freebsd-nq/sys/kern/subr_smp.c
1999-08-28 01:08:13 +00:00

2690 lines
63 KiB
C

/*
* Copyright (c) 1996, by Steve Passe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the developer may NOT be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_smp.h"
#include "opt_cpu.h"
#include "opt_user_ldt.h"
#ifdef SMP
#include <machine/smptests.h>
#else
#error
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/memrange.h>
#ifdef BETTER_CLOCK
#include <sys/dkstat.h>
#endif
#include <sys/cons.h> /* cngetc() */
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#ifdef BETTER_CLOCK
#include <sys/lock.h>
#include <vm/vm_map.h>
#include <sys/user.h>
#ifdef GPROF
#include <sys/gmon.h>
#endif
#endif
#include <machine/smp.h>
#include <machine/apic.h>
#include <machine/atomic.h>
#include <machine/cpufunc.h>
#include <machine/mpapic.h>
#include <machine/psl.h>
#include <machine/segments.h>
#include <machine/smptests.h> /** TEST_DEFAULT_CONFIG, TEST_TEST1 */
#include <machine/tss.h>
#include <machine/specialreg.h>
#include <machine/cputypes.h>
#include <machine/globaldata.h>
#if defined(APIC_IO)
#include <machine/md_var.h> /* setidt() */
#include <i386/isa/icu.h> /* IPIs */
#include <i386/isa/intr_machdep.h> /* IPIs */
#endif /* APIC_IO */
#if defined(TEST_DEFAULT_CONFIG)
#define MPFPS_MPFB1 TEST_DEFAULT_CONFIG
#else
#define MPFPS_MPFB1 mpfps->mpfb1
#endif /* TEST_DEFAULT_CONFIG */
#define WARMBOOT_TARGET 0
#define WARMBOOT_OFF (KERNBASE + 0x0467)
#define WARMBOOT_SEG (KERNBASE + 0x0469)
#ifdef PC98
#define BIOS_BASE (0xe8000)
#define BIOS_SIZE (0x18000)
#else
#define BIOS_BASE (0xf0000)
#define BIOS_SIZE (0x10000)
#endif
#define BIOS_COUNT (BIOS_SIZE/4)
#define CMOS_REG (0x70)
#define CMOS_DATA (0x71)
#define BIOS_RESET (0x0f)
#define BIOS_WARM (0x0a)
#define PROCENTRY_FLAG_EN 0x01
#define PROCENTRY_FLAG_BP 0x02
#define IOAPICENTRY_FLAG_EN 0x01
/* MP Floating Pointer Structure */
typedef struct MPFPS {
char signature[4];
void *pap;
u_char length;
u_char spec_rev;
u_char checksum;
u_char mpfb1;
u_char mpfb2;
u_char mpfb3;
u_char mpfb4;
u_char mpfb5;
} *mpfps_t;
/* MP Configuration Table Header */
typedef struct MPCTH {
char signature[4];
u_short base_table_length;
u_char spec_rev;
u_char checksum;
u_char oem_id[8];
u_char product_id[12];
void *oem_table_pointer;
u_short oem_table_size;
u_short entry_count;
void *apic_address;
u_short extended_table_length;
u_char extended_table_checksum;
u_char reserved;
} *mpcth_t;
typedef struct PROCENTRY {
u_char type;
u_char apic_id;
u_char apic_version;
u_char cpu_flags;
u_long cpu_signature;
u_long feature_flags;
u_long reserved1;
u_long reserved2;
} *proc_entry_ptr;
typedef struct BUSENTRY {
u_char type;
u_char bus_id;
char bus_type[6];
} *bus_entry_ptr;
typedef struct IOAPICENTRY {
u_char type;
u_char apic_id;
u_char apic_version;
u_char apic_flags;
void *apic_address;
} *io_apic_entry_ptr;
typedef struct INTENTRY {
u_char type;
u_char int_type;
u_short int_flags;
u_char src_bus_id;
u_char src_bus_irq;
u_char dst_apic_id;
u_char dst_apic_int;
} *int_entry_ptr;
/* descriptions of MP basetable entries */
typedef struct BASETABLE_ENTRY {
u_char type;
u_char length;
char name[16];
} basetable_entry;
/*
* this code MUST be enabled here and in mpboot.s.
* it follows the very early stages of AP boot by placing values in CMOS ram.
* it NORMALLY will never be needed and thus the primitive method for enabling.
*
#define CHECK_POINTS
*/
#if defined(CHECK_POINTS) && !defined(PC98)
#define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
#define CHECK_INIT(D); \
CHECK_WRITE(0x34, (D)); \
CHECK_WRITE(0x35, (D)); \
CHECK_WRITE(0x36, (D)); \
CHECK_WRITE(0x37, (D)); \
CHECK_WRITE(0x38, (D)); \
CHECK_WRITE(0x39, (D));
#define CHECK_PRINT(S); \
printf("%s: %d, %d, %d, %d, %d, %d\n", \
(S), \
CHECK_READ(0x34), \
CHECK_READ(0x35), \
CHECK_READ(0x36), \
CHECK_READ(0x37), \
CHECK_READ(0x38), \
CHECK_READ(0x39));
#else /* CHECK_POINTS */
#define CHECK_INIT(D)
#define CHECK_PRINT(S)
#endif /* CHECK_POINTS */
/*
* Values to send to the POST hardware.
*/
#define MP_BOOTADDRESS_POST 0x10
#define MP_PROBE_POST 0x11
#define MPTABLE_PASS1_POST 0x12
#define MP_START_POST 0x13
#define MP_ENABLE_POST 0x14
#define MPTABLE_PASS2_POST 0x15
#define START_ALL_APS_POST 0x16
#define INSTALL_AP_TRAMP_POST 0x17
#define START_AP_POST 0x18
#define MP_ANNOUNCE_POST 0x19
/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
int current_postcode;
/** XXX FIXME: what system files declare these??? */
extern struct region_descriptor r_gdt, r_idt;
int bsp_apic_ready = 0; /* flags useability of BSP apic */
int mp_ncpus; /* # of CPUs, including BSP */
int mp_naps; /* # of Applications processors */
int mp_nbusses; /* # of busses */
int mp_napics; /* # of IO APICs */
int boot_cpu_id; /* designated BSP */
vm_offset_t cpu_apic_address;
vm_offset_t io_apic_address[NAPICID]; /* NAPICID is more than enough */
extern int nkpt;
u_int32_t cpu_apic_versions[NCPU];
u_int32_t io_apic_versions[NAPIC];
#ifdef APIC_INTR_DIAGNOSTIC
int apic_itrace_enter[32];
int apic_itrace_tryisrlock[32];
int apic_itrace_gotisrlock[32];
int apic_itrace_active[32];
int apic_itrace_masked[32];
int apic_itrace_noisrlock[32];
int apic_itrace_masked2[32];
int apic_itrace_unmask[32];
int apic_itrace_noforward[32];
int apic_itrace_leave[32];
int apic_itrace_enter2[32];
int apic_itrace_doreti[32];
int apic_itrace_splz[32];
int apic_itrace_eoi[32];
#ifdef APIC_INTR_DIAGNOSTIC_IRQ
unsigned short apic_itrace_debugbuffer[32768];
int apic_itrace_debugbuffer_idx;
struct simplelock apic_itrace_debuglock;
#endif
#endif
#ifdef APIC_INTR_REORDER
struct {
volatile int *location;
int bit;
} apic_isrbit_location[32];
#endif
struct apic_intmapinfo int_to_apicintpin[APIC_INTMAPSIZE];
/*
* APIC ID logical/physical mapping structures.
* We oversize these to simplify boot-time config.
*/
int cpu_num_to_apic_id[NAPICID];
int io_num_to_apic_id[NAPICID];
int apic_id_to_logical[NAPICID];
/* Bitmap of all available CPUs */
u_int all_cpus;
/* AP uses this during bootstrap. Do not staticize. */
char *bootSTK;
static int bootAP;
/* Hotwire a 0->4MB V==P mapping */
extern pt_entry_t *KPTphys;
/* SMP page table page */
extern pt_entry_t *SMPpt;
struct pcb stoppcbs[NCPU];
int smp_started; /* has the system started? */
/*
* Local data and functions.
*/
static int mp_capable;
static u_int boot_address;
static u_int base_memory;
static int picmode; /* 0: virtual wire mode, 1: PIC mode */
static mpfps_t mpfps;
static int search_for_sig(u_int32_t target, int count);
static void mp_enable(u_int boot_addr);
static int mptable_pass1(void);
static int mptable_pass2(void);
static void default_mp_table(int type);
static void fix_mp_table(void);
static void setup_apic_irq_mapping(void);
static void init_locks(void);
static int start_all_aps(u_int boot_addr);
static void install_ap_tramp(u_int boot_addr);
static int start_ap(int logicalCpu, u_int boot_addr);
/*
* Calculate usable address in base memory for AP trampoline code.
*/
u_int
mp_bootaddress(u_int basemem)
{
POSTCODE(MP_BOOTADDRESS_POST);
base_memory = basemem * 1024; /* convert to bytes */
boot_address = base_memory & ~0xfff; /* round down to 4k boundary */
if ((base_memory - boot_address) < bootMP_size)
boot_address -= 4096; /* not enough, lower by 4k */
return boot_address;
}
/*
* Look for an Intel MP spec table (ie, SMP capable hardware).
*/
int
mp_probe(void)
{
int x;
u_long segment;
u_int32_t target;
POSTCODE(MP_PROBE_POST);
/* see if EBDA exists */
if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
/* search first 1K of EBDA */
target = (u_int32_t) (segment << 4);
if ((x = search_for_sig(target, 1024 / 4)) >= 0)
goto found;
} else {
/* last 1K of base memory, effective 'top of base' passed in */
target = (u_int32_t) (base_memory - 0x400);
if ((x = search_for_sig(target, 1024 / 4)) >= 0)
goto found;
}
/* search the BIOS */
target = (u_int32_t) BIOS_BASE;
if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
goto found;
/* nothing found */
mpfps = (mpfps_t)0;
mp_capable = 0;
return 0;
found:
/* calculate needed resources */
mpfps = (mpfps_t)x;
if (mptable_pass1())
panic("you must reconfigure your kernel");
/* flag fact that we are running multiple processors */
mp_capable = 1;
return 1;
}
/*
* Startup the SMP processors.
*/
void
mp_start(void)
{
POSTCODE(MP_START_POST);
/* look for MP capable motherboard */
if (mp_capable)
mp_enable(boot_address);
else
panic("MP hardware not found!");
}
/*
* Print various information about the SMP system hardware and setup.
*/
void
mp_announce(void)
{
int x;
POSTCODE(MP_ANNOUNCE_POST);
printf("FreeBSD/SMP: Multiprocessor motherboard\n");
printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
printf(", version: 0x%08x", cpu_apic_versions[0]);
printf(", at 0x%08x\n", cpu_apic_address);
for (x = 1; x <= mp_naps; ++x) {
printf(" cpu%d (AP): apic id: %2d", x, CPU_TO_ID(x));
printf(", version: 0x%08x", cpu_apic_versions[x]);
printf(", at 0x%08x\n", cpu_apic_address);
}
#if defined(APIC_IO)
for (x = 0; x < mp_napics; ++x) {
printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
printf(", version: 0x%08x", io_apic_versions[x]);
printf(", at 0x%08x\n", io_apic_address[x]);
}
#else
printf(" Warning: APIC I/O disabled\n");
#endif /* APIC_IO */
}
/*
* AP cpu's call this to sync up protected mode.
*/
void
init_secondary(void)
{
int gsel_tss;
int x, myid = bootAP;
gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
gdt_segs[GPROC0_SEL].ssd_base =
(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid];
for (x = 0; x < NGDT; x++) {
ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
}
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
r_gdt.rd_base = (int) &gdt[myid * NGDT];
lgdt(&r_gdt); /* does magic intra-segment return */
lidt(&r_idt);
lldt(_default_ldt);
#ifdef USER_LDT
currentldt = _default_ldt;
#endif
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
common_tss.tss_esp0 = 0; /* not used until after switch */
common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
common_tss.tss_ioopt = (sizeof common_tss) << 16;
tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd;
common_tssd = *tss_gdt;
ltr(gsel_tss);
load_cr0(0x8005003b); /* XXX! */
pmap_set_opt();
}
#if defined(APIC_IO)
/*
* Final configuration of the BSP's local APIC:
* - disable 'pic mode'.
* - disable 'virtual wire mode'.
* - enable NMI.
*/
void
bsp_apic_configure(void)
{
u_char byte;
u_int32_t temp;
/* leave 'pic mode' if necessary */
if (picmode) {
outb(0x22, 0x70); /* select IMCR */
byte = inb(0x23); /* current contents */
byte |= 0x01; /* mask external INTR */
outb(0x23, byte); /* disconnect 8259s/NMI */
}
/* mask lint0 (the 8259 'virtual wire' connection) */
temp = lapic.lvt_lint0;
temp |= APIC_LVT_M; /* set the mask */
lapic.lvt_lint0 = temp;
/* setup lint1 to handle NMI */
temp = lapic.lvt_lint1;
temp &= ~APIC_LVT_M; /* clear the mask */
lapic.lvt_lint1 = temp;
if (bootverbose)
apic_dump("bsp_apic_configure()");
}
#endif /* APIC_IO */
/*******************************************************************
* local functions and data
*/
/*
* start the SMP system
*/
static void
mp_enable(u_int boot_addr)
{
int x;
#if defined(APIC_IO)
int apic;
u_int ux;
#endif /* APIC_IO */
POSTCODE(MP_ENABLE_POST);
/* turn on 4MB of V == P addressing so we can get to MP table */
*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
invltlb();
/* examine the MP table for needed info, uses physical addresses */
x = mptable_pass2();
*(int *)PTD = 0;
invltlb();
/* can't process default configs till the CPU APIC is pmapped */
if (x)
default_mp_table(x);
/* post scan cleanup */
fix_mp_table();
setup_apic_irq_mapping();
#if defined(APIC_IO)
/* fill the LOGICAL io_apic_versions table */
for (apic = 0; apic < mp_napics; ++apic) {
ux = io_apic_read(apic, IOAPIC_VER);
io_apic_versions[apic] = ux;
}
/* program each IO APIC in the system */
for (apic = 0; apic < mp_napics; ++apic)
if (io_apic_setup(apic) < 0)
panic("IO APIC setup failure");
/* install a 'Spurious INTerrupt' vector */
setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for TLB invalidation */
setidt(XINVLTLB_OFFSET, Xinvltlb,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#ifdef BETTER_CLOCK
/* install an inter-CPU IPI for reading processor state */
setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#endif
/* install an inter-CPU IPI for all-CPU rendezvous */
setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for forcing an additional software trap */
setidt(XCPUAST_OFFSET, Xcpuast,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for interrupt forwarding */
setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for CPU stop/restart */
setidt(XCPUSTOP_OFFSET, Xcpustop,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#if defined(TEST_TEST1)
/* install a "fake hardware INTerrupt" vector */
setidt(XTEST1_OFFSET, Xtest1,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#endif /** TEST_TEST1 */
#endif /* APIC_IO */
/* initialize all SMP locks */
init_locks();
/* start each Application Processor */
start_all_aps(boot_addr);
/*
* The init process might be started on a different CPU now,
* and the boot CPU might not call prepare_usermode to get
* cr0 correctly configured. Thus we initialize cr0 here.
*/
load_cr0(rcr0() | CR0_WP | CR0_AM);
}
/*
* look for the MP spec signature
*/
/* string defined by the Intel MP Spec as identifying the MP table */
#define MP_SIG 0x5f504d5f /* _MP_ */
#define NEXT(X) ((X) += 4)
static int
search_for_sig(u_int32_t target, int count)
{
int x;
u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
for (x = 0; x < count; NEXT(x))
if (addr[x] == MP_SIG)
/* make array index a byte index */
return (target + (x * sizeof(u_int32_t)));
return -1;
}
static basetable_entry basetable_entry_types[] =
{
{0, 20, "Processor"},
{1, 8, "Bus"},
{2, 8, "I/O APIC"},
{3, 8, "I/O INT"},
{4, 8, "Local INT"}
};
typedef struct BUSDATA {
u_char bus_id;
enum busTypes bus_type;
} bus_datum;
typedef struct INTDATA {
u_char int_type;
u_short int_flags;
u_char src_bus_id;
u_char src_bus_irq;
u_char dst_apic_id;
u_char dst_apic_int;
u_char int_vector;
} io_int, local_int;
typedef struct BUSTYPENAME {
u_char type;
char name[7];
} bus_type_name;
static bus_type_name bus_type_table[] =
{
{CBUS, "CBUS"},
{CBUSII, "CBUSII"},
{EISA, "EISA"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{ISA, "ISA"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{PCI, "PCI"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{XPRESS, "XPRESS"},
{UNKNOWN_BUSTYPE, "---"}
};
/* from MP spec v1.4, table 5-1 */
static int default_data[7][5] =
{
/* nbus, id0, type0, id1, type1 */
{1, 0, ISA, 255, 255},
{1, 0, EISA, 255, 255},
{1, 0, EISA, 255, 255},
{0, 255, 255, 255, 255},/* MCA not supported */
{2, 0, ISA, 1, PCI},
{2, 0, EISA, 1, PCI},
{0, 255, 255, 255, 255} /* MCA not supported */
};
/* the bus data */
static bus_datum bus_data[NBUS];
/* the IO INT data, one entry per possible APIC INTerrupt */
static io_int io_apic_ints[NINTR];
static int nintrs;
static int processor_entry __P((proc_entry_ptr entry, int cpu));
static int bus_entry __P((bus_entry_ptr entry, int bus));
static int io_apic_entry __P((io_apic_entry_ptr entry, int apic));
static int int_entry __P((int_entry_ptr entry, int intr));
static int lookup_bus_type __P((char *name));
/*
* 1st pass on motherboard's Intel MP specification table.
*
* initializes:
* mp_ncpus = 1
*
* determines:
* cpu_apic_address (common to all CPUs)
* io_apic_address[N]
* mp_naps
* mp_nbusses
* mp_napics
* nintrs
*/
static int
mptable_pass1(void)
{
int x;
mpcth_t cth;
int totalSize;
void* position;
int count;
int type;
int mustpanic;
POSTCODE(MPTABLE_PASS1_POST);
mustpanic = 0;
/* clear various tables */
for (x = 0; x < NAPICID; ++x) {
io_apic_address[x] = ~0; /* IO APIC address table */
}
/* init everything to empty */
mp_naps = 0;
mp_nbusses = 0;
mp_napics = 0;
nintrs = 0;
/* check for use of 'default' configuration */
if (MPFPS_MPFB1 != 0) {
/* use default addresses */
cpu_apic_address = DEFAULT_APIC_BASE;
io_apic_address[0] = DEFAULT_IO_APIC_BASE;
/* fill in with defaults */
mp_naps = 2; /* includes BSP */
mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
#if defined(APIC_IO)
mp_napics = 1;
nintrs = 16;
#endif /* APIC_IO */
}
else {
if ((cth = mpfps->pap) == 0)
panic("MP Configuration Table Header MISSING!");
cpu_apic_address = (vm_offset_t) cth->apic_address;
/* walk the table, recording info of interest */
totalSize = cth->base_table_length - sizeof(struct MPCTH);
position = (u_char *) cth + sizeof(struct MPCTH);
count = cth->entry_count;
while (count--) {
switch (type = *(u_char *) position) {
case 0: /* processor_entry */
if (((proc_entry_ptr)position)->cpu_flags
& PROCENTRY_FLAG_EN)
++mp_naps;
break;
case 1: /* bus_entry */
++mp_nbusses;
break;
case 2: /* io_apic_entry */
if (((io_apic_entry_ptr)position)->apic_flags
& IOAPICENTRY_FLAG_EN)
io_apic_address[mp_napics++] =
(vm_offset_t)((io_apic_entry_ptr)
position)->apic_address;
break;
case 3: /* int_entry */
++nintrs;
break;
case 4: /* int_entry */
break;
default:
panic("mpfps Base Table HOSED!");
/* NOTREACHED */
}
totalSize -= basetable_entry_types[type].length;
(u_char*)position += basetable_entry_types[type].length;
}
}
/* qualify the numbers */
if (mp_naps > NCPU) {
printf("Warning: only using %d of %d available CPUs!\n",
NCPU, mp_naps);
mp_naps = NCPU;
}
if (mp_nbusses > NBUS) {
printf("found %d busses, increase NBUS\n", mp_nbusses);
mustpanic = 1;
}
if (mp_napics > NAPIC) {
printf("found %d apics, increase NAPIC\n", mp_napics);
mustpanic = 1;
}
if (nintrs > NINTR) {
printf("found %d intrs, increase NINTR\n", nintrs);
mustpanic = 1;
}
/*
* Count the BSP.
* This is also used as a counter while starting the APs.
*/
mp_ncpus = 1;
--mp_naps; /* subtract the BSP */
return mustpanic;
}
/*
* 2nd pass on motherboard's Intel MP specification table.
*
* sets:
* boot_cpu_id
* ID_TO_IO(N), phy APIC ID to log CPU/IO table
* CPU_TO_ID(N), logical CPU to APIC ID table
* IO_TO_ID(N), logical IO to APIC ID table
* bus_data[N]
* io_apic_ints[N]
*/
static int
mptable_pass2(void)
{
int x;
mpcth_t cth;
int totalSize;
void* position;
int count;
int type;
int apic, bus, cpu, intr;
POSTCODE(MPTABLE_PASS2_POST);
/* clear various tables */
for (x = 0; x < NAPICID; ++x) {
ID_TO_IO(x) = -1; /* phy APIC ID to log CPU/IO table */
CPU_TO_ID(x) = -1; /* logical CPU to APIC ID table */
IO_TO_ID(x) = -1; /* logical IO to APIC ID table */
}
/* clear bus data table */
for (x = 0; x < NBUS; ++x)
bus_data[x].bus_id = 0xff;
/* clear IO APIC INT table */
for (x = 0; x < NINTR; ++x) {
io_apic_ints[x].int_type = 0xff;
io_apic_ints[x].int_vector = 0xff;
}
/* setup the cpu/apic mapping arrays */
boot_cpu_id = -1;
/* record whether PIC or virtual-wire mode */
picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
/* check for use of 'default' configuration */
if (MPFPS_MPFB1 != 0)
return MPFPS_MPFB1; /* return default configuration type */
if ((cth = mpfps->pap) == 0)
panic("MP Configuration Table Header MISSING!");
/* walk the table, recording info of interest */
totalSize = cth->base_table_length - sizeof(struct MPCTH);
position = (u_char *) cth + sizeof(struct MPCTH);
count = cth->entry_count;
apic = bus = intr = 0;
cpu = 1; /* pre-count the BSP */
while (count--) {
switch (type = *(u_char *) position) {
case 0:
if (processor_entry(position, cpu))
++cpu;
break;
case 1:
if (bus_entry(position, bus))
++bus;
break;
case 2:
if (io_apic_entry(position, apic))
++apic;
break;
case 3:
if (int_entry(position, intr))
++intr;
break;
case 4:
/* int_entry(position); */
break;
default:
panic("mpfps Base Table HOSED!");
/* NOTREACHED */
}
totalSize -= basetable_entry_types[type].length;
(u_char *) position += basetable_entry_types[type].length;
}
if (boot_cpu_id == -1)
panic("NO BSP found!");
/* report fact that its NOT a default configuration */
return 0;
}
static void
assign_apic_irq(int apic, int intpin, int irq)
{
int x;
if (int_to_apicintpin[irq].ioapic != -1)
panic("assign_apic_irq: inconsistent table");
int_to_apicintpin[irq].ioapic = apic;
int_to_apicintpin[irq].int_pin = intpin;
int_to_apicintpin[irq].apic_address = ioapic[apic];
int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
for (x = 0; x < nintrs; x++) {
if ((io_apic_ints[x].int_type == 0 ||
io_apic_ints[x].int_type == 3) &&
io_apic_ints[x].int_vector == 0xff &&
io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
io_apic_ints[x].dst_apic_int == intpin)
io_apic_ints[x].int_vector = irq;
}
}
/*
* parse an Intel MP specification table
*/
static void
fix_mp_table(void)
{
int x;
int id;
int bus_0 = 0; /* Stop GCC warning */
int bus_pci = 0; /* Stop GCC warning */
int num_pci_bus;
/*
* Fix mis-numbering of the PCI bus and its INT entries if the BIOS
* did it wrong. The MP spec says that when more than 1 PCI bus
* exists the BIOS must begin with bus entries for the PCI bus and use
* actual PCI bus numbering. This implies that when only 1 PCI bus
* exists the BIOS can choose to ignore this ordering, and indeed many
* MP motherboards do ignore it. This causes a problem when the PCI
* sub-system makes requests of the MP sub-system based on PCI bus
* numbers. So here we look for the situation and renumber the
* busses and associated INTs in an effort to "make it right".
*/
/* find bus 0, PCI bus, count the number of PCI busses */
for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
if (bus_data[x].bus_id == 0) {
bus_0 = x;
}
if (bus_data[x].bus_type == PCI) {
++num_pci_bus;
bus_pci = x;
}
}
/*
* bus_0 == slot of bus with ID of 0
* bus_pci == slot of last PCI bus encountered
*/
/* check the 1 PCI bus case for sanity */
if (num_pci_bus == 1) {
/* if it is number 0 all is well */
if (bus_data[bus_pci].bus_id == 0)
return;
/* mis-numbered, swap with whichever bus uses slot 0 */
/* swap the bus entry types */
bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
bus_data[bus_0].bus_type = PCI;
/* swap each relavant INTerrupt entry */
id = bus_data[bus_pci].bus_id;
for (x = 0; x < nintrs; ++x) {
if (io_apic_ints[x].src_bus_id == id) {
io_apic_ints[x].src_bus_id = 0;
}
else if (io_apic_ints[x].src_bus_id == 0) {
io_apic_ints[x].src_bus_id = id;
}
}
}
/* sanity check if more than 1 PCI bus */
else if (num_pci_bus > 1) {
for (x = 0; x < mp_nbusses; ++x) {
if (bus_data[x].bus_type != PCI)
continue;
}
}
}
static void
setup_apic_irq_mapping(void)
{
int x;
int int_vector;
/* Assign low level interrupt handlers */
for (x = 0; x < APIC_INTMAPSIZE; x++) {
int_to_apicintpin[x].ioapic = -1;
int_to_apicintpin[x].int_pin = 0;
int_to_apicintpin[x].apic_address = NULL;
int_to_apicintpin[x].redirindex = 0;
}
for (x = 0; x < nintrs; x++) {
if (io_apic_ints[x].dst_apic_int < APIC_INTMAPSIZE &&
io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
io_apic_ints[x].int_vector == 0xff &&
(io_apic_ints[x].int_type == 0 ||
io_apic_ints[x].int_type == 3)) {
assign_apic_irq(0,
io_apic_ints[x].dst_apic_int,
io_apic_ints[x].dst_apic_int);
}
}
int_vector = 0;
while (int_vector < APIC_INTMAPSIZE &&
int_to_apicintpin[int_vector].ioapic != -1)
int_vector++;
for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
if ((io_apic_ints[x].int_type == 0 ||
io_apic_ints[x].int_type == 3) &&
io_apic_ints[x].int_vector == 0xff) {
assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
io_apic_ints[x].dst_apic_int,
int_vector);
int_vector++;
while (int_vector < APIC_INTMAPSIZE &&
int_to_apicintpin[int_vector].ioapic != -1)
int_vector++;
}
}
}
static int
processor_entry(proc_entry_ptr entry, int cpu)
{
/* check for usability */
if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
return 0;
/* check for BSP flag */
if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
boot_cpu_id = entry->apic_id;
CPU_TO_ID(0) = entry->apic_id;
ID_TO_CPU(entry->apic_id) = 0;
return 0; /* its already been counted */
}
/* add another AP to list, if less than max number of CPUs */
else {
CPU_TO_ID(cpu) = entry->apic_id;
ID_TO_CPU(entry->apic_id) = cpu;
return 1;
}
}
static int
bus_entry(bus_entry_ptr entry, int bus)
{
int x;
char c, name[8];
/* encode the name into an index */
for (x = 0; x < 6; ++x) {
if ((c = entry->bus_type[x]) == ' ')
break;
name[x] = c;
}
name[x] = '\0';
if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
panic("unknown bus type: '%s'", name);
bus_data[bus].bus_id = entry->bus_id;
bus_data[bus].bus_type = x;
return 1;
}
static int
io_apic_entry(io_apic_entry_ptr entry, int apic)
{
if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
return 0;
IO_TO_ID(apic) = entry->apic_id;
ID_TO_IO(entry->apic_id) = apic;
return 1;
}
static int
lookup_bus_type(char *name)
{
int x;
for (x = 0; x < MAX_BUSTYPE; ++x)
if (strcmp(bus_type_table[x].name, name) == 0)
return bus_type_table[x].type;
return UNKNOWN_BUSTYPE;
}
static int
int_entry(int_entry_ptr entry, int intr)
{
int apic;
io_apic_ints[intr].int_type = entry->int_type;
io_apic_ints[intr].int_flags = entry->int_flags;
io_apic_ints[intr].src_bus_id = entry->src_bus_id;
io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
if (entry->dst_apic_id == 255) {
/* This signal goes to all IO APICS. Select an IO APIC
with sufficient number of interrupt pins */
for (apic = 0; apic < mp_napics; apic++)
if (((io_apic_read(apic, IOAPIC_VER) &
IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
entry->dst_apic_int)
break;
if (apic < mp_napics)
io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
else
io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
} else
io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
return 1;
}
static int
apic_int_is_bus_type(int intr, int bus_type)
{
int bus;
for (bus = 0; bus < mp_nbusses; ++bus)
if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
&& ((int) bus_data[bus].bus_type == bus_type))
return 1;
return 0;
}
/*
* Given a traditional ISA INT mask, return an APIC mask.
*/
u_int
isa_apic_mask(u_int isa_mask)
{
int isa_irq;
int apic_pin;
#if defined(SKIP_IRQ15_REDIRECT)
if (isa_mask == (1 << 15)) {
printf("skipping ISA IRQ15 redirect\n");
return isa_mask;
}
#endif /* SKIP_IRQ15_REDIRECT */
isa_irq = ffs(isa_mask); /* find its bit position */
if (isa_irq == 0) /* doesn't exist */
return 0;
--isa_irq; /* make it zero based */
apic_pin = isa_apic_irq(isa_irq); /* look for APIC connection */
if (apic_pin == -1)
return 0;
return (1 << apic_pin); /* convert pin# to a mask */
}
/*
* Determine which APIC pin an ISA/EISA INT is attached to.
*/
#define INTTYPE(I) (io_apic_ints[(I)].int_type)
#define INTPIN(I) (io_apic_ints[(I)].dst_apic_int)
#define INTIRQ(I) (io_apic_ints[(I)].int_vector)
#define INTAPIC(I) (ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
#define SRCBUSIRQ(I) (io_apic_ints[(I)].src_bus_irq)
int
isa_apic_irq(int isa_irq)
{
int intr;
for (intr = 0; intr < nintrs; ++intr) { /* check each record */
if (INTTYPE(intr) == 0) { /* standard INT */
if (SRCBUSIRQ(intr) == isa_irq) {
if (apic_int_is_bus_type(intr, ISA) ||
apic_int_is_bus_type(intr, EISA))
return INTIRQ(intr); /* found */
}
}
}
return -1; /* NOT found */
}
/*
* Determine which APIC pin a PCI INT is attached to.
*/
#define SRCBUSID(I) (io_apic_ints[(I)].src_bus_id)
#define SRCBUSDEVICE(I) ((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
#define SRCBUSLINE(I) (io_apic_ints[(I)].src_bus_irq & 0x03)
int
pci_apic_irq(int pciBus, int pciDevice, int pciInt)
{
int intr;
--pciInt; /* zero based */
for (intr = 0; intr < nintrs; ++intr) /* check each record */
if ((INTTYPE(intr) == 0) /* standard INT */
&& (SRCBUSID(intr) == pciBus)
&& (SRCBUSDEVICE(intr) == pciDevice)
&& (SRCBUSLINE(intr) == pciInt)) /* a candidate IRQ */
if (apic_int_is_bus_type(intr, PCI))
return INTIRQ(intr); /* exact match */
return -1; /* NOT found */
}
int
next_apic_irq(int irq)
{
int intr, ointr;
int bus, bustype;
bus = 0;
bustype = 0;
for (intr = 0; intr < nintrs; intr++) {
if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
continue;
bus = SRCBUSID(intr);
bustype = apic_bus_type(bus);
if (bustype != ISA &&
bustype != EISA &&
bustype != PCI)
continue;
break;
}
if (intr >= nintrs) {
return -1;
}
for (ointr = intr + 1; ointr < nintrs; ointr++) {
if (INTTYPE(ointr) != 0)
continue;
if (bus != SRCBUSID(ointr))
continue;
if (bustype == PCI) {
if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
continue;
if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
continue;
}
if (bustype == ISA || bustype == EISA) {
if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
continue;
}
if (INTPIN(intr) == INTPIN(ointr))
continue;
break;
}
if (ointr >= nintrs) {
return -1;
}
return INTIRQ(ointr);
}
#undef SRCBUSLINE
#undef SRCBUSDEVICE
#undef SRCBUSID
#undef SRCBUSIRQ
#undef INTPIN
#undef INTIRQ
#undef INTAPIC
#undef INTTYPE
/*
* Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
*
* XXX FIXME:
* Exactly what this means is unclear at this point. It is a solution
* for motherboards that redirect the MBIRQ0 pin. Generically a motherboard
* could route any of the ISA INTs to upper (>15) IRQ values. But most would
* NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
* option.
*/
int
undirect_isa_irq(int rirq)
{
#if defined(READY)
if (bootverbose)
printf("Freeing redirected ISA irq %d.\n", rirq);
/** FIXME: tickle the MB redirector chip */
return ???;
#else
if (bootverbose)
printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
return 0;
#endif /* READY */
}
/*
* Reprogram the MB chipset to NOT redirect a PCI INTerrupt
*/
int
undirect_pci_irq(int rirq)
{
#if defined(READY)
if (bootverbose)
printf("Freeing redirected PCI irq %d.\n", rirq);
/** FIXME: tickle the MB redirector chip */
return ???;
#else
if (bootverbose)
printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
rirq);
return 0;
#endif /* READY */
}
/*
* given a bus ID, return:
* the bus type if found
* -1 if NOT found
*/
int
apic_bus_type(int id)
{
int x;
for (x = 0; x < mp_nbusses; ++x)
if (bus_data[x].bus_id == id)
return bus_data[x].bus_type;
return -1;
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated src bus ID if found
* -1 if NOT found
*/
int
apic_src_bus_id(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].src_bus_id);
return -1; /* NOT found */
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated src bus IRQ if found
* -1 if NOT found
*/
int
apic_src_bus_irq(int apic, int pin)
{
int x;
for (x = 0; x < nintrs; x++)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].src_bus_irq);
return -1; /* NOT found */
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated INTerrupt type if found
* -1 if NOT found
*/
int
apic_int_type(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].int_type);
return -1; /* NOT found */
}
int
apic_irq(int apic, int pin)
{
int x;
int res;
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int)) {
res = io_apic_ints[x].int_vector;
if (res == 0xff)
return -1;
if (apic != int_to_apicintpin[res].ioapic)
panic("apic_irq: inconsistent table");
if (pin != int_to_apicintpin[res].int_pin)
panic("apic_irq inconsistent table (2)");
return res;
}
return -1;
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated trigger mode if found
* -1 if NOT found
*/
int
apic_trigger(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return ((io_apic_ints[x].int_flags >> 2) & 0x03);
return -1; /* NOT found */
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated 'active' level if found
* -1 if NOT found
*/
int
apic_polarity(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].int_flags & 0x03);
return -1; /* NOT found */
}
/*
* set data according to MP defaults
* FIXME: probably not complete yet...
*/
static void
default_mp_table(int type)
{
int ap_cpu_id;
#if defined(APIC_IO)
u_int32_t ux;
int io_apic_id;
int pin;
#endif /* APIC_IO */
#if 0
printf(" MP default config type: %d\n", type);
switch (type) {
case 1:
printf(" bus: ISA, APIC: 82489DX\n");
break;
case 2:
printf(" bus: EISA, APIC: 82489DX\n");
break;
case 3:
printf(" bus: EISA, APIC: 82489DX\n");
break;
case 4:
printf(" bus: MCA, APIC: 82489DX\n");
break;
case 5:
printf(" bus: ISA+PCI, APIC: Integrated\n");
break;
case 6:
printf(" bus: EISA+PCI, APIC: Integrated\n");
break;
case 7:
printf(" bus: MCA+PCI, APIC: Integrated\n");
break;
default:
printf(" future type\n");
break;
/* NOTREACHED */
}
#endif /* 0 */
boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
/* BSP */
CPU_TO_ID(0) = boot_cpu_id;
ID_TO_CPU(boot_cpu_id) = 0;
/* one and only AP */
CPU_TO_ID(1) = ap_cpu_id;
ID_TO_CPU(ap_cpu_id) = 1;
#if defined(APIC_IO)
/* one and only IO APIC */
io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
/*
* sanity check, refer to MP spec section 3.6.6, last paragraph
* necessary as some hardware isn't properly setting up the IO APIC
*/
#if defined(REALLY_ANAL_IOAPICID_VALUE)
if (io_apic_id != 2) {
#else
if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
#endif /* REALLY_ANAL_IOAPICID_VALUE */
ux = io_apic_read(0, IOAPIC_ID); /* get current contents */
ux &= ~APIC_ID_MASK; /* clear the ID field */
ux |= 0x02000000; /* set it to '2' */
io_apic_write(0, IOAPIC_ID, ux); /* write new value */
ux = io_apic_read(0, IOAPIC_ID); /* re-read && test */
if ((ux & APIC_ID_MASK) != 0x02000000)
panic("can't control IO APIC ID, reg: 0x%08x", ux);
io_apic_id = 2;
}
IO_TO_ID(0) = io_apic_id;
ID_TO_IO(io_apic_id) = 0;
#endif /* APIC_IO */
/* fill out bus entries */
switch (type) {
case 1:
case 2:
case 3:
case 5:
case 6:
bus_data[0].bus_id = default_data[type - 1][1];
bus_data[0].bus_type = default_data[type - 1][2];
bus_data[1].bus_id = default_data[type - 1][3];
bus_data[1].bus_type = default_data[type - 1][4];
break;
/* case 4: case 7: MCA NOT supported */
default: /* illegal/reserved */
panic("BAD default MP config: %d", type);
/* NOTREACHED */
}
#if defined(APIC_IO)
/* general cases from MP v1.4, table 5-2 */
for (pin = 0; pin < 16; ++pin) {
io_apic_ints[pin].int_type = 0;
io_apic_ints[pin].int_flags = 0x05; /* edge/active-hi */
io_apic_ints[pin].src_bus_id = 0;
io_apic_ints[pin].src_bus_irq = pin; /* IRQ2 caught below */
io_apic_ints[pin].dst_apic_id = io_apic_id;
io_apic_ints[pin].dst_apic_int = pin; /* 1-to-1 */
}
/* special cases from MP v1.4, table 5-2 */
if (type == 2) {
io_apic_ints[2].int_type = 0xff; /* N/C */
io_apic_ints[13].int_type = 0xff; /* N/C */
#if !defined(APIC_MIXED_MODE)
/** FIXME: ??? */
panic("sorry, can't support type 2 default yet");
#endif /* APIC_MIXED_MODE */
}
else
io_apic_ints[2].src_bus_irq = 0; /* ISA IRQ0 is on APIC INT 2 */
if (type == 7)
io_apic_ints[0].int_type = 0xff; /* N/C */
else
io_apic_ints[0].int_type = 3; /* vectored 8259 */
#endif /* APIC_IO */
}
/*
* initialize all the SMP locks
*/
/* critical region around IO APIC, apic_imen */
struct simplelock imen_lock;
/* critical region around splxx(), cpl, cml, cil, ipending */
struct simplelock cpl_lock;
/* Make FAST_INTR() routines sequential */
struct simplelock fast_intr_lock;
/* critical region around INTR() routines */
struct simplelock intr_lock;
/* lock regions protected in UP kernel via cli/sti */
struct simplelock mpintr_lock;
/* lock region used by kernel profiling */
struct simplelock mcount_lock;
#ifdef USE_COMLOCK
/* locks com (tty) data/hardware accesses: a FASTINTR() */
struct simplelock com_lock;
#endif /* USE_COMLOCK */
#ifdef USE_CLOCKLOCK
/* lock regions around the clock hardware */
struct simplelock clock_lock;
#endif /* USE_CLOCKLOCK */
/* lock around the MP rendezvous */
static struct simplelock smp_rv_lock;
static void
init_locks(void)
{
/*
* Get the initial mp_lock with a count of 1 for the BSP.
* This uses a LOGICAL cpu ID, ie BSP == 0.
*/
mp_lock = 0x00000001;
/* ISR uses its own "giant lock" */
isr_lock = FREE_LOCK;
#if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
s_lock_init((struct simplelock*)&apic_itrace_debuglock);
#endif
s_lock_init((struct simplelock*)&mpintr_lock);
s_lock_init((struct simplelock*)&mcount_lock);
s_lock_init((struct simplelock*)&fast_intr_lock);
s_lock_init((struct simplelock*)&intr_lock);
s_lock_init((struct simplelock*)&imen_lock);
s_lock_init((struct simplelock*)&cpl_lock);
s_lock_init(&smp_rv_lock);
#ifdef USE_COMLOCK
s_lock_init((struct simplelock*)&com_lock);
#endif /* USE_COMLOCK */
#ifdef USE_CLOCKLOCK
s_lock_init((struct simplelock*)&clock_lock);
#endif /* USE_CLOCKLOCK */
}
/* Wait for all APs to be fully initialized */
extern int wait_ap(unsigned int);
/*
* start each AP in our list
*/
static int
start_all_aps(u_int boot_addr)
{
int x, i, pg;
u_char mpbiosreason;
u_long mpbioswarmvec;
struct globaldata *gd;
char *stack;
POSTCODE(START_ALL_APS_POST);
/* initialize BSP's local APIC */
apic_initialize();
bsp_apic_ready = 1;
/* install the AP 1st level boot code */
install_ap_tramp(boot_addr);
/* save the current value of the warm-start vector */
mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
mpbiosreason = inb(CMOS_DATA);
#endif
/* record BSP in CPU map */
all_cpus = 1;
/* set up 0 -> 4MB P==V mapping for AP boot */
*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
invltlb();
/* start each AP */
for (x = 1; x <= mp_naps; ++x) {
/* This is a bit verbose, it will go away soon. */
/* first page of AP's private space */
pg = x * i386_btop(sizeof(struct privatespace));
/* allocate a new private data page */
gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
/* wire it into the private page table page */
SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
/* allocate and set up an idle stack data page */
stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
for (i = 0; i < UPAGES; i++)
SMPpt[pg + 5 + i] = (pt_entry_t)
(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
SMPpt[pg + 1] = 0; /* *prv_CMAP1 */
SMPpt[pg + 2] = 0; /* *prv_CMAP2 */
SMPpt[pg + 3] = 0; /* *prv_CMAP3 */
SMPpt[pg + 4] = 0; /* *prv_PMAP1 */
/* prime data page for it to use */
gd->gd_cpuid = x;
gd->gd_cpu_lockid = x << 24;
gd->gd_prv_CMAP1 = &SMPpt[pg + 1];
gd->gd_prv_CMAP2 = &SMPpt[pg + 2];
gd->gd_prv_CMAP3 = &SMPpt[pg + 3];
gd->gd_prv_PMAP1 = &SMPpt[pg + 4];
gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1;
gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2;
gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3;
gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1;
/* setup a vector to our boot code */
*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
#endif
bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
bootAP = x;
/* attempt to start the Application Processor */
CHECK_INIT(99); /* setup checkpoints */
if (!start_ap(x, boot_addr)) {
printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
CHECK_PRINT("trace"); /* show checkpoints */
/* better panic as the AP may be running loose */
printf("panic y/n? [y] ");
if (cngetc() != 'n')
panic("bye-bye");
}
CHECK_PRINT("trace"); /* show checkpoints */
/* record its version info */
cpu_apic_versions[x] = cpu_apic_versions[0];
all_cpus |= (1 << x); /* record AP in CPU map */
}
/* build our map of 'other' CPUs */
other_cpus = all_cpus & ~(1 << cpuid);
/* fill in our (BSP) APIC version */
cpu_apic_versions[0] = lapic.version;
/* restore the warmstart vector */
*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, mpbiosreason);
#endif
/*
* Set up the idle context for the BSP. Similar to above except
* that some was done by locore, some by pmap.c and some is implicit
* because the BSP is cpu#0 and the page is initially zero, and also
* because we can refer to variables by name on the BSP..
*/
/* Allocate and setup BSP idle stack */
stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
for (i = 0; i < UPAGES; i++)
SMPpt[5 + i] = (pt_entry_t)
(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
*(int *)PTD = 0;
pmap_set_opt();
/* number of APs actually started */
return mp_ncpus - 1;
}
/*
* load the 1st level AP boot code into base memory.
*/
/* targets for relocation */
extern void bigJump(void);
extern void bootCodeSeg(void);
extern void bootDataSeg(void);
extern void MPentry(void);
extern u_int MP_GDT;
extern u_int mp_gdtbase;
static void
install_ap_tramp(u_int boot_addr)
{
int x;
int size = *(int *) ((u_long) & bootMP_size);
u_char *src = (u_char *) ((u_long) bootMP);
u_char *dst = (u_char *) boot_addr + KERNBASE;
u_int boot_base = (u_int) bootMP;
u_int8_t *dst8;
u_int16_t *dst16;
u_int32_t *dst32;
POSTCODE(INSTALL_AP_TRAMP_POST);
for (x = 0; x < size; ++x)
*dst++ = *src++;
/*
* modify addresses in code we just moved to basemem. unfortunately we
* need fairly detailed info about mpboot.s for this to work. changes
* to mpboot.s might require changes here.
*/
/* boot code is located in KERNEL space */
dst = (u_char *) boot_addr + KERNBASE;
/* modify the lgdt arg */
dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
/* modify the ljmp target for MPentry() */
dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
*dst32 = ((u_int) MPentry - KERNBASE);
/* modify the target for boot code segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_addr & 0xffff;
*dst8 = ((u_int) boot_addr >> 16) & 0xff;
/* modify the target for boot data segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_addr & 0xffff;
*dst8 = ((u_int) boot_addr >> 16) & 0xff;
}
/*
* this function starts the AP (application processor) identified
* by the APIC ID 'physicalCpu'. It does quite a "song and dance"
* to accomplish this. This is necessary because of the nuances
* of the different hardware we might encounter. It ain't pretty,
* but it seems to work.
*/
static int
start_ap(int logical_cpu, u_int boot_addr)
{
int physical_cpu;
int vector;
int cpus;
u_long icr_lo, icr_hi;
POSTCODE(START_AP_POST);
/* get the PHYSICAL APIC ID# */
physical_cpu = CPU_TO_ID(logical_cpu);
/* calculate the vector */
vector = (boot_addr >> 12) & 0xff;
/* used as a watchpoint to signal AP startup */
cpus = mp_ncpus;
/*
* first we do an INIT/RESET IPI this INIT IPI might be run, reseting
* and running the target CPU. OR this INIT IPI might be latched (P5
* bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
* ignored.
*/
/* setup the address for the target AP */
icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
icr_hi |= (physical_cpu << 24);
lapic.icr_hi = icr_hi;
/* do an INIT IPI: assert RESET */
icr_lo = lapic.icr_lo & 0xfff00000;
lapic.icr_lo = icr_lo | 0x0000c500;
/* wait for pending status end */
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
/* do an INIT IPI: deassert RESET */
lapic.icr_lo = icr_lo | 0x00008500;
/* wait for pending status end */
u_sleep(10000); /* wait ~10mS */
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
/*
* next we do a STARTUP IPI: the previous INIT IPI might still be
* latched, (P5 bug) this 1st STARTUP would then terminate
* immediately, and the previously started INIT IPI would continue. OR
* the previous INIT IPI has already run. and this STARTUP IPI will
* run. OR the previous INIT IPI was ignored. and this STARTUP IPI
* will run.
*/
/* do a STARTUP IPI */
lapic.icr_lo = icr_lo | 0x00000600 | vector;
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
u_sleep(200); /* wait ~200uS */
/*
* finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
* the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
* this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
* recognized after hardware RESET or INIT IPI.
*/
lapic.icr_lo = icr_lo | 0x00000600 | vector;
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
u_sleep(200); /* wait ~200uS */
/* wait for it to start */
set_apic_timer(5000000);/* == 5 seconds */
while (read_apic_timer())
if (mp_ncpus > cpus)
return 1; /* return SUCCESS */
return 0; /* return FAILURE */
}
/*
* Flush the TLB on all other CPU's
*
* XXX: Needs to handshake and wait for completion before proceding.
*/
void
smp_invltlb(void)
{
#if defined(APIC_IO)
if (smp_started && invltlb_ok)
all_but_self_ipi(XINVLTLB_OFFSET);
#endif /* APIC_IO */
}
void
invlpg(u_int addr)
{
__asm __volatile("invlpg (%0)"::"r"(addr):"memory");
/* send a message to the other CPUs */
smp_invltlb();
}
void
invltlb(void)
{
u_long temp;
/*
* This should be implemented as load_cr3(rcr3()) when load_cr3() is
* inlined.
*/
__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
/* send a message to the other CPUs */
smp_invltlb();
}
/*
* When called the executing CPU will send an IPI to all other CPUs
* requesting that they halt execution.
*
* Usually (but not necessarily) called with 'other_cpus' as its arg.
*
* - Signals all CPUs in map to stop.
* - Waits for each to stop.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*
* XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
* from executing at same time.
*/
int
stop_cpus(u_int map)
{
if (!smp_started)
return 0;
/* send the Xcpustop IPI to all CPUs in map */
selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
while ((stopped_cpus & map) != map)
/* spin */ ;
return 1;
}
/*
* Called by a CPU to restart stopped CPUs.
*
* Usually (but not necessarily) called with 'stopped_cpus' as its arg.
*
* - Signals all CPUs in map to restart.
* - Waits for each to restart.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*/
int
restart_cpus(u_int map)
{
if (!smp_started)
return 0;
started_cpus = map; /* signal other cpus to restart */
while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
/* spin */ ;
return 1;
}
int smp_active = 0; /* are the APs allowed to run? */
SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
/* XXX maybe should be hw.ncpu */
static int smp_cpus = 1; /* how many cpu's running */
SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
int invltlb_ok = 0; /* throttle smp_invltlb() till safe */
SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
/* Warning: Do not staticize. Used from swtch.s */
int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
&do_page_zero_idle, 0, "");
/* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
int forward_irq_enabled = 1;
SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
&forward_irq_enabled, 0, "");
/* Enable forwarding of a signal to a process running on a different CPU */
static int forward_signal_enabled = 1;
SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
&forward_signal_enabled, 0, "");
/* Enable forwarding of roundrobin to all other cpus */
static int forward_roundrobin_enabled = 1;
SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
&forward_roundrobin_enabled, 0, "");
/*
* This is called once the rest of the system is up and running and we're
* ready to let the AP's out of the pen.
*/
void ap_init(void);
void
ap_init()
{
u_int apic_id;
/* BSP may have changed PTD while we're waiting for the lock */
cpu_invltlb();
smp_cpus++;
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
lidt(&r_idt);
#endif
/* Build our map of 'other' CPUs. */
other_cpus = all_cpus & ~(1 << cpuid);
printf("SMP: AP CPU #%d Launched!\n", cpuid);
/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
/* A quick check from sanity claus */
apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
if (cpuid != apic_id) {
printf("SMP: cpuid = %d\n", cpuid);
printf("SMP: apic_id = %d\n", apic_id);
printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
panic("cpuid mismatch! boom!!");
}
/* Init local apic for irq's */
apic_initialize();
/* Set memory range attributes for this CPU to match the BSP */
mem_range_AP_init();
/*
* Activate smp_invltlb, although strictly speaking, this isn't
* quite correct yet. We should have a bitfield for cpus willing
* to accept TLB flush IPI's or something and sync them.
*/
if (smp_cpus == mp_ncpus) {
invltlb_ok = 1;
smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
smp_active = 1; /* historic */
}
}
#ifdef BETTER_CLOCK
#define CHECKSTATE_USER 0
#define CHECKSTATE_SYS 1
#define CHECKSTATE_INTR 2
/* Do not staticize. Used from apic_vector.s */
struct proc* checkstate_curproc[NCPU];
int checkstate_cpustate[NCPU];
u_long checkstate_pc[NCPU];
extern long cp_time[CPUSTATES];
#define PC_TO_INDEX(pc, prof) \
((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
(u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
static void
addupc_intr_forwarded(struct proc *p, int id, int *astmap)
{
int i;
struct uprof *prof;
u_long pc;
pc = checkstate_pc[id];
prof = &p->p_stats->p_prof;
if (pc >= prof->pr_off &&
(i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
if ((p->p_flag & P_OWEUPC) == 0) {
prof->pr_addr = pc;
prof->pr_ticks = 1;
p->p_flag |= P_OWEUPC;
}
*astmap |= (1 << id);
}
}
static void
forwarded_statclock(int id, int pscnt, int *astmap)
{
struct pstats *pstats;
long rss;
struct rusage *ru;
struct vmspace *vm;
int cpustate;
struct proc *p;
#ifdef GPROF
register struct gmonparam *g;
int i;
#endif
p = checkstate_curproc[id];
cpustate = checkstate_cpustate[id];
switch (cpustate) {
case CHECKSTATE_USER:
if (p->p_flag & P_PROFIL)
addupc_intr_forwarded(p, id, astmap);
if (pscnt > 1)
return;
p->p_uticks++;
if (p->p_nice > NZERO)
cp_time[CP_NICE]++;
else
cp_time[CP_USER]++;
break;
case CHECKSTATE_SYS:
#ifdef GPROF
/*
* Kernel statistics are just like addupc_intr, only easier.
*/
g = &_gmonparam;
if (g->state == GMON_PROF_ON) {
i = checkstate_pc[id] - g->lowpc;
if (i < g->textsize) {
i /= HISTFRACTION * sizeof(*g->kcount);
g->kcount[i]++;
}
}
#endif
if (pscnt > 1)
return;
if (!p)
cp_time[CP_IDLE]++;
else {
p->p_sticks++;
cp_time[CP_SYS]++;
}
break;
case CHECKSTATE_INTR:
default:
#ifdef GPROF
/*
* Kernel statistics are just like addupc_intr, only easier.
*/
g = &_gmonparam;
if (g->state == GMON_PROF_ON) {
i = checkstate_pc[id] - g->lowpc;
if (i < g->textsize) {
i /= HISTFRACTION * sizeof(*g->kcount);
g->kcount[i]++;
}
}
#endif
if (pscnt > 1)
return;
if (p)
p->p_iticks++;
cp_time[CP_INTR]++;
}
if (p != NULL) {
p->p_cpticks++;
if (++p->p_estcpu == 0)
p->p_estcpu--;
if ((p->p_estcpu & 3) == 0) {
resetpriority(p);
if (p->p_priority >= PUSER)
p->p_priority = p->p_usrpri;
}
/* Update resource usage integrals and maximums. */
if ((pstats = p->p_stats) != NULL &&
(ru = &pstats->p_ru) != NULL &&
(vm = p->p_vmspace) != NULL) {
ru->ru_ixrss += pgtok(vm->vm_tsize);
ru->ru_idrss += pgtok(vm->vm_dsize);
ru->ru_isrss += pgtok(vm->vm_ssize);
rss = pgtok(vmspace_resident_count(vm));
if (ru->ru_maxrss < rss)
ru->ru_maxrss = rss;
}
}
}
void
forward_statclock(int pscnt)
{
int map;
int id;
int i;
/* Kludge. We don't yet have separate locks for the interrupts
* and the kernel. This means that we cannot let the other processors
* handle complex interrupts while inhibiting them from entering
* the kernel in a non-interrupt context.
*
* What we can do, without changing the locking mechanisms yet,
* is letting the other processors handle a very simple interrupt
* (wich determines the processor states), and do the main
* work ourself.
*/
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
/* Step 1: Probe state (user, cpu, interrupt, spinlock, idle ) */
map = other_cpus & ~stopped_cpus ;
checkstate_probed_cpus = 0;
if (map != 0)
selected_apic_ipi(map,
XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while (checkstate_probed_cpus != map) {
/* spin */
i++;
if (i == 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_statclock: checkstate %x\n",
checkstate_probed_cpus);
#endif
break;
}
}
/*
* Step 2: walk through other processors processes, update ticks and
* profiling info.
*/
map = 0;
for (id = 0; id < mp_ncpus; id++) {
if (id == cpuid)
continue;
if (((1 << id) & checkstate_probed_cpus) == 0)
continue;
forwarded_statclock(id, pscnt, &map);
}
if (map != 0) {
checkstate_need_ast |= map;
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_statclock: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
}
}
void
forward_hardclock(int pscnt)
{
int map;
int id;
struct proc *p;
struct pstats *pstats;
int i;
/* Kludge. We don't yet have separate locks for the interrupts
* and the kernel. This means that we cannot let the other processors
* handle complex interrupts while inhibiting them from entering
* the kernel in a non-interrupt context.
*
* What we can do, without changing the locking mechanisms yet,
* is letting the other processors handle a very simple interrupt
* (wich determines the processor states), and do the main
* work ourself.
*/
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
/* Step 1: Probe state (user, cpu, interrupt, spinlock, idle) */
map = other_cpus & ~stopped_cpus ;
checkstate_probed_cpus = 0;
if (map != 0)
selected_apic_ipi(map,
XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while (checkstate_probed_cpus != map) {
/* spin */
i++;
if (i == 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_hardclock: checkstate %x\n",
checkstate_probed_cpus);
#endif
break;
}
}
/*
* Step 2: walk through other processors processes, update virtual
* timer and profiling timer. If stathz == 0, also update ticks and
* profiling info.
*/
map = 0;
for (id = 0; id < mp_ncpus; id++) {
if (id == cpuid)
continue;
if (((1 << id) & checkstate_probed_cpus) == 0)
continue;
p = checkstate_curproc[id];
if (p) {
pstats = p->p_stats;
if (checkstate_cpustate[id] == CHECKSTATE_USER &&
timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
psignal(p, SIGVTALRM);
map |= (1 << id);
}
if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
psignal(p, SIGPROF);
map |= (1 << id);
}
}
if (stathz == 0) {
forwarded_statclock( id, pscnt, &map);
}
}
if (map != 0) {
checkstate_need_ast |= map;
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_hardclock: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
}
}
#endif /* BETTER_CLOCK */
void
forward_signal(struct proc *p)
{
int map;
int id;
int i;
/* Kludge. We don't yet have separate locks for the interrupts
* and the kernel. This means that we cannot let the other processors
* handle complex interrupts while inhibiting them from entering
* the kernel in a non-interrupt context.
*
* What we can do, without changing the locking mechanisms yet,
* is letting the other processors handle a very simple interrupt
* (wich determines the processor states), and do the main
* work ourself.
*/
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
if (!forward_signal_enabled)
return;
while (1) {
if (p->p_stat != SRUN)
return;
id = p->p_oncpu;
if (id == 0xff)
return;
map = (1<<id);
checkstate_need_ast |= map;
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#if 0
printf("forward_signal: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
if (id == p->p_oncpu)
return;
}
}
void
forward_roundrobin(void)
{
u_int map;
int i;
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
if (!forward_roundrobin_enabled)
return;
resched_cpus |= other_cpus;
map = other_cpus & ~stopped_cpus ;
#if 1
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
#else
(void) all_but_self_ipi(XCPUAST_OFFSET);
#endif
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#if 0
printf("forward_roundrobin: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
}
#ifdef APIC_INTR_REORDER
/*
* Maintain mapping from softintr vector to isr bit in local apic.
*/
void
set_lapic_isrloc(int intr, int vector)
{
if (intr < 0 || intr > 32)
panic("set_apic_isrloc: bad intr argument: %d",intr);
if (vector < ICU_OFFSET || vector > 255)
panic("set_apic_isrloc: bad vector argument: %d",vector);
apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
apic_isrbit_location[intr].bit = (1<<(vector & 31));
}
#endif
/*
* All-CPU rendezvous. CPUs are signalled, all execute the setup function
* (if specified), rendezvous, execute the action function (if specified),
* rendezvous again, execute the teardown function (if specified), and then
* resume.
*
* Note that the supplied external functions _must_ be reentrant and aware
* that they are running in parallel and in an unknown lock context.
*/
static void (*smp_rv_setup_func)(void *arg);
static void (*smp_rv_action_func)(void *arg);
static void (*smp_rv_teardown_func)(void *arg);
static void *smp_rv_func_arg;
static volatile int smp_rv_waiters[2];
void
smp_rendezvous_action(void)
{
/* setup function */
if (smp_rv_setup_func != NULL)
smp_rv_setup_func(smp_rv_func_arg);
/* spin on entry rendezvous */
atomic_add_int(&smp_rv_waiters[0], 1);
while (smp_rv_waiters[0] < mp_ncpus)
;
/* action function */
if (smp_rv_action_func != NULL)
smp_rv_action_func(smp_rv_func_arg);
/* spin on exit rendezvous */
atomic_add_int(&smp_rv_waiters[1], 1);
while (smp_rv_waiters[1] < mp_ncpus)
;
/* teardown function */
if (smp_rv_teardown_func != NULL)
smp_rv_teardown_func(smp_rv_func_arg);
}
void
smp_rendezvous(void (* setup_func)(void *),
void (* action_func)(void *),
void (* teardown_func)(void *),
void *arg)
{
u_int efl;
/* obtain rendezvous lock */
s_lock(&smp_rv_lock); /* XXX sleep here? NOWAIT flag? */
/* set static function pointers */
smp_rv_setup_func = setup_func;
smp_rv_action_func = action_func;
smp_rv_teardown_func = teardown_func;
smp_rv_func_arg = arg;
smp_rv_waiters[0] = 0;
smp_rv_waiters[1] = 0;
/* disable interrupts on this CPU, save interrupt status */
efl = read_eflags();
write_eflags(efl & ~PSL_I);
/* signal other processors, which will enter the IPI with interrupts off */
all_but_self_ipi(XRENDEZVOUS_OFFSET);
/* call executor function */
smp_rendezvous_action();
/* restore interrupt flag */
write_eflags(efl);
/* release lock */
s_unlock(&smp_rv_lock);
}