955 lines
26 KiB
C
955 lines
26 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License, Version 1.0 only
|
|
* (the "License"). You may not use this file except in compliance
|
|
* with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#pragma ident "%Z%%M% %I% %E% SMI"
|
|
|
|
#include <ctf_impl.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/zmod.h>
|
|
|
|
static const ctf_dmodel_t _libctf_models[] = {
|
|
{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
|
|
{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
|
|
{ NULL, 0, 0, 0, 0, 0, 0 }
|
|
};
|
|
|
|
const char _CTF_SECTION[] = ".SUNW_ctf";
|
|
const char _CTF_NULLSTR[] = "";
|
|
|
|
int _libctf_version = CTF_VERSION; /* library client version */
|
|
int _libctf_debug = 0; /* debugging messages enabled */
|
|
|
|
static ushort_t
|
|
get_kind_v1(ushort_t info)
|
|
{
|
|
return (CTF_INFO_KIND_V1(info));
|
|
}
|
|
|
|
static ushort_t
|
|
get_kind_v2(ushort_t info)
|
|
{
|
|
return (CTF_INFO_KIND(info));
|
|
}
|
|
|
|
static ushort_t
|
|
get_root_v1(ushort_t info)
|
|
{
|
|
return (CTF_INFO_ISROOT_V1(info));
|
|
}
|
|
|
|
static ushort_t
|
|
get_root_v2(ushort_t info)
|
|
{
|
|
return (CTF_INFO_ISROOT(info));
|
|
}
|
|
|
|
static ushort_t
|
|
get_vlen_v1(ushort_t info)
|
|
{
|
|
return (CTF_INFO_VLEN_V1(info));
|
|
}
|
|
|
|
static ushort_t
|
|
get_vlen_v2(ushort_t info)
|
|
{
|
|
return (CTF_INFO_VLEN(info));
|
|
}
|
|
|
|
static const ctf_fileops_t ctf_fileops[] = {
|
|
{ NULL, NULL },
|
|
{ get_kind_v1, get_root_v1, get_vlen_v1 },
|
|
{ get_kind_v2, get_root_v2, get_vlen_v2 },
|
|
};
|
|
|
|
/*
|
|
* Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
|
|
*/
|
|
static Elf64_Sym *
|
|
sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
|
|
{
|
|
dst->st_name = src->st_name;
|
|
dst->st_value = src->st_value;
|
|
dst->st_size = src->st_size;
|
|
dst->st_info = src->st_info;
|
|
dst->st_other = src->st_other;
|
|
dst->st_shndx = src->st_shndx;
|
|
|
|
return (dst);
|
|
}
|
|
|
|
/*
|
|
* Initialize the symtab translation table by filling each entry with the
|
|
* offset of the CTF type or function data corresponding to each STT_FUNC or
|
|
* STT_OBJECT entry in the symbol table.
|
|
*/
|
|
static int
|
|
init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
|
|
const ctf_sect_t *sp, const ctf_sect_t *strp)
|
|
{
|
|
const uchar_t *symp = sp->cts_data;
|
|
uint_t *xp = fp->ctf_sxlate;
|
|
uint_t *xend = xp + fp->ctf_nsyms;
|
|
|
|
uint_t objtoff = hp->cth_objtoff;
|
|
uint_t funcoff = hp->cth_funcoff;
|
|
|
|
ushort_t info, vlen;
|
|
Elf64_Sym sym, *gsp;
|
|
const char *name;
|
|
|
|
/*
|
|
* The CTF data object and function type sections are ordered to match
|
|
* the relative order of the respective symbol types in the symtab.
|
|
* If no type information is available for a symbol table entry, a
|
|
* pad is inserted in the CTF section. As a further optimization,
|
|
* anonymous or undefined symbols are omitted from the CTF data.
|
|
*/
|
|
for (; xp < xend; xp++, symp += sp->cts_entsize) {
|
|
if (sp->cts_entsize == sizeof (Elf32_Sym))
|
|
gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
|
|
else
|
|
gsp = (Elf64_Sym *)(uintptr_t)symp;
|
|
|
|
if (gsp->st_name < strp->cts_size)
|
|
name = (const char *)strp->cts_data + gsp->st_name;
|
|
else
|
|
name = _CTF_NULLSTR;
|
|
|
|
if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
|
|
strcmp(name, "_START_") == 0 ||
|
|
strcmp(name, "_END_") == 0) {
|
|
*xp = -1u;
|
|
continue;
|
|
}
|
|
|
|
switch (ELF64_ST_TYPE(gsp->st_info)) {
|
|
case STT_OBJECT:
|
|
if (objtoff >= hp->cth_funcoff ||
|
|
(gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
|
|
*xp = -1u;
|
|
break;
|
|
}
|
|
|
|
*xp = objtoff;
|
|
objtoff += sizeof (ushort_t);
|
|
break;
|
|
|
|
case STT_FUNC:
|
|
if (funcoff >= hp->cth_typeoff) {
|
|
*xp = -1u;
|
|
break;
|
|
}
|
|
|
|
*xp = funcoff;
|
|
|
|
info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
|
|
vlen = LCTF_INFO_VLEN(fp, info);
|
|
|
|
/*
|
|
* If we encounter a zero pad at the end, just skip it.
|
|
* Otherwise skip over the function and its return type
|
|
* (+2) and the argument list (vlen).
|
|
*/
|
|
if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
|
|
vlen == 0)
|
|
funcoff += sizeof (ushort_t); /* skip pad */
|
|
else
|
|
funcoff += sizeof (ushort_t) * (vlen + 2);
|
|
break;
|
|
|
|
default:
|
|
*xp = -1u;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize the type ID translation table with the byte offset of each type,
|
|
* and initialize the hash tables of each named type.
|
|
*/
|
|
static int
|
|
init_types(ctf_file_t *fp, const ctf_header_t *cth)
|
|
{
|
|
/* LINTED - pointer alignment */
|
|
const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
|
|
/* LINTED - pointer alignment */
|
|
const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
|
|
|
|
ulong_t pop[CTF_K_MAX + 1] = { 0 };
|
|
const ctf_type_t *tp;
|
|
ctf_hash_t *hp;
|
|
ushort_t id, dst;
|
|
uint_t *xp;
|
|
|
|
/*
|
|
* We initially determine whether the container is a child or a parent
|
|
* based on the value of cth_parname. To support containers that pre-
|
|
* date cth_parname, we also scan the types themselves for references
|
|
* to values in the range reserved for child types in our first pass.
|
|
*/
|
|
int child = cth->cth_parname != 0;
|
|
int nlstructs = 0, nlunions = 0;
|
|
int err;
|
|
|
|
/*
|
|
* We make two passes through the entire type section. In this first
|
|
* pass, we count the number of each type and the total number of types.
|
|
*/
|
|
for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
|
|
ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
|
|
ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
|
|
ssize_t size, increment;
|
|
|
|
size_t vbytes;
|
|
uint_t n;
|
|
|
|
(void) ctf_get_ctt_size(fp, tp, &size, &increment);
|
|
|
|
switch (kind) {
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
vbytes = sizeof (uint_t);
|
|
break;
|
|
case CTF_K_ARRAY:
|
|
vbytes = sizeof (ctf_array_t);
|
|
break;
|
|
case CTF_K_FUNCTION:
|
|
vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
|
|
break;
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
if (fp->ctf_version == CTF_VERSION_1 ||
|
|
size < CTF_LSTRUCT_THRESH) {
|
|
ctf_member_t *mp = (ctf_member_t *)
|
|
((uintptr_t)tp + increment);
|
|
|
|
vbytes = sizeof (ctf_member_t) * vlen;
|
|
for (n = vlen; n != 0; n--, mp++)
|
|
child |= CTF_TYPE_ISCHILD(mp->ctm_type);
|
|
} else {
|
|
ctf_lmember_t *lmp = (ctf_lmember_t *)
|
|
((uintptr_t)tp + increment);
|
|
|
|
vbytes = sizeof (ctf_lmember_t) * vlen;
|
|
for (n = vlen; n != 0; n--, lmp++)
|
|
child |=
|
|
CTF_TYPE_ISCHILD(lmp->ctlm_type);
|
|
}
|
|
break;
|
|
case CTF_K_ENUM:
|
|
vbytes = sizeof (ctf_enum_t) * vlen;
|
|
break;
|
|
case CTF_K_FORWARD:
|
|
/*
|
|
* For forward declarations, ctt_type is the CTF_K_*
|
|
* kind for the tag, so bump that population count too.
|
|
* If ctt_type is unknown, treat the tag as a struct.
|
|
*/
|
|
if (tp->ctt_type == CTF_K_UNKNOWN ||
|
|
tp->ctt_type >= CTF_K_MAX)
|
|
pop[CTF_K_STRUCT]++;
|
|
else
|
|
pop[tp->ctt_type]++;
|
|
/*FALLTHRU*/
|
|
case CTF_K_UNKNOWN:
|
|
vbytes = 0;
|
|
break;
|
|
case CTF_K_POINTER:
|
|
case CTF_K_TYPEDEF:
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
child |= CTF_TYPE_ISCHILD(tp->ctt_type);
|
|
vbytes = 0;
|
|
break;
|
|
default:
|
|
ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
|
|
return (ECTF_CORRUPT);
|
|
}
|
|
tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
|
|
pop[kind]++;
|
|
}
|
|
|
|
/*
|
|
* If we detected a reference to a child type ID, then we know this
|
|
* container is a child and may have a parent's types imported later.
|
|
*/
|
|
if (child) {
|
|
ctf_dprintf("CTF container %p is a child\n", (void *)fp);
|
|
fp->ctf_flags |= LCTF_CHILD;
|
|
} else
|
|
ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
|
|
|
|
/*
|
|
* Now that we've counted up the number of each type, we can allocate
|
|
* the hash tables, type translation table, and pointer table.
|
|
*/
|
|
if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
|
|
return (err);
|
|
|
|
if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
|
|
return (err);
|
|
|
|
if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
|
|
return (err);
|
|
|
|
if ((err = ctf_hash_create(&fp->ctf_names,
|
|
pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
|
|
pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
|
|
pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
|
|
return (err);
|
|
|
|
fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
|
|
fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
|
|
|
|
if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
|
|
return (EAGAIN); /* memory allocation failed */
|
|
|
|
xp = fp->ctf_txlate;
|
|
*xp++ = 0; /* type id 0 is used as a sentinel value */
|
|
|
|
bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
|
|
bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
|
|
|
|
/*
|
|
* In the second pass through the types, we fill in each entry of the
|
|
* type and pointer tables and add names to the appropriate hashes.
|
|
*/
|
|
for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
|
|
ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
|
|
ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
|
|
ssize_t size, increment;
|
|
|
|
const char *name;
|
|
size_t vbytes;
|
|
ctf_helem_t *hep;
|
|
ctf_encoding_t cte;
|
|
|
|
(void) ctf_get_ctt_size(fp, tp, &size, &increment);
|
|
name = ctf_strptr(fp, tp->ctt_name);
|
|
|
|
switch (kind) {
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
/*
|
|
* Only insert a new integer base type definition if
|
|
* this type name has not been defined yet. We re-use
|
|
* the names with different encodings for bit-fields.
|
|
*/
|
|
if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
|
|
name, strlen(name))) == NULL) {
|
|
err = ctf_hash_insert(&fp->ctf_names, fp,
|
|
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
|
|
if (err != 0 && err != ECTF_STRTAB)
|
|
return (err);
|
|
} else if (ctf_type_encoding(fp, hep->h_type,
|
|
&cte) == 0 && cte.cte_bits == 0) {
|
|
/*
|
|
* Work-around SOS8 stabs bug: replace existing
|
|
* intrinsic w/ same name if it was zero bits.
|
|
*/
|
|
hep->h_type = CTF_INDEX_TO_TYPE(id, child);
|
|
}
|
|
vbytes = sizeof (uint_t);
|
|
break;
|
|
|
|
case CTF_K_ARRAY:
|
|
vbytes = sizeof (ctf_array_t);
|
|
break;
|
|
|
|
case CTF_K_FUNCTION:
|
|
err = ctf_hash_insert(&fp->ctf_names, fp,
|
|
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
|
|
if (err != 0 && err != ECTF_STRTAB)
|
|
return (err);
|
|
vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
|
|
break;
|
|
|
|
case CTF_K_STRUCT:
|
|
err = ctf_hash_define(&fp->ctf_structs, fp,
|
|
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
|
|
|
|
if (err != 0 && err != ECTF_STRTAB)
|
|
return (err);
|
|
|
|
if (fp->ctf_version == CTF_VERSION_1 ||
|
|
size < CTF_LSTRUCT_THRESH)
|
|
vbytes = sizeof (ctf_member_t) * vlen;
|
|
else {
|
|
vbytes = sizeof (ctf_lmember_t) * vlen;
|
|
nlstructs++;
|
|
}
|
|
break;
|
|
|
|
case CTF_K_UNION:
|
|
err = ctf_hash_define(&fp->ctf_unions, fp,
|
|
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
|
|
|
|
if (err != 0 && err != ECTF_STRTAB)
|
|
return (err);
|
|
|
|
if (fp->ctf_version == CTF_VERSION_1 ||
|
|
size < CTF_LSTRUCT_THRESH)
|
|
vbytes = sizeof (ctf_member_t) * vlen;
|
|
else {
|
|
vbytes = sizeof (ctf_lmember_t) * vlen;
|
|
nlunions++;
|
|
}
|
|
break;
|
|
|
|
case CTF_K_ENUM:
|
|
err = ctf_hash_define(&fp->ctf_enums, fp,
|
|
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
|
|
|
|
if (err != 0 && err != ECTF_STRTAB)
|
|
return (err);
|
|
|
|
vbytes = sizeof (ctf_enum_t) * vlen;
|
|
break;
|
|
|
|
case CTF_K_TYPEDEF:
|
|
err = ctf_hash_insert(&fp->ctf_names, fp,
|
|
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
|
|
if (err != 0 && err != ECTF_STRTAB)
|
|
return (err);
|
|
vbytes = 0;
|
|
break;
|
|
|
|
case CTF_K_FORWARD:
|
|
/*
|
|
* Only insert forward tags into the given hash if the
|
|
* type or tag name is not already present.
|
|
*/
|
|
switch (tp->ctt_type) {
|
|
case CTF_K_STRUCT:
|
|
hp = &fp->ctf_structs;
|
|
break;
|
|
case CTF_K_UNION:
|
|
hp = &fp->ctf_unions;
|
|
break;
|
|
case CTF_K_ENUM:
|
|
hp = &fp->ctf_enums;
|
|
break;
|
|
default:
|
|
hp = &fp->ctf_structs;
|
|
}
|
|
|
|
if (ctf_hash_lookup(hp, fp,
|
|
name, strlen(name)) == NULL) {
|
|
err = ctf_hash_insert(hp, fp,
|
|
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
|
|
if (err != 0 && err != ECTF_STRTAB)
|
|
return (err);
|
|
}
|
|
vbytes = 0;
|
|
break;
|
|
|
|
case CTF_K_POINTER:
|
|
/*
|
|
* If the type referenced by the pointer is in this CTF
|
|
* container, then store the index of the pointer type
|
|
* in fp->ctf_ptrtab[ index of referenced type ].
|
|
*/
|
|
if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
|
|
CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
|
|
fp->ctf_ptrtab[
|
|
CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
|
|
/*FALLTHRU*/
|
|
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
err = ctf_hash_insert(&fp->ctf_names, fp,
|
|
CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
|
|
if (err != 0 && err != ECTF_STRTAB)
|
|
return (err);
|
|
/*FALLTHRU*/
|
|
|
|
default:
|
|
vbytes = 0;
|
|
break;
|
|
}
|
|
|
|
*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
|
|
tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
|
|
}
|
|
|
|
ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
|
|
ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
|
|
ctf_dprintf("%u struct names hashed (%d long)\n",
|
|
ctf_hash_size(&fp->ctf_structs), nlstructs);
|
|
ctf_dprintf("%u union names hashed (%d long)\n",
|
|
ctf_hash_size(&fp->ctf_unions), nlunions);
|
|
ctf_dprintf("%u base type names hashed\n",
|
|
ctf_hash_size(&fp->ctf_names));
|
|
|
|
/*
|
|
* Make an additional pass through the pointer table to find pointers
|
|
* that point to anonymous typedef nodes. If we find one, modify the
|
|
* pointer table so that the pointer is also known to point to the
|
|
* node that is referenced by the anonymous typedef node.
|
|
*/
|
|
for (id = 1; id <= fp->ctf_typemax; id++) {
|
|
if ((dst = fp->ctf_ptrtab[id]) != 0) {
|
|
tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
|
|
|
|
if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
|
|
strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
|
|
CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
|
|
CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
|
|
fp->ctf_ptrtab[
|
|
CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Decode the specified CTF buffer and optional symbol table and create a new
|
|
* CTF container representing the symbolic debugging information. This code
|
|
* can be used directly by the debugger, or it can be used as the engine for
|
|
* ctf_fdopen() or ctf_open(), below.
|
|
*/
|
|
ctf_file_t *
|
|
ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
|
|
const ctf_sect_t *strsect, int *errp)
|
|
{
|
|
const ctf_preamble_t *pp;
|
|
ctf_header_t hp;
|
|
ctf_file_t *fp;
|
|
void *buf, *base;
|
|
size_t size, hdrsz;
|
|
int err;
|
|
|
|
if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
|
|
return (ctf_set_open_errno(errp, EINVAL));
|
|
|
|
if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
|
|
symsect->cts_entsize != sizeof (Elf64_Sym))
|
|
return (ctf_set_open_errno(errp, ECTF_SYMTAB));
|
|
|
|
if (symsect != NULL && symsect->cts_data == NULL)
|
|
return (ctf_set_open_errno(errp, ECTF_SYMBAD));
|
|
|
|
if (strsect != NULL && strsect->cts_data == NULL)
|
|
return (ctf_set_open_errno(errp, ECTF_STRBAD));
|
|
|
|
if (ctfsect->cts_size < sizeof (ctf_preamble_t))
|
|
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
|
|
|
|
pp = (const ctf_preamble_t *)ctfsect->cts_data;
|
|
|
|
ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
|
|
pp->ctp_magic, pp->ctp_version);
|
|
|
|
/*
|
|
* Validate each part of the CTF header (either V1 or V2).
|
|
* First, we validate the preamble (common to all versions). At that
|
|
* point, we know specific header version, and can validate the
|
|
* version-specific parts including section offsets and alignments.
|
|
*/
|
|
if (pp->ctp_magic != CTF_MAGIC)
|
|
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
|
|
|
|
if (pp->ctp_version == CTF_VERSION_2) {
|
|
if (ctfsect->cts_size < sizeof (ctf_header_t))
|
|
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
|
|
|
|
bcopy(ctfsect->cts_data, &hp, sizeof (hp));
|
|
hdrsz = sizeof (ctf_header_t);
|
|
|
|
} else if (pp->ctp_version == CTF_VERSION_1) {
|
|
const ctf_header_v1_t *h1p =
|
|
(const ctf_header_v1_t *)ctfsect->cts_data;
|
|
|
|
if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
|
|
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
|
|
|
|
bzero(&hp, sizeof (hp));
|
|
hp.cth_preamble = h1p->cth_preamble;
|
|
hp.cth_objtoff = h1p->cth_objtoff;
|
|
hp.cth_funcoff = h1p->cth_funcoff;
|
|
hp.cth_typeoff = h1p->cth_typeoff;
|
|
hp.cth_stroff = h1p->cth_stroff;
|
|
hp.cth_strlen = h1p->cth_strlen;
|
|
|
|
hdrsz = sizeof (ctf_header_v1_t);
|
|
} else
|
|
return (ctf_set_open_errno(errp, ECTF_CTFVERS));
|
|
|
|
size = hp.cth_stroff + hp.cth_strlen;
|
|
|
|
ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
|
|
|
|
if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
|
|
hp.cth_funcoff > size || hp.cth_typeoff > size ||
|
|
hp.cth_stroff > size)
|
|
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
|
|
|
|
if (hp.cth_lbloff > hp.cth_objtoff ||
|
|
hp.cth_objtoff > hp.cth_funcoff ||
|
|
hp.cth_funcoff > hp.cth_typeoff ||
|
|
hp.cth_typeoff > hp.cth_stroff)
|
|
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
|
|
|
|
if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
|
|
(hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
|
|
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
|
|
|
|
/*
|
|
* Once everything is determined to be valid, attempt to decompress
|
|
* the CTF data buffer if it is compressed. Otherwise we just put
|
|
* the data section's buffer pointer into ctf_buf, below.
|
|
*/
|
|
if (hp.cth_flags & CTF_F_COMPRESS) {
|
|
size_t srclen, dstlen;
|
|
const void *src;
|
|
int rc = Z_OK;
|
|
|
|
if (ctf_zopen(errp) == NULL)
|
|
return (NULL); /* errp is set for us */
|
|
|
|
if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
|
|
return (ctf_set_open_errno(errp, ECTF_ZALLOC));
|
|
|
|
bcopy(ctfsect->cts_data, base, hdrsz);
|
|
((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
|
|
buf = (uchar_t *)base + hdrsz;
|
|
|
|
src = (uchar_t *)ctfsect->cts_data + hdrsz;
|
|
srclen = ctfsect->cts_size - hdrsz;
|
|
dstlen = size;
|
|
|
|
if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
|
|
ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
|
|
ctf_data_free(base, size + hdrsz);
|
|
return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
|
|
}
|
|
|
|
if (dstlen != size) {
|
|
ctf_dprintf("zlib inflate short -- got %lu of %lu "
|
|
"bytes\n", (ulong_t)dstlen, (ulong_t)size);
|
|
ctf_data_free(base, size + hdrsz);
|
|
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
|
|
}
|
|
|
|
ctf_data_protect(base, size + hdrsz);
|
|
|
|
} else {
|
|
base = (void *)ctfsect->cts_data;
|
|
buf = (uchar_t *)base + hdrsz;
|
|
}
|
|
|
|
/*
|
|
* Once we have uncompressed and validated the CTF data buffer, we can
|
|
* proceed with allocating a ctf_file_t and initializing it.
|
|
*/
|
|
if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
|
|
return (ctf_set_open_errno(errp, EAGAIN));
|
|
|
|
bzero(fp, sizeof (ctf_file_t));
|
|
fp->ctf_version = hp.cth_version;
|
|
fp->ctf_fileops = &ctf_fileops[hp.cth_version];
|
|
bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
|
|
|
|
if (symsect != NULL) {
|
|
bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
|
|
bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
|
|
}
|
|
|
|
if (fp->ctf_data.cts_name != NULL)
|
|
fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
|
|
if (fp->ctf_symtab.cts_name != NULL)
|
|
fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
|
|
if (fp->ctf_strtab.cts_name != NULL)
|
|
fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
|
|
|
|
if (fp->ctf_data.cts_name == NULL)
|
|
fp->ctf_data.cts_name = _CTF_NULLSTR;
|
|
if (fp->ctf_symtab.cts_name == NULL)
|
|
fp->ctf_symtab.cts_name = _CTF_NULLSTR;
|
|
if (fp->ctf_strtab.cts_name == NULL)
|
|
fp->ctf_strtab.cts_name = _CTF_NULLSTR;
|
|
|
|
fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
|
|
fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
|
|
|
|
if (strsect != NULL) {
|
|
fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
|
|
fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
|
|
}
|
|
|
|
fp->ctf_base = base;
|
|
fp->ctf_buf = buf;
|
|
fp->ctf_size = size + hdrsz;
|
|
|
|
/*
|
|
* If we have a parent container name and label, store the relocated
|
|
* string pointers in the CTF container for easy access later.
|
|
*/
|
|
if (hp.cth_parlabel != 0)
|
|
fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
|
|
if (hp.cth_parname != 0)
|
|
fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
|
|
|
|
ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
|
|
fp->ctf_parname ? fp->ctf_parname : "<NULL>",
|
|
fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
|
|
|
|
/*
|
|
* If we have a symbol table section, allocate and initialize
|
|
* the symtab translation table, pointed to by ctf_sxlate.
|
|
*/
|
|
if (symsect != NULL) {
|
|
fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
|
|
fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
|
|
|
|
if (fp->ctf_sxlate == NULL) {
|
|
(void) ctf_set_open_errno(errp, EAGAIN);
|
|
goto bad;
|
|
}
|
|
|
|
if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
|
|
(void) ctf_set_open_errno(errp, err);
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
if ((err = init_types(fp, &hp)) != 0) {
|
|
(void) ctf_set_open_errno(errp, err);
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
|
|
* array of type name prefixes and the corresponding ctf_hash to use.
|
|
* NOTE: This code must be kept in sync with the code in ctf_update().
|
|
*/
|
|
fp->ctf_lookups[0].ctl_prefix = "struct";
|
|
fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
|
|
fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
|
|
fp->ctf_lookups[1].ctl_prefix = "union";
|
|
fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
|
|
fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
|
|
fp->ctf_lookups[2].ctl_prefix = "enum";
|
|
fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
|
|
fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
|
|
fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
|
|
fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
|
|
fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
|
|
fp->ctf_lookups[4].ctl_prefix = NULL;
|
|
fp->ctf_lookups[4].ctl_len = 0;
|
|
fp->ctf_lookups[4].ctl_hash = NULL;
|
|
|
|
if (symsect != NULL) {
|
|
if (symsect->cts_entsize == sizeof (Elf64_Sym))
|
|
(void) ctf_setmodel(fp, CTF_MODEL_LP64);
|
|
else
|
|
(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
|
|
} else
|
|
(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
|
|
|
|
fp->ctf_refcnt = 1;
|
|
return (fp);
|
|
|
|
bad:
|
|
ctf_close(fp);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Close the specified CTF container and free associated data structures. Note
|
|
* that ctf_close() is a reference counted operation: if the specified file is
|
|
* the parent of other active containers, its reference count will be greater
|
|
* than one and it will be freed later when no active children exist.
|
|
*/
|
|
void
|
|
ctf_close(ctf_file_t *fp)
|
|
{
|
|
ctf_dtdef_t *dtd, *ntd;
|
|
|
|
if (fp == NULL)
|
|
return; /* allow ctf_close(NULL) to simplify caller code */
|
|
|
|
ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
|
|
|
|
if (fp->ctf_refcnt > 1) {
|
|
fp->ctf_refcnt--;
|
|
return;
|
|
}
|
|
|
|
if (fp->ctf_parent != NULL)
|
|
ctf_close(fp->ctf_parent);
|
|
|
|
for (dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
|
|
ntd = ctf_list_next(dtd);
|
|
ctf_dtd_delete(fp, dtd);
|
|
}
|
|
|
|
ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
|
|
|
|
if (fp->ctf_flags & LCTF_MMAP) {
|
|
if (fp->ctf_data.cts_data != NULL)
|
|
ctf_sect_munmap(&fp->ctf_data);
|
|
if (fp->ctf_symtab.cts_data != NULL)
|
|
ctf_sect_munmap(&fp->ctf_symtab);
|
|
if (fp->ctf_strtab.cts_data != NULL)
|
|
ctf_sect_munmap(&fp->ctf_strtab);
|
|
}
|
|
|
|
if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
|
|
fp->ctf_data.cts_name != NULL) {
|
|
ctf_free((char *)fp->ctf_data.cts_name,
|
|
strlen(fp->ctf_data.cts_name) + 1);
|
|
}
|
|
|
|
if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
|
|
fp->ctf_symtab.cts_name != NULL) {
|
|
ctf_free((char *)fp->ctf_symtab.cts_name,
|
|
strlen(fp->ctf_symtab.cts_name) + 1);
|
|
}
|
|
|
|
if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
|
|
fp->ctf_strtab.cts_name != NULL) {
|
|
ctf_free((char *)fp->ctf_strtab.cts_name,
|
|
strlen(fp->ctf_strtab.cts_name) + 1);
|
|
}
|
|
|
|
if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
|
|
ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
|
|
|
|
if (fp->ctf_sxlate != NULL)
|
|
ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
|
|
|
|
if (fp->ctf_txlate != NULL) {
|
|
ctf_free(fp->ctf_txlate,
|
|
sizeof (uint_t) * (fp->ctf_typemax + 1));
|
|
}
|
|
|
|
if (fp->ctf_ptrtab != NULL) {
|
|
ctf_free(fp->ctf_ptrtab,
|
|
sizeof (ushort_t) * (fp->ctf_typemax + 1));
|
|
}
|
|
|
|
ctf_hash_destroy(&fp->ctf_structs);
|
|
ctf_hash_destroy(&fp->ctf_unions);
|
|
ctf_hash_destroy(&fp->ctf_enums);
|
|
ctf_hash_destroy(&fp->ctf_names);
|
|
|
|
ctf_free(fp, sizeof (ctf_file_t));
|
|
}
|
|
|
|
/*
|
|
* Return the CTF handle for the parent CTF container, if one exists.
|
|
* Otherwise return NULL to indicate this container has no imported parent.
|
|
*/
|
|
ctf_file_t *
|
|
ctf_parent_file(ctf_file_t *fp)
|
|
{
|
|
return (fp->ctf_parent);
|
|
}
|
|
|
|
/*
|
|
* Return the name of the parent CTF container, if one exists. Otherwise
|
|
* return NULL to indicate this container is a root container.
|
|
*/
|
|
const char *
|
|
ctf_parent_name(ctf_file_t *fp)
|
|
{
|
|
return (fp->ctf_parname);
|
|
}
|
|
|
|
/*
|
|
* Import the types from the specified parent container by storing a pointer
|
|
* to it in ctf_parent and incrementing its reference count. Only one parent
|
|
* is allowed: if a parent already exists, it is replaced by the new parent.
|
|
*/
|
|
int
|
|
ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
|
|
{
|
|
if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
|
|
return (ctf_set_errno(fp, EINVAL));
|
|
|
|
if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
|
|
return (ctf_set_errno(fp, ECTF_DMODEL));
|
|
|
|
if (fp->ctf_parent != NULL)
|
|
ctf_close(fp->ctf_parent);
|
|
|
|
if (pfp != NULL) {
|
|
fp->ctf_flags |= LCTF_CHILD;
|
|
pfp->ctf_refcnt++;
|
|
}
|
|
|
|
fp->ctf_parent = pfp;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set the data model constant for the CTF container.
|
|
*/
|
|
int
|
|
ctf_setmodel(ctf_file_t *fp, int model)
|
|
{
|
|
const ctf_dmodel_t *dp;
|
|
|
|
for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
|
|
if (dp->ctd_code == model) {
|
|
fp->ctf_dmodel = dp;
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return (ctf_set_errno(fp, EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Return the data model constant for the CTF container.
|
|
*/
|
|
int
|
|
ctf_getmodel(ctf_file_t *fp)
|
|
{
|
|
return (fp->ctf_dmodel->ctd_code);
|
|
}
|
|
|
|
void
|
|
ctf_setspecific(ctf_file_t *fp, void *data)
|
|
{
|
|
fp->ctf_specific = data;
|
|
}
|
|
|
|
void *
|
|
ctf_getspecific(ctf_file_t *fp)
|
|
{
|
|
return (fp->ctf_specific);
|
|
}
|