freebsd-nq/sys/dev/sound/pci/emu10k1.c
John Baldwin 86843ea8de Fix various bugs with freeing static DMA allocations in sound drivers:
- Don't compare the DMA map to NULL to determine if bus_dmamap_unload()
  should be called when releasing a static allocation.  Instead, compare
  the bus address against 0.
- Don't assume that the DMA map for static allocations is NULL.  Instead,
  save the value set by bus_dmamem_alloc() so it can later be passed to
  bus_dmamem_free().  Also, add missing calls to bus_dmamap_unload() in
  these cases before freeing the buffer.
- Use the bus address from the bus_dma callback instead of calling
  vtophys() on the address allocated by bus_dmamem_alloc().

Reviewed by:	kan
2014-06-17 16:07:57 +00:00

2257 lines
58 KiB
C

/*-
* Copyright (c) 2004 David O'Brien <obrien@FreeBSD.org>
* Copyright (c) 2003 Orlando Bassotto <orlando.bassotto@ieo-research.it>
* Copyright (c) 1999 Cameron Grant <cg@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_snd.h"
#endif
#include <dev/sound/pcm/sound.h>
#include <dev/sound/pcm/ac97.h>
#include <dev/sound/pci/emuxkireg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <sys/queue.h>
#include <dev/sound/midi/mpu401.h>
#include "mpufoi_if.h"
SND_DECLARE_FILE("$FreeBSD$");
/* -------------------------------------------------------------------- */
#define NUM_G 64 /* use all channels */
#define WAVEOUT_MAXBUFSIZE 32768
#define EMUPAGESIZE 4096 /* don't change */
#define EMUMAXPAGES (WAVEOUT_MAXBUFSIZE * NUM_G / EMUPAGESIZE)
#define EMU10K1_PCI_ID 0x00021102 /* 1102 => Creative Labs Vendor ID */
#define EMU10K2_PCI_ID 0x00041102
#define EMU10K3_PCI_ID 0x00081102
#define EMU_DEFAULT_BUFSZ 4096
#define EMU_MAX_CHANS 8
#define EMU_CHANS 4
#define MAXREQVOICES 8
#define RESERVED 0
#define NUM_MIDI 16
#define NUM_FXSENDS 4
#define TMEMSIZE 256*1024
#define TMEMSIZEREG 4
#define ENABLE 0xffffffff
#define DISABLE 0x00000000
#define ENV_ON EMU_CHAN_DCYSUSV_CHANNELENABLE_MASK
#define ENV_OFF 0x00 /* XXX: should this be 1? */
#define EMU_A_IOCFG_GPOUT_A 0x40
#define EMU_A_IOCFG_GPOUT_D 0x04
#define EMU_A_IOCFG_GPOUT_AD (EMU_A_IOCFG_GPOUT_A|EMU_A_IOCFG_GPOUT_D) /* EMU_A_IOCFG_GPOUT0 */
#define EMU_HCFG_GPOUT1 0x00000800
/* instruction set */
#define iACC3 0x06
#define iMACINT0 0x04
#define iINTERP 0x0e
#define C_00000000 0x40
#define C_00000001 0x41
#define C_00000004 0x44
#define C_40000000 0x4d
/* Audigy constants */
#define A_C_00000000 0xc0
#define A_C_40000000 0xcd
/* GPRs */
#define FXBUS(x) (0x00 + (x))
#define EXTIN(x) (0x10 + (x))
#define EXTOUT(x) (0x20 + (x))
#define GPR(x) (EMU_FXGPREGBASE + (x))
#define A_EXTIN(x) (0x40 + (x))
#define A_FXBUS(x) (0x00 + (x))
#define A_EXTOUT(x) (0x60 + (x))
#define A_GPR(x) (EMU_A_FXGPREGBASE + (x))
/* FX buses */
#define FXBUS_PCM_LEFT 0x00
#define FXBUS_PCM_RIGHT 0x01
#define FXBUS_MIDI_LEFT 0x04
#define FXBUS_MIDI_RIGHT 0x05
#define FXBUS_MIDI_REVERB 0x0c
#define FXBUS_MIDI_CHORUS 0x0d
/* Inputs */
#define EXTIN_AC97_L 0x00
#define EXTIN_AC97_R 0x01
#define EXTIN_SPDIF_CD_L 0x02
#define EXTIN_SPDIF_CD_R 0x03
#define EXTIN_TOSLINK_L 0x06
#define EXTIN_TOSLINK_R 0x07
#define EXTIN_COAX_SPDIF_L 0x0a
#define EXTIN_COAX_SPDIF_R 0x0b
/* Audigy Inputs */
#define A_EXTIN_AC97_L 0x00
#define A_EXTIN_AC97_R 0x01
/* Outputs */
#define EXTOUT_AC97_L 0x00
#define EXTOUT_AC97_R 0x01
#define EXTOUT_TOSLINK_L 0x02
#define EXTOUT_TOSLINK_R 0x03
#define EXTOUT_AC97_CENTER 0x04
#define EXTOUT_AC97_LFE 0x05
#define EXTOUT_HEADPHONE_L 0x06
#define EXTOUT_HEADPHONE_R 0x07
#define EXTOUT_REAR_L 0x08
#define EXTOUT_REAR_R 0x09
#define EXTOUT_ADC_CAP_L 0x0a
#define EXTOUT_ADC_CAP_R 0x0b
#define EXTOUT_ACENTER 0x11
#define EXTOUT_ALFE 0x12
/* Audigy Outputs */
#define A_EXTOUT_FRONT_L 0x00
#define A_EXTOUT_FRONT_R 0x01
#define A_EXTOUT_CENTER 0x02
#define A_EXTOUT_LFE 0x03
#define A_EXTOUT_HEADPHONE_L 0x04
#define A_EXTOUT_HEADPHONE_R 0x05
#define A_EXTOUT_REAR_L 0x06
#define A_EXTOUT_REAR_R 0x07
#define A_EXTOUT_AFRONT_L 0x08
#define A_EXTOUT_AFRONT_R 0x09
#define A_EXTOUT_ACENTER 0x0a
#define A_EXTOUT_ALFE 0x0b
#define A_EXTOUT_AREAR_L 0x0e
#define A_EXTOUT_AREAR_R 0x0f
#define A_EXTOUT_AC97_L 0x10
#define A_EXTOUT_AC97_R 0x11
#define A_EXTOUT_ADC_CAP_L 0x16
#define A_EXTOUT_ADC_CAP_R 0x17
struct emu_memblk {
SLIST_ENTRY(emu_memblk) link;
void *buf;
bus_addr_t buf_addr;
u_int32_t pte_start, pte_size;
bus_dmamap_t buf_map;
};
struct emu_mem {
u_int8_t bmap[EMUMAXPAGES / 8];
u_int32_t *ptb_pages;
void *silent_page;
bus_addr_t silent_page_addr;
bus_addr_t ptb_pages_addr;
bus_dmamap_t ptb_map;
bus_dmamap_t silent_map;
SLIST_HEAD(, emu_memblk) blocks;
};
struct emu_voice {
int vnum;
unsigned int b16:1, stereo:1, busy:1, running:1, ismaster:1;
int speed;
int start, end, vol;
int fxrt1; /* FX routing */
int fxrt2; /* FX routing (only for audigy) */
u_int32_t buf;
struct emu_voice *slave;
struct pcm_channel *channel;
};
struct sc_info;
/* channel registers */
struct sc_pchinfo {
int spd, fmt, blksz, run;
struct emu_voice *master, *slave;
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct sc_info *parent;
};
struct sc_rchinfo {
int spd, fmt, run, blksz, num;
u_int32_t idxreg, basereg, sizereg, setupreg, irqmask;
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct sc_info *parent;
};
/* device private data */
struct sc_info {
device_t dev;
u_int32_t type, rev;
u_int32_t tos_link:1, APS:1, audigy:1, audigy2:1;
u_int32_t addrmask; /* wider if audigy */
bus_space_tag_t st;
bus_space_handle_t sh;
bus_dma_tag_t parent_dmat;
struct resource *reg, *irq;
void *ih;
struct mtx *lock;
unsigned int bufsz;
int timer, timerinterval;
int pnum, rnum;
int nchans;
struct emu_mem mem;
struct emu_voice voice[64];
struct sc_pchinfo pch[EMU_MAX_CHANS];
struct sc_rchinfo rch[3];
struct mpu401 *mpu;
mpu401_intr_t *mpu_intr;
int mputx;
};
/* -------------------------------------------------------------------- */
/*
* prototypes
*/
/* stuff */
static int emu_init(struct sc_info *);
static void emu_intr(void *);
static void *emu_malloc(struct sc_info *sc, u_int32_t sz, bus_addr_t *addr, bus_dmamap_t *map);
static void *emu_memalloc(struct sc_info *sc, u_int32_t sz, bus_addr_t *addr);
static int emu_memfree(struct sc_info *sc, void *buf);
static int emu_memstart(struct sc_info *sc, void *buf);
#ifdef EMUDEBUG
static void emu_vdump(struct sc_info *sc, struct emu_voice *v);
#endif
/* talk to the card */
static u_int32_t emu_rd(struct sc_info *, int, int);
static void emu_wr(struct sc_info *, int, u_int32_t, int);
/* -------------------------------------------------------------------- */
static u_int32_t emu_rfmt_ac97[] = {
SND_FORMAT(AFMT_S16_LE, 1, 0),
SND_FORMAT(AFMT_S16_LE, 2, 0),
0
};
static u_int32_t emu_rfmt_mic[] = {
SND_FORMAT(AFMT_U8, 1, 0),
0
};
static u_int32_t emu_rfmt_efx[] = {
SND_FORMAT(AFMT_S16_LE, 2, 0),
0
};
static struct pcmchan_caps emu_reccaps[3] = {
{8000, 48000, emu_rfmt_ac97, 0},
{8000, 8000, emu_rfmt_mic, 0},
{48000, 48000, emu_rfmt_efx, 0},
};
static u_int32_t emu_pfmt[] = {
SND_FORMAT(AFMT_U8, 1, 0),
SND_FORMAT(AFMT_U8, 2, 0),
SND_FORMAT(AFMT_S16_LE, 1, 0),
SND_FORMAT(AFMT_S16_LE, 2, 0),
0
};
static struct pcmchan_caps emu_playcaps = {4000, 48000, emu_pfmt, 0};
static int adcspeed[8] = {48000, 44100, 32000, 24000, 22050, 16000, 11025, 8000};
/* audigy supports 12kHz. */
static int audigy_adcspeed[9] = {
48000, 44100, 32000, 24000, 22050, 16000, 12000, 11025, 8000
};
/* -------------------------------------------------------------------- */
/* Hardware */
static u_int32_t
emu_rd(struct sc_info *sc, int regno, int size)
{
switch (size) {
case 1:
return bus_space_read_1(sc->st, sc->sh, regno);
case 2:
return bus_space_read_2(sc->st, sc->sh, regno);
case 4:
return bus_space_read_4(sc->st, sc->sh, regno);
default:
return 0xffffffff;
}
}
static void
emu_wr(struct sc_info *sc, int regno, u_int32_t data, int size)
{
switch (size) {
case 1:
bus_space_write_1(sc->st, sc->sh, regno, data);
break;
case 2:
bus_space_write_2(sc->st, sc->sh, regno, data);
break;
case 4:
bus_space_write_4(sc->st, sc->sh, regno, data);
break;
}
}
static u_int32_t
emu_rdptr(struct sc_info *sc, int chn, int reg)
{
u_int32_t ptr, val, mask, size, offset;
ptr = ((reg << 16) & sc->addrmask) | (chn & EMU_PTR_CHNO_MASK);
emu_wr(sc, EMU_PTR, ptr, 4);
val = emu_rd(sc, EMU_DATA, 4);
if (reg & 0xff000000) {
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = ((1 << size) - 1) << offset;
val &= mask;
val >>= offset;
}
return val;
}
static void
emu_wrptr(struct sc_info *sc, int chn, int reg, u_int32_t data)
{
u_int32_t ptr, mask, size, offset;
ptr = ((reg << 16) & sc->addrmask) | (chn & EMU_PTR_CHNO_MASK);
emu_wr(sc, EMU_PTR, ptr, 4);
if (reg & 0xff000000) {
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = ((1 << size) - 1) << offset;
data <<= offset;
data &= mask;
data |= emu_rd(sc, EMU_DATA, 4) & ~mask;
}
emu_wr(sc, EMU_DATA, data, 4);
}
static void
emu_wrefx(struct sc_info *sc, unsigned int pc, unsigned int data)
{
pc += sc->audigy ? EMU_A_MICROCODEBASE : EMU_MICROCODEBASE;
emu_wrptr(sc, 0, pc, data);
}
/* -------------------------------------------------------------------- */
/* ac97 codec */
/* no locking needed */
static int
emu_rdcd(kobj_t obj, void *devinfo, int regno)
{
struct sc_info *sc = (struct sc_info *)devinfo;
emu_wr(sc, EMU_AC97ADDR, regno, 1);
return emu_rd(sc, EMU_AC97DATA, 2);
}
static int
emu_wrcd(kobj_t obj, void *devinfo, int regno, u_int32_t data)
{
struct sc_info *sc = (struct sc_info *)devinfo;
emu_wr(sc, EMU_AC97ADDR, regno, 1);
emu_wr(sc, EMU_AC97DATA, data, 2);
return 0;
}
static kobj_method_t emu_ac97_methods[] = {
KOBJMETHOD(ac97_read, emu_rdcd),
KOBJMETHOD(ac97_write, emu_wrcd),
KOBJMETHOD_END
};
AC97_DECLARE(emu_ac97);
/* -------------------------------------------------------------------- */
/* stuff */
static int
emu_settimer(struct sc_info *sc)
{
struct sc_pchinfo *pch;
struct sc_rchinfo *rch;
int i, tmp, rate;
rate = 0;
for (i = 0; i < sc->nchans; i++) {
pch = &sc->pch[i];
if (pch->buffer) {
tmp = (pch->spd * sndbuf_getalign(pch->buffer))
/ pch->blksz;
if (tmp > rate)
rate = tmp;
}
}
for (i = 0; i < 3; i++) {
rch = &sc->rch[i];
if (rch->buffer) {
tmp = (rch->spd * sndbuf_getalign(rch->buffer))
/ rch->blksz;
if (tmp > rate)
rate = tmp;
}
}
RANGE(rate, 48, 9600);
sc->timerinterval = 48000 / rate;
emu_wr(sc, EMU_TIMER, sc->timerinterval & 0x03ff, 2);
return sc->timerinterval;
}
static int
emu_enatimer(struct sc_info *sc, int go)
{
u_int32_t x;
if (go) {
if (sc->timer++ == 0) {
x = emu_rd(sc, EMU_INTE, 4);
x |= EMU_INTE_INTERTIMERENB;
emu_wr(sc, EMU_INTE, x, 4);
}
} else {
sc->timer = 0;
x = emu_rd(sc, EMU_INTE, 4);
x &= ~EMU_INTE_INTERTIMERENB;
emu_wr(sc, EMU_INTE, x, 4);
}
return 0;
}
static void
emu_enastop(struct sc_info *sc, char channel, int enable)
{
int reg = (channel & 0x20) ? EMU_SOLEH : EMU_SOLEL;
channel &= 0x1f;
reg |= 1 << 24;
reg |= channel << 16;
emu_wrptr(sc, 0, reg, enable);
}
static int
emu_recval(int speed) {
int val;
val = 0;
while (val < 7 && speed < adcspeed[val])
val++;
return val;
}
static int
audigy_recval(int speed) {
int val;
val = 0;
while (val < 8 && speed < audigy_adcspeed[val])
val++;
return val;
}
static u_int32_t
emu_rate_to_pitch(u_int32_t rate)
{
static u_int32_t logMagTable[128] = {
0x00000, 0x02dfc, 0x05b9e, 0x088e6, 0x0b5d6, 0x0e26f, 0x10eb3, 0x13aa2,
0x1663f, 0x1918a, 0x1bc84, 0x1e72e, 0x2118b, 0x23b9a, 0x2655d, 0x28ed5,
0x2b803, 0x2e0e8, 0x30985, 0x331db, 0x359eb, 0x381b6, 0x3a93d, 0x3d081,
0x3f782, 0x41e42, 0x444c1, 0x46b01, 0x49101, 0x4b6c4, 0x4dc49, 0x50191,
0x5269e, 0x54b6f, 0x57006, 0x59463, 0x5b888, 0x5dc74, 0x60029, 0x623a7,
0x646ee, 0x66a00, 0x68cdd, 0x6af86, 0x6d1fa, 0x6f43c, 0x7164b, 0x73829,
0x759d4, 0x77b4f, 0x79c9a, 0x7bdb5, 0x7dea1, 0x7ff5e, 0x81fed, 0x8404e,
0x86082, 0x88089, 0x8a064, 0x8c014, 0x8df98, 0x8fef1, 0x91e20, 0x93d26,
0x95c01, 0x97ab4, 0x9993e, 0x9b79f, 0x9d5d9, 0x9f3ec, 0xa11d8, 0xa2f9d,
0xa4d3c, 0xa6ab5, 0xa8808, 0xaa537, 0xac241, 0xadf26, 0xafbe7, 0xb1885,
0xb3500, 0xb5157, 0xb6d8c, 0xb899f, 0xba58f, 0xbc15e, 0xbdd0c, 0xbf899,
0xc1404, 0xc2f50, 0xc4a7b, 0xc6587, 0xc8073, 0xc9b3f, 0xcb5ed, 0xcd07c,
0xceaec, 0xd053f, 0xd1f73, 0xd398a, 0xd5384, 0xd6d60, 0xd8720, 0xda0c3,
0xdba4a, 0xdd3b4, 0xded03, 0xe0636, 0xe1f4e, 0xe384a, 0xe512c, 0xe69f3,
0xe829f, 0xe9b31, 0xeb3a9, 0xecc08, 0xee44c, 0xefc78, 0xf148a, 0xf2c83,
0xf4463, 0xf5c2a, 0xf73da, 0xf8b71, 0xfa2f0, 0xfba57, 0xfd1a7, 0xfe8df
};
static char logSlopeTable[128] = {
0x5c, 0x5c, 0x5b, 0x5a, 0x5a, 0x59, 0x58, 0x58,
0x57, 0x56, 0x56, 0x55, 0x55, 0x54, 0x53, 0x53,
0x52, 0x52, 0x51, 0x51, 0x50, 0x50, 0x4f, 0x4f,
0x4e, 0x4d, 0x4d, 0x4d, 0x4c, 0x4c, 0x4b, 0x4b,
0x4a, 0x4a, 0x49, 0x49, 0x48, 0x48, 0x47, 0x47,
0x47, 0x46, 0x46, 0x45, 0x45, 0x45, 0x44, 0x44,
0x43, 0x43, 0x43, 0x42, 0x42, 0x42, 0x41, 0x41,
0x41, 0x40, 0x40, 0x40, 0x3f, 0x3f, 0x3f, 0x3e,
0x3e, 0x3e, 0x3d, 0x3d, 0x3d, 0x3c, 0x3c, 0x3c,
0x3b, 0x3b, 0x3b, 0x3b, 0x3a, 0x3a, 0x3a, 0x39,
0x39, 0x39, 0x39, 0x38, 0x38, 0x38, 0x38, 0x37,
0x37, 0x37, 0x37, 0x36, 0x36, 0x36, 0x36, 0x35,
0x35, 0x35, 0x35, 0x34, 0x34, 0x34, 0x34, 0x34,
0x33, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x32,
0x32, 0x31, 0x31, 0x31, 0x31, 0x31, 0x30, 0x30,
0x30, 0x30, 0x30, 0x2f, 0x2f, 0x2f, 0x2f, 0x2f
};
int i;
if (rate == 0)
return 0; /* Bail out if no leading "1" */
rate *= 11185; /* Scale 48000 to 0x20002380 */
for (i = 31; i > 0; i--) {
if (rate & 0x80000000) { /* Detect leading "1" */
return (((u_int32_t) (i - 15) << 20) +
logMagTable[0x7f & (rate >> 24)] +
(0x7f & (rate >> 17)) *
logSlopeTable[0x7f & (rate >> 24)]);
}
rate <<= 1;
}
return 0; /* Should never reach this point */
}
static u_int32_t
emu_rate_to_linearpitch(u_int32_t rate)
{
rate = (rate << 8) / 375;
return (rate >> 1) + (rate & 1);
}
static struct emu_voice *
emu_valloc(struct sc_info *sc)
{
struct emu_voice *v;
int i;
v = NULL;
for (i = 0; i < 64 && sc->voice[i].busy; i++);
if (i < 64) {
v = &sc->voice[i];
v->busy = 1;
}
return v;
}
static int
emu_vinit(struct sc_info *sc, struct emu_voice *m, struct emu_voice *s,
u_int32_t sz, struct snd_dbuf *b)
{
void *buf;
bus_addr_t tmp_addr;
buf = emu_memalloc(sc, sz, &tmp_addr);
if (buf == NULL)
return -1;
if (b != NULL)
sndbuf_setup(b, buf, sz);
m->start = emu_memstart(sc, buf) * EMUPAGESIZE;
m->end = m->start + sz;
m->channel = NULL;
m->speed = 0;
m->b16 = 0;
m->stereo = 0;
m->running = 0;
m->ismaster = 1;
m->vol = 0xff;
m->buf = tmp_addr;
m->slave = s;
if (sc->audigy) {
m->fxrt1 = FXBUS_MIDI_CHORUS | FXBUS_PCM_RIGHT << 8 |
FXBUS_PCM_LEFT << 16 | FXBUS_MIDI_REVERB << 24;
m->fxrt2 = 0x3f3f3f3f; /* No effects on second route */
} else {
m->fxrt1 = FXBUS_MIDI_CHORUS | FXBUS_PCM_RIGHT << 4 |
FXBUS_PCM_LEFT << 8 | FXBUS_MIDI_REVERB << 12;
m->fxrt2 = 0;
}
if (s != NULL) {
s->start = m->start;
s->end = m->end;
s->channel = NULL;
s->speed = 0;
s->b16 = 0;
s->stereo = 0;
s->running = 0;
s->ismaster = 0;
s->vol = m->vol;
s->buf = m->buf;
s->fxrt1 = m->fxrt1;
s->fxrt2 = m->fxrt2;
s->slave = NULL;
}
return 0;
}
static void
emu_vsetup(struct sc_pchinfo *ch)
{
struct emu_voice *v = ch->master;
if (ch->fmt) {
v->b16 = (ch->fmt & AFMT_16BIT) ? 1 : 0;
v->stereo = (AFMT_CHANNEL(ch->fmt) > 1) ? 1 : 0;
if (v->slave != NULL) {
v->slave->b16 = v->b16;
v->slave->stereo = v->stereo;
}
}
if (ch->spd) {
v->speed = ch->spd;
if (v->slave != NULL)
v->slave->speed = v->speed;
}
}
static void
emu_vwrite(struct sc_info *sc, struct emu_voice *v)
{
int s;
int l, r, x, y;
u_int32_t sa, ea, start, val, silent_page;
s = (v->stereo ? 1 : 0) + (v->b16 ? 1 : 0);
sa = v->start >> s;
ea = v->end >> s;
l = r = x = y = v->vol;
if (v->stereo) {
l = v->ismaster ? l : 0;
r = v->ismaster ? 0 : r;
}
emu_wrptr(sc, v->vnum, EMU_CHAN_CPF, v->stereo ? EMU_CHAN_CPF_STEREO_MASK : 0);
val = v->stereo ? 28 : 30;
val *= v->b16 ? 1 : 2;
start = sa + val;
if (sc->audigy) {
emu_wrptr(sc, v->vnum, EMU_A_CHAN_FXRT1, v->fxrt1);
emu_wrptr(sc, v->vnum, EMU_A_CHAN_FXRT2, v->fxrt2);
emu_wrptr(sc, v->vnum, EMU_A_CHAN_SENDAMOUNTS, 0);
}
else
emu_wrptr(sc, v->vnum, EMU_CHAN_FXRT, v->fxrt1 << 16);
emu_wrptr(sc, v->vnum, EMU_CHAN_PTRX, (x << 8) | r);
emu_wrptr(sc, v->vnum, EMU_CHAN_DSL, ea | (y << 24));
emu_wrptr(sc, v->vnum, EMU_CHAN_PSST, sa | (l << 24));
emu_wrptr(sc, v->vnum, EMU_CHAN_CCCA, start | (v->b16 ? 0 : EMU_CHAN_CCCA_8BITSELECT));
emu_wrptr(sc, v->vnum, EMU_CHAN_Z1, 0);
emu_wrptr(sc, v->vnum, EMU_CHAN_Z2, 0);
silent_page = ((u_int32_t)(sc->mem.silent_page_addr) << 1)
| EMU_CHAN_MAP_PTI_MASK;
emu_wrptr(sc, v->vnum, EMU_CHAN_MAPA, silent_page);
emu_wrptr(sc, v->vnum, EMU_CHAN_MAPB, silent_page);
emu_wrptr(sc, v->vnum, EMU_CHAN_CVCF, EMU_CHAN_CVCF_CURRFILTER_MASK);
emu_wrptr(sc, v->vnum, EMU_CHAN_VTFT, EMU_CHAN_VTFT_FILTERTARGET_MASK);
emu_wrptr(sc, v->vnum, EMU_CHAN_ATKHLDM, 0);
emu_wrptr(sc, v->vnum, EMU_CHAN_DCYSUSM, EMU_CHAN_DCYSUSM_DECAYTIME_MASK);
emu_wrptr(sc, v->vnum, EMU_CHAN_LFOVAL1, 0x8000);
emu_wrptr(sc, v->vnum, EMU_CHAN_LFOVAL2, 0x8000);
emu_wrptr(sc, v->vnum, EMU_CHAN_FMMOD, 0);
emu_wrptr(sc, v->vnum, EMU_CHAN_TREMFRQ, 0);
emu_wrptr(sc, v->vnum, EMU_CHAN_FM2FRQ2, 0);
emu_wrptr(sc, v->vnum, EMU_CHAN_ENVVAL, 0x8000);
emu_wrptr(sc, v->vnum, EMU_CHAN_ATKHLDV,
EMU_CHAN_ATKHLDV_HOLDTIME_MASK | EMU_CHAN_ATKHLDV_ATTACKTIME_MASK);
emu_wrptr(sc, v->vnum, EMU_CHAN_ENVVOL, 0x8000);
emu_wrptr(sc, v->vnum, EMU_CHAN_PEFE_FILTERAMOUNT, 0x7f);
emu_wrptr(sc, v->vnum, EMU_CHAN_PEFE_PITCHAMOUNT, 0);
if (v->slave != NULL)
emu_vwrite(sc, v->slave);
}
static void
emu_vtrigger(struct sc_info *sc, struct emu_voice *v, int go)
{
u_int32_t pitch_target, initial_pitch;
u_int32_t cra, cs, ccis;
u_int32_t sample, i;
if (go) {
cra = 64;
cs = v->stereo ? 4 : 2;
ccis = v->stereo ? 28 : 30;
ccis *= v->b16 ? 1 : 2;
sample = v->b16 ? 0x00000000 : 0x80808080;
for (i = 0; i < cs; i++)
emu_wrptr(sc, v->vnum, EMU_CHAN_CD0 + i, sample);
emu_wrptr(sc, v->vnum, EMU_CHAN_CCR_CACHEINVALIDSIZE, 0);
emu_wrptr(sc, v->vnum, EMU_CHAN_CCR_READADDRESS, cra);
emu_wrptr(sc, v->vnum, EMU_CHAN_CCR_CACHEINVALIDSIZE, ccis);
emu_wrptr(sc, v->vnum, EMU_CHAN_IFATN, 0xff00);
emu_wrptr(sc, v->vnum, EMU_CHAN_VTFT, 0xffffffff);
emu_wrptr(sc, v->vnum, EMU_CHAN_CVCF, 0xffffffff);
emu_wrptr(sc, v->vnum, EMU_CHAN_DCYSUSV, 0x00007f7f);
emu_enastop(sc, v->vnum, 0);
pitch_target = emu_rate_to_linearpitch(v->speed);
initial_pitch = emu_rate_to_pitch(v->speed) >> 8;
emu_wrptr(sc, v->vnum, EMU_CHAN_PTRX_PITCHTARGET, pitch_target);
emu_wrptr(sc, v->vnum, EMU_CHAN_CPF_PITCH, pitch_target);
emu_wrptr(sc, v->vnum, EMU_CHAN_IP, initial_pitch);
} else {
emu_wrptr(sc, v->vnum, EMU_CHAN_PTRX_PITCHTARGET, 0);
emu_wrptr(sc, v->vnum, EMU_CHAN_CPF_PITCH, 0);
emu_wrptr(sc, v->vnum, EMU_CHAN_IFATN, 0xffff);
emu_wrptr(sc, v->vnum, EMU_CHAN_VTFT, 0x0000ffff);
emu_wrptr(sc, v->vnum, EMU_CHAN_CVCF, 0x0000ffff);
emu_wrptr(sc, v->vnum, EMU_CHAN_IP, 0);
emu_enastop(sc, v->vnum, 1);
}
if (v->slave != NULL)
emu_vtrigger(sc, v->slave, go);
}
static int
emu_vpos(struct sc_info *sc, struct emu_voice *v)
{
int s, ptr;
s = (v->b16 ? 1 : 0) + (v->stereo ? 1 : 0);
ptr = (emu_rdptr(sc, v->vnum, EMU_CHAN_CCCA_CURRADDR) - (v->start >> s)) << s;
return ptr & ~0x0000001f;
}
#ifdef EMUDEBUG
static void
emu_vdump(struct sc_info *sc, struct emu_voice *v)
{
char *regname[] = {
"cpf", "ptrx", "cvcf", "vtft", "z2", "z1", "psst", "dsl",
"ccca", "ccr", "clp", "fxrt", "mapa", "mapb", NULL, NULL,
"envvol", "atkhldv", "dcysusv", "lfoval1",
"envval", "atkhldm", "dcysusm", "lfoval2",
"ip", "ifatn", "pefe", "fmmod", "tremfrq", "fmfrq2",
"tempenv"
};
char *regname2[] = {
"mudata1", "mustat1", "mudata2", "mustat2",
"fxwc1", "fxwc2", "spdrate", NULL, NULL,
NULL, NULL, NULL, "fxrt2", "sndamnt", "fxrt1",
NULL, NULL
};
int i, x;
printf("voice number %d\n", v->vnum);
for (i = 0, x = 0; i <= 0x1e; i++) {
if (regname[i] == NULL)
continue;
printf("%s\t[%08x]", regname[i], emu_rdptr(sc, v->vnum, i));
printf("%s", (x == 2) ? "\n" : "\t");
x++;
if (x > 2)
x = 0;
}
/* Print out audigy extra registers */
if (sc->audigy) {
for (i = 0; i <= 0xe; i++) {
if (regname2[i] == NULL)
continue;
printf("%s\t[%08x]", regname2[i],
emu_rdptr(sc, v->vnum, i + 0x70));
printf("%s", (x == 2)? "\n" : "\t");
x++;
if (x > 2)
x = 0;
}
}
printf("\n\n");
}
#endif
/* channel interface */
static void *
emupchan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct sc_info *sc = devinfo;
struct sc_pchinfo *ch;
void *r;
KASSERT(dir == PCMDIR_PLAY, ("emupchan_init: bad direction"));
ch = &sc->pch[sc->pnum++];
ch->buffer = b;
ch->parent = sc;
ch->channel = c;
ch->blksz = sc->bufsz / 2;
ch->fmt = SND_FORMAT(AFMT_U8, 1, 0);
ch->spd = 8000;
snd_mtxlock(sc->lock);
ch->master = emu_valloc(sc);
ch->slave = emu_valloc(sc);
snd_mtxunlock(sc->lock);
r = (emu_vinit(sc, ch->master, ch->slave, sc->bufsz, ch->buffer))
? NULL : ch;
return r;
}
static int
emupchan_free(kobj_t obj, void *data)
{
struct sc_pchinfo *ch = data;
struct sc_info *sc = ch->parent;
int r;
snd_mtxlock(sc->lock);
r = emu_memfree(sc, sndbuf_getbuf(ch->buffer));
snd_mtxunlock(sc->lock);
return r;
}
static int
emupchan_setformat(kobj_t obj, void *data, u_int32_t format)
{
struct sc_pchinfo *ch = data;
ch->fmt = format;
return 0;
}
static u_int32_t
emupchan_setspeed(kobj_t obj, void *data, u_int32_t speed)
{
struct sc_pchinfo *ch = data;
ch->spd = speed;
return ch->spd;
}
static u_int32_t
emupchan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
{
struct sc_pchinfo *ch = data;
struct sc_info *sc = ch->parent;
int irqrate, blksz;
ch->blksz = blocksize;
snd_mtxlock(sc->lock);
emu_settimer(sc);
irqrate = 48000 / sc->timerinterval;
snd_mtxunlock(sc->lock);
blksz = (ch->spd * sndbuf_getalign(ch->buffer)) / irqrate;
return blocksize;
}
static int
emupchan_trigger(kobj_t obj, void *data, int go)
{
struct sc_pchinfo *ch = data;
struct sc_info *sc = ch->parent;
if (!PCMTRIG_COMMON(go))
return 0;
snd_mtxlock(sc->lock);
if (go == PCMTRIG_START) {
emu_vsetup(ch);
emu_vwrite(sc, ch->master);
emu_settimer(sc);
emu_enatimer(sc, 1);
#ifdef EMUDEBUG
printf("start [%d bit, %s, %d hz]\n",
ch->master->b16 ? 16 : 8,
ch->master->stereo ? "stereo" : "mono",
ch->master->speed);
emu_vdump(sc, ch->master);
emu_vdump(sc, ch->slave);
#endif
}
ch->run = (go == PCMTRIG_START) ? 1 : 0;
emu_vtrigger(sc, ch->master, ch->run);
snd_mtxunlock(sc->lock);
return 0;
}
static u_int32_t
emupchan_getptr(kobj_t obj, void *data)
{
struct sc_pchinfo *ch = data;
struct sc_info *sc = ch->parent;
int r;
snd_mtxlock(sc->lock);
r = emu_vpos(sc, ch->master);
snd_mtxunlock(sc->lock);
return r;
}
static struct pcmchan_caps *
emupchan_getcaps(kobj_t obj, void *data)
{
return &emu_playcaps;
}
static kobj_method_t emupchan_methods[] = {
KOBJMETHOD(channel_init, emupchan_init),
KOBJMETHOD(channel_free, emupchan_free),
KOBJMETHOD(channel_setformat, emupchan_setformat),
KOBJMETHOD(channel_setspeed, emupchan_setspeed),
KOBJMETHOD(channel_setblocksize, emupchan_setblocksize),
KOBJMETHOD(channel_trigger, emupchan_trigger),
KOBJMETHOD(channel_getptr, emupchan_getptr),
KOBJMETHOD(channel_getcaps, emupchan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(emupchan);
/* channel interface */
static void *
emurchan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct sc_info *sc = devinfo;
struct sc_rchinfo *ch;
KASSERT(dir == PCMDIR_REC, ("emurchan_init: bad direction"));
ch = &sc->rch[sc->rnum];
ch->buffer = b;
ch->parent = sc;
ch->channel = c;
ch->blksz = sc->bufsz / 2;
ch->fmt = SND_FORMAT(AFMT_U8, 1, 0);
ch->spd = 8000;
ch->num = sc->rnum;
switch(sc->rnum) {
case 0:
ch->idxreg = sc->audigy ? EMU_A_ADCIDX : EMU_ADCIDX;
ch->basereg = EMU_ADCBA;
ch->sizereg = EMU_ADCBS;
ch->setupreg = EMU_ADCCR;
ch->irqmask = EMU_INTE_ADCBUFENABLE;
break;
case 1:
ch->idxreg = EMU_FXIDX;
ch->basereg = EMU_FXBA;
ch->sizereg = EMU_FXBS;
ch->setupreg = EMU_FXWC;
ch->irqmask = EMU_INTE_EFXBUFENABLE;
break;
case 2:
ch->idxreg = EMU_MICIDX;
ch->basereg = EMU_MICBA;
ch->sizereg = EMU_MICBS;
ch->setupreg = 0;
ch->irqmask = EMU_INTE_MICBUFENABLE;
break;
}
sc->rnum++;
if (sndbuf_alloc(ch->buffer, sc->parent_dmat, 0, sc->bufsz) != 0)
return NULL;
else {
snd_mtxlock(sc->lock);
emu_wrptr(sc, 0, ch->basereg, sndbuf_getbufaddr(ch->buffer));
emu_wrptr(sc, 0, ch->sizereg, 0); /* off */
snd_mtxunlock(sc->lock);
return ch;
}
}
static int
emurchan_setformat(kobj_t obj, void *data, u_int32_t format)
{
struct sc_rchinfo *ch = data;
ch->fmt = format;
return 0;
}
static u_int32_t
emurchan_setspeed(kobj_t obj, void *data, u_int32_t speed)
{
struct sc_rchinfo *ch = data;
if (ch->num == 0) {
if (ch->parent->audigy)
speed = audigy_adcspeed[audigy_recval(speed)];
else
speed = adcspeed[emu_recval(speed)];
}
if (ch->num == 1)
speed = 48000;
if (ch->num == 2)
speed = 8000;
ch->spd = speed;
return ch->spd;
}
static u_int32_t
emurchan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
{
struct sc_rchinfo *ch = data;
struct sc_info *sc = ch->parent;
int irqrate, blksz;
ch->blksz = blocksize;
snd_mtxlock(sc->lock);
emu_settimer(sc);
irqrate = 48000 / sc->timerinterval;
snd_mtxunlock(sc->lock);
blksz = (ch->spd * sndbuf_getalign(ch->buffer)) / irqrate;
return blocksize;
}
/* semantic note: must start at beginning of buffer */
static int
emurchan_trigger(kobj_t obj, void *data, int go)
{
struct sc_rchinfo *ch = data;
struct sc_info *sc = ch->parent;
u_int32_t val, sz;
if (!PCMTRIG_COMMON(go))
return 0;
switch(sc->bufsz) {
case 4096:
sz = EMU_RECBS_BUFSIZE_4096;
break;
case 8192:
sz = EMU_RECBS_BUFSIZE_8192;
break;
case 16384:
sz = EMU_RECBS_BUFSIZE_16384;
break;
case 32768:
sz = EMU_RECBS_BUFSIZE_32768;
break;
case 65536:
sz = EMU_RECBS_BUFSIZE_65536;
break;
default:
sz = EMU_RECBS_BUFSIZE_4096;
}
snd_mtxlock(sc->lock);
switch(go) {
case PCMTRIG_START:
ch->run = 1;
emu_wrptr(sc, 0, ch->sizereg, sz);
if (ch->num == 0) {
if (sc->audigy) {
val = EMU_A_ADCCR_LCHANENABLE;
if (AFMT_CHANNEL(ch->fmt) > 1)
val |= EMU_A_ADCCR_RCHANENABLE;
val |= audigy_recval(ch->spd);
} else {
val = EMU_ADCCR_LCHANENABLE;
if (AFMT_CHANNEL(ch->fmt) > 1)
val |= EMU_ADCCR_RCHANENABLE;
val |= emu_recval(ch->spd);
}
emu_wrptr(sc, 0, ch->setupreg, 0);
emu_wrptr(sc, 0, ch->setupreg, val);
}
val = emu_rd(sc, EMU_INTE, 4);
val |= ch->irqmask;
emu_wr(sc, EMU_INTE, val, 4);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
ch->run = 0;
emu_wrptr(sc, 0, ch->sizereg, 0);
if (ch->setupreg)
emu_wrptr(sc, 0, ch->setupreg, 0);
val = emu_rd(sc, EMU_INTE, 4);
val &= ~ch->irqmask;
emu_wr(sc, EMU_INTE, val, 4);
break;
case PCMTRIG_EMLDMAWR:
case PCMTRIG_EMLDMARD:
default:
break;
}
snd_mtxunlock(sc->lock);
return 0;
}
static u_int32_t
emurchan_getptr(kobj_t obj, void *data)
{
struct sc_rchinfo *ch = data;
struct sc_info *sc = ch->parent;
int r;
snd_mtxlock(sc->lock);
r = emu_rdptr(sc, 0, ch->idxreg) & 0x0000ffff;
snd_mtxunlock(sc->lock);
return r;
}
static struct pcmchan_caps *
emurchan_getcaps(kobj_t obj, void *data)
{
struct sc_rchinfo *ch = data;
return &emu_reccaps[ch->num];
}
static kobj_method_t emurchan_methods[] = {
KOBJMETHOD(channel_init, emurchan_init),
KOBJMETHOD(channel_setformat, emurchan_setformat),
KOBJMETHOD(channel_setspeed, emurchan_setspeed),
KOBJMETHOD(channel_setblocksize, emurchan_setblocksize),
KOBJMETHOD(channel_trigger, emurchan_trigger),
KOBJMETHOD(channel_getptr, emurchan_getptr),
KOBJMETHOD(channel_getcaps, emurchan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(emurchan);
static unsigned char
emu_mread(struct mpu401 *arg, void *sc, int reg)
{
unsigned int d;
d = emu_rd((struct sc_info *)sc, 0x18 + reg, 1);
return d;
}
static void
emu_mwrite(struct mpu401 *arg, void *sc, int reg, unsigned char b)
{
emu_wr((struct sc_info *)sc, 0x18 + reg, b, 1);
}
static int
emu_muninit(struct mpu401 *arg, void *cookie)
{
struct sc_info *sc = cookie;
snd_mtxlock(sc->lock);
sc->mpu_intr = 0;
snd_mtxunlock(sc->lock);
return 0;
}
static kobj_method_t emu_mpu_methods[] = {
KOBJMETHOD(mpufoi_read, emu_mread),
KOBJMETHOD(mpufoi_write, emu_mwrite),
KOBJMETHOD(mpufoi_uninit, emu_muninit),
KOBJMETHOD_END
};
static DEFINE_CLASS(emu_mpu, emu_mpu_methods, 0);
static void
emu_intr2(void *p)
{
struct sc_info *sc = (struct sc_info *)p;
if (sc->mpu_intr)
(sc->mpu_intr)(sc->mpu);
}
static void
emu_midiattach(struct sc_info *sc)
{
int i;
i = emu_rd(sc, EMU_INTE, 4);
i |= EMU_INTE_MIDIRXENABLE;
emu_wr(sc, EMU_INTE, i, 4);
sc->mpu = mpu401_init(&emu_mpu_class, sc, emu_intr2, &sc->mpu_intr);
}
/* -------------------------------------------------------------------- */
/* The interrupt handler */
static void
emu_intr(void *data)
{
struct sc_info *sc = data;
u_int32_t stat, ack, i, x;
snd_mtxlock(sc->lock);
while (1) {
stat = emu_rd(sc, EMU_IPR, 4);
if (stat == 0)
break;
ack = 0;
/* process irq */
if (stat & EMU_IPR_INTERVALTIMER)
ack |= EMU_IPR_INTERVALTIMER;
if (stat & (EMU_IPR_ADCBUFFULL | EMU_IPR_ADCBUFHALFFULL))
ack |= stat & (EMU_IPR_ADCBUFFULL | EMU_IPR_ADCBUFHALFFULL);
if (stat & (EMU_IPR_EFXBUFFULL | EMU_IPR_EFXBUFHALFFULL))
ack |= stat & (EMU_IPR_EFXBUFFULL | EMU_IPR_EFXBUFHALFFULL);
if (stat & (EMU_IPR_MICBUFFULL | EMU_IPR_MICBUFHALFFULL))
ack |= stat & (EMU_IPR_MICBUFFULL | EMU_IPR_MICBUFHALFFULL);
if (stat & EMU_PCIERROR) {
ack |= EMU_PCIERROR;
device_printf(sc->dev, "pci error\n");
/* we still get an nmi with ecc ram even if we ack this */
}
if (stat & EMU_IPR_RATETRCHANGE) {
ack |= EMU_IPR_RATETRCHANGE;
#ifdef EMUDEBUG
device_printf(sc->dev,
"sample rate tracker lock status change\n");
#endif
}
if (stat & EMU_IPR_MIDIRECVBUFE)
if (sc->mpu_intr) {
(sc->mpu_intr)(sc->mpu);
ack |= EMU_IPR_MIDIRECVBUFE | EMU_IPR_MIDITRANSBUFE;
}
if (stat & ~ack)
device_printf(sc->dev, "dodgy irq: %x (harmless)\n",
stat & ~ack);
emu_wr(sc, EMU_IPR, stat, 4);
if (ack) {
snd_mtxunlock(sc->lock);
if (ack & EMU_IPR_INTERVALTIMER) {
x = 0;
for (i = 0; i < sc->nchans; i++) {
if (sc->pch[i].run) {
x = 1;
chn_intr(sc->pch[i].channel);
}
}
if (x == 0)
emu_enatimer(sc, 0);
}
if (ack & (EMU_IPR_ADCBUFFULL | EMU_IPR_ADCBUFHALFFULL)) {
if (sc->rch[0].channel)
chn_intr(sc->rch[0].channel);
}
if (ack & (EMU_IPR_EFXBUFFULL | EMU_IPR_EFXBUFHALFFULL)) {
if (sc->rch[1].channel)
chn_intr(sc->rch[1].channel);
}
if (ack & (EMU_IPR_MICBUFFULL | EMU_IPR_MICBUFHALFFULL)) {
if (sc->rch[2].channel)
chn_intr(sc->rch[2].channel);
}
snd_mtxlock(sc->lock);
}
}
snd_mtxunlock(sc->lock);
}
/* -------------------------------------------------------------------- */
static void
emu_setmap(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *phys = arg;
*phys = error ? 0 : (bus_addr_t)segs->ds_addr;
if (bootverbose) {
printf("emu: setmap (%lx, %lx), nseg=%d, error=%d\n",
(unsigned long)segs->ds_addr, (unsigned long)segs->ds_len,
nseg, error);
}
}
static void *
emu_malloc(struct sc_info *sc, u_int32_t sz, bus_addr_t *addr,
bus_dmamap_t *map)
{
void *buf;
*addr = 0;
if (bus_dmamem_alloc(sc->parent_dmat, &buf, BUS_DMA_NOWAIT, map))
return NULL;
if (bus_dmamap_load(sc->parent_dmat, *map, buf, sz, emu_setmap, addr, 0)
|| !*addr) {
bus_dmamem_free(sc->parent_dmat, buf, *map);
return NULL;
}
return buf;
}
static void
emu_free(struct sc_info *sc, void *buf, bus_dmamap_t map)
{
bus_dmamap_unload(sc->parent_dmat, map);
bus_dmamem_free(sc->parent_dmat, buf, map);
}
static void *
emu_memalloc(struct sc_info *sc, u_int32_t sz, bus_addr_t *addr)
{
u_int32_t blksz, start, idx, ofs, tmp, found;
struct emu_mem *mem = &sc->mem;
struct emu_memblk *blk;
void *buf;
blksz = sz / EMUPAGESIZE;
if (sz > (blksz * EMUPAGESIZE))
blksz++;
/* find a free block in the bitmap */
found = 0;
start = 1;
while (!found && start + blksz < EMUMAXPAGES) {
found = 1;
for (idx = start; idx < start + blksz; idx++)
if (mem->bmap[idx >> 3] & (1 << (idx & 7)))
found = 0;
if (!found)
start++;
}
if (!found)
return NULL;
blk = malloc(sizeof(*blk), M_DEVBUF, M_NOWAIT);
if (blk == NULL)
return NULL;
buf = emu_malloc(sc, sz, &blk->buf_addr, &blk->buf_map);
*addr = blk->buf_addr;
if (buf == NULL) {
free(blk, M_DEVBUF);
return NULL;
}
blk->buf = buf;
blk->pte_start = start;
blk->pte_size = blksz;
#ifdef EMUDEBUG
printf("buf %p, pte_start %d, pte_size %d\n", blk->buf,
blk->pte_start, blk->pte_size);
#endif
ofs = 0;
for (idx = start; idx < start + blksz; idx++) {
mem->bmap[idx >> 3] |= 1 << (idx & 7);
tmp = (uint32_t)(blk->buf_addr + ofs);
#ifdef EMUDEBUG
printf("pte[%d] -> %x phys, %x virt\n", idx, tmp,
((u_int32_t)buf) + ofs);
#endif
mem->ptb_pages[idx] = (tmp << 1) | idx;
ofs += EMUPAGESIZE;
}
SLIST_INSERT_HEAD(&mem->blocks, blk, link);
return buf;
}
static int
emu_memfree(struct sc_info *sc, void *buf)
{
u_int32_t idx, tmp;
struct emu_mem *mem = &sc->mem;
struct emu_memblk *blk, *i;
blk = NULL;
SLIST_FOREACH(i, &mem->blocks, link) {
if (i->buf == buf)
blk = i;
}
if (blk == NULL)
return EINVAL;
SLIST_REMOVE(&mem->blocks, blk, emu_memblk, link);
emu_free(sc, buf, blk->buf_map);
tmp = (u_int32_t)(sc->mem.silent_page_addr) << 1;
for (idx = blk->pte_start; idx < blk->pte_start + blk->pte_size; idx++) {
mem->bmap[idx >> 3] &= ~(1 << (idx & 7));
mem->ptb_pages[idx] = tmp | idx;
}
free(blk, M_DEVBUF);
return 0;
}
static int
emu_memstart(struct sc_info *sc, void *buf)
{
struct emu_mem *mem = &sc->mem;
struct emu_memblk *blk, *i;
blk = NULL;
SLIST_FOREACH(i, &mem->blocks, link) {
if (i->buf == buf)
blk = i;
}
if (blk == NULL)
return -EINVAL;
return blk->pte_start;
}
static void
emu_addefxop(struct sc_info *sc, int op, int z, int w, int x, int y,
u_int32_t *pc)
{
emu_wrefx(sc, (*pc) * 2, (x << 10) | y);
emu_wrefx(sc, (*pc) * 2 + 1, (op << 20) | (z << 10) | w);
(*pc)++;
}
static void
audigy_addefxop(struct sc_info *sc, int op, int z, int w, int x, int y,
u_int32_t *pc)
{
emu_wrefx(sc, (*pc) * 2, (x << 12) | y);
emu_wrefx(sc, (*pc) * 2 + 1, (op << 24) | (z << 12) | w);
(*pc)++;
}
static void
audigy_initefx(struct sc_info *sc)
{
int i;
u_int32_t pc = 0;
/* skip 0, 0, -1, 0 - NOPs */
for (i = 0; i < 512; i++)
audigy_addefxop(sc, 0x0f, 0x0c0, 0x0c0, 0x0cf, 0x0c0, &pc);
for (i = 0; i < 512; i++)
emu_wrptr(sc, 0, EMU_A_FXGPREGBASE + i, 0x0);
pc = 16;
/* stop fx processor */
emu_wrptr(sc, 0, EMU_A_DBG, EMU_A_DBG_SINGLE_STEP);
/* Audigy 2 (EMU10K2) DSP Registers:
FX Bus
0x000-0x00f : 16 registers (?)
Input
0x040/0x041 : AC97 Codec (l/r)
0x042/0x043 : ADC, S/PDIF (l/r)
0x044/0x045 : Optical S/PDIF in (l/r)
0x046/0x047 : ?
0x048/0x049 : Line/Mic 2 (l/r)
0x04a/0x04b : RCA S/PDIF (l/r)
0x04c/0x04d : Aux 2 (l/r)
Output
0x060/0x061 : Digital Front (l/r)
0x062/0x063 : Digital Center/LFE
0x064/0x065 : AudigyDrive Heaphone (l/r)
0x066/0x067 : Digital Rear (l/r)
0x068/0x069 : Analog Front (l/r)
0x06a/0x06b : Analog Center/LFE
0x06c/0x06d : ?
0x06e/0x06f : Analog Rear (l/r)
0x070/0x071 : AC97 Output (l/r)
0x072/0x073 : ?
0x074/0x075 : ?
0x076/0x077 : ADC Recording Buffer (l/r)
Constants
0x0c0 - 0x0c4 = 0 - 4
0x0c5 = 0x8, 0x0c6 = 0x10, 0x0c7 = 0x20
0x0c8 = 0x100, 0x0c9 = 0x10000, 0x0ca = 0x80000
0x0cb = 0x10000000, 0x0cc = 0x20000000, 0x0cd = 0x40000000
0x0ce = 0x80000000, 0x0cf = 0x7fffffff, 0x0d0 = 0xffffffff
0x0d1 = 0xfffffffe, 0x0d2 = 0xc0000000, 0x0d3 = 0x41fbbcdc
0x0d4 = 0x5a7ef9db, 0x0d5 = 0x00100000, 0x0dc = 0x00000001 (?)
Temporary Values
0x0d6 : Accumulator (?)
0x0d7 : Condition Register
0x0d8 : Noise source
0x0d9 : Noise source
Tank Memory Data Registers
0x200 - 0x2ff
Tank Memory Address Registers
0x300 - 0x3ff
General Purpose Registers
0x400 - 0x5ff
*/
/* AC97Output[l/r] = FXBus PCM[l/r] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_AC97_L), A_C_00000000,
A_C_00000000, A_FXBUS(FXBUS_PCM_LEFT), &pc);
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_AC97_R), A_C_00000000,
A_C_00000000, A_FXBUS(FXBUS_PCM_RIGHT), &pc);
/* GPR[0/1] = RCA S/PDIF[l/r] -- Master volume */
audigy_addefxop(sc, iACC3, A_GPR(0), A_C_00000000,
A_C_00000000, A_EXTIN(EXTIN_COAX_SPDIF_L), &pc);
audigy_addefxop(sc, iACC3, A_GPR(1), A_C_00000000,
A_C_00000000, A_EXTIN(EXTIN_COAX_SPDIF_R), &pc);
/* GPR[2] = GPR[0] (Left) / 2 + GPR[1] (Right) / 2 -- Central volume */
audigy_addefxop(sc, iINTERP, A_GPR(2), A_GPR(1),
A_C_40000000, A_GPR(0), &pc);
/* Headphones[l/r] = GPR[0/1] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_HEADPHONE_L),
A_C_00000000, A_C_00000000, A_GPR(0), &pc);
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_HEADPHONE_R),
A_C_00000000, A_C_00000000, A_GPR(1), &pc);
/* Analog Front[l/r] = GPR[0/1] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_AFRONT_L), A_C_00000000,
A_C_00000000, A_GPR(0), &pc);
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_AFRONT_R), A_C_00000000,
A_C_00000000, A_GPR(1), &pc);
/* Digital Front[l/r] = GPR[0/1] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_FRONT_L), A_C_00000000,
A_C_00000000, A_GPR(0), &pc);
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_FRONT_R), A_C_00000000,
A_C_00000000, A_GPR(1), &pc);
/* Center and Subwoofer configuration */
/* Analog Center = GPR[0] + GPR[2] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_ACENTER), A_C_00000000,
A_GPR(0), A_GPR(2), &pc);
/* Analog Sub = GPR[1] + GPR[2] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_ALFE), A_C_00000000,
A_GPR(1), A_GPR(2), &pc);
/* Digital Center = GPR[0] + GPR[2] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_CENTER), A_C_00000000,
A_GPR(0), A_GPR(2), &pc);
/* Digital Sub = GPR[1] + GPR[2] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_LFE), A_C_00000000,
A_GPR(1), A_GPR(2), &pc);
#if 0
/* Analog Rear[l/r] = (GPR[0/1] * RearVolume[l/r]) >> 31 */
/* RearVolume = GPR[0x10/0x11] (Will this ever be implemented?) */
audigy_addefxop(sc, iMAC0, A_EXTOUT(A_EXTOUT_AREAR_L), A_C_00000000,
A_GPR(16), A_GPR(0), &pc);
audigy_addefxop(sc, iMAC0, A_EXTOUT(A_EXTOUT_AREAR_R), A_C_00000000,
A_GPR(17), A_GPR(1), &pc);
/* Digital Rear[l/r] = (GPR[0/1] * RearVolume[l/r]) >> 31 */
/* RearVolume = GPR[0x10/0x11] (Will this ever be implemented?) */
audigy_addefxop(sc, iMAC0, A_EXTOUT(A_EXTOUT_REAR_L), A_C_00000000,
A_GPR(16), A_GPR(0), &pc);
audigy_addefxop(sc, iMAC0, A_EXTOUT(A_EXTOUT_REAR_R), A_C_00000000,
A_GPR(17), A_GPR(1), &pc);
#else
/* XXX This is just a copy to the channel, since we do not have
* a patch manager, it is useful for have another output enabled.
*/
/* Analog Rear[l/r] = GPR[0/1] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_AREAR_L), A_C_00000000,
A_C_00000000, A_GPR(0), &pc);
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_AREAR_R), A_C_00000000,
A_C_00000000, A_GPR(1), &pc);
/* Digital Rear[l/r] = GPR[0/1] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_REAR_L), A_C_00000000,
A_C_00000000, A_GPR(0), &pc);
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_REAR_R), A_C_00000000,
A_C_00000000, A_GPR(1), &pc);
#endif
/* ADC Recording buffer[l/r] = AC97Input[l/r] */
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_ADC_CAP_L), A_C_00000000,
A_C_00000000, A_EXTIN(A_EXTIN_AC97_L), &pc);
audigy_addefxop(sc, iACC3, A_EXTOUT(A_EXTOUT_ADC_CAP_R), A_C_00000000,
A_C_00000000, A_EXTIN(A_EXTIN_AC97_R), &pc);
/* resume normal operations */
emu_wrptr(sc, 0, EMU_A_DBG, 0);
}
static void
emu_initefx(struct sc_info *sc)
{
int i;
u_int32_t pc = 16;
/* acc3 0,0,0,0 - NOPs */
for (i = 0; i < 512; i++) {
emu_wrefx(sc, i * 2, 0x10040);
emu_wrefx(sc, i * 2 + 1, 0x610040);
}
for (i = 0; i < 256; i++)
emu_wrptr(sc, 0, EMU_FXGPREGBASE + i, 0);
/* FX-8010 DSP Registers:
FX Bus
0x000-0x00f : 16 registers
Input
0x010/0x011 : AC97 Codec (l/r)
0x012/0x013 : ADC, S/PDIF (l/r)
0x014/0x015 : Mic(left), Zoom (l/r)
0x016/0x017 : TOS link in (l/r)
0x018/0x019 : Line/Mic 1 (l/r)
0x01a/0x01b : COAX S/PDIF (l/r)
0x01c/0x01d : Line/Mic 2 (l/r)
Output
0x020/0x021 : AC97 Output (l/r)
0x022/0x023 : TOS link out (l/r)
0x024/0x025 : Center/LFE
0x026/0x027 : LiveDrive Headphone (l/r)
0x028/0x029 : Rear Channel (l/r)
0x02a/0x02b : ADC Recording Buffer (l/r)
0x02c : Mic Recording Buffer
0x031/0x032 : Analog Center/LFE
Constants
0x040 - 0x044 = 0 - 4
0x045 = 0x8, 0x046 = 0x10, 0x047 = 0x20
0x048 = 0x100, 0x049 = 0x10000, 0x04a = 0x80000
0x04b = 0x10000000, 0x04c = 0x20000000, 0x04d = 0x40000000
0x04e = 0x80000000, 0x04f = 0x7fffffff, 0x050 = 0xffffffff
0x051 = 0xfffffffe, 0x052 = 0xc0000000, 0x053 = 0x41fbbcdc
0x054 = 0x5a7ef9db, 0x055 = 0x00100000
Temporary Values
0x056 : Accumulator
0x057 : Condition Register
0x058 : Noise source
0x059 : Noise source
0x05a : IRQ Register
0x05b : TRAM Delay Base Address Count
General Purpose Registers
0x100 - 0x1ff
Tank Memory Data Registers
0x200 - 0x2ff
Tank Memory Address Registers
0x300 - 0x3ff
*/
/* Routing - this will be configurable in later version */
/* GPR[0/1] = FX * 4 + SPDIF-in */
emu_addefxop(sc, iMACINT0, GPR(0), EXTIN(EXTIN_SPDIF_CD_L),
FXBUS(FXBUS_PCM_LEFT), C_00000004, &pc);
emu_addefxop(sc, iMACINT0, GPR(1), EXTIN(EXTIN_SPDIF_CD_R),
FXBUS(FXBUS_PCM_RIGHT), C_00000004, &pc);
/* GPR[0/1] += APS-input */
emu_addefxop(sc, iACC3, GPR(0), GPR(0), C_00000000,
sc->APS ? EXTIN(EXTIN_TOSLINK_L) : C_00000000, &pc);
emu_addefxop(sc, iACC3, GPR(1), GPR(1), C_00000000,
sc->APS ? EXTIN(EXTIN_TOSLINK_R) : C_00000000, &pc);
/* FrontOut (AC97) = GPR[0/1] */
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_AC97_L), C_00000000,
C_00000000, GPR(0), &pc);
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_AC97_R), C_00000000,
C_00000001, GPR(1), &pc);
/* GPR[2] = GPR[0] (Left) / 2 + GPR[1] (Right) / 2 -- Central volume */
emu_addefxop(sc, iINTERP, GPR(2), GPR(1), C_40000000, GPR(0), &pc);
#if 0
/* RearOut = (GPR[0/1] * RearVolume) >> 31 */
/* RearVolume = GPR[0x10/0x11] */
emu_addefxop(sc, iMAC0, EXTOUT(EXTOUT_REAR_L), C_00000000,
GPR(16), GPR(0), &pc);
emu_addefxop(sc, iMAC0, EXTOUT(EXTOUT_REAR_R), C_00000000,
GPR(17), GPR(1), &pc);
#else
/* XXX This is just a copy to the channel, since we do not have
* a patch manager, it is useful for have another output enabled.
*/
/* Rear[l/r] = GPR[0/1] */
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_REAR_L), C_00000000,
C_00000000, GPR(0), &pc);
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_REAR_R), C_00000000,
C_00000000, GPR(1), &pc);
#endif
/* TOS out[l/r] = GPR[0/1] */
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_TOSLINK_L), C_00000000,
C_00000000, GPR(0), &pc);
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_TOSLINK_R), C_00000000,
C_00000000, GPR(1), &pc);
/* Center and Subwoofer configuration */
/* Analog Center = GPR[0] + GPR[2] */
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_ACENTER), C_00000000,
GPR(0), GPR(2), &pc);
/* Analog Sub = GPR[1] + GPR[2] */
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_ALFE), C_00000000,
GPR(1), GPR(2), &pc);
/* Digital Center = GPR[0] + GPR[2] */
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_AC97_CENTER), C_00000000,
GPR(0), GPR(2), &pc);
/* Digital Sub = GPR[1] + GPR[2] */
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_AC97_LFE), C_00000000,
GPR(1), GPR(2), &pc);
/* Headphones[l/r] = GPR[0/1] */
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_HEADPHONE_L), C_00000000,
C_00000000, GPR(0), &pc);
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_HEADPHONE_R), C_00000000,
C_00000000, GPR(1), &pc);
/* ADC Recording buffer[l/r] = AC97Input[l/r] */
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_ADC_CAP_L), C_00000000,
C_00000000, EXTIN(EXTIN_AC97_L), &pc);
emu_addefxop(sc, iACC3, EXTOUT(EXTOUT_ADC_CAP_R), C_00000000,
C_00000000, EXTIN(EXTIN_AC97_R), &pc);
/* resume normal operations */
emu_wrptr(sc, 0, EMU_DBG, 0);
}
/* Probe and attach the card */
static int
emu_init(struct sc_info *sc)
{
u_int32_t spcs, ch, tmp, i;
if (sc->audigy) {
/* enable additional AC97 slots */
emu_wrptr(sc, 0, EMU_AC97SLOT, EMU_AC97SLOT_CENTER | EMU_AC97SLOT_LFE);
}
/* disable audio and lock cache */
emu_wr(sc, EMU_HCFG,
EMU_HCFG_LOCKSOUNDCACHE | EMU_HCFG_LOCKTANKCACHE_MASK | EMU_HCFG_MUTEBUTTONENABLE,
4);
/* reset recording buffers */
emu_wrptr(sc, 0, EMU_MICBS, EMU_RECBS_BUFSIZE_NONE);
emu_wrptr(sc, 0, EMU_MICBA, 0);
emu_wrptr(sc, 0, EMU_FXBS, EMU_RECBS_BUFSIZE_NONE);
emu_wrptr(sc, 0, EMU_FXBA, 0);
emu_wrptr(sc, 0, EMU_ADCBS, EMU_RECBS_BUFSIZE_NONE);
emu_wrptr(sc, 0, EMU_ADCBA, 0);
/* disable channel interrupt */
emu_wr(sc, EMU_INTE,
EMU_INTE_INTERTIMERENB | EMU_INTE_SAMPLERATER | EMU_INTE_PCIERRENABLE,
4);
emu_wrptr(sc, 0, EMU_CLIEL, 0);
emu_wrptr(sc, 0, EMU_CLIEH, 0);
emu_wrptr(sc, 0, EMU_SOLEL, 0);
emu_wrptr(sc, 0, EMU_SOLEH, 0);
/* wonder what these do... */
if (sc->audigy) {
emu_wrptr(sc, 0, EMU_SPBYPASS, 0xf00);
emu_wrptr(sc, 0, EMU_AC97SLOT, 0x3);
}
/* init envelope engine */
for (ch = 0; ch < NUM_G; ch++) {
emu_wrptr(sc, ch, EMU_CHAN_DCYSUSV, ENV_OFF);
emu_wrptr(sc, ch, EMU_CHAN_IP, 0);
emu_wrptr(sc, ch, EMU_CHAN_VTFT, 0xffff);
emu_wrptr(sc, ch, EMU_CHAN_CVCF, 0xffff);
emu_wrptr(sc, ch, EMU_CHAN_PTRX, 0);
emu_wrptr(sc, ch, EMU_CHAN_CPF, 0);
emu_wrptr(sc, ch, EMU_CHAN_CCR, 0);
emu_wrptr(sc, ch, EMU_CHAN_PSST, 0);
emu_wrptr(sc, ch, EMU_CHAN_DSL, 0x10);
emu_wrptr(sc, ch, EMU_CHAN_CCCA, 0);
emu_wrptr(sc, ch, EMU_CHAN_Z1, 0);
emu_wrptr(sc, ch, EMU_CHAN_Z2, 0);
emu_wrptr(sc, ch, EMU_CHAN_FXRT, 0xd01c0000);
emu_wrptr(sc, ch, EMU_CHAN_ATKHLDM, 0);
emu_wrptr(sc, ch, EMU_CHAN_DCYSUSM, 0);
emu_wrptr(sc, ch, EMU_CHAN_IFATN, 0xffff);
emu_wrptr(sc, ch, EMU_CHAN_PEFE, 0);
emu_wrptr(sc, ch, EMU_CHAN_FMMOD, 0);
emu_wrptr(sc, ch, EMU_CHAN_TREMFRQ, 24); /* 1 Hz */
emu_wrptr(sc, ch, EMU_CHAN_FM2FRQ2, 24); /* 1 Hz */
emu_wrptr(sc, ch, EMU_CHAN_TEMPENV, 0);
/*** these are last so OFF prevents writing ***/
emu_wrptr(sc, ch, EMU_CHAN_LFOVAL2, 0);
emu_wrptr(sc, ch, EMU_CHAN_LFOVAL1, 0);
emu_wrptr(sc, ch, EMU_CHAN_ATKHLDV, 0);
emu_wrptr(sc, ch, EMU_CHAN_ENVVOL, 0);
emu_wrptr(sc, ch, EMU_CHAN_ENVVAL, 0);
if (sc->audigy) {
/* audigy cards need this to initialize correctly */
emu_wrptr(sc, ch, 0x4c, 0);
emu_wrptr(sc, ch, 0x4d, 0);
emu_wrptr(sc, ch, 0x4e, 0);
emu_wrptr(sc, ch, 0x4f, 0);
/* set default routing */
emu_wrptr(sc, ch, EMU_A_CHAN_FXRT1, 0x03020100);
emu_wrptr(sc, ch, EMU_A_CHAN_FXRT2, 0x3f3f3f3f);
emu_wrptr(sc, ch, EMU_A_CHAN_SENDAMOUNTS, 0);
}
sc->voice[ch].vnum = ch;
sc->voice[ch].slave = NULL;
sc->voice[ch].busy = 0;
sc->voice[ch].ismaster = 0;
sc->voice[ch].running = 0;
sc->voice[ch].b16 = 0;
sc->voice[ch].stereo = 0;
sc->voice[ch].speed = 0;
sc->voice[ch].start = 0;
sc->voice[ch].end = 0;
sc->voice[ch].channel = NULL;
}
sc->pnum = sc->rnum = 0;
/*
* Init to 0x02109204 :
* Clock accuracy = 0 (1000ppm)
* Sample Rate = 2 (48kHz)
* Audio Channel = 1 (Left of 2)
* Source Number = 0 (Unspecified)
* Generation Status = 1 (Original for Cat Code 12)
* Cat Code = 12 (Digital Signal Mixer)
* Mode = 0 (Mode 0)
* Emphasis = 0 (None)
* CP = 1 (Copyright unasserted)
* AN = 0 (Audio data)
* P = 0 (Consumer)
*/
spcs = EMU_SPCS_CLKACCY_1000PPM | EMU_SPCS_SAMPLERATE_48 |
EMU_SPCS_CHANNELNUM_LEFT | EMU_SPCS_SOURCENUM_UNSPEC |
EMU_SPCS_GENERATIONSTATUS | 0x00001200 | 0x00000000 |
EMU_SPCS_EMPHASIS_NONE | EMU_SPCS_COPYRIGHT;
emu_wrptr(sc, 0, EMU_SPCS0, spcs);
emu_wrptr(sc, 0, EMU_SPCS1, spcs);
emu_wrptr(sc, 0, EMU_SPCS2, spcs);
if (!sc->audigy)
emu_initefx(sc);
else if (sc->audigy2) { /* Audigy 2 */
/* from ALSA initialization code: */
/* Hack for Alice3 to work independent of haP16V driver */
u_int32_t tmp;
/* Setup SRCMulti_I2S SamplingRate */
tmp = emu_rdptr(sc, 0, EMU_A_SPDIF_SAMPLERATE) & 0xfffff1ff;
emu_wrptr(sc, 0, EMU_A_SPDIF_SAMPLERATE, tmp | 0x400);
/* Setup SRCSel (Enable SPDIF, I2S SRCMulti) */
emu_wr(sc, 0x20, 0x00600000, 4);
emu_wr(sc, 0x24, 0x00000014, 4);
/* Setup SRCMulti Input Audio Enable */
emu_wr(sc, 0x20, 0x006e0000, 4);
emu_wr(sc, 0x24, 0xff00ff00, 4);
}
SLIST_INIT(&sc->mem.blocks);
sc->mem.ptb_pages = emu_malloc(sc, EMUMAXPAGES * sizeof(u_int32_t),
&sc->mem.ptb_pages_addr, &sc->mem.ptb_map);
if (sc->mem.ptb_pages == NULL)
return -1;
sc->mem.silent_page = emu_malloc(sc, EMUPAGESIZE,
&sc->mem.silent_page_addr, &sc->mem.silent_map);
if (sc->mem.silent_page == NULL) {
emu_free(sc, sc->mem.ptb_pages, sc->mem.ptb_map);
return -1;
}
/* Clear page with silence & setup all pointers to this page */
bzero(sc->mem.silent_page, EMUPAGESIZE);
tmp = (u_int32_t)(sc->mem.silent_page_addr) << 1;
for (i = 0; i < EMUMAXPAGES; i++)
sc->mem.ptb_pages[i] = tmp | i;
emu_wrptr(sc, 0, EMU_PTB, (sc->mem.ptb_pages_addr));
emu_wrptr(sc, 0, EMU_TCB, 0); /* taken from original driver */
emu_wrptr(sc, 0, EMU_TCBS, 0); /* taken from original driver */
for (ch = 0; ch < NUM_G; ch++) {
emu_wrptr(sc, ch, EMU_CHAN_MAPA, tmp | EMU_CHAN_MAP_PTI_MASK);
emu_wrptr(sc, ch, EMU_CHAN_MAPB, tmp | EMU_CHAN_MAP_PTI_MASK);
}
/* emu_memalloc(sc, EMUPAGESIZE); */
/*
* Hokay, now enable the AUD bit
*
* Audigy
* Enable Audio = 0 (enabled after fx processor initialization)
* Mute Disable Audio = 0
* Joystick = 1
*
* Audigy 2
* Enable Audio = 1
* Mute Disable Audio = 0
* Joystick = 1
* GP S/PDIF AC3 Enable = 1
* CD S/PDIF AC3 Enable = 1
*
* EMU10K1
* Enable Audio = 1
* Mute Disable Audio = 0
* Lock Tank Memory = 1
* Lock Sound Memory = 0
* Auto Mute = 1
*/
if (sc->audigy) {
tmp = EMU_HCFG_AUTOMUTE | EMU_HCFG_JOYENABLE;
if (sc->audigy2) /* Audigy 2 */
tmp = EMU_HCFG_AUDIOENABLE | EMU_HCFG_AC3ENABLE_CDSPDIF |
EMU_HCFG_AC3ENABLE_GPSPDIF;
emu_wr(sc, EMU_HCFG, tmp, 4);
audigy_initefx(sc);
/* from ALSA initialization code: */
/* enable audio and disable both audio/digital outputs */
emu_wr(sc, EMU_HCFG, emu_rd(sc, EMU_HCFG, 4) | EMU_HCFG_AUDIOENABLE, 4);
emu_wr(sc, EMU_A_IOCFG, emu_rd(sc, EMU_A_IOCFG, 4) & ~EMU_A_IOCFG_GPOUT_AD,
4);
if (sc->audigy2) { /* Audigy 2 */
/* Unmute Analog.
* Set GPO6 to 1 for Apollo. This has to be done after
* init Alice3 I2SOut beyond 48kHz.
* So, sequence is important.
*/
emu_wr(sc, EMU_A_IOCFG,
emu_rd(sc, EMU_A_IOCFG, 4) | EMU_A_IOCFG_GPOUT_A, 4);
}
} else {
/* EMU10K1 initialization code */
tmp = EMU_HCFG_AUDIOENABLE | EMU_HCFG_LOCKTANKCACHE_MASK
| EMU_HCFG_AUTOMUTE;
if (sc->rev >= 6)
tmp |= EMU_HCFG_JOYENABLE;
emu_wr(sc, EMU_HCFG, tmp, 4);
/* TOSLink detection */
sc->tos_link = 0;
tmp = emu_rd(sc, EMU_HCFG, 4);
if (tmp & (EMU_HCFG_GPINPUT0 | EMU_HCFG_GPINPUT1)) {
emu_wr(sc, EMU_HCFG, tmp | EMU_HCFG_GPOUT1, 4);
DELAY(50);
if (tmp != (emu_rd(sc, EMU_HCFG, 4) & ~EMU_HCFG_GPOUT1)) {
sc->tos_link = 1;
emu_wr(sc, EMU_HCFG, tmp, 4);
}
}
}
return 0;
}
static int
emu_uninit(struct sc_info *sc)
{
u_int32_t ch;
emu_wr(sc, EMU_INTE, 0, 4);
for (ch = 0; ch < NUM_G; ch++)
emu_wrptr(sc, ch, EMU_CHAN_DCYSUSV, ENV_OFF);
for (ch = 0; ch < NUM_G; ch++) {
emu_wrptr(sc, ch, EMU_CHAN_VTFT, 0);
emu_wrptr(sc, ch, EMU_CHAN_CVCF, 0);
emu_wrptr(sc, ch, EMU_CHAN_PTRX, 0);
emu_wrptr(sc, ch, EMU_CHAN_CPF, 0);
}
if (sc->audigy) { /* stop fx processor */
emu_wrptr(sc, 0, EMU_A_DBG, EMU_A_DBG_SINGLE_STEP);
}
/* disable audio and lock cache */
emu_wr(sc, EMU_HCFG,
EMU_HCFG_LOCKSOUNDCACHE | EMU_HCFG_LOCKTANKCACHE_MASK | EMU_HCFG_MUTEBUTTONENABLE,
4);
emu_wrptr(sc, 0, EMU_PTB, 0);
/* reset recording buffers */
emu_wrptr(sc, 0, EMU_MICBS, EMU_RECBS_BUFSIZE_NONE);
emu_wrptr(sc, 0, EMU_MICBA, 0);
emu_wrptr(sc, 0, EMU_FXBS, EMU_RECBS_BUFSIZE_NONE);
emu_wrptr(sc, 0, EMU_FXBA, 0);
emu_wrptr(sc, 0, EMU_FXWC, 0);
emu_wrptr(sc, 0, EMU_ADCBS, EMU_RECBS_BUFSIZE_NONE);
emu_wrptr(sc, 0, EMU_ADCBA, 0);
emu_wrptr(sc, 0, EMU_TCB, 0);
emu_wrptr(sc, 0, EMU_TCBS, 0);
/* disable channel interrupt */
emu_wrptr(sc, 0, EMU_CLIEL, 0);
emu_wrptr(sc, 0, EMU_CLIEH, 0);
emu_wrptr(sc, 0, EMU_SOLEL, 0);
emu_wrptr(sc, 0, EMU_SOLEH, 0);
/* init envelope engine */
if (!SLIST_EMPTY(&sc->mem.blocks))
device_printf(sc->dev, "warning: memblock list not empty\n");
emu_free(sc, sc->mem.ptb_pages, sc->mem.ptb_map);
emu_free(sc, sc->mem.silent_page, sc->mem.silent_map);
if(sc->mpu)
mpu401_uninit(sc->mpu);
return 0;
}
static int
emu_pci_probe(device_t dev)
{
char *s = NULL;
switch (pci_get_devid(dev)) {
case EMU10K1_PCI_ID:
s = "Creative EMU10K1";
break;
case EMU10K2_PCI_ID:
if (pci_get_revid(dev) == 0x04)
s = "Creative Audigy 2 (EMU10K2)";
else
s = "Creative Audigy (EMU10K2)";
break;
case EMU10K3_PCI_ID:
s = "Creative Audigy 2 (EMU10K3)";
break;
default:
return ENXIO;
}
device_set_desc(dev, s);
return BUS_PROBE_LOW_PRIORITY;
}
static int
emu_pci_attach(device_t dev)
{
struct ac97_info *codec = NULL;
struct sc_info *sc;
int i, gotmic;
char status[SND_STATUSLEN];
sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
sc->lock = snd_mtxcreate(device_get_nameunit(dev), "snd_emu10k1 softc");
sc->dev = dev;
sc->type = pci_get_devid(dev);
sc->rev = pci_get_revid(dev);
sc->audigy = sc->type == EMU10K2_PCI_ID || sc->type == EMU10K3_PCI_ID;
sc->audigy2 = (sc->audigy && sc->rev == 0x04);
sc->nchans = sc->audigy ? 8 : 4;
sc->addrmask = sc->audigy ? EMU_A_PTR_ADDR_MASK : EMU_PTR_ADDR_MASK;
pci_enable_busmaster(dev);
i = PCIR_BAR(0);
sc->reg = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
if (sc->reg == NULL) {
device_printf(dev, "unable to map register space\n");
goto bad;
}
sc->st = rman_get_bustag(sc->reg);
sc->sh = rman_get_bushandle(sc->reg);
sc->bufsz = pcm_getbuffersize(dev, 4096, EMU_DEFAULT_BUFSZ, 65536);
if (bus_dma_tag_create(/*parent*/bus_get_dma_tag(dev), /*alignment*/2,
/*boundary*/0,
/*lowaddr*/(1U << 31) - 1, /* can only access 0-2gb */
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/sc->bufsz, /*nsegments*/1, /*maxsegz*/0x3ffff,
/*flags*/0, /*lockfunc*/busdma_lock_mutex,
/*lockarg*/&Giant, &sc->parent_dmat) != 0) {
device_printf(dev, "unable to create dma tag\n");
goto bad;
}
if (emu_init(sc) == -1) {
device_printf(dev, "unable to initialize the card\n");
goto bad;
}
codec = AC97_CREATE(dev, sc, emu_ac97);
if (codec == NULL) goto bad;
gotmic = (ac97_getcaps(codec) & AC97_CAP_MICCHANNEL) ? 1 : 0;
if (mixer_init(dev, ac97_getmixerclass(), codec) == -1) goto bad;
emu_midiattach(sc);
i = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
RF_ACTIVE | RF_SHAREABLE);
if (!sc->irq ||
snd_setup_intr(dev, sc->irq, INTR_MPSAFE, emu_intr, sc, &sc->ih)) {
device_printf(dev, "unable to map interrupt\n");
goto bad;
}
snprintf(status, SND_STATUSLEN, "at io 0x%lx irq %ld %s",
rman_get_start(sc->reg), rman_get_start(sc->irq),
PCM_KLDSTRING(snd_emu10k1));
if (pcm_register(dev, sc, sc->nchans, gotmic ? 3 : 2)) goto bad;
for (i = 0; i < sc->nchans; i++)
pcm_addchan(dev, PCMDIR_PLAY, &emupchan_class, sc);
for (i = 0; i < (gotmic ? 3 : 2); i++)
pcm_addchan(dev, PCMDIR_REC, &emurchan_class, sc);
pcm_setstatus(dev, status);
return 0;
bad:
if (codec) ac97_destroy(codec);
if (sc->reg) bus_release_resource(dev, SYS_RES_IOPORT, PCIR_BAR(0), sc->reg);
if (sc->ih) bus_teardown_intr(dev, sc->irq, sc->ih);
if (sc->irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
if (sc->parent_dmat) bus_dma_tag_destroy(sc->parent_dmat);
if (sc->lock) snd_mtxfree(sc->lock);
free(sc, M_DEVBUF);
return ENXIO;
}
static int
emu_pci_detach(device_t dev)
{
int r;
struct sc_info *sc;
r = pcm_unregister(dev);
if (r)
return r;
sc = pcm_getdevinfo(dev);
/* shutdown chip */
emu_uninit(sc);
bus_release_resource(dev, SYS_RES_IOPORT, PCIR_BAR(0), sc->reg);
bus_teardown_intr(dev, sc->irq, sc->ih);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
bus_dma_tag_destroy(sc->parent_dmat);
snd_mtxfree(sc->lock);
free(sc, M_DEVBUF);
return 0;
}
/* add suspend, resume */
static device_method_t emu_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, emu_pci_probe),
DEVMETHOD(device_attach, emu_pci_attach),
DEVMETHOD(device_detach, emu_pci_detach),
DEVMETHOD_END
};
static driver_t emu_driver = {
"pcm",
emu_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_emu10k1, pci, emu_driver, pcm_devclass, NULL, NULL);
MODULE_DEPEND(snd_emu10k1, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(snd_emu10k1, 1);
MODULE_DEPEND(snd_emu10k1, midi, 1, 1, 1);
/* dummy driver to silence the joystick device */
static int
emujoy_pci_probe(device_t dev)
{
char *s = NULL;
switch (pci_get_devid(dev)) {
case 0x70021102:
s = "Creative EMU10K1 Joystick";
device_quiet(dev);
break;
case 0x70031102:
s = "Creative EMU10K2 Joystick";
device_quiet(dev);
break;
}
if (s) device_set_desc(dev, s);
return s ? -1000 : ENXIO;
}
static int
emujoy_pci_attach(device_t dev)
{
return 0;
}
static int
emujoy_pci_detach(device_t dev)
{
return 0;
}
static device_method_t emujoy_methods[] = {
DEVMETHOD(device_probe, emujoy_pci_probe),
DEVMETHOD(device_attach, emujoy_pci_attach),
DEVMETHOD(device_detach, emujoy_pci_detach),
DEVMETHOD_END
};
static driver_t emujoy_driver = {
"emujoy",
emujoy_methods,
1 /* no softc */
};
static devclass_t emujoy_devclass;
DRIVER_MODULE(emujoy, pci, emujoy_driver, emujoy_devclass, NULL, NULL);