freebsd-nq/sys/dev/drm2/ttm/ttm_page_alloc.c
Warner Losh 592ffb2175 Revert drm2 removal.
Revert r338177, r338176, r338175, r338174, r338172

After long consultations with re@, core members and mmacy, revert
these changes. Followup changes will be made to mark them as
deprecated and prent a message about where to find the up-to-date
driver.  Followup commits will be made to make this clear in the
installer. Followup commits to reduce POLA in ways we're still
exploring.

It's anticipated that after the freeze, this will be removed in
13-current (with the residual of the drm2 code copied to
sys/arm/dev/drm2 for the TEGRA port's use w/o the intel or
radeon drivers).

Due to the impending freeze, there was no formal core vote for
this. I've been talking to different core members all day, as well as
Matt Macey and Glen Barber. Nobody is completely happy, all are
grudgingly going along with this. Work is in progress to mitigate
the negative effects as much as possible.

Requested by: re@ (gjb, rgrimes)
2018-08-24 00:02:00 +00:00

926 lines
23 KiB
C

/*
* Copyright (c) Red Hat Inc.
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie <airlied@redhat.com>
* Jerome Glisse <jglisse@redhat.com>
* Pauli Nieminen <suokkos@gmail.com>
*/
/*
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Konstantin Belousov
* <kib@FreeBSD.org> under sponsorship from the FreeBSD Foundation.
*/
/* simple list based uncached page pool
* - Pool collects resently freed pages for reuse
* - Use page->lru to keep a free list
* - doesn't track currently in use pages
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/drm2/drmP.h>
#include <dev/drm2/ttm/ttm_bo_driver.h>
#include <dev/drm2/ttm/ttm_page_alloc.h>
#include <vm/vm_pageout.h>
#define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(vm_page_t))
#define SMALL_ALLOCATION 16
#define FREE_ALL_PAGES (~0U)
/* times are in msecs */
#define PAGE_FREE_INTERVAL 1000
/**
* struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
*
* @lock: Protects the shared pool from concurrnet access. Must be used with
* irqsave/irqrestore variants because pool allocator maybe called from
* delayed work.
* @fill_lock: Prevent concurrent calls to fill.
* @list: Pool of free uc/wc pages for fast reuse.
* @gfp_flags: Flags to pass for alloc_page.
* @npages: Number of pages in pool.
*/
struct ttm_page_pool {
struct mtx lock;
bool fill_lock;
bool dma32;
struct pglist list;
int ttm_page_alloc_flags;
unsigned npages;
char *name;
unsigned long nfrees;
unsigned long nrefills;
};
/**
* Limits for the pool. They are handled without locks because only place where
* they may change is in sysfs store. They won't have immediate effect anyway
* so forcing serialization to access them is pointless.
*/
struct ttm_pool_opts {
unsigned alloc_size;
unsigned max_size;
unsigned small;
};
#define NUM_POOLS 4
/**
* struct ttm_pool_manager - Holds memory pools for fst allocation
*
* Manager is read only object for pool code so it doesn't need locking.
*
* @free_interval: minimum number of jiffies between freeing pages from pool.
* @page_alloc_inited: reference counting for pool allocation.
* @work: Work that is used to shrink the pool. Work is only run when there is
* some pages to free.
* @small_allocation: Limit in number of pages what is small allocation.
*
* @pools: All pool objects in use.
**/
struct ttm_pool_manager {
unsigned int kobj_ref;
eventhandler_tag lowmem_handler;
struct ttm_pool_opts options;
union {
struct ttm_page_pool u_pools[NUM_POOLS];
struct _utag {
struct ttm_page_pool u_wc_pool;
struct ttm_page_pool u_uc_pool;
struct ttm_page_pool u_wc_pool_dma32;
struct ttm_page_pool u_uc_pool_dma32;
} _ut;
} _u;
};
#define pools _u.u_pools
#define wc_pool _u._ut.u_wc_pool
#define uc_pool _u._ut.u_uc_pool
#define wc_pool_dma32 _u._ut.u_wc_pool_dma32
#define uc_pool_dma32 _u._ut.u_uc_pool_dma32
MALLOC_DEFINE(M_TTM_POOLMGR, "ttm_poolmgr", "TTM Pool Manager");
static void
ttm_vm_page_free(vm_page_t m)
{
KASSERT(m->object == NULL, ("ttm page %p is owned", m));
KASSERT(m->wire_count == 1, ("ttm lost wire %p", m));
KASSERT((m->flags & PG_FICTITIOUS) != 0, ("ttm lost fictitious %p", m));
KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("ttm got unmanaged %p", m));
m->flags &= ~PG_FICTITIOUS;
m->oflags |= VPO_UNMANAGED;
vm_page_unwire(m, PQ_NONE);
vm_page_free(m);
}
static vm_memattr_t
ttm_caching_state_to_vm(enum ttm_caching_state cstate)
{
switch (cstate) {
case tt_uncached:
return (VM_MEMATTR_UNCACHEABLE);
case tt_wc:
return (VM_MEMATTR_WRITE_COMBINING);
case tt_cached:
return (VM_MEMATTR_WRITE_BACK);
}
panic("caching state %d\n", cstate);
}
static vm_page_t
ttm_vm_page_alloc_dma32(int req, vm_memattr_t memattr)
{
vm_page_t p;
int tries;
for (tries = 0; ; tries++) {
p = vm_page_alloc_contig(NULL, 0, req, 1, 0, 0xffffffff,
PAGE_SIZE, 0, memattr);
if (p != NULL || tries > 2)
return (p);
if (!vm_page_reclaim_contig(req, 1, 0, 0xffffffff,
PAGE_SIZE, 0))
vm_wait(NULL);
}
}
static vm_page_t
ttm_vm_page_alloc_any(int req, vm_memattr_t memattr)
{
vm_page_t p;
while (1) {
p = vm_page_alloc(NULL, 0, req);
if (p != NULL)
break;
vm_wait(NULL);
}
pmap_page_set_memattr(p, memattr);
return (p);
}
static vm_page_t
ttm_vm_page_alloc(int flags, enum ttm_caching_state cstate)
{
vm_page_t p;
vm_memattr_t memattr;
int req;
memattr = ttm_caching_state_to_vm(cstate);
req = VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ;
if ((flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0)
req |= VM_ALLOC_ZERO;
if ((flags & TTM_PAGE_FLAG_DMA32) != 0)
p = ttm_vm_page_alloc_dma32(req, memattr);
else
p = ttm_vm_page_alloc_any(req, memattr);
if (p != NULL) {
p->oflags &= ~VPO_UNMANAGED;
p->flags |= PG_FICTITIOUS;
}
return (p);
}
static void ttm_pool_kobj_release(struct ttm_pool_manager *m)
{
free(m, M_TTM_POOLMGR);
}
#if 0
/* XXXKIB sysctl */
static ssize_t ttm_pool_store(struct ttm_pool_manager *m,
struct attribute *attr, const char *buffer, size_t size)
{
int chars;
unsigned val;
chars = sscanf(buffer, "%u", &val);
if (chars == 0)
return size;
/* Convert kb to number of pages */
val = val / (PAGE_SIZE >> 10);
if (attr == &ttm_page_pool_max)
m->options.max_size = val;
else if (attr == &ttm_page_pool_small)
m->options.small = val;
else if (attr == &ttm_page_pool_alloc_size) {
if (val > NUM_PAGES_TO_ALLOC*8) {
pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
return size;
} else if (val > NUM_PAGES_TO_ALLOC) {
pr_warn("Setting allocation size to larger than %lu is not recommended\n",
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
}
m->options.alloc_size = val;
}
return size;
}
static ssize_t ttm_pool_show(struct ttm_pool_manager *m,
struct attribute *attr, char *buffer)
{
unsigned val = 0;
if (attr == &ttm_page_pool_max)
val = m->options.max_size;
else if (attr == &ttm_page_pool_small)
val = m->options.small;
else if (attr == &ttm_page_pool_alloc_size)
val = m->options.alloc_size;
val = val * (PAGE_SIZE >> 10);
return snprintf(buffer, PAGE_SIZE, "%u\n", val);
}
#endif
static struct ttm_pool_manager *_manager;
static int set_pages_array_wb(vm_page_t *pages, int addrinarray)
{
#ifdef TTM_HAS_AGP
int i;
for (i = 0; i < addrinarray; i++)
pmap_page_set_memattr(pages[i], VM_MEMATTR_WRITE_BACK);
#endif
return 0;
}
static int set_pages_array_wc(vm_page_t *pages, int addrinarray)
{
#ifdef TTM_HAS_AGP
int i;
for (i = 0; i < addrinarray; i++)
pmap_page_set_memattr(pages[i], VM_MEMATTR_WRITE_COMBINING);
#endif
return 0;
}
static int set_pages_array_uc(vm_page_t *pages, int addrinarray)
{
#ifdef TTM_HAS_AGP
int i;
for (i = 0; i < addrinarray; i++)
pmap_page_set_memattr(pages[i], VM_MEMATTR_UNCACHEABLE);
#endif
return 0;
}
/**
* Select the right pool or requested caching state and ttm flags. */
static struct ttm_page_pool *ttm_get_pool(int flags,
enum ttm_caching_state cstate)
{
int pool_index;
if (cstate == tt_cached)
return NULL;
if (cstate == tt_wc)
pool_index = 0x0;
else
pool_index = 0x1;
if (flags & TTM_PAGE_FLAG_DMA32)
pool_index |= 0x2;
return &_manager->pools[pool_index];
}
/* set memory back to wb and free the pages. */
static void ttm_pages_put(vm_page_t *pages, unsigned npages)
{
unsigned i;
/* Our VM handles vm memattr automatically on the page free. */
if (set_pages_array_wb(pages, npages))
printf("[TTM] Failed to set %d pages to wb!\n", npages);
for (i = 0; i < npages; ++i)
ttm_vm_page_free(pages[i]);
}
static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
unsigned freed_pages)
{
pool->npages -= freed_pages;
pool->nfrees += freed_pages;
}
/**
* Free pages from pool.
*
* To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
* number of pages in one go.
*
* @pool: to free the pages from
* @free_all: If set to true will free all pages in pool
**/
static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free)
{
vm_page_t p, p1;
vm_page_t *pages_to_free;
unsigned freed_pages = 0,
npages_to_free = nr_free;
unsigned i;
if (NUM_PAGES_TO_ALLOC < nr_free)
npages_to_free = NUM_PAGES_TO_ALLOC;
pages_to_free = malloc(npages_to_free * sizeof(vm_page_t),
M_TEMP, M_WAITOK | M_ZERO);
restart:
mtx_lock(&pool->lock);
TAILQ_FOREACH_REVERSE_SAFE(p, &pool->list, pglist, plinks.q, p1) {
if (freed_pages >= npages_to_free)
break;
pages_to_free[freed_pages++] = p;
/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
if (freed_pages >= NUM_PAGES_TO_ALLOC) {
/* remove range of pages from the pool */
for (i = 0; i < freed_pages; i++)
TAILQ_REMOVE(&pool->list, pages_to_free[i], plinks.q);
ttm_pool_update_free_locked(pool, freed_pages);
/**
* Because changing page caching is costly
* we unlock the pool to prevent stalling.
*/
mtx_unlock(&pool->lock);
ttm_pages_put(pages_to_free, freed_pages);
if (likely(nr_free != FREE_ALL_PAGES))
nr_free -= freed_pages;
if (NUM_PAGES_TO_ALLOC >= nr_free)
npages_to_free = nr_free;
else
npages_to_free = NUM_PAGES_TO_ALLOC;
freed_pages = 0;
/* free all so restart the processing */
if (nr_free)
goto restart;
/* Not allowed to fall through or break because
* following context is inside spinlock while we are
* outside here.
*/
goto out;
}
}
/* remove range of pages from the pool */
if (freed_pages) {
for (i = 0; i < freed_pages; i++)
TAILQ_REMOVE(&pool->list, pages_to_free[i], plinks.q);
ttm_pool_update_free_locked(pool, freed_pages);
nr_free -= freed_pages;
}
mtx_unlock(&pool->lock);
if (freed_pages)
ttm_pages_put(pages_to_free, freed_pages);
out:
free(pages_to_free, M_TEMP);
return nr_free;
}
/* Get good estimation how many pages are free in pools */
static int ttm_pool_get_num_unused_pages(void)
{
unsigned i;
int total = 0;
for (i = 0; i < NUM_POOLS; ++i)
total += _manager->pools[i].npages;
return total;
}
/**
* Callback for mm to request pool to reduce number of page held.
*/
static int ttm_pool_mm_shrink(void *arg)
{
static unsigned int start_pool = 0;
unsigned i;
unsigned pool_offset = atomic_fetchadd_int(&start_pool, 1);
struct ttm_page_pool *pool;
int shrink_pages = 100; /* XXXKIB */
pool_offset = pool_offset % NUM_POOLS;
/* select start pool in round robin fashion */
for (i = 0; i < NUM_POOLS; ++i) {
unsigned nr_free = shrink_pages;
if (shrink_pages == 0)
break;
pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
shrink_pages = ttm_page_pool_free(pool, nr_free);
}
/* return estimated number of unused pages in pool */
return ttm_pool_get_num_unused_pages();
}
static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
{
manager->lowmem_handler = EVENTHANDLER_REGISTER(vm_lowmem,
ttm_pool_mm_shrink, manager, EVENTHANDLER_PRI_ANY);
}
static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
{
EVENTHANDLER_DEREGISTER(vm_lowmem, manager->lowmem_handler);
}
static int ttm_set_pages_caching(vm_page_t *pages,
enum ttm_caching_state cstate, unsigned cpages)
{
int r = 0;
/* Set page caching */
switch (cstate) {
case tt_uncached:
r = set_pages_array_uc(pages, cpages);
if (r)
printf("[TTM] Failed to set %d pages to uc!\n", cpages);
break;
case tt_wc:
r = set_pages_array_wc(pages, cpages);
if (r)
printf("[TTM] Failed to set %d pages to wc!\n", cpages);
break;
default:
break;
}
return r;
}
/**
* Free pages the pages that failed to change the caching state. If there is
* any pages that have changed their caching state already put them to the
* pool.
*/
static void ttm_handle_caching_state_failure(struct pglist *pages,
int ttm_flags, enum ttm_caching_state cstate,
vm_page_t *failed_pages, unsigned cpages)
{
unsigned i;
/* Failed pages have to be freed */
for (i = 0; i < cpages; ++i) {
TAILQ_REMOVE(pages, failed_pages[i], plinks.q);
ttm_vm_page_free(failed_pages[i]);
}
}
/**
* Allocate new pages with correct caching.
*
* This function is reentrant if caller updates count depending on number of
* pages returned in pages array.
*/
static int ttm_alloc_new_pages(struct pglist *pages, int ttm_alloc_flags,
int ttm_flags, enum ttm_caching_state cstate, unsigned count)
{
vm_page_t *caching_array;
vm_page_t p;
int r = 0;
unsigned i, cpages;
unsigned max_cpages = min(count,
(unsigned)(PAGE_SIZE/sizeof(vm_page_t)));
/* allocate array for page caching change */
caching_array = malloc(max_cpages * sizeof(vm_page_t), M_TEMP,
M_WAITOK | M_ZERO);
for (i = 0, cpages = 0; i < count; ++i) {
p = ttm_vm_page_alloc(ttm_alloc_flags, cstate);
if (!p) {
printf("[TTM] Unable to get page %u\n", i);
/* store already allocated pages in the pool after
* setting the caching state */
if (cpages) {
r = ttm_set_pages_caching(caching_array,
cstate, cpages);
if (r)
ttm_handle_caching_state_failure(pages,
ttm_flags, cstate,
caching_array, cpages);
}
r = -ENOMEM;
goto out;
}
#ifdef CONFIG_HIGHMEM /* KIB: nop */
/* gfp flags of highmem page should never be dma32 so we
* we should be fine in such case
*/
if (!PageHighMem(p))
#endif
{
caching_array[cpages++] = p;
if (cpages == max_cpages) {
r = ttm_set_pages_caching(caching_array,
cstate, cpages);
if (r) {
ttm_handle_caching_state_failure(pages,
ttm_flags, cstate,
caching_array, cpages);
goto out;
}
cpages = 0;
}
}
TAILQ_INSERT_HEAD(pages, p, plinks.q);
}
if (cpages) {
r = ttm_set_pages_caching(caching_array, cstate, cpages);
if (r)
ttm_handle_caching_state_failure(pages,
ttm_flags, cstate,
caching_array, cpages);
}
out:
free(caching_array, M_TEMP);
return r;
}
/**
* Fill the given pool if there aren't enough pages and the requested number of
* pages is small.
*/
static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
int ttm_flags, enum ttm_caching_state cstate, unsigned count)
{
vm_page_t p;
int r;
unsigned cpages = 0;
/**
* Only allow one pool fill operation at a time.
* If pool doesn't have enough pages for the allocation new pages are
* allocated from outside of pool.
*/
if (pool->fill_lock)
return;
pool->fill_lock = true;
/* If allocation request is small and there are not enough
* pages in a pool we fill the pool up first. */
if (count < _manager->options.small
&& count > pool->npages) {
struct pglist new_pages;
unsigned alloc_size = _manager->options.alloc_size;
/**
* Can't change page caching if in irqsave context. We have to
* drop the pool->lock.
*/
mtx_unlock(&pool->lock);
TAILQ_INIT(&new_pages);
r = ttm_alloc_new_pages(&new_pages, pool->ttm_page_alloc_flags,
ttm_flags, cstate, alloc_size);
mtx_lock(&pool->lock);
if (!r) {
TAILQ_CONCAT(&pool->list, &new_pages, plinks.q);
++pool->nrefills;
pool->npages += alloc_size;
} else {
printf("[TTM] Failed to fill pool (%p)\n", pool);
/* If we have any pages left put them to the pool. */
TAILQ_FOREACH(p, &pool->list, plinks.q) {
++cpages;
}
TAILQ_CONCAT(&pool->list, &new_pages, plinks.q);
pool->npages += cpages;
}
}
pool->fill_lock = false;
}
/**
* Cut 'count' number of pages from the pool and put them on the return list.
*
* @return count of pages still required to fulfill the request.
*/
static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
struct pglist *pages,
int ttm_flags,
enum ttm_caching_state cstate,
unsigned count)
{
vm_page_t p;
unsigned i;
mtx_lock(&pool->lock);
ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count);
if (count >= pool->npages) {
/* take all pages from the pool */
TAILQ_CONCAT(pages, &pool->list, plinks.q);
count -= pool->npages;
pool->npages = 0;
goto out;
}
for (i = 0; i < count; i++) {
p = TAILQ_FIRST(&pool->list);
TAILQ_REMOVE(&pool->list, p, plinks.q);
TAILQ_INSERT_TAIL(pages, p, plinks.q);
}
pool->npages -= count;
count = 0;
out:
mtx_unlock(&pool->lock);
return count;
}
/* Put all pages in pages list to correct pool to wait for reuse */
static void ttm_put_pages(vm_page_t *pages, unsigned npages, int flags,
enum ttm_caching_state cstate)
{
struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
unsigned i;
if (pool == NULL) {
/* No pool for this memory type so free the pages */
for (i = 0; i < npages; i++) {
if (pages[i]) {
ttm_vm_page_free(pages[i]);
pages[i] = NULL;
}
}
return;
}
mtx_lock(&pool->lock);
for (i = 0; i < npages; i++) {
if (pages[i]) {
TAILQ_INSERT_TAIL(&pool->list, pages[i], plinks.q);
pages[i] = NULL;
pool->npages++;
}
}
/* Check that we don't go over the pool limit */
npages = 0;
if (pool->npages > _manager->options.max_size) {
npages = pool->npages - _manager->options.max_size;
/* free at least NUM_PAGES_TO_ALLOC number of pages
* to reduce calls to set_memory_wb */
if (npages < NUM_PAGES_TO_ALLOC)
npages = NUM_PAGES_TO_ALLOC;
}
mtx_unlock(&pool->lock);
if (npages)
ttm_page_pool_free(pool, npages);
}
/*
* On success pages list will hold count number of correctly
* cached pages.
*/
static int ttm_get_pages(vm_page_t *pages, unsigned npages, int flags,
enum ttm_caching_state cstate)
{
struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
struct pglist plist;
vm_page_t p = NULL;
int gfp_flags;
unsigned count;
int r;
/* No pool for cached pages */
if (pool == NULL) {
for (r = 0; r < npages; ++r) {
p = ttm_vm_page_alloc(flags, cstate);
if (!p) {
printf("[TTM] Unable to allocate page\n");
return -ENOMEM;
}
pages[r] = p;
}
return 0;
}
/* combine zero flag to pool flags */
gfp_flags = flags | pool->ttm_page_alloc_flags;
/* First we take pages from the pool */
TAILQ_INIT(&plist);
npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages);
count = 0;
TAILQ_FOREACH(p, &plist, plinks.q) {
pages[count++] = p;
}
/* clear the pages coming from the pool if requested */
if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
TAILQ_FOREACH(p, &plist, plinks.q) {
pmap_zero_page(p);
}
}
/* If pool didn't have enough pages allocate new one. */
if (npages > 0) {
/* ttm_alloc_new_pages doesn't reference pool so we can run
* multiple requests in parallel.
**/
TAILQ_INIT(&plist);
r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate,
npages);
TAILQ_FOREACH(p, &plist, plinks.q) {
pages[count++] = p;
}
if (r) {
/* If there is any pages in the list put them back to
* the pool. */
printf("[TTM] Failed to allocate extra pages for large request\n");
ttm_put_pages(pages, count, flags, cstate);
return r;
}
}
return 0;
}
static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, int flags,
char *name)
{
mtx_init(&pool->lock, "ttmpool", NULL, MTX_DEF);
pool->fill_lock = false;
TAILQ_INIT(&pool->list);
pool->npages = pool->nfrees = 0;
pool->ttm_page_alloc_flags = flags;
pool->name = name;
}
int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
{
if (_manager != NULL)
printf("[TTM] manager != NULL\n");
printf("[TTM] Initializing pool allocator\n");
_manager = malloc(sizeof(*_manager), M_TTM_POOLMGR, M_WAITOK | M_ZERO);
ttm_page_pool_init_locked(&_manager->wc_pool, 0, "wc");
ttm_page_pool_init_locked(&_manager->uc_pool, 0, "uc");
ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
TTM_PAGE_FLAG_DMA32, "wc dma");
ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
TTM_PAGE_FLAG_DMA32, "uc dma");
_manager->options.max_size = max_pages;
_manager->options.small = SMALL_ALLOCATION;
_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
refcount_init(&_manager->kobj_ref, 1);
ttm_pool_mm_shrink_init(_manager);
return 0;
}
void ttm_page_alloc_fini(void)
{
int i;
printf("[TTM] Finalizing pool allocator\n");
ttm_pool_mm_shrink_fini(_manager);
for (i = 0; i < NUM_POOLS; ++i)
ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES);
if (refcount_release(&_manager->kobj_ref))
ttm_pool_kobj_release(_manager);
_manager = NULL;
}
int ttm_pool_populate(struct ttm_tt *ttm)
{
struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
unsigned i;
int ret;
if (ttm->state != tt_unpopulated)
return 0;
for (i = 0; i < ttm->num_pages; ++i) {
ret = ttm_get_pages(&ttm->pages[i], 1,
ttm->page_flags,
ttm->caching_state);
if (ret != 0) {
ttm_pool_unpopulate(ttm);
return -ENOMEM;
}
ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
false, false);
if (unlikely(ret != 0)) {
ttm_pool_unpopulate(ttm);
return -ENOMEM;
}
}
if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
ret = ttm_tt_swapin(ttm);
if (unlikely(ret != 0)) {
ttm_pool_unpopulate(ttm);
return ret;
}
}
ttm->state = tt_unbound;
return 0;
}
void ttm_pool_unpopulate(struct ttm_tt *ttm)
{
unsigned i;
for (i = 0; i < ttm->num_pages; ++i) {
if (ttm->pages[i]) {
ttm_mem_global_free_page(ttm->glob->mem_glob,
ttm->pages[i]);
ttm_put_pages(&ttm->pages[i], 1,
ttm->page_flags,
ttm->caching_state);
}
}
ttm->state = tt_unpopulated;
}
#if 0
/* XXXKIB sysctl */
int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
{
struct ttm_page_pool *p;
unsigned i;
char *h[] = {"pool", "refills", "pages freed", "size"};
if (!_manager) {
seq_printf(m, "No pool allocator running.\n");
return 0;
}
seq_printf(m, "%6s %12s %13s %8s\n",
h[0], h[1], h[2], h[3]);
for (i = 0; i < NUM_POOLS; ++i) {
p = &_manager->pools[i];
seq_printf(m, "%6s %12ld %13ld %8d\n",
p->name, p->nrefills,
p->nfrees, p->npages);
}
return 0;
}
#endif