freebsd-nq/sys/dev/mge/if_mge.c
Pawel Biernacki 7029da5c36 Mark more nodes as CTLFLAG_MPSAFE or CTLFLAG_NEEDGIANT (17 of many)
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.

This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.

Mark all obvious cases as MPSAFE.  All entries that haven't been marked
as MPSAFE before are by default marked as NEEDGIANT

Approved by:	kib (mentor, blanket)
Commented by:	kib, gallatin, melifaro
Differential Revision:	https://reviews.freebsd.org/D23718
2020-02-26 14:26:36 +00:00

2176 lines
53 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (C) 2008 MARVELL INTERNATIONAL LTD.
* Copyright (C) 2009-2015 Semihalf
* Copyright (C) 2015 Stormshield
* All rights reserved.
*
* Developed by Semihalf.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of MARVELL nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <sys/sockio.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mdio/mdio.h>
#include <dev/mge/if_mgevar.h>
#include <arm/mv/mvreg.h>
#include <arm/mv/mvvar.h>
#include "miibus_if.h"
#include "mdio_if.h"
#define MGE_DELAY(x) pause("SMI access sleep", (x) / tick_sbt)
static int mge_probe(device_t dev);
static int mge_attach(device_t dev);
static int mge_detach(device_t dev);
static int mge_shutdown(device_t dev);
static int mge_suspend(device_t dev);
static int mge_resume(device_t dev);
static int mge_miibus_readreg(device_t dev, int phy, int reg);
static int mge_miibus_writereg(device_t dev, int phy, int reg, int value);
static int mge_mdio_readreg(device_t dev, int phy, int reg);
static int mge_mdio_writereg(device_t dev, int phy, int reg, int value);
static int mge_ifmedia_upd(struct ifnet *ifp);
static void mge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
static void mge_init(void *arg);
static void mge_init_locked(void *arg);
static void mge_start(struct ifnet *ifp);
static void mge_start_locked(struct ifnet *ifp);
static void mge_watchdog(struct mge_softc *sc);
static int mge_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
static uint32_t mge_tfut_ipg(uint32_t val, int ver);
static uint32_t mge_rx_ipg(uint32_t val, int ver);
static void mge_ver_params(struct mge_softc *sc);
static void mge_intrs_ctrl(struct mge_softc *sc, int enable);
static void mge_intr_rxtx(void *arg);
static void mge_intr_rx(void *arg);
static void mge_intr_rx_check(struct mge_softc *sc, uint32_t int_cause,
uint32_t int_cause_ext);
static int mge_intr_rx_locked(struct mge_softc *sc, int count);
static void mge_intr_tx(void *arg);
static void mge_intr_tx_locked(struct mge_softc *sc);
static void mge_intr_misc(void *arg);
static void mge_intr_sum(void *arg);
static void mge_intr_err(void *arg);
static void mge_stop(struct mge_softc *sc);
static void mge_tick(void *msc);
static uint32_t mge_set_port_serial_control(uint32_t media);
static void mge_get_mac_address(struct mge_softc *sc, uint8_t *addr);
static void mge_set_mac_address(struct mge_softc *sc);
static void mge_set_ucast_address(struct mge_softc *sc, uint8_t last_byte,
uint8_t queue);
static void mge_set_prom_mode(struct mge_softc *sc, uint8_t queue);
static int mge_allocate_dma(struct mge_softc *sc);
static int mge_alloc_desc_dma(struct mge_softc *sc,
struct mge_desc_wrapper* desc_tab, uint32_t size,
bus_dma_tag_t *buffer_tag);
static int mge_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
struct mbuf **mbufp, bus_addr_t *paddr);
static void mge_get_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg,
int error);
static void mge_free_dma(struct mge_softc *sc);
static void mge_free_desc(struct mge_softc *sc, struct mge_desc_wrapper* tab,
uint32_t size, bus_dma_tag_t buffer_tag, uint8_t free_mbufs);
static void mge_offload_process_frame(struct ifnet *ifp, struct mbuf *frame,
uint32_t status, uint16_t bufsize);
static void mge_offload_setup_descriptor(struct mge_softc *sc,
struct mge_desc_wrapper *dw);
static uint8_t mge_crc8(uint8_t *data, int size);
static void mge_setup_multicast(struct mge_softc *sc);
static void mge_set_rxic(struct mge_softc *sc);
static void mge_set_txic(struct mge_softc *sc);
static void mge_add_sysctls(struct mge_softc *sc);
static int mge_sysctl_ic(SYSCTL_HANDLER_ARGS);
static device_method_t mge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mge_probe),
DEVMETHOD(device_attach, mge_attach),
DEVMETHOD(device_detach, mge_detach),
DEVMETHOD(device_shutdown, mge_shutdown),
DEVMETHOD(device_suspend, mge_suspend),
DEVMETHOD(device_resume, mge_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, mge_miibus_readreg),
DEVMETHOD(miibus_writereg, mge_miibus_writereg),
/* MDIO interface */
DEVMETHOD(mdio_readreg, mge_mdio_readreg),
DEVMETHOD(mdio_writereg, mge_mdio_writereg),
{ 0, 0 }
};
DEFINE_CLASS_0(mge, mge_driver, mge_methods, sizeof(struct mge_softc));
static devclass_t mge_devclass;
static int switch_attached = 0;
DRIVER_MODULE(mge, simplebus, mge_driver, mge_devclass, 0, 0);
DRIVER_MODULE(miibus, mge, miibus_driver, miibus_devclass, 0, 0);
DRIVER_MODULE(mdio, mge, mdio_driver, mdio_devclass, 0, 0);
MODULE_DEPEND(mge, ether, 1, 1, 1);
MODULE_DEPEND(mge, miibus, 1, 1, 1);
MODULE_DEPEND(mge, mdio, 1, 1, 1);
static struct resource_spec res_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0 }
};
static struct {
driver_intr_t *handler;
char * description;
} mge_intrs[MGE_INTR_COUNT + 1] = {
{ mge_intr_rxtx,"GbE aggregated interrupt" },
{ mge_intr_rx, "GbE receive interrupt" },
{ mge_intr_tx, "GbE transmit interrupt" },
{ mge_intr_misc,"GbE misc interrupt" },
{ mge_intr_sum, "GbE summary interrupt" },
{ mge_intr_err, "GbE error interrupt" },
};
/* SMI access interlock */
static struct sx sx_smi;
static uint32_t
mv_read_ge_smi(device_t dev, int phy, int reg)
{
uint32_t timeout;
uint32_t ret;
struct mge_softc *sc;
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("NULL softc ptr!"));
timeout = MGE_SMI_WRITE_RETRIES;
MGE_SMI_LOCK();
while (--timeout &&
(MGE_READ(sc, MGE_REG_SMI) & MGE_SMI_BUSY))
MGE_DELAY(MGE_SMI_WRITE_DELAY);
if (timeout == 0) {
device_printf(dev, "SMI write timeout.\n");
ret = ~0U;
goto out;
}
MGE_WRITE(sc, MGE_REG_SMI, MGE_SMI_MASK &
(MGE_SMI_READ | (reg << 21) | (phy << 16)));
/* Wait till finished. */
timeout = MGE_SMI_WRITE_RETRIES;
while (--timeout &&
!((MGE_READ(sc, MGE_REG_SMI) & MGE_SMI_READVALID)))
MGE_DELAY(MGE_SMI_WRITE_DELAY);
if (timeout == 0) {
device_printf(dev, "SMI write validation timeout.\n");
ret = ~0U;
goto out;
}
/* Wait for the data to update in the SMI register */
MGE_DELAY(MGE_SMI_DELAY);
ret = MGE_READ(sc, MGE_REG_SMI) & MGE_SMI_DATA_MASK;
out:
MGE_SMI_UNLOCK();
return (ret);
}
static void
mv_write_ge_smi(device_t dev, int phy, int reg, uint32_t value)
{
uint32_t timeout;
struct mge_softc *sc;
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("NULL softc ptr!"));
MGE_SMI_LOCK();
timeout = MGE_SMI_READ_RETRIES;
while (--timeout &&
(MGE_READ(sc, MGE_REG_SMI) & MGE_SMI_BUSY))
MGE_DELAY(MGE_SMI_READ_DELAY);
if (timeout == 0) {
device_printf(dev, "SMI read timeout.\n");
goto out;
}
MGE_WRITE(sc, MGE_REG_SMI, MGE_SMI_MASK &
(MGE_SMI_WRITE | (reg << 21) | (phy << 16) |
(value & MGE_SMI_DATA_MASK)));
out:
MGE_SMI_UNLOCK();
}
static int
mv_read_ext_phy(device_t dev, int phy, int reg)
{
uint32_t retries;
struct mge_softc *sc;
uint32_t ret;
sc = device_get_softc(dev);
MGE_SMI_LOCK();
MGE_WRITE(sc->phy_sc, MGE_REG_SMI, MGE_SMI_MASK &
(MGE_SMI_READ | (reg << 21) | (phy << 16)));
retries = MGE_SMI_READ_RETRIES;
while (--retries &&
!(MGE_READ(sc->phy_sc, MGE_REG_SMI) & MGE_SMI_READVALID))
DELAY(MGE_SMI_READ_DELAY);
if (retries == 0)
device_printf(dev, "Timeout while reading from PHY\n");
ret = MGE_READ(sc->phy_sc, MGE_REG_SMI) & MGE_SMI_DATA_MASK;
MGE_SMI_UNLOCK();
return (ret);
}
static void
mv_write_ext_phy(device_t dev, int phy, int reg, int value)
{
uint32_t retries;
struct mge_softc *sc;
sc = device_get_softc(dev);
MGE_SMI_LOCK();
MGE_WRITE(sc->phy_sc, MGE_REG_SMI, MGE_SMI_MASK &
(MGE_SMI_WRITE | (reg << 21) | (phy << 16) |
(value & MGE_SMI_DATA_MASK)));
retries = MGE_SMI_WRITE_RETRIES;
while (--retries && MGE_READ(sc->phy_sc, MGE_REG_SMI) & MGE_SMI_BUSY)
DELAY(MGE_SMI_WRITE_DELAY);
if (retries == 0)
device_printf(dev, "Timeout while writing to PHY\n");
MGE_SMI_UNLOCK();
}
static void
mge_get_mac_address(struct mge_softc *sc, uint8_t *addr)
{
uint32_t mac_l, mac_h;
uint8_t lmac[6];
int i, valid;
/*
* Retrieve hw address from the device tree.
*/
i = OF_getprop(sc->node, "local-mac-address", (void *)lmac, 6);
if (i == 6) {
valid = 0;
for (i = 0; i < 6; i++)
if (lmac[i] != 0) {
valid = 1;
break;
}
if (valid) {
bcopy(lmac, addr, 6);
return;
}
}
/*
* Fall back -- use the currently programmed address.
*/
mac_l = MGE_READ(sc, MGE_MAC_ADDR_L);
mac_h = MGE_READ(sc, MGE_MAC_ADDR_H);
addr[0] = (mac_h & 0xff000000) >> 24;
addr[1] = (mac_h & 0x00ff0000) >> 16;
addr[2] = (mac_h & 0x0000ff00) >> 8;
addr[3] = (mac_h & 0x000000ff);
addr[4] = (mac_l & 0x0000ff00) >> 8;
addr[5] = (mac_l & 0x000000ff);
}
static uint32_t
mge_tfut_ipg(uint32_t val, int ver)
{
switch (ver) {
case 1:
return ((val & 0x3fff) << 4);
case 2:
default:
return ((val & 0xffff) << 4);
}
}
static uint32_t
mge_rx_ipg(uint32_t val, int ver)
{
switch (ver) {
case 1:
return ((val & 0x3fff) << 8);
case 2:
default:
return (((val & 0x8000) << 10) | ((val & 0x7fff) << 7));
}
}
static void
mge_ver_params(struct mge_softc *sc)
{
uint32_t d, r;
soc_id(&d, &r);
if (d == MV_DEV_88F6281 || d == MV_DEV_88F6781 ||
d == MV_DEV_88F6282 ||
d == MV_DEV_MV78100 ||
d == MV_DEV_MV78100_Z0 ||
(d & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY) {
sc->mge_ver = 2;
sc->mge_mtu = 0x4e8;
sc->mge_tfut_ipg_max = 0xFFFF;
sc->mge_rx_ipg_max = 0xFFFF;
sc->mge_tx_arb_cfg = 0xFC0000FF;
sc->mge_tx_tok_cfg = 0xFFFF7FFF;
sc->mge_tx_tok_cnt = 0x3FFFFFFF;
} else {
sc->mge_ver = 1;
sc->mge_mtu = 0x458;
sc->mge_tfut_ipg_max = 0x3FFF;
sc->mge_rx_ipg_max = 0x3FFF;
sc->mge_tx_arb_cfg = 0x000000FF;
sc->mge_tx_tok_cfg = 0x3FFFFFFF;
sc->mge_tx_tok_cnt = 0x3FFFFFFF;
}
if (d == MV_DEV_88RC8180)
sc->mge_intr_cnt = 1;
else
sc->mge_intr_cnt = 2;
if (d == MV_DEV_MV78160 || d == MV_DEV_MV78260 || d == MV_DEV_MV78460)
sc->mge_hw_csum = 0;
else
sc->mge_hw_csum = 1;
}
static void
mge_set_mac_address(struct mge_softc *sc)
{
char *if_mac;
uint32_t mac_l, mac_h;
MGE_GLOBAL_LOCK_ASSERT(sc);
if_mac = (char *)IF_LLADDR(sc->ifp);
mac_l = (if_mac[4] << 8) | (if_mac[5]);
mac_h = (if_mac[0] << 24)| (if_mac[1] << 16) |
(if_mac[2] << 8) | (if_mac[3] << 0);
MGE_WRITE(sc, MGE_MAC_ADDR_L, mac_l);
MGE_WRITE(sc, MGE_MAC_ADDR_H, mac_h);
mge_set_ucast_address(sc, if_mac[5], MGE_RX_DEFAULT_QUEUE);
}
static void
mge_set_ucast_address(struct mge_softc *sc, uint8_t last_byte, uint8_t queue)
{
uint32_t reg_idx, reg_off, reg_val, i;
last_byte &= 0xf;
reg_idx = last_byte / MGE_UCAST_REG_NUMBER;
reg_off = (last_byte % MGE_UCAST_REG_NUMBER) * 8;
reg_val = (1 | (queue << 1)) << reg_off;
for (i = 0; i < MGE_UCAST_REG_NUMBER; i++) {
if ( i == reg_idx)
MGE_WRITE(sc, MGE_DA_FILTER_UCAST(i), reg_val);
else
MGE_WRITE(sc, MGE_DA_FILTER_UCAST(i), 0);
}
}
static void
mge_set_prom_mode(struct mge_softc *sc, uint8_t queue)
{
uint32_t port_config;
uint32_t reg_val, i;
/* Enable or disable promiscuous mode as needed */
if (sc->ifp->if_flags & IFF_PROMISC) {
port_config = MGE_READ(sc, MGE_PORT_CONFIG);
port_config |= PORT_CONFIG_UPM;
MGE_WRITE(sc, MGE_PORT_CONFIG, port_config);
reg_val = ((1 | (queue << 1)) | (1 | (queue << 1)) << 8 |
(1 | (queue << 1)) << 16 | (1 | (queue << 1)) << 24);
for (i = 0; i < MGE_MCAST_REG_NUMBER; i++) {
MGE_WRITE(sc, MGE_DA_FILTER_SPEC_MCAST(i), reg_val);
MGE_WRITE(sc, MGE_DA_FILTER_OTH_MCAST(i), reg_val);
}
for (i = 0; i < MGE_UCAST_REG_NUMBER; i++)
MGE_WRITE(sc, MGE_DA_FILTER_UCAST(i), reg_val);
} else {
port_config = MGE_READ(sc, MGE_PORT_CONFIG);
port_config &= ~PORT_CONFIG_UPM;
MGE_WRITE(sc, MGE_PORT_CONFIG, port_config);
for (i = 0; i < MGE_MCAST_REG_NUMBER; i++) {
MGE_WRITE(sc, MGE_DA_FILTER_SPEC_MCAST(i), 0);
MGE_WRITE(sc, MGE_DA_FILTER_OTH_MCAST(i), 0);
}
mge_set_mac_address(sc);
}
}
static void
mge_get_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
u_int32_t *paddr;
KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
paddr = arg;
*paddr = segs->ds_addr;
}
static int
mge_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
bus_addr_t *paddr)
{
struct mbuf *new_mbuf;
bus_dma_segment_t seg[1];
int error;
int nsegs;
KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
new_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (new_mbuf == NULL)
return (ENOBUFS);
new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
if (*mbufp) {
bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(tag, map);
}
error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
BUS_DMA_NOWAIT);
KASSERT(nsegs == 1, ("Too many segments returned!"));
if (nsegs != 1 || error)
panic("mge_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
(*mbufp) = new_mbuf;
(*paddr) = seg->ds_addr;
return (0);
}
static int
mge_alloc_desc_dma(struct mge_softc *sc, struct mge_desc_wrapper* tab,
uint32_t size, bus_dma_tag_t *buffer_tag)
{
struct mge_desc_wrapper *dw;
bus_addr_t desc_paddr;
int i, error;
desc_paddr = 0;
for (i = size - 1; i >= 0; i--) {
dw = &(tab[i]);
error = bus_dmamem_alloc(sc->mge_desc_dtag,
(void**)&(dw->mge_desc),
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&(dw->desc_dmap));
if (error) {
if_printf(sc->ifp, "failed to allocate DMA memory\n");
dw->mge_desc = NULL;
return (ENXIO);
}
error = bus_dmamap_load(sc->mge_desc_dtag, dw->desc_dmap,
dw->mge_desc, sizeof(struct mge_desc), mge_get_dma_addr,
&(dw->mge_desc_paddr), BUS_DMA_NOWAIT);
if (error) {
if_printf(sc->ifp, "can't load descriptor\n");
bus_dmamem_free(sc->mge_desc_dtag, dw->mge_desc,
dw->desc_dmap);
dw->mge_desc = NULL;
return (ENXIO);
}
/* Chain descriptors */
dw->mge_desc->next_desc = desc_paddr;
desc_paddr = dw->mge_desc_paddr;
}
tab[size - 1].mge_desc->next_desc = desc_paddr;
/* Allocate a busdma tag for mbufs. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
buffer_tag); /* dmat */
if (error) {
if_printf(sc->ifp, "failed to create busdma tag for mbufs\n");
return (ENXIO);
}
/* Create TX busdma maps */
for (i = 0; i < size; i++) {
dw = &(tab[i]);
error = bus_dmamap_create(*buffer_tag, 0, &dw->buffer_dmap);
if (error) {
if_printf(sc->ifp, "failed to create map for mbuf\n");
return (ENXIO);
}
dw->buffer = (struct mbuf*)NULL;
dw->mge_desc->buffer = (bus_addr_t)NULL;
}
return (0);
}
static int
mge_allocate_dma(struct mge_softc *sc)
{
int error;
struct mge_desc_wrapper *dw;
int i;
/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent */
16, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
sizeof(struct mge_desc), 1, /* maxsize, nsegments */
sizeof(struct mge_desc), 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->mge_desc_dtag); /* dmat */
mge_alloc_desc_dma(sc, sc->mge_tx_desc, MGE_TX_DESC_NUM,
&sc->mge_tx_dtag);
mge_alloc_desc_dma(sc, sc->mge_rx_desc, MGE_RX_DESC_NUM,
&sc->mge_rx_dtag);
for (i = 0; i < MGE_RX_DESC_NUM; i++) {
dw = &(sc->mge_rx_desc[i]);
mge_new_rxbuf(sc->mge_rx_dtag, dw->buffer_dmap, &dw->buffer,
&dw->mge_desc->buffer);
}
sc->tx_desc_start = sc->mge_tx_desc[0].mge_desc_paddr;
sc->rx_desc_start = sc->mge_rx_desc[0].mge_desc_paddr;
return (0);
}
static void
mge_free_desc(struct mge_softc *sc, struct mge_desc_wrapper* tab,
uint32_t size, bus_dma_tag_t buffer_tag, uint8_t free_mbufs)
{
struct mge_desc_wrapper *dw;
int i;
for (i = 0; i < size; i++) {
/* Free RX mbuf */
dw = &(tab[i]);
if (dw->buffer_dmap) {
if (free_mbufs) {
bus_dmamap_sync(buffer_tag, dw->buffer_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(buffer_tag, dw->buffer_dmap);
}
bus_dmamap_destroy(buffer_tag, dw->buffer_dmap);
if (free_mbufs)
m_freem(dw->buffer);
}
/* Free RX descriptors */
if (dw->desc_dmap) {
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mge_desc_dtag, dw->desc_dmap);
bus_dmamem_free(sc->mge_desc_dtag, dw->mge_desc,
dw->desc_dmap);
}
}
}
static void
mge_free_dma(struct mge_softc *sc)
{
/* Free desciptors and mbufs */
mge_free_desc(sc, sc->mge_rx_desc, MGE_RX_DESC_NUM, sc->mge_rx_dtag, 1);
mge_free_desc(sc, sc->mge_tx_desc, MGE_TX_DESC_NUM, sc->mge_tx_dtag, 0);
/* Destroy mbuf dma tag */
bus_dma_tag_destroy(sc->mge_tx_dtag);
bus_dma_tag_destroy(sc->mge_rx_dtag);
/* Destroy descriptors tag */
bus_dma_tag_destroy(sc->mge_desc_dtag);
}
static void
mge_reinit_rx(struct mge_softc *sc)
{
struct mge_desc_wrapper *dw;
int i;
MGE_RECEIVE_LOCK_ASSERT(sc);
mge_free_desc(sc, sc->mge_rx_desc, MGE_RX_DESC_NUM, sc->mge_rx_dtag, 1);
mge_alloc_desc_dma(sc, sc->mge_rx_desc, MGE_RX_DESC_NUM,
&sc->mge_rx_dtag);
for (i = 0; i < MGE_RX_DESC_NUM; i++) {
dw = &(sc->mge_rx_desc[i]);
mge_new_rxbuf(sc->mge_rx_dtag, dw->buffer_dmap, &dw->buffer,
&dw->mge_desc->buffer);
}
sc->rx_desc_start = sc->mge_rx_desc[0].mge_desc_paddr;
sc->rx_desc_curr = 0;
MGE_WRITE(sc, MGE_RX_CUR_DESC_PTR(MGE_RX_DEFAULT_QUEUE),
sc->rx_desc_start);
/* Enable RX queue */
MGE_WRITE(sc, MGE_RX_QUEUE_CMD, MGE_ENABLE_RXQ(MGE_RX_DEFAULT_QUEUE));
}
#ifdef DEVICE_POLLING
static poll_handler_t mge_poll;
static int
mge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct mge_softc *sc = ifp->if_softc;
uint32_t int_cause, int_cause_ext;
int rx_npkts = 0;
MGE_RECEIVE_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
MGE_RECEIVE_UNLOCK(sc);
return (rx_npkts);
}
if (cmd == POLL_AND_CHECK_STATUS) {
int_cause = MGE_READ(sc, MGE_PORT_INT_CAUSE);
int_cause_ext = MGE_READ(sc, MGE_PORT_INT_CAUSE_EXT);
/* Check for resource error */
if (int_cause & MGE_PORT_INT_RXERRQ0)
mge_reinit_rx(sc);
if (int_cause || int_cause_ext) {
MGE_WRITE(sc, MGE_PORT_INT_CAUSE, ~int_cause);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, ~int_cause_ext);
}
}
rx_npkts = mge_intr_rx_locked(sc, count);
MGE_RECEIVE_UNLOCK(sc);
MGE_TRANSMIT_LOCK(sc);
mge_intr_tx_locked(sc);
MGE_TRANSMIT_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static int
mge_attach(device_t dev)
{
struct mge_softc *sc;
struct mii_softc *miisc;
struct ifnet *ifp;
uint8_t hwaddr[ETHER_ADDR_LEN];
int i, error, phy;
sc = device_get_softc(dev);
sc->dev = dev;
sc->node = ofw_bus_get_node(dev);
phy = 0;
if (fdt_get_phyaddr(sc->node, sc->dev, &phy, (void **)&sc->phy_sc) == 0) {
device_printf(dev, "PHY%i attached, phy_sc points to %s\n", phy,
device_get_nameunit(sc->phy_sc->dev));
sc->phy_attached = 1;
} else {
device_printf(dev, "PHY not attached.\n");
sc->phy_attached = 0;
sc->phy_sc = sc;
}
if (fdt_find_compatible(sc->node, "mrvl,sw", 1) != 0) {
device_printf(dev, "Switch attached.\n");
sc->switch_attached = 1;
/* additional variable available across instances */
switch_attached = 1;
} else {
sc->switch_attached = 0;
}
if (device_get_unit(dev) == 0) {
sx_init(&sx_smi, "mge_tick() SMI access threads interlock");
}
/* Set chip version-dependent parameters */
mge_ver_params(sc);
/* Initialize mutexes */
mtx_init(&sc->transmit_lock, device_get_nameunit(dev), "mge TX lock",
MTX_DEF);
mtx_init(&sc->receive_lock, device_get_nameunit(dev), "mge RX lock",
MTX_DEF);
/* Allocate IO and IRQ resources */
error = bus_alloc_resources(dev, res_spec, sc->res);
if (error) {
device_printf(dev, "could not allocate resources\n");
mge_detach(dev);
return (ENXIO);
}
/* Allocate DMA, buffers, buffer descriptors */
error = mge_allocate_dma(sc);
if (error) {
mge_detach(dev);
return (ENXIO);
}
sc->tx_desc_curr = 0;
sc->rx_desc_curr = 0;
sc->tx_desc_used_idx = 0;
sc->tx_desc_used_count = 0;
/* Configure defaults for interrupts coalescing */
sc->rx_ic_time = 768;
sc->tx_ic_time = 768;
mge_add_sysctls(sc);
/* Allocate network interface */
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "if_alloc() failed\n");
mge_detach(dev);
return (ENOMEM);
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
ifp->if_capabilities = IFCAP_VLAN_MTU;
if (sc->mge_hw_csum) {
ifp->if_capabilities |= IFCAP_HWCSUM;
ifp->if_hwassist = MGE_CHECKSUM_FEATURES;
}
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
/* Advertise that polling is supported */
ifp->if_capabilities |= IFCAP_POLLING;
#endif
ifp->if_init = mge_init;
ifp->if_start = mge_start;
ifp->if_ioctl = mge_ioctl;
ifp->if_snd.ifq_drv_maxlen = MGE_TX_DESC_NUM - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
mge_get_mac_address(sc, hwaddr);
ether_ifattach(ifp, hwaddr);
callout_init(&sc->wd_callout, 0);
/* Attach PHY(s) */
if (sc->phy_attached) {
error = mii_attach(dev, &sc->miibus, ifp, mge_ifmedia_upd,
mge_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
if (error) {
device_printf(dev, "MII failed to find PHY\n");
if_free(ifp);
sc->ifp = NULL;
mge_detach(dev);
return (error);
}
sc->mii = device_get_softc(sc->miibus);
/* Tell the MAC where to find the PHY so autoneg works */
miisc = LIST_FIRST(&sc->mii->mii_phys);
MGE_WRITE(sc, MGE_REG_PHYDEV, miisc->mii_phy);
} else {
/* no PHY, so use hard-coded values */
ifmedia_init(&sc->mge_ifmedia, 0,
mge_ifmedia_upd,
mge_ifmedia_sts);
ifmedia_add(&sc->mge_ifmedia,
IFM_ETHER | IFM_1000_T | IFM_FDX,
0, NULL);
ifmedia_set(&sc->mge_ifmedia,
IFM_ETHER | IFM_1000_T | IFM_FDX);
}
/* Attach interrupt handlers */
/* TODO: review flags, in part. mark RX as INTR_ENTROPY ? */
for (i = 1; i <= sc->mge_intr_cnt; ++i) {
error = bus_setup_intr(dev, sc->res[i],
INTR_TYPE_NET | INTR_MPSAFE,
NULL, *mge_intrs[(sc->mge_intr_cnt == 1 ? 0 : i)].handler,
sc, &sc->ih_cookie[i - 1]);
if (error) {
device_printf(dev, "could not setup %s\n",
mge_intrs[(sc->mge_intr_cnt == 1 ? 0 : i)].description);
mge_detach(dev);
return (error);
}
}
if (sc->switch_attached) {
device_t child;
MGE_WRITE(sc, MGE_REG_PHYDEV, MGE_SWITCH_PHYDEV);
child = device_add_child(dev, "mdio", -1);
bus_generic_attach(dev);
}
return (0);
}
static int
mge_detach(device_t dev)
{
struct mge_softc *sc;
int error,i;
sc = device_get_softc(dev);
/* Stop controller and free TX queue */
if (sc->ifp)
mge_shutdown(dev);
/* Wait for stopping ticks */
callout_drain(&sc->wd_callout);
/* Stop and release all interrupts */
for (i = 0; i < sc->mge_intr_cnt; ++i) {
if (!sc->ih_cookie[i])
continue;
error = bus_teardown_intr(dev, sc->res[1 + i],
sc->ih_cookie[i]);
if (error)
device_printf(dev, "could not release %s\n",
mge_intrs[(sc->mge_intr_cnt == 1 ? 0 : i + 1)].description);
}
/* Detach network interface */
if (sc->ifp) {
ether_ifdetach(sc->ifp);
if_free(sc->ifp);
}
/* Free DMA resources */
mge_free_dma(sc);
/* Free IO memory handler */
bus_release_resources(dev, res_spec, sc->res);
/* Destroy mutexes */
mtx_destroy(&sc->receive_lock);
mtx_destroy(&sc->transmit_lock);
if (device_get_unit(dev) == 0)
sx_destroy(&sx_smi);
return (0);
}
static void
mge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct mge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
MGE_GLOBAL_LOCK(sc);
if (!sc->phy_attached) {
ifmr->ifm_active = IFM_1000_T | IFM_FDX | IFM_ETHER;
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
goto out_unlock;
}
mii = sc->mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
out_unlock:
MGE_GLOBAL_UNLOCK(sc);
}
static uint32_t
mge_set_port_serial_control(uint32_t media)
{
uint32_t port_config;
port_config = PORT_SERIAL_RES_BIT9 | PORT_SERIAL_FORCE_LINK_FAIL |
PORT_SERIAL_MRU(PORT_SERIAL_MRU_1552);
if (IFM_TYPE(media) == IFM_ETHER) {
switch(IFM_SUBTYPE(media)) {
case IFM_AUTO:
break;
case IFM_1000_T:
port_config |= (PORT_SERIAL_GMII_SPEED_1000 |
PORT_SERIAL_AUTONEG | PORT_SERIAL_AUTONEG_FC
| PORT_SERIAL_SPEED_AUTONEG);
break;
case IFM_100_TX:
port_config |= (PORT_SERIAL_MII_SPEED_100 |
PORT_SERIAL_AUTONEG | PORT_SERIAL_AUTONEG_FC
| PORT_SERIAL_SPEED_AUTONEG);
break;
case IFM_10_T:
port_config |= (PORT_SERIAL_AUTONEG |
PORT_SERIAL_AUTONEG_FC |
PORT_SERIAL_SPEED_AUTONEG);
break;
}
if (media & IFM_FDX)
port_config |= PORT_SERIAL_FULL_DUPLEX;
}
return (port_config);
}
static int
mge_ifmedia_upd(struct ifnet *ifp)
{
struct mge_softc *sc = ifp->if_softc;
/*
* Do not do anything for switch here, as updating media between
* MGE MAC and switch MAC is hardcoded in PCB. Changing it here would
* break the link.
*/
if (sc->phy_attached) {
MGE_GLOBAL_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
sc->mge_media_status = sc->mii->mii_media.ifm_media;
mii_mediachg(sc->mii);
/* MGE MAC needs to be reinitialized. */
mge_init_locked(sc);
}
MGE_GLOBAL_UNLOCK(sc);
}
return (0);
}
static void
mge_init(void *arg)
{
struct mge_softc *sc;
sc = arg;
MGE_GLOBAL_LOCK(sc);
mge_init_locked(arg);
MGE_GLOBAL_UNLOCK(sc);
}
static void
mge_init_locked(void *arg)
{
struct mge_softc *sc = arg;
struct mge_desc_wrapper *dw;
volatile uint32_t reg_val;
int i, count;
uint32_t media_status;
MGE_GLOBAL_LOCK_ASSERT(sc);
/* Stop interface */
mge_stop(sc);
/* Disable interrupts */
mge_intrs_ctrl(sc, 0);
/* Set MAC address */
mge_set_mac_address(sc);
/* Setup multicast filters */
mge_setup_multicast(sc);
if (sc->mge_ver == 2) {
MGE_WRITE(sc, MGE_PORT_SERIAL_CTRL1, MGE_RGMII_EN);
MGE_WRITE(sc, MGE_FIXED_PRIO_CONF, MGE_FIXED_PRIO_EN(0));
}
/* Initialize TX queue configuration registers */
MGE_WRITE(sc, MGE_TX_TOKEN_COUNT(0), sc->mge_tx_tok_cnt);
MGE_WRITE(sc, MGE_TX_TOKEN_CONF(0), sc->mge_tx_tok_cfg);
MGE_WRITE(sc, MGE_TX_ARBITER_CONF(0), sc->mge_tx_arb_cfg);
/* Clear TX queue configuration registers for unused queues */
for (i = 1; i < 7; i++) {
MGE_WRITE(sc, MGE_TX_TOKEN_COUNT(i), 0);
MGE_WRITE(sc, MGE_TX_TOKEN_CONF(i), 0);
MGE_WRITE(sc, MGE_TX_ARBITER_CONF(i), 0);
}
/* Set default MTU */
MGE_WRITE(sc, sc->mge_mtu, 0);
/* Port configuration */
MGE_WRITE(sc, MGE_PORT_CONFIG,
PORT_CONFIG_RXCS | PORT_CONFIG_DFLT_RXQ(0) |
PORT_CONFIG_ARO_RXQ(0));
MGE_WRITE(sc, MGE_PORT_EXT_CONFIG , 0x0);
/* Configure promisc mode */
mge_set_prom_mode(sc, MGE_RX_DEFAULT_QUEUE);
media_status = sc->mge_media_status;
if (sc->switch_attached) {
media_status &= ~IFM_TMASK;
media_status |= IFM_1000_T;
}
/* Setup port configuration */
reg_val = mge_set_port_serial_control(media_status);
MGE_WRITE(sc, MGE_PORT_SERIAL_CTRL, reg_val);
/* Setup SDMA configuration */
MGE_WRITE(sc, MGE_SDMA_CONFIG , MGE_SDMA_RX_BYTE_SWAP |
MGE_SDMA_TX_BYTE_SWAP |
MGE_SDMA_RX_BURST_SIZE(MGE_SDMA_BURST_16_WORD) |
MGE_SDMA_TX_BURST_SIZE(MGE_SDMA_BURST_16_WORD));
MGE_WRITE(sc, MGE_TX_FIFO_URGENT_TRSH, 0x0);
MGE_WRITE(sc, MGE_TX_CUR_DESC_PTR, sc->tx_desc_start);
MGE_WRITE(sc, MGE_RX_CUR_DESC_PTR(MGE_RX_DEFAULT_QUEUE),
sc->rx_desc_start);
/* Reset descriptor indexes */
sc->tx_desc_curr = 0;
sc->rx_desc_curr = 0;
sc->tx_desc_used_idx = 0;
sc->tx_desc_used_count = 0;
/* Enable RX descriptors */
for (i = 0; i < MGE_RX_DESC_NUM; i++) {
dw = &sc->mge_rx_desc[i];
dw->mge_desc->cmd_status = MGE_RX_ENABLE_INT | MGE_DMA_OWNED;
dw->mge_desc->buff_size = MCLBYTES;
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/* Enable RX queue */
MGE_WRITE(sc, MGE_RX_QUEUE_CMD, MGE_ENABLE_RXQ(MGE_RX_DEFAULT_QUEUE));
/* Enable port */
reg_val = MGE_READ(sc, MGE_PORT_SERIAL_CTRL);
reg_val |= PORT_SERIAL_ENABLE;
MGE_WRITE(sc, MGE_PORT_SERIAL_CTRL, reg_val);
count = 0x100000;
for (;;) {
reg_val = MGE_READ(sc, MGE_PORT_STATUS);
if (reg_val & MGE_STATUS_LINKUP)
break;
DELAY(100);
if (--count == 0) {
if_printf(sc->ifp, "Timeout on link-up\n");
break;
}
}
/* Setup interrupts coalescing */
mge_set_rxic(sc);
mge_set_txic(sc);
/* Enable interrupts */
#ifdef DEVICE_POLLING
/*
* * ...only if polling is not turned on. Disable interrupts explicitly
* if polling is enabled.
*/
if (sc->ifp->if_capenable & IFCAP_POLLING)
mge_intrs_ctrl(sc, 0);
else
#endif /* DEVICE_POLLING */
mge_intrs_ctrl(sc, 1);
/* Activate network interface */
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->wd_timer = 0;
/* Schedule watchdog timeout */
if (sc->phy_attached)
callout_reset(&sc->wd_callout, hz, mge_tick, sc);
}
static void
mge_intr_rxtx(void *arg)
{
struct mge_softc *sc;
uint32_t int_cause, int_cause_ext;
sc = arg;
MGE_GLOBAL_LOCK(sc);
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING) {
MGE_GLOBAL_UNLOCK(sc);
return;
}
#endif
/* Get interrupt cause */
int_cause = MGE_READ(sc, MGE_PORT_INT_CAUSE);
int_cause_ext = MGE_READ(sc, MGE_PORT_INT_CAUSE_EXT);
/* Check for Transmit interrupt */
if (int_cause_ext & (MGE_PORT_INT_EXT_TXBUF0 |
MGE_PORT_INT_EXT_TXUR)) {
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, ~(int_cause_ext &
(MGE_PORT_INT_EXT_TXBUF0 | MGE_PORT_INT_EXT_TXUR)));
mge_intr_tx_locked(sc);
}
MGE_TRANSMIT_UNLOCK(sc);
/* Check for Receive interrupt */
mge_intr_rx_check(sc, int_cause, int_cause_ext);
MGE_RECEIVE_UNLOCK(sc);
}
static void
mge_intr_err(void *arg)
{
struct mge_softc *sc;
struct ifnet *ifp;
sc = arg;
ifp = sc->ifp;
if_printf(ifp, "%s\n", __FUNCTION__);
}
static void
mge_intr_misc(void *arg)
{
struct mge_softc *sc;
struct ifnet *ifp;
sc = arg;
ifp = sc->ifp;
if_printf(ifp, "%s\n", __FUNCTION__);
}
static void
mge_intr_rx(void *arg) {
struct mge_softc *sc;
uint32_t int_cause, int_cause_ext;
sc = arg;
MGE_RECEIVE_LOCK(sc);
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING) {
MGE_RECEIVE_UNLOCK(sc);
return;
}
#endif
/* Get interrupt cause */
int_cause = MGE_READ(sc, MGE_PORT_INT_CAUSE);
int_cause_ext = MGE_READ(sc, MGE_PORT_INT_CAUSE_EXT);
mge_intr_rx_check(sc, int_cause, int_cause_ext);
MGE_RECEIVE_UNLOCK(sc);
}
static void
mge_intr_rx_check(struct mge_softc *sc, uint32_t int_cause,
uint32_t int_cause_ext)
{
/* Check for resource error */
if (int_cause & MGE_PORT_INT_RXERRQ0) {
mge_reinit_rx(sc);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE,
~(int_cause & MGE_PORT_INT_RXERRQ0));
}
int_cause &= MGE_PORT_INT_RXQ0;
int_cause_ext &= MGE_PORT_INT_EXT_RXOR;
if (int_cause || int_cause_ext) {
MGE_WRITE(sc, MGE_PORT_INT_CAUSE, ~int_cause);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, ~int_cause_ext);
mge_intr_rx_locked(sc, -1);
}
}
static int
mge_intr_rx_locked(struct mge_softc *sc, int count)
{
struct ifnet *ifp = sc->ifp;
uint32_t status;
uint16_t bufsize;
struct mge_desc_wrapper* dw;
struct mbuf *mb;
int rx_npkts = 0;
MGE_RECEIVE_LOCK_ASSERT(sc);
while (count != 0) {
dw = &sc->mge_rx_desc[sc->rx_desc_curr];
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_POSTREAD);
/* Get status */
status = dw->mge_desc->cmd_status;
bufsize = dw->mge_desc->buff_size;
if ((status & MGE_DMA_OWNED) != 0)
break;
if (dw->mge_desc->byte_count &&
~(status & MGE_ERR_SUMMARY)) {
bus_dmamap_sync(sc->mge_rx_dtag, dw->buffer_dmap,
BUS_DMASYNC_POSTREAD);
mb = m_devget(dw->buffer->m_data,
dw->mge_desc->byte_count - ETHER_CRC_LEN,
0, ifp, NULL);
if (mb == NULL)
/* Give up if no mbufs */
break;
mb->m_len -= 2;
mb->m_pkthdr.len -= 2;
mb->m_data += 2;
mb->m_pkthdr.rcvif = ifp;
mge_offload_process_frame(ifp, mb, status,
bufsize);
MGE_RECEIVE_UNLOCK(sc);
(*ifp->if_input)(ifp, mb);
MGE_RECEIVE_LOCK(sc);
rx_npkts++;
}
dw->mge_desc->byte_count = 0;
dw->mge_desc->cmd_status = MGE_RX_ENABLE_INT | MGE_DMA_OWNED;
sc->rx_desc_curr = (++sc->rx_desc_curr % MGE_RX_DESC_NUM);
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (count > 0)
count -= 1;
}
if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_npkts);
return (rx_npkts);
}
static void
mge_intr_sum(void *arg)
{
struct mge_softc *sc = arg;
struct ifnet *ifp;
ifp = sc->ifp;
if_printf(ifp, "%s\n", __FUNCTION__);
}
static void
mge_intr_tx(void *arg)
{
struct mge_softc *sc = arg;
uint32_t int_cause_ext;
MGE_TRANSMIT_LOCK(sc);
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING) {
MGE_TRANSMIT_UNLOCK(sc);
return;
}
#endif
/* Ack the interrupt */
int_cause_ext = MGE_READ(sc, MGE_PORT_INT_CAUSE_EXT);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, ~(int_cause_ext &
(MGE_PORT_INT_EXT_TXBUF0 | MGE_PORT_INT_EXT_TXUR)));
mge_intr_tx_locked(sc);
MGE_TRANSMIT_UNLOCK(sc);
}
static void
mge_intr_tx_locked(struct mge_softc *sc)
{
struct ifnet *ifp = sc->ifp;
struct mge_desc_wrapper *dw;
struct mge_desc *desc;
uint32_t status;
int send = 0;
MGE_TRANSMIT_LOCK_ASSERT(sc);
/* Disable watchdog */
sc->wd_timer = 0;
while (sc->tx_desc_used_count) {
/* Get the descriptor */
dw = &sc->mge_tx_desc[sc->tx_desc_used_idx];
desc = dw->mge_desc;
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_POSTREAD);
/* Get descriptor status */
status = desc->cmd_status;
if (status & MGE_DMA_OWNED)
break;
sc->tx_desc_used_idx =
(++sc->tx_desc_used_idx) % MGE_TX_DESC_NUM;
sc->tx_desc_used_count--;
/* Update collision statistics */
if (status & MGE_ERR_SUMMARY) {
if ((status & MGE_ERR_MASK) == MGE_TX_ERROR_LC)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
if ((status & MGE_ERR_MASK) == MGE_TX_ERROR_RL)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 16);
}
bus_dmamap_sync(sc->mge_tx_dtag, dw->buffer_dmap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mge_tx_dtag, dw->buffer_dmap);
m_freem(dw->buffer);
dw->buffer = (struct mbuf*)NULL;
send++;
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
}
if (send) {
/* Now send anything that was pending */
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
mge_start_locked(ifp);
}
}
static int
mge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct mge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int mask, error;
uint32_t flags;
error = 0;
switch (command) {
case SIOCSIFFLAGS:
MGE_GLOBAL_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
flags = ifp->if_flags ^ sc->mge_if_flags;
if (flags & IFF_PROMISC)
mge_set_prom_mode(sc,
MGE_RX_DEFAULT_QUEUE);
if (flags & IFF_ALLMULTI)
mge_setup_multicast(sc);
} else
mge_init_locked(sc);
}
else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
mge_stop(sc);
sc->mge_if_flags = ifp->if_flags;
MGE_GLOBAL_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
MGE_GLOBAL_LOCK(sc);
mge_setup_multicast(sc);
MGE_GLOBAL_UNLOCK(sc);
}
break;
case SIOCSIFCAP:
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if (mask & IFCAP_HWCSUM) {
ifp->if_capenable &= ~IFCAP_HWCSUM;
ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist = MGE_CHECKSUM_FEATURES;
else
ifp->if_hwassist = 0;
}
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(mge_poll, ifp);
if (error)
return(error);
MGE_GLOBAL_LOCK(sc);
mge_intrs_ctrl(sc, 0);
ifp->if_capenable |= IFCAP_POLLING;
MGE_GLOBAL_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
MGE_GLOBAL_LOCK(sc);
mge_intrs_ctrl(sc, 1);
ifp->if_capenable &= ~IFCAP_POLLING;
MGE_GLOBAL_UNLOCK(sc);
}
}
#endif
break;
case SIOCGIFMEDIA: /* fall through */
case SIOCSIFMEDIA:
/*
* Setting up media type via ioctls is *not* supported for MAC
* which is connected to switch. Use etherswitchcfg.
*/
if (!sc->phy_attached && (command == SIOCSIFMEDIA))
return (0);
else if (!sc->phy_attached) {
error = ifmedia_ioctl(ifp, ifr, &sc->mge_ifmedia,
command);
break;
}
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T
&& !(ifr->ifr_media & IFM_FDX)) {
device_printf(sc->dev,
"1000baseTX half-duplex unsupported\n");
return 0;
}
error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
}
return (error);
}
static int
mge_miibus_readreg(device_t dev, int phy, int reg)
{
struct mge_softc *sc;
sc = device_get_softc(dev);
KASSERT(!switch_attached, ("miibus used with switch attached"));
return (mv_read_ext_phy(dev, phy, reg));
}
static int
mge_miibus_writereg(device_t dev, int phy, int reg, int value)
{
struct mge_softc *sc;
sc = device_get_softc(dev);
KASSERT(!switch_attached, ("miibus used with switch attached"));
mv_write_ext_phy(dev, phy, reg, value);
return (0);
}
static int
mge_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "mrvl,ge"))
return (ENXIO);
device_set_desc(dev, "Marvell Gigabit Ethernet controller");
return (BUS_PROBE_DEFAULT);
}
static int
mge_resume(device_t dev)
{
device_printf(dev, "%s\n", __FUNCTION__);
return (0);
}
static int
mge_shutdown(device_t dev)
{
struct mge_softc *sc = device_get_softc(dev);
MGE_GLOBAL_LOCK(sc);
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(sc->ifp);
#endif
mge_stop(sc);
MGE_GLOBAL_UNLOCK(sc);
return (0);
}
static int
mge_encap(struct mge_softc *sc, struct mbuf *m0)
{
struct mge_desc_wrapper *dw = NULL;
struct ifnet *ifp;
bus_dma_segment_t segs[MGE_TX_DESC_NUM];
bus_dmamap_t mapp;
int error;
int seg, nsegs;
int desc_no;
ifp = sc->ifp;
/* Fetch unused map */
desc_no = sc->tx_desc_curr;
dw = &sc->mge_tx_desc[desc_no];
mapp = dw->buffer_dmap;
/* Create mapping in DMA memory */
error = bus_dmamap_load_mbuf_sg(sc->mge_tx_dtag, mapp, m0, segs, &nsegs,
BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(m0);
return (error);
}
/* Only one segment is supported. */
if (nsegs != 1) {
bus_dmamap_unload(sc->mge_tx_dtag, mapp);
m_freem(m0);
return (-1);
}
bus_dmamap_sync(sc->mge_tx_dtag, mapp, BUS_DMASYNC_PREWRITE);
/* Everything is ok, now we can send buffers */
for (seg = 0; seg < nsegs; seg++) {
dw->mge_desc->byte_count = segs[seg].ds_len;
dw->mge_desc->buffer = segs[seg].ds_addr;
dw->buffer = m0;
dw->mge_desc->cmd_status = 0;
if (seg == 0)
mge_offload_setup_descriptor(sc, dw);
dw->mge_desc->cmd_status |= MGE_TX_LAST | MGE_TX_FIRST |
MGE_TX_ETH_CRC | MGE_TX_EN_INT | MGE_TX_PADDING |
MGE_DMA_OWNED;
}
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->tx_desc_curr = (++sc->tx_desc_curr) % MGE_TX_DESC_NUM;
sc->tx_desc_used_count++;
return (0);
}
static void
mge_tick(void *msc)
{
struct mge_softc *sc = msc;
KASSERT(sc->phy_attached == 1, ("mge_tick while PHY not attached"));
MGE_GLOBAL_LOCK(sc);
/* Check for TX timeout */
mge_watchdog(sc);
mii_tick(sc->mii);
/* Check for media type change */
if(sc->mge_media_status != sc->mii->mii_media.ifm_media)
mge_ifmedia_upd(sc->ifp);
MGE_GLOBAL_UNLOCK(sc);
/* Schedule another timeout one second from now */
callout_reset(&sc->wd_callout, hz, mge_tick, sc);
return;
}
static void
mge_watchdog(struct mge_softc *sc)
{
struct ifnet *ifp;
ifp = sc->ifp;
if (sc->wd_timer == 0 || --sc->wd_timer) {
return;
}
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if_printf(ifp, "watchdog timeout\n");
mge_stop(sc);
mge_init_locked(sc);
}
static void
mge_start(struct ifnet *ifp)
{
struct mge_softc *sc = ifp->if_softc;
MGE_TRANSMIT_LOCK(sc);
mge_start_locked(ifp);
MGE_TRANSMIT_UNLOCK(sc);
}
static void
mge_start_locked(struct ifnet *ifp)
{
struct mge_softc *sc;
struct mbuf *m0, *mtmp;
uint32_t reg_val, queued = 0;
sc = ifp->if_softc;
MGE_TRANSMIT_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
for (;;) {
/* Get packet from the queue */
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (m0->m_pkthdr.csum_flags & (CSUM_IP|CSUM_TCP|CSUM_UDP) ||
m0->m_flags & M_VLANTAG) {
if (M_WRITABLE(m0) == 0) {
mtmp = m_dup(m0, M_NOWAIT);
m_freem(m0);
if (mtmp == NULL)
continue;
m0 = mtmp;
}
}
/* The driver support only one DMA fragment. */
if (m0->m_next != NULL) {
mtmp = m_defrag(m0, M_NOWAIT);
if (mtmp != NULL)
m0 = mtmp;
}
/* Check for free descriptors */
if (sc->tx_desc_used_count + 1 >= MGE_TX_DESC_NUM) {
IF_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
if (mge_encap(sc, m0) != 0)
break;
queued++;
BPF_MTAP(ifp, m0);
}
if (queued) {
/* Enable transmitter and watchdog timer */
reg_val = MGE_READ(sc, MGE_TX_QUEUE_CMD);
MGE_WRITE(sc, MGE_TX_QUEUE_CMD, reg_val | MGE_ENABLE_TXQ);
sc->wd_timer = 5;
}
}
static void
mge_stop(struct mge_softc *sc)
{
struct ifnet *ifp;
volatile uint32_t reg_val, status;
struct mge_desc_wrapper *dw;
struct mge_desc *desc;
int count;
ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
/* Stop tick engine */
callout_stop(&sc->wd_callout);
/* Disable interface */
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->wd_timer = 0;
/* Disable interrupts */
mge_intrs_ctrl(sc, 0);
/* Disable Rx and Tx */
reg_val = MGE_READ(sc, MGE_TX_QUEUE_CMD);
MGE_WRITE(sc, MGE_TX_QUEUE_CMD, reg_val | MGE_DISABLE_TXQ);
MGE_WRITE(sc, MGE_RX_QUEUE_CMD, MGE_DISABLE_RXQ_ALL);
/* Remove pending data from TX queue */
while (sc->tx_desc_used_idx != sc->tx_desc_curr &&
sc->tx_desc_used_count) {
/* Get the descriptor */
dw = &sc->mge_tx_desc[sc->tx_desc_used_idx];
desc = dw->mge_desc;
bus_dmamap_sync(sc->mge_desc_dtag, dw->desc_dmap,
BUS_DMASYNC_POSTREAD);
/* Get descriptor status */
status = desc->cmd_status;
if (status & MGE_DMA_OWNED)
break;
sc->tx_desc_used_idx = (++sc->tx_desc_used_idx) %
MGE_TX_DESC_NUM;
sc->tx_desc_used_count--;
bus_dmamap_sync(sc->mge_tx_dtag, dw->buffer_dmap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mge_tx_dtag, dw->buffer_dmap);
m_freem(dw->buffer);
dw->buffer = (struct mbuf*)NULL;
}
/* Wait for end of transmission */
count = 0x100000;
while (count--) {
reg_val = MGE_READ(sc, MGE_PORT_STATUS);
if ( !(reg_val & MGE_STATUS_TX_IN_PROG) &&
(reg_val & MGE_STATUS_TX_FIFO_EMPTY))
break;
DELAY(100);
}
if (count == 0)
if_printf(ifp,
"%s: timeout while waiting for end of transmission\n",
__FUNCTION__);
reg_val = MGE_READ(sc, MGE_PORT_SERIAL_CTRL);
reg_val &= ~(PORT_SERIAL_ENABLE);
MGE_WRITE(sc, MGE_PORT_SERIAL_CTRL ,reg_val);
}
static int
mge_suspend(device_t dev)
{
device_printf(dev, "%s\n", __FUNCTION__);
return (0);
}
static void
mge_offload_process_frame(struct ifnet *ifp, struct mbuf *frame,
uint32_t status, uint16_t bufsize)
{
int csum_flags = 0;
if (ifp->if_capenable & IFCAP_RXCSUM) {
if ((status & MGE_RX_L3_IS_IP) && (status & MGE_RX_IP_OK))
csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
if ((bufsize & MGE_RX_IP_FRAGMENT) == 0 &&
(MGE_RX_L4_IS_TCP(status) || MGE_RX_L4_IS_UDP(status)) &&
(status & MGE_RX_L4_CSUM_OK)) {
csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
frame->m_pkthdr.csum_data = 0xFFFF;
}
frame->m_pkthdr.csum_flags = csum_flags;
}
}
static void
mge_offload_setup_descriptor(struct mge_softc *sc, struct mge_desc_wrapper *dw)
{
struct mbuf *m0 = dw->buffer;
struct ether_vlan_header *eh = mtod(m0, struct ether_vlan_header *);
int csum_flags = m0->m_pkthdr.csum_flags;
int cmd_status = 0;
struct ip *ip;
int ehlen, etype;
if (csum_flags != 0) {
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
csum_flags |= MGE_TX_VLAN_TAGGED;
} else {
etype = ntohs(eh->evl_encap_proto);
ehlen = ETHER_HDR_LEN;
}
if (etype != ETHERTYPE_IP) {
if_printf(sc->ifp,
"TCP/IP Offload enabled for unsupported "
"protocol!\n");
return;
}
ip = (struct ip *)(m0->m_data + ehlen);
cmd_status |= MGE_TX_IP_HDR_SIZE(ip->ip_hl);
cmd_status |= MGE_TX_NOT_FRAGMENT;
}
if (csum_flags & CSUM_IP)
cmd_status |= MGE_TX_GEN_IP_CSUM;
if (csum_flags & CSUM_TCP)
cmd_status |= MGE_TX_GEN_L4_CSUM;
if (csum_flags & CSUM_UDP)
cmd_status |= MGE_TX_GEN_L4_CSUM | MGE_TX_UDP;
dw->mge_desc->cmd_status |= cmd_status;
}
static void
mge_intrs_ctrl(struct mge_softc *sc, int enable)
{
if (enable) {
MGE_WRITE(sc, MGE_PORT_INT_MASK , MGE_PORT_INT_RXQ0 |
MGE_PORT_INT_EXTEND | MGE_PORT_INT_RXERRQ0);
MGE_WRITE(sc, MGE_PORT_INT_MASK_EXT , MGE_PORT_INT_EXT_TXERR0 |
MGE_PORT_INT_EXT_RXOR | MGE_PORT_INT_EXT_TXUR |
MGE_PORT_INT_EXT_TXBUF0);
} else {
MGE_WRITE(sc, MGE_INT_CAUSE, 0x0);
MGE_WRITE(sc, MGE_INT_MASK, 0x0);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE, 0x0);
MGE_WRITE(sc, MGE_PORT_INT_CAUSE_EXT, 0x0);
MGE_WRITE(sc, MGE_PORT_INT_MASK, 0x0);
MGE_WRITE(sc, MGE_PORT_INT_MASK_EXT, 0x0);
}
}
static uint8_t
mge_crc8(uint8_t *data, int size)
{
uint8_t crc = 0;
static const uint8_t ct[256] = {
0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15,
0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D,
0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65,
0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D,
0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5,
0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85,
0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD,
0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2,
0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA,
0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2,
0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32,
0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A,
0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42,
0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A,
0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C,
0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC,
0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4,
0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C,
0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44,
0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C,
0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B,
0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63,
0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B,
0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13,
0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB,
0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB,
0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3
};
while(size--)
crc = ct[crc ^ *(data++)];
return(crc);
}
struct mge_hash_maddr_ctx {
uint32_t smt[MGE_MCAST_REG_NUMBER];
uint32_t omt[MGE_MCAST_REG_NUMBER];
};
static u_int
mge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
static const uint8_t special[5] = { 0x01, 0x00, 0x5E, 0x00, 0x00 };
struct mge_hash_maddr_ctx *ctx = arg;
static const uint8_t v = (MGE_RX_DEFAULT_QUEUE << 1) | 1;
uint8_t *mac;
int i;
mac = LLADDR(sdl);
if (memcmp(mac, special, sizeof(special)) == 0) {
i = mac[5];
ctx->smt[i >> 2] |= v << ((i & 0x03) << 3);
} else {
i = mge_crc8(mac, ETHER_ADDR_LEN);
ctx->omt[i >> 2] |= v << ((i & 0x03) << 3);
}
return (1);
}
static void
mge_setup_multicast(struct mge_softc *sc)
{
struct mge_hash_maddr_ctx ctx;
struct ifnet *ifp = sc->ifp;
static const uint8_t v = (MGE_RX_DEFAULT_QUEUE << 1) | 1;
int i;
if (ifp->if_flags & IFF_ALLMULTI) {
for (i = 0; i < MGE_MCAST_REG_NUMBER; i++)
ctx.smt[i] = ctx.omt[i] =
(v << 24) | (v << 16) | (v << 8) | v;
} else {
memset(&ctx, 0, sizeof(ctx));
if_foreach_llmaddr(ifp, mge_hash_maddr, &ctx);
}
for (i = 0; i < MGE_MCAST_REG_NUMBER; i++) {
MGE_WRITE(sc, MGE_DA_FILTER_SPEC_MCAST(i), ctx.smt[i]);
MGE_WRITE(sc, MGE_DA_FILTER_OTH_MCAST(i), ctx.omt[i]);
}
}
static void
mge_set_rxic(struct mge_softc *sc)
{
uint32_t reg;
if (sc->rx_ic_time > sc->mge_rx_ipg_max)
sc->rx_ic_time = sc->mge_rx_ipg_max;
reg = MGE_READ(sc, MGE_SDMA_CONFIG);
reg &= ~mge_rx_ipg(sc->mge_rx_ipg_max, sc->mge_ver);
reg |= mge_rx_ipg(sc->rx_ic_time, sc->mge_ver);
MGE_WRITE(sc, MGE_SDMA_CONFIG, reg);
}
static void
mge_set_txic(struct mge_softc *sc)
{
uint32_t reg;
if (sc->tx_ic_time > sc->mge_tfut_ipg_max)
sc->tx_ic_time = sc->mge_tfut_ipg_max;
reg = MGE_READ(sc, MGE_TX_FIFO_URGENT_TRSH);
reg &= ~mge_tfut_ipg(sc->mge_tfut_ipg_max, sc->mge_ver);
reg |= mge_tfut_ipg(sc->tx_ic_time, sc->mge_ver);
MGE_WRITE(sc, MGE_TX_FIFO_URGENT_TRSH, reg);
}
static int
mge_sysctl_ic(SYSCTL_HANDLER_ARGS)
{
struct mge_softc *sc = (struct mge_softc *)arg1;
uint32_t time;
int error;
time = (arg2 == MGE_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
error = sysctl_handle_int(oidp, &time, 0, req);
if (error != 0)
return(error);
MGE_GLOBAL_LOCK(sc);
if (arg2 == MGE_IC_RX) {
sc->rx_ic_time = time;
mge_set_rxic(sc);
} else {
sc->tx_ic_time = time;
mge_set_txic(sc);
}
MGE_GLOBAL_UNLOCK(sc);
return(0);
}
static void
mge_add_sysctls(struct mge_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
struct sysctl_oid *tree;
ctx = device_get_sysctl_ctx(sc->dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "MGE Interrupts coalescing");
children = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, MGE_IC_RX,
mge_sysctl_ic, "I", "IC RX time threshold");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, MGE_IC_TX,
mge_sysctl_ic, "I", "IC TX time threshold");
}
static int
mge_mdio_writereg(device_t dev, int phy, int reg, int value)
{
mv_write_ge_smi(dev, phy, reg, value);
return (0);
}
static int
mge_mdio_readreg(device_t dev, int phy, int reg)
{
int ret;
ret = mv_read_ge_smi(dev, phy, reg);
return (ret);
}