Doug Rabson 99d11cde56 Major changes to the generic device framework for FreeBSD/alpha:
* Eliminate bus_t and make it possible for all devices to have
  attached children.

* Support dynamically extendable interfaces for drivers to replace
  both the function pointers in driver_t and bus_ops_t (which has been
  removed entirely.  Two system defined interfaces have been defined,
  'device' which is mandatory for all devices and 'bus' which is
  recommended for all devices which support attached children.

* In addition, the alpha port defines two simple interfaces 'clock'
  for attaching various real time clocks to the system and 'mcclock'
  for the many different variations of mc146818 clocks which can be
  attached to different alpha platforms.  This eliminates two more
  function pointer tables in favour of the generic method dispatch
  system provided by the device framework.

Future device interfaces may include:

* cdev and bdev interfaces for devfs to use in replacement for specfs
  and the fixed interfaces bdevsw and cdevsw.

* scsi interface to replace struct scsi_adapter (not sure how this
  works in CAM but I imagine there is something similar there).

* various tailored interfaces for different bus types such as pci,
  isa, pccard etc.
1998-06-14 13:46:10 +00:00

164 lines
5.7 KiB
C

/* $Id: vmparam.h,v 1.2 1998/06/10 10:55:30 dfr Exp $ */
/* From: NetBSD: vmparam.h,v 1.6 1997/09/23 23:23:23 mjacob Exp */
#ifndef _ALPHA_VMPARAM_H
#define _ALPHA_VMPARAM_H
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: vmparam.h 1.16 91/01/18$
*
* @(#)vmparam.h 8.2 (Berkeley) 4/22/94
*/
/*
* Machine dependent constants for Alpha.
*/
/*
* USRTEXT is the start of the user text/data space, while USRSTACK
* is the top (end) of the user stack. Immediately above the user stack
* resides the user structure, which is UPAGES long and contains the
* kernel stack.
*/
#define USRTEXT CLBYTES
#define USRSTACK VM_MAXUSER_ADDRESS
/*
* Virtual memory related constants, all in bytes
*/
#ifndef MAXTSIZ
#define MAXTSIZ (1<<30) /* max text size (1G) */
#endif
#ifndef DFLDSIZ
#define DFLDSIZ (1<<27) /* initial data size (128M) */
#endif
#ifndef MAXDSIZ
#define MAXDSIZ (1<<30) /* max data size (1G) */
#endif
#ifndef DFLSSIZ
#define DFLSSIZ (1<<21) /* initial stack size (2M) */
#endif
#ifndef MAXSSIZ
#define MAXSSIZ (1<<25) /* max stack size (32M) */
#endif
#ifndef SGROWSIZ
#define SGROWSIZ (128UL*1024) /* amount to grow stack */
#endif
/*
* PTEs for mapping user space into the kernel for phyio operations.
* 64 pte's are enough to cover 8 disks * MAXBSIZE.
*/
#ifndef USRIOSIZE
#define USRIOSIZE 64
#endif
/*
* PTEs for system V style shared memory.
* This is basically slop for kmempt which we actually allocate (malloc) from.
*/
#ifndef SHMMAXPGS
#define SHMMAXPGS 1024 /* 8mb */
#endif
/*
* Boundary at which to place first MAPMEM segment if not explicitly
* specified. Should be a power of two. This allows some slop for
* the data segment to grow underneath the first mapped segment.
*/
#define MMSEG 0x200000
/*
* The size of the clock loop.
*/
#define LOOPPAGES (maxfree - firstfree)
/*
* The time for a process to be blocked before being very swappable.
* This is a number of seconds which the system takes as being a non-trivial
* amount of real time. You probably shouldn't change this;
* it is used in subtle ways (fractions and multiples of it are, that is, like
* half of a ``long time'', almost a long time, etc.)
* It is related to human patience and other factors which don't really
* change over time.
*/
#define MAXSLP 20
/*
* A swapped in process is given a small amount of core without being bothered
* by the page replacement algorithm. Basically this says that if you are
* swapped in you deserve some resources. We protect the last SAFERSS
* pages against paging and will just swap you out rather than paging you.
* Note that each process has at least UPAGES+CLSIZE pages which are not
* paged anyways, in addition to SAFERSS.
*/
#define SAFERSS 10 /* nominal ``small'' resident set size
protected against replacement */
/*
* Mach derived constants
*/
/* user/kernel map constants */
#define VM_MIN_ADDRESS (ALPHA_USEG_BASE) /* 0 */
#define VM_MAXUSER_ADDRESS ((ALPHA_USEG_END + 1LL))
#define VM_MAX_ADDRESS VM_MAXUSER_ADDRESS
#define VM_MIN_KERNEL_ADDRESS (ALPHA_K1SEG_BASE)
#define VM_MAX_KERNEL_ADDRESS (ALPHA_K1SEG_END)
/* virtual sizes (bytes) for various kernel submaps */
#ifndef VM_KMEM_SIZE
#define VM_KMEM_SIZE (12 * 1024 * 1024)
#endif
/*
* How many physical pages per KVA page allocated.
* min(max(VM_KMEM_SIZE, Physical memory/VM_KMEM_SIZE_SCALE), VM_KMEM_SIZE_MAX)
* is the total KVA space allocated for kmem_map.
*/
#ifndef VM_KMEM_SIZE_SCALE
#define VM_KMEM_SIZE_SCALE (4) /* XXX 8192 byte pages */
#endif
/* initial pagein size of beginning of executable file */
#ifndef VM_INITIAL_PAGEIN
#define VM_INITIAL_PAGEIN 16
#endif
/* some Alpha-specific constants */
#define VPTBASE (0xfffffffe00000000LL) /* Virt. pg table */
#endif /* !_ALPHA_VMPARAM_H */