sc->sc_bump_id |= G_RAID3_BUMP_GENID;
|
|
g_raid3_event_send(disk,
|
|
G_RAID3_DISK_STATE_DISCONNECTED,
|
|
G_RAID3_EVENT_DONTWAIT);
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
g_raid3_clear_metadata(struct g_raid3_disk *disk)
|
|
{
|
|
int error;
|
|
|
|
g_topology_assert_not();
|
|
sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
|
|
|
|
error = g_raid3_write_metadata(disk, NULL);
|
|
if (error == 0) {
|
|
G_RAID3_DEBUG(2, "Metadata on %s cleared.",
|
|
g_raid3_get_diskname(disk));
|
|
} else {
|
|
G_RAID3_DEBUG(0,
|
|
"Cannot clear metadata on disk %s (error=%d).",
|
|
g_raid3_get_diskname(disk), error);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_provider *pp;
|
|
|
|
sc = disk->d_softc;
|
|
strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
|
|
md->md_version = G_RAID3_VERSION;
|
|
strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
|
|
md->md_id = sc->sc_id;
|
|
md->md_all = sc->sc_ndisks;
|
|
md->md_genid = sc->sc_genid;
|
|
md->md_mediasize = sc->sc_mediasize;
|
|
md->md_sectorsize = sc->sc_sectorsize;
|
|
md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
|
|
md->md_no = disk->d_no;
|
|
md->md_syncid = disk->d_sync.ds_syncid;
|
|
md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
|
|
if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
|
|
md->md_sync_offset = 0;
|
|
else {
|
|
md->md_sync_offset =
|
|
disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
|
|
}
|
|
if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
|
|
pp = disk->d_consumer->provider;
|
|
else
|
|
pp = NULL;
|
|
if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
|
|
strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
|
|
else
|
|
bzero(md->md_provider, sizeof(md->md_provider));
|
|
if (pp != NULL)
|
|
md->md_provsize = pp->mediasize;
|
|
else
|
|
md->md_provsize = 0;
|
|
}
|
|
|
|
void
|
|
g_raid3_update_metadata(struct g_raid3_disk *disk)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_raid3_metadata md;
|
|
int error;
|
|
|
|
g_topology_assert_not();
|
|
sc = disk->d_softc;
|
|
sx_assert(&sc->sc_lock, SX_LOCKED);
|
|
|
|
g_raid3_fill_metadata(disk, &md);
|
|
error = g_raid3_write_metadata(disk, &md);
|
|
if (error == 0) {
|
|
G_RAID3_DEBUG(2, "Metadata on %s updated.",
|
|
g_raid3_get_diskname(disk));
|
|
} else {
|
|
G_RAID3_DEBUG(0,
|
|
"Cannot update metadata on disk %s (error=%d).",
|
|
g_raid3_get_diskname(disk), error);
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_raid3_bump_syncid(struct g_raid3_softc *sc)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
u_int n;
|
|
|
|
g_topology_assert_not();
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
|
|
("%s called with no active disks (device=%s).", __func__,
|
|
sc->sc_name));
|
|
|
|
sc->sc_syncid++;
|
|
G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
|
|
sc->sc_syncid);
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
|
|
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
|
|
disk->d_sync.ds_syncid = sc->sc_syncid;
|
|
g_raid3_update_metadata(disk);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_raid3_bump_genid(struct g_raid3_softc *sc)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
u_int n;
|
|
|
|
g_topology_assert_not();
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
|
|
("%s called with no active disks (device=%s).", __func__,
|
|
sc->sc_name));
|
|
|
|
sc->sc_genid++;
|
|
G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
|
|
sc->sc_genid);
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
|
|
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
|
|
disk->d_genid = sc->sc_genid;
|
|
g_raid3_update_metadata(disk);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
g_raid3_idle(struct g_raid3_softc *sc, int acw)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
u_int i;
|
|
int timeout;
|
|
|
|
g_topology_assert_not();
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
if (sc->sc_provider == NULL)
|
|
return (0);
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
|
|
return (0);
|
|
if (sc->sc_idle)
|
|
return (0);
|
|
if (sc->sc_writes > 0)
|
|
return (0);
|
|
if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
|
|
timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
|
|
if (timeout > 0)
|
|
return (timeout);
|
|
}
|
|
sc->sc_idle = 1;
|
|
for (i = 0; i < sc->sc_ndisks; i++) {
|
|
disk = &sc->sc_disks[i];
|
|
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
|
|
continue;
|
|
G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
|
|
g_raid3_get_diskname(disk), sc->sc_name);
|
|
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
|
|
g_raid3_update_metadata(disk);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
g_raid3_unidle(struct g_raid3_softc *sc)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
u_int i;
|
|
|
|
g_topology_assert_not();
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
|
|
return;
|
|
sc->sc_idle = 0;
|
|
sc->sc_last_write = time_uptime;
|
|
for (i = 0; i < sc->sc_ndisks; i++) {
|
|
disk = &sc->sc_disks[i];
|
|
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
|
|
continue;
|
|
G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
|
|
g_raid3_get_diskname(disk), sc->sc_name);
|
|
disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
|
|
g_raid3_update_metadata(disk);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Treat bio_driver1 field in parent bio as list head and field bio_caller1
|
|
* in child bio as pointer to the next element on the list.
|
|
*/
|
|
#define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1
|
|
|
|
#define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1
|
|
|
|
#define G_RAID3_FOREACH_BIO(pbp, bp) \
|
|
for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \
|
|
(bp) = G_RAID3_NEXT_BIO(bp))
|
|
|
|
#define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \
|
|
for ((bp) = G_RAID3_HEAD_BIO(pbp); \
|
|
(bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \
|
|
(bp) = (tmpbp))
|
|
|
|
static void
|
|
g_raid3_init_bio(struct bio *pbp)
|
|
{
|
|
|
|
G_RAID3_HEAD_BIO(pbp) = NULL;
|
|
}
|
|
|
|
static void
|
|
g_raid3_remove_bio(struct bio *cbp)
|
|
{
|
|
struct bio *pbp, *bp;
|
|
|
|
pbp = cbp->bio_parent;
|
|
if (G_RAID3_HEAD_BIO(pbp) == cbp)
|
|
G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
|
|
else {
|
|
G_RAID3_FOREACH_BIO(pbp, bp) {
|
|
if (G_RAID3_NEXT_BIO(bp) == cbp) {
|
|
G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
G_RAID3_NEXT_BIO(cbp) = NULL;
|
|
}
|
|
|
|
static void
|
|
g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
|
|
{
|
|
struct bio *pbp, *bp;
|
|
|
|
g_raid3_remove_bio(sbp);
|
|
pbp = dbp->bio_parent;
|
|
G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
|
|
if (G_RAID3_HEAD_BIO(pbp) == dbp)
|
|
G_RAID3_HEAD_BIO(pbp) = sbp;
|
|
else {
|
|
G_RAID3_FOREACH_BIO(pbp, bp) {
|
|
if (G_RAID3_NEXT_BIO(bp) == dbp) {
|
|
G_RAID3_NEXT_BIO(bp) = sbp;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
G_RAID3_NEXT_BIO(dbp) = NULL;
|
|
}
|
|
|
|
static void
|
|
g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
|
|
{
|
|
struct bio *bp, *pbp;
|
|
size_t size;
|
|
|
|
pbp = cbp->bio_parent;
|
|
pbp->bio_children--;
|
|
KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
|
|
size = pbp->bio_length / (sc->sc_ndisks - 1);
|
|
g_raid3_free(sc, cbp->bio_data, size);
|
|
if (G_RAID3_HEAD_BIO(pbp) == cbp) {
|
|
G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
|
|
G_RAID3_NEXT_BIO(cbp) = NULL;
|
|
g_destroy_bio(cbp);
|
|
} else {
|
|
G_RAID3_FOREACH_BIO(pbp, bp) {
|
|
if (G_RAID3_NEXT_BIO(bp) == cbp)
|
|
break;
|
|
}
|
|
if (bp != NULL) {
|
|
KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
|
|
("NULL bp->bio_driver1"));
|
|
G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
|
|
G_RAID3_NEXT_BIO(cbp) = NULL;
|
|
}
|
|
g_destroy_bio(cbp);
|
|
}
|
|
}
|
|
|
|
static struct bio *
|
|
g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
|
|
{
|
|
struct bio *bp, *cbp;
|
|
size_t size;
|
|
int memflag;
|
|
|
|
cbp = g_clone_bio(pbp);
|
|
if (cbp == NULL)
|
|
return (NULL);
|
|
size = pbp->bio_length / (sc->sc_ndisks - 1);
|
|
if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
|
|
memflag = M_WAITOK;
|
|
else
|
|
memflag = M_NOWAIT;
|
|
cbp->bio_data = g_raid3_alloc(sc, size, memflag);
|
|
if (cbp->bio_data == NULL) {
|
|
pbp->bio_children--;
|
|
g_destroy_bio(cbp);
|
|
return (NULL);
|
|
}
|
|
G_RAID3_NEXT_BIO(cbp) = NULL;
|
|
if (G_RAID3_HEAD_BIO(pbp) == NULL)
|
|
G_RAID3_HEAD_BIO(pbp) = cbp;
|
|
else {
|
|
G_RAID3_FOREACH_BIO(pbp, bp) {
|
|
if (G_RAID3_NEXT_BIO(bp) == NULL) {
|
|
G_RAID3_NEXT_BIO(bp) = cbp;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return (cbp);
|
|
}
|
|
|
|
static void
|
|
g_raid3_scatter(struct bio *pbp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_raid3_disk *disk;
|
|
struct bio *bp, *cbp, *tmpbp;
|
|
off_t atom, cadd, padd, left;
|
|
|
|
sc = pbp->bio_to->geom->softc;
|
|
bp = NULL;
|
|
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
|
|
/*
|
|
* Find bio for which we should calculate data.
|
|
*/
|
|
G_RAID3_FOREACH_BIO(pbp, cbp) {
|
|
if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
|
|
bp = cbp;
|
|
break;
|
|
}
|
|
}
|
|
KASSERT(bp != NULL, ("NULL parity bio."));
|
|
}
|
|
atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
|
|
cadd = padd = 0;
|
|
for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
|
|
G_RAID3_FOREACH_BIO(pbp, cbp) {
|
|
if (cbp == bp)
|
|
continue;
|
|
bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
|
|
padd += atom;
|
|
}
|
|
cadd += atom;
|
|
}
|
|
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
|
|
/*
|
|
* Calculate parity.
|
|
*/
|
|
bzero(bp->bio_data, bp->bio_length);
|
|
G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
|
|
if (cbp == bp)
|
|
continue;
|
|
g_raid3_xor(cbp->bio_data, bp->bio_data, bp->bio_data,
|
|
bp->bio_length);
|
|
if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
|
|
g_raid3_destroy_bio(sc, cbp);
|
|
}
|
|
}
|
|
G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
|
|
struct g_consumer *cp;
|
|
|
|
disk = cbp->bio_caller2;
|
|
cp = disk->d_consumer;
|
|
cbp->bio_to = cp->provider;
|
|
G_RAID3_LOGREQ(3, cbp, "Sending request.");
|
|
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
|
|
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
|
|
cp->acr, cp->acw, cp->ace));
|
|
cp->index++;
|
|
sc->sc_writes++;
|
|
g_io_request(cbp, cp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_raid3_gather(struct bio *pbp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_raid3_disk *disk;
|
|
struct bio *xbp, *fbp, *cbp;
|
|
off_t atom, cadd, padd, left;
|
|
|
|
sc = pbp->bio_to->geom->softc;
|
|
/*
|
|
* Find bio for which we have to calculate data.
|
|
* While going through this path, check if all requests
|
|
* succeeded, if not, deny whole request.
|
|
* If we're in COMPLETE mode, we allow one request to fail,
|
|
* so if we find one, we're sending it to the parity consumer.
|
|
* If there are more failed requests, we deny whole request.
|
|
*/
|
|
xbp = fbp = NULL;
|
|
G_RAID3_FOREACH_BIO(pbp, cbp) {
|
|
if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
|
|
KASSERT(xbp == NULL, ("More than one parity bio."));
|
|
xbp = cbp;
|
|
}
|
|
if (cbp->bio_error == 0)
|
|
continue;
|
|
/*
|
|
* Found failed request.
|
|
*/
|
|
if (fbp == NULL) {
|
|
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
|
|
/*
|
|
* We are already in degraded mode, so we can't
|
|
* accept any failures.
|
|
*/
|
|
if (pbp->bio_error == 0)
|
|
pbp->bio_error = cbp->bio_error;
|
|
} else {
|
|
fbp = cbp;
|
|
}
|
|
} else {
|
|
/*
|
|
* Next failed request, that's too many.
|
|
*/
|
|
if (pbp->bio_error == 0)
|
|
pbp->bio_error = fbp->bio_error;
|
|
}
|
|
disk = cbp->bio_caller2;
|
|
if (disk == NULL)
|
|
continue;
|
|
if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
|
|
disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
|
|
G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
|
|
cbp->bio_error);
|
|
} else {
|
|
G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
|
|
cbp->bio_error);
|
|
}
|
|
if (g_raid3_disconnect_on_failure &&
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
|
|
sc->sc_bump_id |= G_RAID3_BUMP_GENID;
|
|
g_raid3_event_send(disk,
|
|
G_RAID3_DISK_STATE_DISCONNECTED,
|
|
G_RAID3_EVENT_DONTWAIT);
|
|
}
|
|
}
|
|
if (pbp->bio_error != 0)
|
|
goto finish;
|
|
if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
|
|
pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
|
|
if (xbp != fbp)
|
|
g_raid3_replace_bio(xbp, fbp);
|
|
g_raid3_destroy_bio(sc, fbp);
|
|
} else if (fbp != NULL) {
|
|
struct g_consumer *cp;
|
|
|
|
/*
|
|
* One request failed, so send the same request to
|
|
* the parity consumer.
|
|
*/
|
|
disk = pbp->bio_driver2;
|
|
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
|
|
pbp->bio_error = fbp->bio_error;
|
|
goto finish;
|
|
}
|
|
pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
|
|
pbp->bio_inbed--;
|
|
fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
|
|
if (disk->d_no == sc->sc_ndisks - 1)
|
|
fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
|
|
fbp->bio_error = 0;
|
|
fbp->bio_completed = 0;
|
|
fbp->bio_children = 0;
|
|
fbp->bio_inbed = 0;
|
|
cp = disk->d_consumer;
|
|
fbp->bio_caller2 = disk;
|
|
fbp->bio_to = cp->provider;
|
|
G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
|
|
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
|
|
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
|
|
cp->acr, cp->acw, cp->ace));
|
|
cp->index++;
|
|
g_io_request(fbp, cp);
|
|
return;
|
|
}
|
|
if (xbp != NULL) {
|
|
/*
|
|
* Calculate parity.
|
|
*/
|
|
G_RAID3_FOREACH_BIO(pbp, cbp) {
|
|
if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
|
|
continue;
|
|
g_raid3_xor(cbp->bio_data, xbp->bio_data, xbp->bio_data,
|
|
xbp->bio_length);
|
|
}
|
|
xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
|
|
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
|
|
if (!g_raid3_is_zero(xbp)) {
|
|
g_raid3_parity_mismatch++;
|
|
pbp->bio_error = EIO;
|
|
goto finish;
|
|
}
|
|
g_raid3_destroy_bio(sc, xbp);
|
|
}
|
|
}
|
|
atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
|
|
cadd = padd = 0;
|
|
for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
|
|
G_RAID3_FOREACH_BIO(pbp, cbp) {
|
|
bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
|
|
pbp->bio_completed += atom;
|
|
padd += atom;
|
|
}
|
|
cadd += atom;
|
|
}
|
|
finish:
|
|
if (pbp->bio_error == 0)
|
|
G_RAID3_LOGREQ(3, pbp, "Request finished.");
|
|
else {
|
|
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
|
|
G_RAID3_LOGREQ(1, pbp, "Verification error.");
|
|
else
|
|
G_RAID3_LOGREQ(0, pbp, "Request failed.");
|
|
}
|
|
pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
|
|
while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
|
|
g_raid3_destroy_bio(sc, cbp);
|
|
g_io_deliver(pbp, pbp->bio_error);
|
|
}
|
|
|
|
static void
|
|
g_raid3_done(struct bio *bp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
|
|
sc = bp->bio_from->geom->softc;
|
|
bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
|
|
G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
bioq_insert_head(&sc->sc_queue, bp);
|
|
wakeup(sc);
|
|
wakeup(&sc->sc_queue);
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
}
|
|
|
|
static void
|
|
g_raid3_regular_request(struct bio *cbp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_raid3_disk *disk;
|
|
struct bio *pbp;
|
|
|
|
g_topology_assert_not();
|
|
|
|
pbp = cbp->bio_parent;
|
|
sc = pbp->bio_to->geom->softc;
|
|
cbp->bio_from->index--;
|
|
if (cbp->bio_cmd == BIO_WRITE)
|
|
sc->sc_writes--;
|
|
disk = cbp->bio_from->private;
|
|
if (disk == NULL) {
|
|
g_topology_lock();
|
|
g_raid3_kill_consumer(sc, cbp->bio_from);
|
|
g_topology_unlock();
|
|
}
|
|
|
|
G_RAID3_LOGREQ(3, cbp, "Request finished.");
|
|
pbp->bio_inbed++;
|
|
KASSERT(pbp->bio_inbed <= pbp->bio_children,
|
|
("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
|
|
pbp->bio_children));
|
|
if (pbp->bio_inbed != pbp->bio_children)
|
|
return;
|
|
switch (pbp->bio_cmd) {
|
|
case BIO_READ:
|
|
g_raid3_gather(pbp);
|
|
break;
|
|
case BIO_WRITE:
|
|
case BIO_DELETE:
|
|
{
|
|
int error = 0;
|
|
|
|
pbp->bio_completed = pbp->bio_length;
|
|
while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
|
|
if (cbp->bio_error == 0) {
|
|
g_raid3_destroy_bio(sc, cbp);
|
|
continue;
|
|
}
|
|
|
|
if (error == 0)
|
|
error = cbp->bio_error;
|
|
else if (pbp->bio_error == 0) {
|
|
/*
|
|
* Next failed request, that's too many.
|
|
*/
|
|
pbp->bio_error = error;
|
|
}
|
|
|
|
disk = cbp->bio_caller2;
|
|
if (disk == NULL) {
|
|
g_raid3_destroy_bio(sc, cbp);
|
|
continue;
|
|
}
|
|
|
|
if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
|
|
disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
|
|
G_RAID3_LOGREQ(0, cbp,
|
|
"Request failed (error=%d).",
|
|
cbp->bio_error);
|
|
} else {
|
|
G_RAID3_LOGREQ(1, cbp,
|
|
"Request failed (error=%d).",
|
|
cbp->bio_error);
|
|
}
|
|
if (g_raid3_disconnect_on_failure &&
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
|
|
sc->sc_bump_id |= G_RAID3_BUMP_GENID;
|
|
g_raid3_event_send(disk,
|
|
G_RAID3_DISK_STATE_DISCONNECTED,
|
|
G_RAID3_EVENT_DONTWAIT);
|
|
}
|
|
g_raid3_destroy_bio(sc, cbp);
|
|
}
|
|
if (pbp->bio_error == 0)
|
|
G_RAID3_LOGREQ(3, pbp, "Request finished.");
|
|
else
|
|
G_RAID3_LOGREQ(0, pbp, "Request failed.");
|
|
pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
|
|
pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
|
|
bioq_remove(&sc->sc_inflight, pbp);
|
|
/* Release delayed sync requests if possible. */
|
|
g_raid3_sync_release(sc);
|
|
g_io_deliver(pbp, pbp->bio_error);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_raid3_sync_done(struct bio *bp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
|
|
G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
|
|
sc = bp->bio_from->geom->softc;
|
|
bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
bioq_insert_head(&sc->sc_queue, bp);
|
|
wakeup(sc);
|
|
wakeup(&sc->sc_queue);
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
}
|
|
|
|
static void
|
|
g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
|
|
{
|
|
struct bio_queue_head queue;
|
|
struct g_raid3_disk *disk;
|
|
struct g_consumer *cp;
|
|
struct bio *cbp;
|
|
u_int i;
|
|
|
|
bioq_init(&queue);
|
|
for (i = 0; i < sc->sc_ndisks; i++) {
|
|
disk = &sc->sc_disks[i];
|
|
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
|
|
continue;
|
|
cbp = g_clone_bio(bp);
|
|
if (cbp == NULL) {
|
|
for (cbp = bioq_first(&queue); cbp != NULL;
|
|
cbp = bioq_first(&queue)) {
|
|
bioq_remove(&queue, cbp);
|
|
g_destroy_bio(cbp);
|
|
}
|
|
if (bp->bio_error == 0)
|
|
bp->bio_error = ENOMEM;
|
|
g_io_deliver(bp, bp->bio_error);
|
|
return;
|
|
}
|
|
bioq_insert_tail(&queue, cbp);
|
|
cbp->bio_done = g_std_done;
|
|
cbp->bio_caller1 = disk;
|
|
cbp->bio_to = disk->d_consumer->provider;
|
|
}
|
|
for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
|
|
bioq_remove(&queue, cbp);
|
|
G_RAID3_LOGREQ(3, cbp, "Sending request.");
|
|
disk = cbp->bio_caller1;
|
|
cbp->bio_caller1 = NULL;
|
|
cp = disk->d_consumer;
|
|
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
|
|
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
|
|
cp->acr, cp->acw, cp->ace));
|
|
g_io_request(cbp, disk->d_consumer);
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_raid3_start(struct bio *bp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
|
|
sc = bp->bio_to->geom->softc;
|
|
/*
|
|
* If sc == NULL or there are no valid disks, provider's error
|
|
* should be set and g_raid3_start() should not be called at all.
|
|
*/
|
|
KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
|
|
("Provider's error should be set (error=%d)(device=%s).",
|
|
bp->bio_to->error, bp->bio_to->name));
|
|
G_RAID3_LOGREQ(3, bp, "Request received.");
|
|
|
|
switch (bp->bio_cmd) {
|
|
case BIO_READ:
|
|
case BIO_WRITE:
|
|
case BIO_DELETE:
|
|
break;
|
|
case BIO_FLUSH:
|
|
g_raid3_flush(sc, bp);
|
|
return;
|
|
case BIO_GETATTR:
|
|
default:
|
|
g_io_deliver(bp, EOPNOTSUPP);
|
|
return;
|
|
}
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
bioq_insert_tail(&sc->sc_queue, bp);
|
|
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
|
|
wakeup(sc);
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
}
|
|
|
|
/*
|
|
* Return TRUE if the given request is colliding with a in-progress
|
|
* synchronization request.
|
|
*/
|
|
static int
|
|
g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
struct bio *sbp;
|
|
off_t rstart, rend, sstart, send;
|
|
int i;
|
|
|
|
disk = sc->sc_syncdisk;
|
|
if (disk == NULL)
|
|
return (0);
|
|
rstart = bp->bio_offset;
|
|
rend = bp->bio_offset + bp->bio_length;
|
|
for (i = 0; i < g_raid3_syncreqs; i++) {
|
|
sbp = disk->d_sync.ds_bios[i];
|
|
if (sbp == NULL)
|
|
continue;
|
|
sstart = sbp->bio_offset;
|
|
send = sbp->bio_length;
|
|
if (sbp->bio_cmd == BIO_WRITE) {
|
|
sstart *= sc->sc_ndisks - 1;
|
|
send *= sc->sc_ndisks - 1;
|
|
}
|
|
send += sstart;
|
|
if (rend > sstart && rstart < send)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return TRUE if the given sync request is colliding with a in-progress regular
|
|
* request.
|
|
*/
|
|
static int
|
|
g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
|
|
{
|
|
off_t rstart, rend, sstart, send;
|
|
struct bio *bp;
|
|
|
|
if (sc->sc_syncdisk == NULL)
|
|
return (0);
|
|
sstart = sbp->bio_offset;
|
|
send = sstart + sbp->bio_length;
|
|
TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
|
|
rstart = bp->bio_offset;
|
|
rend = bp->bio_offset + bp->bio_length;
|
|
if (rend > sstart && rstart < send)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Puts request onto delayed queue.
|
|
*/
|
|
static void
|
|
g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
|
|
{
|
|
|
|
G_RAID3_LOGREQ(2, bp, "Delaying request.");
|
|
bioq_insert_head(&sc->sc_regular_delayed, bp);
|
|
}
|
|
|
|
/*
|
|
* Puts synchronization request onto delayed queue.
|
|
*/
|
|
static void
|
|
g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
|
|
{
|
|
|
|
G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
|
|
bioq_insert_tail(&sc->sc_sync_delayed, bp);
|
|
}
|
|
|
|
/*
|
|
* Releases delayed regular requests which don't collide anymore with sync
|
|
* requests.
|
|
*/
|
|
static void
|
|
g_raid3_regular_release(struct g_raid3_softc *sc)
|
|
{
|
|
struct bio *bp, *bp2;
|
|
|
|
TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
|
|
if (g_raid3_sync_collision(sc, bp))
|
|
continue;
|
|
bioq_remove(&sc->sc_regular_delayed, bp);
|
|
G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
bioq_insert_head(&sc->sc_queue, bp);
|
|
#if 0
|
|
/*
|
|
* wakeup() is not needed, because this function is called from
|
|
* the worker thread.
|
|
*/
|
|
wakeup(&sc->sc_queue);
|
|
#endif
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Releases delayed sync requests which don't collide anymore with regular
|
|
* requests.
|
|
*/
|
|
static void
|
|
g_raid3_sync_release(struct g_raid3_softc *sc)
|
|
{
|
|
struct bio *bp, *bp2;
|
|
|
|
TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
|
|
if (g_raid3_regular_collision(sc, bp))
|
|
continue;
|
|
bioq_remove(&sc->sc_sync_delayed, bp);
|
|
G_RAID3_LOGREQ(2, bp,
|
|
"Releasing delayed synchronization request.");
|
|
g_io_request(bp, bp->bio_from);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle synchronization requests.
|
|
* Every synchronization request is two-steps process: first, READ request is
|
|
* send to active provider and then WRITE request (with read data) to the provider
|
|
* beeing synchronized. When WRITE is finished, new synchronization request is
|
|
* send.
|
|
*/
|
|
static void
|
|
g_raid3_sync_request(struct bio *bp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_raid3_disk *disk;
|
|
|
|
bp->bio_from->index--;
|
|
sc = bp->bio_from->geom->softc;
|
|
disk = bp->bio_from->private;
|
|
if (disk == NULL) {
|
|
sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
|
|
g_topology_lock();
|
|
g_raid3_kill_consumer(sc, bp->bio_from);
|
|
g_topology_unlock();
|
|
free(bp->bio_data, M_RAID3);
|
|
g_destroy_bio(bp);
|
|
sx_xlock(&sc->sc_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Synchronization request.
|
|
*/
|
|
switch (bp->bio_cmd) {
|
|
case BIO_READ:
|
|
{
|
|
struct g_consumer *cp;
|
|
u_char *dst, *src;
|
|
off_t left;
|
|
u_int atom;
|
|
|
|
if (bp->bio_error != 0) {
|
|
G_RAID3_LOGREQ(0, bp,
|
|
"Synchronization request failed (error=%d).",
|
|
bp->bio_error);
|
|
g_destroy_bio(bp);
|
|
return;
|
|
}
|
|
G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
|
|
atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
|
|
dst = src = bp->bio_data;
|
|
if (disk->d_no == sc->sc_ndisks - 1) {
|
|
u_int n;
|
|
|
|
/* Parity component. */
|
|
for (left = bp->bio_length; left > 0;
|
|
left -= sc->sc_sectorsize) {
|
|
bcopy(src, dst, atom);
|
|
src += atom;
|
|
for (n = 1; n < sc->sc_ndisks - 1; n++) {
|
|
g_raid3_xor(src, dst, dst, atom);
|
|
src += atom;
|
|
}
|
|
dst += atom;
|
|
}
|
|
} else {
|
|
/* Regular component. */
|
|
src += atom * disk->d_no;
|
|
for (left = bp->bio_length; left > 0;
|
|
left -= sc->sc_sectorsize) {
|
|
bcopy(src, dst, atom);
|
|
src += sc->sc_sectorsize;
|
|
dst += atom;
|
|
}
|
|
}
|
|
bp->bio_driver1 = bp->bio_driver2 = NULL;
|
|
bp->bio_pflags = 0;
|
|
bp->bio_offset /= sc->sc_ndisks - 1;
|
|
bp->bio_length /= sc->sc_ndisks - 1;
|
|
bp->bio_cmd = BIO_WRITE;
|
|
bp->bio_cflags = 0;
|
|
bp->bio_children = bp->bio_inbed = 0;
|
|
cp = disk->d_consumer;
|
|
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
|
|
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
|
|
cp->acr, cp->acw, cp->ace));
|
|
cp->index++;
|
|
g_io_request(bp, cp);
|
|
return;
|
|
}
|
|
case BIO_WRITE:
|
|
{
|
|
struct g_raid3_disk_sync *sync;
|
|
off_t boffset, moffset;
|
|
void *data;
|
|
int i;
|
|
|
|
if (bp->bio_error != 0) {
|
|
G_RAID3_LOGREQ(0, bp,
|
|
"Synchronization request failed (error=%d).",
|
|
bp->bio_error);
|
|
g_destroy_bio(bp);
|
|
sc->sc_bump_id |= G_RAID3_BUMP_GENID;
|
|
g_raid3_event_send(disk,
|
|
G_RAID3_DISK_STATE_DISCONNECTED,
|
|
G_RAID3_EVENT_DONTWAIT);
|
|
return;
|
|
}
|
|
G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
|
|
sync = &disk->d_sync;
|
|
if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
|
|
sync->ds_consumer == NULL ||
|
|
(sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
|
|
/* Don't send more synchronization requests. */
|
|
sync->ds_inflight--;
|
|
if (sync->ds_bios != NULL) {
|
|
i = (int)(uintptr_t)bp->bio_caller1;
|
|
sync->ds_bios[i] = NULL;
|
|
}
|
|
free(bp->bio_data, M_RAID3);
|
|
g_destroy_bio(bp);
|
|
if (sync->ds_inflight > 0)
|
|
return;
|
|
if (sync->ds_consumer == NULL ||
|
|
(sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
|
|
return;
|
|
}
|
|
/*
|
|
* Disk up-to-date, activate it.
|
|
*/
|
|
g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
|
|
G_RAID3_EVENT_DONTWAIT);
|
|
return;
|
|
}
|
|
|
|
/* Send next synchronization request. */
|
|
data = bp->bio_data;
|
|
bzero(bp, sizeof(*bp));
|
|
bp->bio_cmd = BIO_READ;
|
|
bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
|
|
bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
|
|
sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
|
|
bp->bio_done = g_raid3_sync_done;
|
|
bp->bio_data = data;
|
|
bp->bio_from = sync->ds_consumer;
|
|
bp->bio_to = sc->sc_provider;
|
|
G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
|
|
sync->ds_consumer->index++;
|
|
/*
|
|
* Delay the request if it is colliding with a regular request.
|
|
*/
|
|
if (g_raid3_regular_collision(sc, bp))
|
|
g_raid3_sync_delay(sc, bp);
|
|
else
|
|
g_io_request(bp, sync->ds_consumer);
|
|
|
|
/* Release delayed requests if possible. */
|
|
g_raid3_regular_release(sc);
|
|
|
|
/* Find the smallest offset. */
|
|
moffset = sc->sc_mediasize;
|
|
for (i = 0; i < g_raid3_syncreqs; i++) {
|
|
bp = sync->ds_bios[i];
|
|
boffset = bp->bio_offset;
|
|
if (bp->bio_cmd == BIO_WRITE)
|
|
boffset *= sc->sc_ndisks - 1;
|
|
if (boffset < moffset)
|
|
moffset = boffset;
|
|
}
|
|
if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
|
|
/* Update offset_done on every 100 blocks. */
|
|
sync->ds_offset_done = moffset;
|
|
g_raid3_update_metadata(disk);
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
|
|
bp->bio_cmd, sc->sc_name));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
g_raid3_register_request(struct bio *pbp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_raid3_disk *disk;
|
|
struct g_consumer *cp;
|
|
struct bio *cbp, *tmpbp;
|
|
off_t offset, length;
|
|
u_int n, ndisks;
|
|
int round_robin, verify;
|
|
|
|
ndisks = 0;
|
|
sc = pbp->bio_to->geom->softc;
|
|
if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
|
|
sc->sc_syncdisk == NULL) {
|
|
g_io_deliver(pbp, EIO);
|
|
return (0);
|
|
}
|
|
g_raid3_init_bio(pbp);
|
|
length = pbp->bio_length / (sc->sc_ndisks - 1);
|
|
offset = pbp->bio_offset / (sc->sc_ndisks - 1);
|
|
round_robin = verify = 0;
|
|
switch (pbp->bio_cmd) {
|
|
case BIO_READ:
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
|
|
pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
|
|
verify = 1;
|
|
ndisks = sc->sc_ndisks;
|
|
} else {
|
|
verify = 0;
|
|
ndisks = sc->sc_ndisks - 1;
|
|
}
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
|
|
round_robin = 1;
|
|
} else {
|
|
round_robin = 0;
|
|
}
|
|
KASSERT(!round_robin || !verify,
|
|
("ROUND-ROBIN and VERIFY are mutually exclusive."));
|
|
pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
|
|
break;
|
|
case BIO_WRITE:
|
|
case BIO_DELETE:
|
|
/*
|
|
* Delay the request if it is colliding with a synchronization
|
|
* request.
|
|
*/
|
|
if (g_raid3_sync_collision(sc, pbp)) {
|
|
g_raid3_regular_delay(sc, pbp);
|
|
return (0);
|
|
}
|
|
|
|
if (sc->sc_idle)
|
|
g_raid3_unidle(sc);
|
|
else
|
|
sc->sc_last_write = time_uptime;
|
|
|
|
ndisks = sc->sc_ndisks;
|
|
break;
|
|
}
|
|
for (n = 0; n < ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
cbp = g_raid3_clone_bio(sc, pbp);
|
|
if (cbp == NULL) {
|
|
while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
|
|
g_raid3_destroy_bio(sc, cbp);
|
|
/*
|
|
* To prevent deadlock, we must run back up
|
|
* with the ENOMEM for failed requests of any
|
|
* of our consumers. Our own sync requests
|
|
* can stick around, as they are finite.
|
|
*/
|
|
if ((pbp->bio_cflags &
|
|
G_RAID3_BIO_CFLAG_REGULAR) != 0) {
|
|
g_io_deliver(pbp, ENOMEM);
|
|
return (0);
|
|
}
|
|
return (ENOMEM);
|
|
}
|
|
cbp->bio_offset = offset;
|
|
cbp->bio_length = length;
|
|
cbp->bio_done = g_raid3_done;
|
|
switch (pbp->bio_cmd) {
|
|
case BIO_READ:
|
|
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
|
|
/*
|
|
* Replace invalid component with the parity
|
|
* component.
|
|
*/
|
|
disk = &sc->sc_disks[sc->sc_ndisks - 1];
|
|
cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
|
|
pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
|
|
} else if (round_robin &&
|
|
disk->d_no == sc->sc_round_robin) {
|
|
/*
|
|
* In round-robin mode skip one data component
|
|
* and use parity component when reading.
|
|
*/
|
|
pbp->bio_driver2 = disk;
|
|
disk = &sc->sc_disks[sc->sc_ndisks - 1];
|
|
cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
|
|
sc->sc_round_robin++;
|
|
round_robin = 0;
|
|
} else if (verify && disk->d_no == sc->sc_ndisks - 1) {
|
|
cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
|
|
}
|
|
break;
|
|
case BIO_WRITE:
|
|
case BIO_DELETE:
|
|
if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
|
|
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
|
|
if (n == ndisks - 1) {
|
|
/*
|
|
* Active parity component, mark it as such.
|
|
*/
|
|
cbp->bio_cflags |=
|
|
G_RAID3_BIO_CFLAG_PARITY;
|
|
}
|
|
} else {
|
|
pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
|
|
if (n == ndisks - 1) {
|
|
/*
|
|
* Parity component is not connected,
|
|
* so destroy its request.
|
|
*/
|
|
pbp->bio_pflags |=
|
|
G_RAID3_BIO_PFLAG_NOPARITY;
|
|
g_raid3_destroy_bio(sc, cbp);
|
|
cbp = NULL;
|
|
} else {
|
|
cbp->bio_cflags |=
|
|
G_RAID3_BIO_CFLAG_NODISK;
|
|
disk = NULL;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
if (cbp != NULL)
|
|
cbp->bio_caller2 = disk;
|
|
}
|
|
switch (pbp->bio_cmd) {
|
|
case BIO_READ:
|
|
if (round_robin) {
|
|
/*
|
|
* If we are in round-robin mode and 'round_robin' is
|
|
* still 1, it means, that we skipped parity component
|
|
* for this read and must reset sc_round_robin field.
|
|
*/
|
|
sc->sc_round_robin = 0;
|
|
}
|
|
G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
|
|
disk = cbp->bio_caller2;
|
|
cp = disk->d_consumer;
|
|
cbp->bio_to = cp->provider;
|
|
G_RAID3_LOGREQ(3, cbp, "Sending request.");
|
|
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
|
|
("Consumer %s not opened (r%dw%de%d).",
|
|
cp->provider->name, cp->acr, cp->acw, cp->ace));
|
|
cp->index++;
|
|
g_io_request(cbp, cp);
|
|
}
|
|
break;
|
|
case BIO_WRITE:
|
|
case BIO_DELETE:
|
|
/*
|
|
* Put request onto inflight queue, so we can check if new
|
|
* synchronization requests don't collide with it.
|
|
*/
|
|
bioq_insert_tail(&sc->sc_inflight, pbp);
|
|
|
|
/*
|
|
* Bump syncid on first write.
|
|
*/
|
|
if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
|
|
sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
|
|
g_raid3_bump_syncid(sc);
|
|
}
|
|
g_raid3_scatter(pbp);
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_raid3_can_destroy(struct g_raid3_softc *sc)
|
|
{
|
|
struct g_geom *gp;
|
|
struct g_consumer *cp;
|
|
|
|
g_topology_assert();
|
|
gp = sc->sc_geom;
|
|
if (gp->softc == NULL)
|
|
return (1);
|
|
LIST_FOREACH(cp, &gp->consumer, consumer) {
|
|
if (g_raid3_is_busy(sc, cp))
|
|
return (0);
|
|
}
|
|
gp = sc->sc_sync.ds_geom;
|
|
LIST_FOREACH(cp, &gp->consumer, consumer) {
|
|
if (g_raid3_is_busy(sc, cp))
|
|
return (0);
|
|
}
|
|
G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
|
|
sc->sc_name);
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
g_raid3_try_destroy(struct g_raid3_softc *sc)
|
|
{
|
|
|
|
g_topology_assert_not();
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
if (sc->sc_rootmount != NULL) {
|
|
G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
|
|
sc->sc_rootmount);
|
|
root_mount_rel(sc->sc_rootmount);
|
|
sc->sc_rootmount = NULL;
|
|
}
|
|
|
|
g_topology_lock();
|
|
if (!g_raid3_can_destroy(sc)) {
|
|
g_topology_unlock();
|
|
return (0);
|
|
}
|
|
sc->sc_geom->softc = NULL;
|
|
sc->sc_sync.ds_geom->softc = NULL;
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
|
|
g_topology_unlock();
|
|
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
|
|
&sc->sc_worker);
|
|
/* Unlock sc_lock here, as it can be destroyed after wakeup. */
|
|
sx_xunlock(&sc->sc_lock);
|
|
wakeup(&sc->sc_worker);
|
|
sc->sc_worker = NULL;
|
|
} else {
|
|
g_topology_unlock();
|
|
g_raid3_destroy_device(sc);
|
|
free(sc->sc_disks, M_RAID3);
|
|
free(sc, M_RAID3);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Worker thread.
|
|
*/
|
|
static void
|
|
g_raid3_worker(void *arg)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_raid3_event *ep;
|
|
struct bio *bp;
|
|
int timeout;
|
|
|
|
sc = arg;
|
|
thread_lock(curthread);
|
|
sched_prio(curthread, PRIBIO);
|
|
thread_unlock(curthread);
|
|
|
|
sx_xlock(&sc->sc_lock);
|
|
for (;;) {
|
|
G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
|
|
/*
|
|
* First take a look at events.
|
|
* This is important to handle events before any I/O requests.
|
|
*/
|
|
ep = g_raid3_event_get(sc);
|
|
if (ep != NULL) {
|
|
g_raid3_event_remove(sc, ep);
|
|
if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
|
|
/* Update only device status. */
|
|
G_RAID3_DEBUG(3,
|
|
"Running event for device %s.",
|
|
sc->sc_name);
|
|
ep->e_error = 0;
|
|
g_raid3_update_device(sc, 1);
|
|
} else {
|
|
/* Update disk status. */
|
|
G_RAID3_DEBUG(3, "Running event for disk %s.",
|
|
g_raid3_get_diskname(ep->e_disk));
|
|
ep->e_error = g_raid3_update_disk(ep->e_disk,
|
|
ep->e_state);
|
|
if (ep->e_error == 0)
|
|
g_raid3_update_device(sc, 0);
|
|
}
|
|
if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
|
|
KASSERT(ep->e_error == 0,
|
|
("Error cannot be handled."));
|
|
g_raid3_event_free(ep);
|
|
} else {
|
|
ep->e_flags |= G_RAID3_EVENT_DONE;
|
|
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
|
|
ep);
|
|
mtx_lock(&sc->sc_events_mtx);
|
|
wakeup(ep);
|
|
mtx_unlock(&sc->sc_events_mtx);
|
|
}
|
|
if ((sc->sc_flags &
|
|
G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
|
|
if (g_raid3_try_destroy(sc)) {
|
|
curthread->td_pflags &= ~TDP_GEOM;
|
|
G_RAID3_DEBUG(1, "Thread exiting.");
|
|
kthread_exit(0);
|
|
}
|
|
}
|
|
G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
|
|
continue;
|
|
}
|
|
/*
|
|
* Check if we can mark array as CLEAN and if we can't take
|
|
* how much seconds should we wait.
|
|
*/
|
|
timeout = g_raid3_idle(sc, -1);
|
|
/*
|
|
* Now I/O requests.
|
|
*/
|
|
/* Get first request from the queue. */
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
bp = bioq_first(&sc->sc_queue);
|
|
if (bp == NULL) {
|
|
if ((sc->sc_flags &
|
|
G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
if (g_raid3_try_destroy(sc)) {
|
|
curthread->td_pflags &= ~TDP_GEOM;
|
|
G_RAID3_DEBUG(1, "Thread exiting.");
|
|
kthread_exit(0);
|
|
}
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
}
|
|
sx_xunlock(&sc->sc_lock);
|
|
/*
|
|
* XXX: We can miss an event here, because an event
|
|
* can be added without sx-device-lock and without
|
|
* mtx-queue-lock. Maybe I should just stop using
|
|
* dedicated mutex for events synchronization and
|
|
* stick with the queue lock?
|
|
* The event will hang here until next I/O request
|
|
* or next event is received.
|
|
*/
|
|
MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
|
|
timeout * hz);
|
|
sx_xlock(&sc->sc_lock);
|
|
G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
|
|
continue;
|
|
}
|
|
process:
|
|
bioq_remove(&sc->sc_queue, bp);
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
|
|
if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
|
|
(bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
|
|
g_raid3_sync_request(bp); /* READ */
|
|
} else if (bp->bio_to != sc->sc_provider) {
|
|
if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
|
|
g_raid3_regular_request(bp);
|
|
else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
|
|
g_raid3_sync_request(bp); /* WRITE */
|
|
else {
|
|
KASSERT(0,
|
|
("Invalid request cflags=0x%hhx to=%s.",
|
|
bp->bio_cflags, bp->bio_to->name));
|
|
}
|
|
} else if (g_raid3_register_request(bp) != 0) {
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
bioq_insert_head(&sc->sc_queue, bp);
|
|
/*
|
|
* We are short in memory, let see if there are finished
|
|
* request we can free.
|
|
*/
|
|
TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
|
|
if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
|
|
goto process;
|
|
}
|
|
/*
|
|
* No finished regular request, so at least keep
|
|
* synchronization running.
|
|
*/
|
|
TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
|
|
if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
|
|
goto process;
|
|
}
|
|
sx_xunlock(&sc->sc_lock);
|
|
MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
|
|
"r3:lowmem", hz / 10);
|
|
sx_xlock(&sc->sc_lock);
|
|
}
|
|
G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
|
|
{
|
|
|
|
sx_assert(&sc->sc_lock, SX_LOCKED);
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
|
|
return;
|
|
if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
|
|
G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
|
|
g_raid3_get_diskname(disk), sc->sc_name);
|
|
disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
|
|
} else if (sc->sc_idle &&
|
|
(disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
|
|
G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
|
|
g_raid3_get_diskname(disk), sc->sc_name);
|
|
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_raid3_sync_start(struct g_raid3_softc *sc)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
struct g_consumer *cp;
|
|
struct bio *bp;
|
|
int error;
|
|
u_int n;
|
|
|
|
g_topology_assert_not();
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
|
|
("Device not in DEGRADED state (%s, %u).", sc->sc_name,
|
|
sc->sc_state));
|
|
KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
|
|
sc->sc_name, sc->sc_state));
|
|
disk = NULL;
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
|
|
continue;
|
|
disk = &sc->sc_disks[n];
|
|
break;
|
|
}
|
|
if (disk == NULL)
|
|
return;
|
|
|
|
sx_xunlock(&sc->sc_lock);
|
|
g_topology_lock();
|
|
cp = g_new_consumer(sc->sc_sync.ds_geom);
|
|
error = g_attach(cp, sc->sc_provider);
|
|
KASSERT(error == 0,
|
|
("Cannot attach to %s (error=%d).", sc->sc_name, error));
|
|
error = g_access(cp, 1, 0, 0);
|
|
KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
|
|
g_topology_unlock();
|
|
sx_xlock(&sc->sc_lock);
|
|
|
|
G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
|
|
g_raid3_get_diskname(disk));
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
|
|
disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
|
|
KASSERT(disk->d_sync.ds_consumer == NULL,
|
|
("Sync consumer already exists (device=%s, disk=%s).",
|
|
sc->sc_name, g_raid3_get_diskname(disk)));
|
|
|
|
disk->d_sync.ds_consumer = cp;
|
|
disk->d_sync.ds_consumer->private = disk;
|
|
disk->d_sync.ds_consumer->index = 0;
|
|
sc->sc_syncdisk = disk;
|
|
|
|
/*
|
|
* Allocate memory for synchronization bios and initialize them.
|
|
*/
|
|
disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
|
|
M_RAID3, M_WAITOK);
|
|
for (n = 0; n < g_raid3_syncreqs; n++) {
|
|
bp = g_alloc_bio();
|
|
disk->d_sync.ds_bios[n] = bp;
|
|
bp->bio_parent = NULL;
|
|
bp->bio_cmd = BIO_READ;
|
|
bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
|
|
bp->bio_cflags = 0;
|
|
bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
|
|
bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
|
|
disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
|
|
bp->bio_done = g_raid3_sync_done;
|
|
bp->bio_from = disk->d_sync.ds_consumer;
|
|
bp->bio_to = sc->sc_provider;
|
|
bp->bio_caller1 = (void *)(uintptr_t)n;
|
|
}
|
|
|
|
/* Set the number of in-flight synchronization requests. */
|
|
disk->d_sync.ds_inflight = g_raid3_syncreqs;
|
|
|
|
/*
|
|
* Fire off first synchronization requests.
|
|
*/
|
|
for (n = 0; n < g_raid3_syncreqs; n++) {
|
|
bp = disk->d_sync.ds_bios[n];
|
|
G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
|
|
disk->d_sync.ds_consumer->index++;
|
|
/*
|
|
* Delay the request if it is colliding with a regular request.
|
|
*/
|
|
if (g_raid3_regular_collision(sc, bp))
|
|
g_raid3_sync_delay(sc, bp);
|
|
else
|
|
g_io_request(bp, disk->d_sync.ds_consumer);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop synchronization process.
|
|
* type: 0 - synchronization finished
|
|
* 1 - synchronization stopped
|
|
*/
|
|
static void
|
|
g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
struct g_consumer *cp;
|
|
|
|
g_topology_assert_not();
|
|
sx_assert(&sc->sc_lock, SX_LOCKED);
|
|
|
|
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
|
|
("Device not in DEGRADED state (%s, %u).", sc->sc_name,
|
|
sc->sc_state));
|
|
disk = sc->sc_syncdisk;
|
|
sc->sc_syncdisk = NULL;
|
|
KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
|
|
KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
|
|
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
if (disk->d_sync.ds_consumer == NULL)
|
|
return;
|
|
|
|
if (type == 0) {
|
|
G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
|
|
sc->sc_name, g_raid3_get_diskname(disk));
|
|
} else /* if (type == 1) */ {
|
|
G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
|
|
sc->sc_name, g_raid3_get_diskname(disk));
|
|
}
|
|
free(disk->d_sync.ds_bios, M_RAID3);
|
|
disk->d_sync.ds_bios = NULL;
|
|
cp = disk->d_sync.ds_consumer;
|
|
disk->d_sync.ds_consumer = NULL;
|
|
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
|
|
sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
|
|
g_topology_lock();
|
|
g_raid3_kill_consumer(sc, cp);
|
|
g_topology_unlock();
|
|
sx_xlock(&sc->sc_lock);
|
|
}
|
|
|
|
static void
|
|
g_raid3_launch_provider(struct g_raid3_softc *sc)
|
|
{
|
|
struct g_provider *pp;
|
|
|
|
sx_assert(&sc->sc_lock, SX_LOCKED);
|
|
|
|
g_topology_lock();
|
|
pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
|
|
pp->mediasize = sc->sc_mediasize;
|
|
pp->sectorsize = sc->sc_sectorsize;
|
|
sc->sc_provider = pp;
|
|
g_error_provider(pp, 0);
|
|
g_topology_unlock();
|
|
G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
|
|
g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
|
|
|
|
if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
|
|
g_raid3_sync_start(sc);
|
|
}
|
|
|
|
static void
|
|
g_raid3_destroy_provider(struct g_raid3_softc *sc)
|
|
{
|
|
struct bio *bp;
|
|
|
|
g_topology_assert_not();
|
|
KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
|
|
sc->sc_name));
|
|
|
|
g_topology_lock();
|
|
g_error_provider(sc->sc_provider, ENXIO);
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
|
|
bioq_remove(&sc->sc_queue, bp);
|
|
g_io_deliver(bp, ENXIO);
|
|
}
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
|
|
sc->sc_provider->name);
|
|
sc->sc_provider->flags |= G_PF_WITHER;
|
|
g_orphan_provider(sc->sc_provider, ENXIO);
|
|
g_topology_unlock();
|
|
sc->sc_provider = NULL;
|
|
if (sc->sc_syncdisk != NULL)
|
|
g_raid3_sync_stop(sc, 1);
|
|
}
|
|
|
|
static void
|
|
g_raid3_go(void *arg)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
|
|
sc = arg;
|
|
G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
|
|
g_raid3_event_send(sc, 0,
|
|
G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
|
|
}
|
|
|
|
static u_int
|
|
g_raid3_determine_state(struct g_raid3_disk *disk)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
u_int state;
|
|
|
|
sc = disk->d_softc;
|
|
if (sc->sc_syncid == disk->d_sync.ds_syncid) {
|
|
if ((disk->d_flags &
|
|
G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
|
|
/* Disk does not need synchronization. */
|
|
state = G_RAID3_DISK_STATE_ACTIVE;
|
|
} else {
|
|
if ((sc->sc_flags &
|
|
G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
|
|
(disk->d_flags &
|
|
G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
|
|
/*
|
|
* We can start synchronization from
|
|
* the stored offset.
|
|
*/
|
|
state = G_RAID3_DISK_STATE_SYNCHRONIZING;
|
|
} else {
|
|
state = G_RAID3_DISK_STATE_STALE;
|
|
}
|
|
}
|
|
} else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
|
|
/*
|
|
* Reset all synchronization data for this disk,
|
|
* because if it even was synchronized, it was
|
|
* synchronized to disks with different syncid.
|
|
*/
|
|
disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
|
|
disk->d_sync.ds_offset = 0;
|
|
disk->d_sync.ds_offset_done = 0;
|
|
disk->d_sync.ds_syncid = sc->sc_syncid;
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
|
|
(disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
|
|
state = G_RAID3_DISK_STATE_SYNCHRONIZING;
|
|
} else {
|
|
state = G_RAID3_DISK_STATE_STALE;
|
|
}
|
|
} else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
|
|
/*
|
|
* Not good, NOT GOOD!
|
|
* It means that device was started on stale disks
|
|
* and more fresh disk just arrive.
|
|
* If there were writes, device is broken, sorry.
|
|
* I think the best choice here is don't touch
|
|
* this disk and inform the user loudly.
|
|
*/
|
|
G_RAID3_DEBUG(0, "Device %s was started before the freshest "
|
|
"disk (%s) arrives!! It will not be connected to the "
|
|
"running device.", sc->sc_name,
|
|
g_raid3_get_diskname(disk));
|
|
g_raid3_destroy_disk(disk);
|
|
state = G_RAID3_DISK_STATE_NONE;
|
|
/* Return immediately, because disk was destroyed. */
|
|
return (state);
|
|
}
|
|
G_RAID3_DEBUG(3, "State for %s disk: %s.",
|
|
g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
|
|
return (state);
|
|
}
|
|
|
|
/*
|
|
* Update device state.
|
|
*/
|
|
static void
|
|
g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
u_int state;
|
|
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
switch (sc->sc_state) {
|
|
case G_RAID3_DEVICE_STATE_STARTING:
|
|
{
|
|
u_int n, ndirty, ndisks, genid, syncid;
|
|
|
|
KASSERT(sc->sc_provider == NULL,
|
|
("Non-NULL provider in STARTING state (%s).", sc->sc_name));
|
|
/*
|
|
* Are we ready? We are, if all disks are connected or
|
|
* one disk is missing and 'force' is true.
|
|
*/
|
|
if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
|
|
if (!force)
|
|
callout_drain(&sc->sc_callout);
|
|
} else {
|
|
if (force) {
|
|
/*
|
|
* Timeout expired, so destroy device.
|
|
*/
|
|
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
|
|
G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
|
|
__LINE__, sc->sc_rootmount);
|
|
root_mount_rel(sc->sc_rootmount);
|
|
sc->sc_rootmount = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Find the biggest genid.
|
|
*/
|
|
genid = 0;
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
|
|
continue;
|
|
if (disk->d_genid > genid)
|
|
genid = disk->d_genid;
|
|
}
|
|
sc->sc_genid = genid;
|
|
/*
|
|
* Remove all disks without the biggest genid.
|
|
*/
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
|
|
continue;
|
|
if (disk->d_genid < genid) {
|
|
G_RAID3_DEBUG(0,
|
|
"Component %s (device %s) broken, skipping.",
|
|
g_raid3_get_diskname(disk), sc->sc_name);
|
|
g_raid3_destroy_disk(disk);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There must be at least 'sc->sc_ndisks - 1' components
|
|
* with the same syncid and without SYNCHRONIZING flag.
|
|
*/
|
|
|
|
/*
|
|
* Find the biggest syncid, number of valid components and
|
|
* number of dirty components.
|
|
*/
|
|
ndirty = ndisks = syncid = 0;
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
|
|
continue;
|
|
if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
|
|
ndirty++;
|
|
if (disk->d_sync.ds_syncid > syncid) {
|
|
syncid = disk->d_sync.ds_syncid;
|
|
ndisks = 0;
|
|
} else if (disk->d_sync.ds_syncid < syncid) {
|
|
continue;
|
|
}
|
|
if ((disk->d_flags &
|
|
G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
|
|
continue;
|
|
}
|
|
ndisks++;
|
|
}
|
|
/*
|
|
* Do we have enough valid components?
|
|
*/
|
|
if (ndisks + 1 < sc->sc_ndisks) {
|
|
G_RAID3_DEBUG(0,
|
|
"Device %s is broken, too few valid components.",
|
|
sc->sc_name);
|
|
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
|
|
return;
|
|
}
|
|
/*
|
|
* If there is one DIRTY component and all disks are present,
|
|
* mark it for synchronization. If there is more than one DIRTY
|
|
* component, mark parity component for synchronization.
|
|
*/
|
|
if (ndisks == sc->sc_ndisks && ndirty == 1) {
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
if ((disk->d_flags &
|
|
G_RAID3_DISK_FLAG_DIRTY) == 0) {
|
|
continue;
|
|
}
|
|
disk->d_flags |=
|
|
G_RAID3_DISK_FLAG_SYNCHRONIZING;
|
|
}
|
|
} else if (ndisks == sc->sc_ndisks && ndirty > 1) {
|
|
disk = &sc->sc_disks[sc->sc_ndisks - 1];
|
|
disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
|
|
}
|
|
|
|
sc->sc_syncid = syncid;
|
|
if (force) {
|
|
/* Remember to bump syncid on first write. */
|
|
sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
|
|
}
|
|
if (ndisks == sc->sc_ndisks)
|
|
state = G_RAID3_DEVICE_STATE_COMPLETE;
|
|
else /* if (ndisks == sc->sc_ndisks - 1) */
|
|
state = G_RAID3_DEVICE_STATE_DEGRADED;
|
|
G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
|
|
sc->sc_name, g_raid3_device_state2str(sc->sc_state),
|
|
g_raid3_device_state2str(state));
|
|
sc->sc_state = state;
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
disk = &sc->sc_disks[n];
|
|
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
|
|
continue;
|
|
state = g_raid3_determine_state(disk);
|
|
g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
|
|
if (state == G_RAID3_DISK_STATE_STALE)
|
|
sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
|
|
}
|
|
break;
|
|
}
|
|
case G_RAID3_DEVICE_STATE_DEGRADED:
|
|
/*
|
|
* Genid need to be bumped immediately, so do it here.
|
|
*/
|
|
if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
|
|
sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
|
|
g_raid3_bump_genid(sc);
|
|
}
|
|
|
|
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
|
|
return;
|
|
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
|
|
sc->sc_ndisks - 1) {
|
|
if (sc->sc_provider != NULL)
|
|
g_raid3_destroy_provider(sc);
|
|
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
|
|
return;
|
|
}
|
|
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
|
|
sc->sc_ndisks) {
|
|
state = G_RAID3_DEVICE_STATE_COMPLETE;
|
|
G_RAID3_DEBUG(1,
|
|
"Device %s state changed from %s to %s.",
|
|
sc->sc_name, g_raid3_device_state2str(sc->sc_state),
|
|
g_raid3_device_state2str(state));
|
|
sc->sc_state = state;
|
|
}
|
|
if (sc->sc_provider == NULL)
|
|
g_raid3_launch_provider(sc);
|
|
if (sc->sc_rootmount != NULL) {
|
|
G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
|
|
sc->sc_rootmount);
|
|
root_mount_rel(sc->sc_rootmount);
|
|
sc->sc_rootmount = NULL;
|
|
}
|
|
break;
|
|
case G_RAID3_DEVICE_STATE_COMPLETE:
|
|
/*
|
|
* Genid need to be bumped immediately, so do it here.
|
|
*/
|
|
if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
|
|
sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
|
|
g_raid3_bump_genid(sc);
|
|
}
|
|
|
|
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
|
|
return;
|
|
KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
|
|
sc->sc_ndisks - 1,
|
|
("Too few ACTIVE components in COMPLETE state (device %s).",
|
|
sc->sc_name));
|
|
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
|
|
sc->sc_ndisks - 1) {
|
|
state = G_RAID3_DEVICE_STATE_DEGRADED;
|
|
G_RAID3_DEBUG(1,
|
|
"Device %s state changed from %s to %s.",
|
|
sc->sc_name, g_raid3_device_state2str(sc->sc_state),
|
|
g_raid3_device_state2str(state));
|
|
sc->sc_state = state;
|
|
}
|
|
if (sc->sc_provider == NULL)
|
|
g_raid3_launch_provider(sc);
|
|
if (sc->sc_rootmount != NULL) {
|
|
G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
|
|
sc->sc_rootmount);
|
|
root_mount_rel(sc->sc_rootmount);
|
|
sc->sc_rootmount = NULL;
|
|
}
|
|
break;
|
|
default:
|
|
KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
|
|
g_raid3_device_state2str(sc->sc_state)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update disk state and device state if needed.
|
|
*/
|
|
#define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \
|
|
"Disk %s state changed from %s to %s (device %s).", \
|
|
g_raid3_get_diskname(disk), \
|
|
g_raid3_disk_state2str(disk->d_state), \
|
|
g_raid3_disk_state2str(state), sc->sc_name)
|
|
static int
|
|
g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
|
|
sc = disk->d_softc;
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
again:
|
|
G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
|
|
g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
|
|
g_raid3_disk_state2str(state));
|
|
switch (state) {
|
|
case G_RAID3_DISK_STATE_NEW:
|
|
/*
|
|
* Possible scenarios:
|
|
* 1. New disk arrive.
|
|
*/
|
|
/* Previous state should be NONE. */
|
|
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
|
|
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
DISK_STATE_CHANGED();
|
|
|
|
disk->d_state = state;
|
|
G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
|
|
sc->sc_name, g_raid3_get_diskname(disk));
|
|
if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
|
|
break;
|
|
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
|
|
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
|
|
g_raid3_device_state2str(sc->sc_state),
|
|
g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
state = g_raid3_determine_state(disk);
|
|
if (state != G_RAID3_DISK_STATE_NONE)
|
|
goto again;
|
|
break;
|
|
case G_RAID3_DISK_STATE_ACTIVE:
|
|
/*
|
|
* Possible scenarios:
|
|
* 1. New disk does not need synchronization.
|
|
* 2. Synchronization process finished successfully.
|
|
*/
|
|
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
|
|
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
|
|
g_raid3_device_state2str(sc->sc_state),
|
|
g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
/* Previous state should be NEW or SYNCHRONIZING. */
|
|
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
|
|
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
|
|
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
DISK_STATE_CHANGED();
|
|
|
|
if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
|
|
disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
|
|
disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
|
|
g_raid3_sync_stop(sc, 0);
|
|
}
|
|
disk->d_state = state;
|
|
disk->d_sync.ds_offset = 0;
|
|
disk->d_sync.ds_offset_done = 0;
|
|
g_raid3_update_idle(sc, disk);
|
|
g_raid3_update_metadata(disk);
|
|
G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
|
|
sc->sc_name, g_raid3_get_diskname(disk));
|
|
break;
|
|
case G_RAID3_DISK_STATE_STALE:
|
|
/*
|
|
* Possible scenarios:
|
|
* 1. Stale disk was connected.
|
|
*/
|
|
/* Previous state should be NEW. */
|
|
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
|
|
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
|
|
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
|
|
g_raid3_device_state2str(sc->sc_state),
|
|
g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
/*
|
|
* STALE state is only possible if device is marked
|
|
* NOAUTOSYNC.
|
|
*/
|
|
KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
|
|
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
|
|
g_raid3_device_state2str(sc->sc_state),
|
|
g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
DISK_STATE_CHANGED();
|
|
|
|
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
|
|
disk->d_state = state;
|
|
g_raid3_update_metadata(disk);
|
|
G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
|
|
sc->sc_name, g_raid3_get_diskname(disk));
|
|
break;
|
|
case G_RAID3_DISK_STATE_SYNCHRONIZING:
|
|
/*
|
|
* Possible scenarios:
|
|
* 1. Disk which needs synchronization was connected.
|
|
*/
|
|
/* Previous state should be NEW. */
|
|
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
|
|
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
|
|
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
|
|
g_raid3_device_state2str(sc->sc_state),
|
|
g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
DISK_STATE_CHANGED();
|
|
|
|
if (disk->d_state == G_RAID3_DISK_STATE_NEW)
|
|
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
|
|
disk->d_state = state;
|
|
if (sc->sc_provider != NULL) {
|
|
g_raid3_sync_start(sc);
|
|
g_raid3_update_metadata(disk);
|
|
}
|
|
break;
|
|
case G_RAID3_DISK_STATE_DISCONNECTED:
|
|
/*
|
|
* Possible scenarios:
|
|
* 1. Device wasn't running yet, but disk disappear.
|
|
* 2. Disk was active and disapppear.
|
|
* 3. Disk disappear during synchronization process.
|
|
*/
|
|
if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
|
|
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
|
|
/*
|
|
* Previous state should be ACTIVE, STALE or
|
|
* SYNCHRONIZING.
|
|
*/
|
|
KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
|
|
disk->d_state == G_RAID3_DISK_STATE_STALE ||
|
|
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
|
|
("Wrong disk state (%s, %s).",
|
|
g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
} else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
|
|
/* Previous state should be NEW. */
|
|
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
|
|
("Wrong disk state (%s, %s).",
|
|
g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
/*
|
|
* Reset bumping syncid if disk disappeared in STARTING
|
|
* state.
|
|
*/
|
|
if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
|
|
sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
|
|
#ifdef INVARIANTS
|
|
} else {
|
|
KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
|
|
sc->sc_name,
|
|
g_raid3_device_state2str(sc->sc_state),
|
|
g_raid3_get_diskname(disk),
|
|
g_raid3_disk_state2str(disk->d_state)));
|
|
#endif
|
|
}
|
|
DISK_STATE_CHANGED();
|
|
G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
|
|
sc->sc_name, g_raid3_get_diskname(disk));
|
|
|
|
g_raid3_destroy_disk(disk);
|
|
break;
|
|
default:
|
|
KASSERT(1 == 0, ("Unknown state (%u).", state));
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
#undef DISK_STATE_CHANGED
|
|
|
|
int
|
|
g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
|
|
{
|
|
struct g_provider *pp;
|
|
u_char *buf;
|
|
int error;
|
|
|
|
g_topology_assert();
|
|
|
|
error = g_access(cp, 1, 0, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
pp = cp->provider;
|
|
g_topology_unlock();
|
|
/* Metadata are stored on last sector. */
|
|
buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
|
|
&error);
|
|
g_topology_lock();
|
|
g_access(cp, -1, 0, 0);
|
|
if (buf == NULL) {
|
|
G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
|
|
cp->provider->name, error);
|
|
return (error);
|
|
}
|
|
|
|
/* Decode metadata. */
|
|
error = raid3_metadata_decode(buf, md);
|
|
g_free(buf);
|
|
if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
|
|
return (EINVAL);
|
|
if (md->md_version > G_RAID3_VERSION) {
|
|
G_RAID3_DEBUG(0,
|
|
"Kernel module is too old to handle metadata from %s.",
|
|
cp->provider->name);
|
|
return (EINVAL);
|
|
}
|
|
if (error != 0) {
|
|
G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
|
|
cp->provider->name);
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
|
|
struct g_raid3_metadata *md)
|
|
{
|
|
|
|
if (md->md_no >= sc->sc_ndisks) {
|
|
G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
|
|
pp->name, md->md_no);
|
|
return (EINVAL);
|
|
}
|
|
if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
|
|
G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
|
|
pp->name, md->md_no);
|
|
return (EEXIST);
|
|
}
|
|
if (md->md_all != sc->sc_ndisks) {
|
|
G_RAID3_DEBUG(1,
|
|
"Invalid '%s' field on disk %s (device %s), skipping.",
|
|
"md_all", pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if ((md->md_mediasize % md->md_sectorsize) != 0) {
|
|
G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
|
|
"0) on disk %s (device %s), skipping.", pp->name,
|
|
sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if (md->md_mediasize != sc->sc_mediasize) {
|
|
G_RAID3_DEBUG(1,
|
|
"Invalid '%s' field on disk %s (device %s), skipping.",
|
|
"md_mediasize", pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
|
|
G_RAID3_DEBUG(1,
|
|
"Invalid '%s' field on disk %s (device %s), skipping.",
|
|
"md_mediasize", pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
|
|
G_RAID3_DEBUG(1,
|
|
"Invalid size of disk %s (device %s), skipping.", pp->name,
|
|
sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
|
|
G_RAID3_DEBUG(1,
|
|
"Invalid '%s' field on disk %s (device %s), skipping.",
|
|
"md_sectorsize", pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if (md->md_sectorsize != sc->sc_sectorsize) {
|
|
G_RAID3_DEBUG(1,
|
|
"Invalid '%s' field on disk %s (device %s), skipping.",
|
|
"md_sectorsize", pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
|
|
G_RAID3_DEBUG(1,
|
|
"Invalid sector size of disk %s (device %s), skipping.",
|
|
pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
|
|
G_RAID3_DEBUG(1,
|
|
"Invalid device flags on disk %s (device %s), skipping.",
|
|
pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
|
|
(md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
|
|
/*
|
|
* VERIFY and ROUND-ROBIN options are mutally exclusive.
|
|
*/
|
|
G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
|
|
"disk %s (device %s), skipping.", pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
|
|
G_RAID3_DEBUG(1,
|
|
"Invalid disk flags on disk %s (device %s), skipping.",
|
|
pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
|
|
struct g_raid3_metadata *md)
|
|
{
|
|
struct g_raid3_disk *disk;
|
|
int error;
|
|
|
|
g_topology_assert_not();
|
|
G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
|
|
|
|
error = g_raid3_check_metadata(sc, pp, md);
|
|
if (error != 0)
|
|
return (error);
|
|
if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
|
|
md->md_genid < sc->sc_genid) {
|
|
G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
|
|
pp->name, sc->sc_name);
|
|
return (EINVAL);
|
|
}
|
|
disk = g_raid3_init_disk(sc, pp, md, &error);
|
|
if (disk == NULL)
|
|
return (error);
|
|
error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
|
|
G_RAID3_EVENT_WAIT);
|
|
if (error != 0)
|
|
return (error);
|
|
if (md->md_version < G_RAID3_VERSION) {
|
|
G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
|
|
pp->name, md->md_version, G_RAID3_VERSION);
|
|
g_raid3_update_metadata(disk);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
g_raid3_destroy_delayed(void *arg, int flag)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
int error;
|
|
|
|
if (flag == EV_CANCEL) {
|
|
G_RAID3_DEBUG(1, "Destroying canceled.");
|
|
return;
|
|
}
|
|
sc = arg;
|
|
g_topology_unlock();
|
|
sx_xlock(&sc->sc_lock);
|
|
KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
|
|
("DESTROY flag set on %s.", sc->sc_name));
|
|
KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
|
|
("DESTROYING flag not set on %s.", sc->sc_name));
|
|
G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
|
|
error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
|
|
if (error != 0) {
|
|
G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
|
|
sx_xunlock(&sc->sc_lock);
|
|
}
|
|
g_topology_lock();
|
|
}
|
|
|
|
static int
|
|
g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
int dcr, dcw, dce, error = 0;
|
|
|
|
g_topology_assert();
|
|
G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
|
|
acw, ace);
|
|
|
|
sc = pp->geom->softc;
|
|
if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
|
|
return (0);
|
|
KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
|
|
|
|
dcr = pp->acr + acr;
|
|
dcw = pp->acw + acw;
|
|
dce = pp->ace + ace;
|
|
|
|
g_topology_unlock();
|
|
sx_xlock(&sc->sc_lock);
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
|
|
g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
|
|
if (acr > 0 || acw > 0 || ace > 0)
|
|
error = ENXIO;
|
|
goto end;
|
|
}
|
|
if (dcw == 0 && !sc->sc_idle)
|
|
g_raid3_idle(sc, dcw);
|
|
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
|
|
if (acr > 0 || acw > 0 || ace > 0) {
|
|
error = ENXIO;
|
|
goto end;
|
|
}
|
|
if (dcr == 0 && dcw == 0 && dce == 0) {
|
|
g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
|
|
sc, NULL);
|
|
}
|
|
}
|
|
end:
|
|
sx_xunlock(&sc->sc_lock);
|
|
g_topology_lock();
|
|
return (error);
|
|
}
|
|
|
|
static struct g_geom *
|
|
g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
struct g_geom *gp;
|
|
int error, timeout;
|
|
u_int n;
|
|
|
|
g_topology_assert();
|
|
G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
|
|
|
|
/* One disk is minimum. */
|
|
if (md->md_all < 1)
|
|
return (NULL);
|
|
/*
|
|
* Action geom.
|
|
*/
|
|
gp = g_new_geomf(mp, "%s", md->md_name);
|
|
sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
|
|
sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
|
|
M_WAITOK | M_ZERO);
|
|
gp->start = g_raid3_start;
|
|
gp->orphan = g_raid3_orphan;
|
|
gp->access = g_raid3_access;
|
|
gp->dumpconf = g_raid3_dumpconf;
|
|
|
|
sc->sc_id = md->md_id;
|
|
sc->sc_mediasize = md->md_mediasize;
|
|
sc->sc_sectorsize = md->md_sectorsize;
|
|
sc->sc_ndisks = md->md_all;
|
|
sc->sc_round_robin = 0;
|
|
sc->sc_flags = md->md_mflags;
|
|
sc->sc_bump_id = 0;
|
|
sc->sc_idle = 1;
|
|
sc->sc_last_write = time_uptime;
|
|
sc->sc_writes = 0;
|
|
for (n = 0; n < sc->sc_ndisks; n++) {
|
|
sc->sc_disks[n].d_softc = sc;
|
|
sc->sc_disks[n].d_no = n;
|
|
sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
|
|
}
|
|
sx_init(&sc->sc_lock, "graid3:lock");
|
|
bioq_init(&sc->sc_queue);
|
|
mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
|
|
bioq_init(&sc->sc_regular_delayed);
|
|
bioq_init(&sc->sc_inflight);
|
|
bioq_init(&sc->sc_sync_delayed);
|
|
TAILQ_INIT(&sc->sc_events);
|
|
mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
|
|
callout_init(&sc->sc_callout, CALLOUT_MPSAFE);
|
|
sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
|
|
gp->softc = sc;
|
|
sc->sc_geom = gp;
|
|
sc->sc_provider = NULL;
|
|
/*
|
|
* Synchronization geom.
|
|
*/
|
|
gp = g_new_geomf(mp, "%s.sync", md->md_name);
|
|
gp->softc = sc;
|
|
gp->orphan = g_raid3_orphan;
|
|
sc->sc_sync.ds_geom = gp;
|
|
|
|
if (!g_raid3_use_malloc) {
|
|
sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
|
|
65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
|
|
UMA_ALIGN_PTR, 0);
|
|
sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
|
|
sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
|
|
sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
|
|
sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
|
|
sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
|
|
16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
|
|
UMA_ALIGN_PTR, 0);
|
|
sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
|
|
sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
|
|
sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
|
|
sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
|
|
sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
|
|
4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
|
|
UMA_ALIGN_PTR, 0);
|
|
sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
|
|
sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
|
|
sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
|
|
sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
|
|
}
|
|
|
|
error = kthread_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
|
|
"g_raid3 %s", md->md_name);
|
|
if (error != 0) {
|
|
G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
|
|
sc->sc_name);
|
|
if (!g_raid3_use_malloc) {
|
|
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
|
|
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
|
|
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
|
|
}
|
|
g_destroy_geom(sc->sc_sync.ds_geom);
|
|
mtx_destroy(&sc->sc_events_mtx);
|
|
mtx_destroy(&sc->sc_queue_mtx);
|
|
sx_destroy(&sc->sc_lock);
|
|
g_destroy_geom(sc->sc_geom);
|
|
free(sc->sc_disks, M_RAID3);
|
|
free(sc, M_RAID3);
|
|
return (NULL);
|
|
}
|
|
|
|
G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
|
|
sc->sc_name, sc->sc_ndisks, sc->sc_id);
|
|
|
|
sc->sc_rootmount = root_mount_hold("GRAID3");
|
|
G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
|
|
|
|
/*
|
|
* Run timeout.
|
|
*/
|
|
timeout = atomic_load_acq_int(&g_raid3_timeout);
|
|
callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
|
|
return (sc->sc_geom);
|
|
}
|
|
|
|
int
|
|
g_raid3_destroy(struct g_raid3_softc *sc, int how)
|
|
{
|
|
struct g_provider *pp;
|
|
|
|
g_topology_assert_not();
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
sx_assert(&sc->sc_lock, SX_XLOCKED);
|
|
|
|
pp = sc->sc_provider;
|
|
if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
|
|
switch (how) {
|
|
case G_RAID3_DESTROY_SOFT:
|
|
G_RAID3_DEBUG(1,
|
|
"Device %s is still open (r%dw%de%d).", pp->name,
|
|
pp->acr, pp->acw, pp->ace);
|
|
return (EBUSY);
|
|
case G_RAID3_DESTROY_DELAYED:
|
|
G_RAID3_DEBUG(1,
|
|
"Device %s will be destroyed on last close.",
|
|
pp->name);
|
|
if (sc->sc_syncdisk != NULL)
|
|
g_raid3_sync_stop(sc, 1);
|
|
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
|
|
return (EBUSY);
|
|
case G_RAID3_DESTROY_HARD:
|
|
G_RAID3_DEBUG(1, "Device %s is still open, so it "
|
|
"can't be definitely removed.", pp->name);
|
|
break;
|
|
}
|
|
}
|
|
|
|
g_topology_lock();
|
|
if (sc->sc_geom->softc == NULL) {
|
|
g_topology_unlock();
|
|
return (0);
|
|
}
|
|
sc->sc_geom->softc = NULL;
|
|
sc->sc_sync.ds_geom->softc = NULL;
|
|
g_topology_unlock();
|
|
|
|
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
|
|
sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
|
|
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
|
|
sx_xunlock(&sc->sc_lock);
|
|
mtx_lock(&sc->sc_queue_mtx);
|
|
wakeup(sc);
|
|
wakeup(&sc->sc_queue);
|
|
mtx_unlock(&sc->sc_queue_mtx);
|
|
G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
|
|
while (sc->sc_worker != NULL)
|
|
tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
|
|
G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
|
|
sx_xlock(&sc->sc_lock);
|
|
g_raid3_destroy_device(sc);
|
|
free(sc->sc_disks, M_RAID3);
|
|
free(sc, M_RAID3);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
g_raid3_taste_orphan(struct g_consumer *cp)
|
|
{
|
|
|
|
KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
|
|
cp->provider->name));
|
|
}
|
|
|
|
static struct g_geom *
|
|
g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
|
|
{
|
|
struct g_raid3_metadata md;
|
|
struct g_raid3_softc *sc;
|
|
struct g_consumer *cp;
|
|
struct g_geom *gp;
|
|
int error;
|
|
|
|
g_topology_assert();
|
|
g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
|
|
G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
|
|
|
|
gp = g_new_geomf(mp, "raid3:taste");
|
|
/* This orphan function should be never called. */
|
|
gp->orphan = g_raid3_taste_orphan;
|
|
cp = g_new_consumer(gp);
|
|
g_attach(cp, pp);
|
|
error = g_raid3_read_metadata(cp, &md);
|
|
g_detach(cp);
|
|
g_destroy_consumer(cp);
|
|
g_destroy_geom(gp);
|
|
if (error != 0)
|
|
return (NULL);
|
|
gp = NULL;
|
|
|
|
if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0)
|
|
return (NULL);
|
|
if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
|
|
return (NULL);
|
|
if (g_raid3_debug >= 2)
|
|
raid3_metadata_dump(&md);
|
|
|
|
/*
|
|
* Let's check if device already exists.
|
|
*/
|
|
sc = NULL;
|
|
LIST_FOREACH(gp, &mp->geom, geom) {
|
|
sc = gp->softc;
|
|
if (sc == NULL)
|
|
continue;
|
|
if (sc->sc_sync.ds_geom == gp)
|
|
continue;
|
|
if (strcmp(md.md_name, sc->sc_name) != 0)
|
|
continue;
|
|
if (md.md_id != sc->sc_id) {
|
|
G_RAID3_DEBUG(0, "Device %s already configured.",
|
|
sc->sc_name);
|
|
return (NULL);
|
|
}
|
|
break;
|
|
}
|
|
if (gp == NULL) {
|
|
gp = g_raid3_create(mp, &md);
|
|
if (gp == NULL) {
|
|
G_RAID3_DEBUG(0, "Cannot create device %s.",
|
|
md.md_name);
|
|
return (NULL);
|
|
}
|
|
sc = gp->softc;
|
|
}
|
|
G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
|
|
g_topology_unlock();
|
|
sx_xlock(&sc->sc_lock);
|
|
error = g_raid3_add_disk(sc, pp, &md);
|
|
if (error != 0) {
|
|
G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
|
|
pp->name, gp->name, error);
|
|
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
|
|
sc->sc_ndisks) {
|
|
g_cancel_event(sc);
|
|
g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
|
|
g_topology_lock();
|
|
return (NULL);
|
|
}
|
|
gp = NULL;
|
|
}
|
|
sx_xunlock(&sc->sc_lock);
|
|
g_topology_lock();
|
|
return (gp);
|
|
}
|
|
|
|
static int
|
|
g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
|
|
struct g_geom *gp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
int error;
|
|
|
|
g_topology_unlock();
|
|
sc = gp->softc;
|
|
sx_xlock(&sc->sc_lock);
|
|
g_cancel_event(sc);
|
|
error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
|
|
if (error != 0)
|
|
sx_xunlock(&sc->sc_lock);
|
|
g_topology_lock();
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
|
|
struct g_consumer *cp, struct g_provider *pp)
|
|
{
|
|
struct g_raid3_softc *sc;
|
|
|
|
g_topology_assert();
|
|
|
|
sc = gp->softc;
|
|
if (sc == NULL)
|
|
return;
|
|
/* Skip synchronization geom. */
|
|
if (gp == sc->sc_sync.ds_geom)
|
|
return;
|
|
if (pp != NULL) {
|
|
/* Nothing here. */
|
|
} else if (cp != NULL) {
|
|
struct g_raid3_disk *disk;
|
|
|
|
disk = cp->private;
|
|
if (disk == NULL)
|
|
return;
|
|
g_topology_unlock();
|
|
sx_xlock(&sc->sc_lock);
|
|
sbuf_printf(sb, "%s<Type>", indent);
|
|
if (disk->d_no == sc->sc_ndisks - 1)
|
|
sbuf_printf(sb, "PARITY");
|
|
else
|
|
sbuf_printf(sb, "DATA");
|
|
sbuf_printf(sb, "</Type>\n");
|
|
sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
|
|
(u_int)disk->d_no);
|
|
if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
|
|
sbuf_printf(sb, "%s<Synchronized>", indent);
|
|
if (disk->d_sync.ds_offset == 0)
|
|
sbuf_printf(sb, "0%%");
|
|
else {
|
|
sbuf_printf(sb, "%u%%",
|
|
(u_int)((disk->d_sync.ds_offset * 100) /
|
|
(sc->sc_mediasize / (sc->sc_ndisks - 1))));
|
|
}
|
|
sbuf_printf(sb, "</Synchronized>\n");
|
|
}
|
|
sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
|
|
disk->d_sync.ds_syncid);
|
|
sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
|
|
sbuf_printf(sb, "%s<Flags>", indent);
|
|
if (disk->d_flags == 0)
|
|
sbuf_printf(sb, "NONE");
|
|
else {
|
|
int first = 1;
|
|
|
|
#define ADD_FLAG(flag, name) do { \
|
|
if ((disk->d_flags & (flag)) != 0) { \
|
|
if (!first) \
|
|
sbuf_printf(sb, ", "); \
|
|
else \
|
|
first = 0; \
|
|
sbuf_printf(sb, name); \
|
|
} \
|
|
} while (0)
|
|
ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
|
|
ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
|
|
ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
|
|
"SYNCHRONIZING");
|
|
ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
|
|
ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
|
|
#undef ADD_FLAG
|
|
}
|
|
sbuf_printf(sb, "</Flags>\n");
|
|
sbuf_printf(sb, "%s<State>%s</State>\n", indent,
|
|
g_raid3_disk_state2str(disk->d_state));
|
|
sx_xunlock(&sc->sc_lock);
|
|
g_topology_lock();
|
|
} else {
|
|
g_topology_unlock();
|
|
sx_xlock(&sc->sc_lock);
|
|
if (!g_raid3_use_malloc) {
|
|
sbuf_printf(sb,
|
|
"%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
|
|
sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
|
|
sbuf_printf(sb,
|
|
"%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
|
|
sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
|
|
sbuf_printf(sb,
|
|
"%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
|
|
sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
|
|
sbuf_printf(sb,
|
|
"%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
|
|
sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
|
|
sbuf_printf(sb,
|
|
"%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
|
|
sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
|
|
sbuf_printf(sb,
|
|
"%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
|
|
sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
|
|
}
|
|
sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
|
|
sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
|
|
sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
|
|
sbuf_printf(sb, "%s<Flags>", indent);
|
|
if (sc->sc_flags == 0)
|
|
sbuf_printf(sb, "NONE");
|
|
else {
|
|
int first = 1;
|
|
|
|
#define ADD_FLAG(flag, name) do { \
|
|
if ((sc->sc_flags & (flag)) != 0) { \
|
|
if (!first) \
|
|
sbuf_printf(sb, ", "); \
|
|
else \
|
|
first = 0; \
|
|
sbuf_printf(sb, name); \
|
|
} \
|
|
} while (0)
|
|
ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
|
|
ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
|
|
ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
|
|
"ROUND-ROBIN");
|
|
ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
|
|
#undef ADD_FLAG
|
|
}
|
|
sbuf_printf(sb, "</Flags>\n");
|
|
sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
|
|
sc->sc_ndisks);
|
|
sbuf_printf(sb, "%s<State>%s</State>\n", indent,
|
|
g_raid3_device_state2str(sc->sc_state));
|
|
sx_xunlock(&sc->sc_lock);
|
|
g_topology_lock();
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_raid3_shutdown_pre_sync(void *arg, int howto)
|
|
{
|
|
struct g_class *mp;
|
|
struct g_geom *gp, *gp2;
|
|
struct g_raid3_softc *sc;
|
|
int error;
|
|
|
|
mp = arg;
|
|
DROP_GIANT();
|
|
g_topology_lock();
|
|
LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
|
|
if ((sc = gp->softc) == NULL)
|
|
continue;
|
|
/* Skip synchronization geom. */
|
|
if (gp == sc->sc_sync.ds_geom)
|
|
continue;
|
|
g_topology_unlock();
|
|
sx_xlock(&sc->sc_lock);
|
|
g_cancel_event(sc);
|
|
error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
|
|
if (error != 0)
|
|
sx_xunlock(&sc->sc_lock);
|
|
g_topology_lock();
|
|
}
|
|
g_topology_unlock();
|
|
PICKUP_GIANT();
|
|
}
|
|
|
|
static void
|
|
g_raid3_init(struct g_class *mp)
|
|
{
|
|
|
|
g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync,
|
|
g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST);
|
|
if (g_raid3_pre_sync == NULL)
|
|
G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
|
|
}
|
|
|
|
static void
|
|
g_raid3_fini(struct g_class *mp)
|
|
{
|
|
|
|
if (g_raid3_pre_sync != NULL)
|
|
EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync);
|
|
}
|
|
|
|
DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);
|