fdc8ba5e71
This is mostly a no-op other than for ARM where it adds missing __aeabi_mem* and __aeabi_*divmod functions. Even on ARM these will remain unused until the rest of the ARM EABI code is merged.
108 lines
3.3 KiB
C
108 lines
3.3 KiB
C
/* ===-- floatundidf.c - Implement __floatundidf ---------------------------===
|
|
*
|
|
* The LLVM Compiler Infrastructure
|
|
*
|
|
* This file is dual licensed under the MIT and the University of Illinois Open
|
|
* Source Licenses. See LICENSE.TXT for details.
|
|
*
|
|
* ===----------------------------------------------------------------------===
|
|
*
|
|
* This file implements __floatundidf for the compiler_rt library.
|
|
*
|
|
* ===----------------------------------------------------------------------===
|
|
*/
|
|
|
|
/* Returns: convert a to a double, rounding toward even. */
|
|
|
|
/* Assumption: double is a IEEE 64 bit floating point type
|
|
* du_int is a 64 bit integral type
|
|
*/
|
|
|
|
/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */
|
|
|
|
#include "int_lib.h"
|
|
|
|
ARM_EABI_FNALIAS(ul2d, floatundidf)
|
|
|
|
#ifndef __SOFT_FP__
|
|
/* Support for systems that have hardware floating-point; we'll set the inexact flag
|
|
* as a side-effect of this computation.
|
|
*/
|
|
|
|
|
|
COMPILER_RT_ABI double
|
|
__floatundidf(du_int a)
|
|
{
|
|
static const double twop52 = 0x1.0p52;
|
|
static const double twop84 = 0x1.0p84;
|
|
static const double twop84_plus_twop52 = 0x1.00000001p84;
|
|
|
|
union { uint64_t x; double d; } high = { .d = twop84 };
|
|
union { uint64_t x; double d; } low = { .d = twop52 };
|
|
|
|
high.x |= a >> 32;
|
|
low.x |= a & UINT64_C(0x00000000ffffffff);
|
|
|
|
const double result = (high.d - twop84_plus_twop52) + low.d;
|
|
return result;
|
|
}
|
|
|
|
#else
|
|
/* Support for systems that don't have hardware floating-point; there are no flags to
|
|
* set, and we don't want to code-gen to an unknown soft-float implementation.
|
|
*/
|
|
|
|
COMPILER_RT_ABI double
|
|
__floatundidf(du_int a)
|
|
{
|
|
if (a == 0)
|
|
return 0.0;
|
|
const unsigned N = sizeof(du_int) * CHAR_BIT;
|
|
int sd = N - __builtin_clzll(a); /* number of significant digits */
|
|
int e = sd - 1; /* exponent */
|
|
if (sd > DBL_MANT_DIG)
|
|
{
|
|
/* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
|
|
* finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
|
|
* 12345678901234567890123456
|
|
* 1 = msb 1 bit
|
|
* P = bit DBL_MANT_DIG-1 bits to the right of 1
|
|
* Q = bit DBL_MANT_DIG bits to the right of 1
|
|
* R = "or" of all bits to the right of Q
|
|
*/
|
|
switch (sd)
|
|
{
|
|
case DBL_MANT_DIG + 1:
|
|
a <<= 1;
|
|
break;
|
|
case DBL_MANT_DIG + 2:
|
|
break;
|
|
default:
|
|
a = (a >> (sd - (DBL_MANT_DIG+2))) |
|
|
((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
|
|
};
|
|
/* finish: */
|
|
a |= (a & 4) != 0; /* Or P into R */
|
|
++a; /* round - this step may add a significant bit */
|
|
a >>= 2; /* dump Q and R */
|
|
/* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
|
|
if (a & ((du_int)1 << DBL_MANT_DIG))
|
|
{
|
|
a >>= 1;
|
|
++e;
|
|
}
|
|
/* a is now rounded to DBL_MANT_DIG bits */
|
|
}
|
|
else
|
|
{
|
|
a <<= (DBL_MANT_DIG - sd);
|
|
/* a is now rounded to DBL_MANT_DIG bits */
|
|
}
|
|
double_bits fb;
|
|
fb.u.high = ((e + 1023) << 20) | /* exponent */
|
|
((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
|
|
fb.u.low = (su_int)a; /* mantissa-low */
|
|
return fb.f;
|
|
}
|
|
#endif
|