2009-08-18 11:43:27 -07:00

2515 lines
63 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <stdio.h>
#include <stdio_ext.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/zap.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_znode.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab_impl.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_pool.h>
#include <sys/dbuf.h>
#include <sys/zil.h>
#include <sys/zil_impl.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <sys/dmu_traverse.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/zfs_fuid.h>
#include <sys/arc.h>
#undef ZFS_MAXNAMELEN
#undef verify
#include <libzfs.h>
const char cmdname[] = "zdb";
uint8_t dump_opt[256];
typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
extern void dump_intent_log(zilog_t *);
uint64_t *zopt_object = NULL;
int zopt_objects = 0;
libzfs_handle_t *g_zfs;
boolean_t zdb_sig_user_data = B_TRUE;
int zdb_sig_cksumalg = ZIO_CHECKSUM_SHA256;
/*
* These libumem hooks provide a reasonable set of defaults for the allocator's
* debugging facilities.
*/
const char *
_umem_debug_init()
{
return ("default,verbose"); /* $UMEM_DEBUG setting */
}
const char *
_umem_logging_init(void)
{
return ("fail,contents"); /* $UMEM_LOGGING setting */
}
static void
usage(void)
{
(void) fprintf(stderr,
"Usage: %s [-udibcsvL] [-U cachefile_path] [-t txg]\n"
"\t [-S user:cksumalg] "
"dataset [object...]\n"
" %s -C [pool]\n"
" %s -l dev\n"
" %s -R pool:vdev:offset:size:flags\n"
" %s [-p path_to_vdev_dir]\n"
" %s -e pool | GUID | devid ...\n",
cmdname, cmdname, cmdname, cmdname, cmdname, cmdname);
(void) fprintf(stderr, " -u uberblock\n");
(void) fprintf(stderr, " -d datasets\n");
(void) fprintf(stderr, " -C cached pool configuration\n");
(void) fprintf(stderr, " -i intent logs\n");
(void) fprintf(stderr, " -b block statistics\n");
(void) fprintf(stderr, " -m metaslabs\n");
(void) fprintf(stderr, " -c checksum all metadata (twice for "
"all data) blocks\n");
(void) fprintf(stderr, " -s report stats on zdb's I/O\n");
(void) fprintf(stderr, " -S <user|all>:<cksum_alg|all> -- "
"dump blkptr signatures\n");
(void) fprintf(stderr, " -v verbose (applies to all others)\n");
(void) fprintf(stderr, " -l dump label contents\n");
(void) fprintf(stderr, " -L disable leak tracking (do not "
"load spacemaps)\n");
(void) fprintf(stderr, " -U cachefile_path -- use alternate "
"cachefile\n");
(void) fprintf(stderr, " -R read and display block from a "
"device\n");
(void) fprintf(stderr, " -e Pool is exported/destroyed/"
"has altroot\n");
(void) fprintf(stderr, " -p <Path to vdev dir> (use with -e)\n");
(void) fprintf(stderr, " -t <txg> highest txg to use when "
"searching for uberblocks\n");
(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
"to make only that option verbose\n");
(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
exit(1);
}
/*
* Called for usage errors that are discovered after a call to spa_open(),
* dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
*/
static void
fatal(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
(void) fprintf(stderr, "%s: ", cmdname);
(void) vfprintf(stderr, fmt, ap);
va_end(ap);
(void) fprintf(stderr, "\n");
exit(1);
}
static void
dump_nvlist(nvlist_t *list, int indent)
{
nvpair_t *elem = NULL;
while ((elem = nvlist_next_nvpair(list, elem)) != NULL) {
switch (nvpair_type(elem)) {
case DATA_TYPE_STRING:
{
char *value;
VERIFY(nvpair_value_string(elem, &value) == 0);
(void) printf("%*s%s='%s'\n", indent, "",
nvpair_name(elem), value);
}
break;
case DATA_TYPE_UINT64:
{
uint64_t value;
VERIFY(nvpair_value_uint64(elem, &value) == 0);
(void) printf("%*s%s=%llu\n", indent, "",
nvpair_name(elem), (u_longlong_t)value);
}
break;
case DATA_TYPE_NVLIST:
{
nvlist_t *value;
VERIFY(nvpair_value_nvlist(elem, &value) == 0);
(void) printf("%*s%s\n", indent, "",
nvpair_name(elem));
dump_nvlist(value, indent + 4);
}
break;
case DATA_TYPE_NVLIST_ARRAY:
{
nvlist_t **value;
uint_t c, count;
VERIFY(nvpair_value_nvlist_array(elem, &value,
&count) == 0);
for (c = 0; c < count; c++) {
(void) printf("%*s%s[%u]\n", indent, "",
nvpair_name(elem), c);
dump_nvlist(value[c], indent + 8);
}
}
break;
default:
(void) printf("bad config type %d for %s\n",
nvpair_type(elem), nvpair_name(elem));
}
}
}
/* ARGSUSED */
static void
dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
{
nvlist_t *nv;
size_t nvsize = *(uint64_t *)data;
char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
umem_free(packed, nvsize);
dump_nvlist(nv, 8);
nvlist_free(nv);
}
const char dump_zap_stars[] = "****************************************";
const int dump_zap_width = sizeof (dump_zap_stars) - 1;
static void
dump_zap_histogram(uint64_t histo[ZAP_HISTOGRAM_SIZE])
{
int i;
int minidx = ZAP_HISTOGRAM_SIZE - 1;
int maxidx = 0;
uint64_t max = 0;
for (i = 0; i < ZAP_HISTOGRAM_SIZE; i++) {
if (histo[i] > max)
max = histo[i];
if (histo[i] > 0 && i > maxidx)
maxidx = i;
if (histo[i] > 0 && i < minidx)
minidx = i;
}
if (max < dump_zap_width)
max = dump_zap_width;
for (i = minidx; i <= maxidx; i++)
(void) printf("\t\t\t%u: %6llu %s\n", i, (u_longlong_t)histo[i],
&dump_zap_stars[(max - histo[i]) * dump_zap_width / max]);
}
static void
dump_zap_stats(objset_t *os, uint64_t object)
{
int error;
zap_stats_t zs;
error = zap_get_stats(os, object, &zs);
if (error)
return;
if (zs.zs_ptrtbl_len == 0) {
ASSERT(zs.zs_num_blocks == 1);
(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
(u_longlong_t)zs.zs_blocksize,
(u_longlong_t)zs.zs_num_entries);
return;
}
(void) printf("\tFat ZAP stats:\n");
(void) printf("\t\tPointer table:\n");
(void) printf("\t\t\t%llu elements\n",
(u_longlong_t)zs.zs_ptrtbl_len);
(void) printf("\t\t\tzt_blk: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_zt_blk);
(void) printf("\t\t\tzt_numblks: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_zt_numblks);
(void) printf("\t\t\tzt_shift: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_zt_shift);
(void) printf("\t\t\tzt_blks_copied: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_blks_copied);
(void) printf("\t\t\tzt_nextblk: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_nextblk);
(void) printf("\t\tZAP entries: %llu\n",
(u_longlong_t)zs.zs_num_entries);
(void) printf("\t\tLeaf blocks: %llu\n",
(u_longlong_t)zs.zs_num_leafs);
(void) printf("\t\tTotal blocks: %llu\n",
(u_longlong_t)zs.zs_num_blocks);
(void) printf("\t\tzap_block_type: 0x%llx\n",
(u_longlong_t)zs.zs_block_type);
(void) printf("\t\tzap_magic: 0x%llx\n",
(u_longlong_t)zs.zs_magic);
(void) printf("\t\tzap_salt: 0x%llx\n",
(u_longlong_t)zs.zs_salt);
(void) printf("\t\tLeafs with 2^n pointers:\n");
dump_zap_histogram(zs.zs_leafs_with_2n_pointers);
(void) printf("\t\tBlocks with n*5 entries:\n");
dump_zap_histogram(zs.zs_blocks_with_n5_entries);
(void) printf("\t\tBlocks n/10 full:\n");
dump_zap_histogram(zs.zs_blocks_n_tenths_full);
(void) printf("\t\tEntries with n chunks:\n");
dump_zap_histogram(zs.zs_entries_using_n_chunks);
(void) printf("\t\tBuckets with n entries:\n");
dump_zap_histogram(zs.zs_buckets_with_n_entries);
}
/*ARGSUSED*/
static void
dump_none(objset_t *os, uint64_t object, void *data, size_t size)
{
}
/*ARGSUSED*/
void
dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
{
}
/*ARGSUSED*/
static void
dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
{
}
/*ARGSUSED*/
static void
dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
{
zap_cursor_t zc;
zap_attribute_t attr;
void *prop;
int i;
dump_zap_stats(os, object);
(void) printf("\n");
for (zap_cursor_init(&zc, os, object);
zap_cursor_retrieve(&zc, &attr) == 0;
zap_cursor_advance(&zc)) {
(void) printf("\t\t%s = ", attr.za_name);
if (attr.za_num_integers == 0) {
(void) printf("\n");
continue;
}
prop = umem_zalloc(attr.za_num_integers *
attr.za_integer_length, UMEM_NOFAIL);
(void) zap_lookup(os, object, attr.za_name,
attr.za_integer_length, attr.za_num_integers, prop);
if (attr.za_integer_length == 1) {
(void) printf("%s", (char *)prop);
} else {
for (i = 0; i < attr.za_num_integers; i++) {
switch (attr.za_integer_length) {
case 2:
(void) printf("%u ",
((uint16_t *)prop)[i]);
break;
case 4:
(void) printf("%u ",
((uint32_t *)prop)[i]);
break;
case 8:
(void) printf("%lld ",
(u_longlong_t)((int64_t *)prop)[i]);
break;
}
}
}
(void) printf("\n");
umem_free(prop, attr.za_num_integers * attr.za_integer_length);
}
zap_cursor_fini(&zc);
}
/*ARGSUSED*/
static void
dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
{
zap_cursor_t zc;
zap_attribute_t attr;
const char *typenames[] = {
/* 0 */ "not specified",
/* 1 */ "FIFO",
/* 2 */ "Character Device",
/* 3 */ "3 (invalid)",
/* 4 */ "Directory",
/* 5 */ "5 (invalid)",
/* 6 */ "Block Device",
/* 7 */ "7 (invalid)",
/* 8 */ "Regular File",
/* 9 */ "9 (invalid)",
/* 10 */ "Symbolic Link",
/* 11 */ "11 (invalid)",
/* 12 */ "Socket",
/* 13 */ "Door",
/* 14 */ "Event Port",
/* 15 */ "15 (invalid)",
};
dump_zap_stats(os, object);
(void) printf("\n");
for (zap_cursor_init(&zc, os, object);
zap_cursor_retrieve(&zc, &attr) == 0;
zap_cursor_advance(&zc)) {
(void) printf("\t\t%s = %lld (type: %s)\n",
attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
}
zap_cursor_fini(&zc);
}
static void
dump_spacemap(objset_t *os, space_map_obj_t *smo, space_map_t *sm)
{
uint64_t alloc, offset, entry;
uint8_t mapshift = sm->sm_shift;
uint64_t mapstart = sm->sm_start;
char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
"INVALID", "INVALID", "INVALID", "INVALID" };
if (smo->smo_object == 0)
return;
/*
* Print out the freelist entries in both encoded and decoded form.
*/
alloc = 0;
for (offset = 0; offset < smo->smo_objsize; offset += sizeof (entry)) {
VERIFY(0 == dmu_read(os, smo->smo_object, offset,
sizeof (entry), &entry, DMU_READ_PREFETCH));
if (SM_DEBUG_DECODE(entry)) {
(void) printf("\t\t[%4llu] %s: txg %llu, pass %llu\n",
(u_longlong_t)(offset / sizeof (entry)),
ddata[SM_DEBUG_ACTION_DECODE(entry)],
(u_longlong_t)SM_DEBUG_TXG_DECODE(entry),
(u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(entry));
} else {
(void) printf("\t\t[%4llu] %c range:"
" %08llx-%08llx size: %06llx\n",
(u_longlong_t)(offset / sizeof (entry)),
SM_TYPE_DECODE(entry) == SM_ALLOC ? 'A' : 'F',
(u_longlong_t)((SM_OFFSET_DECODE(entry) <<
mapshift) + mapstart),
(u_longlong_t)((SM_OFFSET_DECODE(entry) <<
mapshift) + mapstart + (SM_RUN_DECODE(entry) <<
mapshift)),
(u_longlong_t)(SM_RUN_DECODE(entry) << mapshift));
if (SM_TYPE_DECODE(entry) == SM_ALLOC)
alloc += SM_RUN_DECODE(entry) << mapshift;
else
alloc -= SM_RUN_DECODE(entry) << mapshift;
}
}
if (alloc != smo->smo_alloc) {
(void) printf("space_map_object alloc (%llu) INCONSISTENT "
"with space map summary (%llu)\n",
(u_longlong_t)smo->smo_alloc, (u_longlong_t)alloc);
}
}
static void
dump_metaslab_stats(metaslab_t *msp)
{
char maxbuf[5];
space_map_t *sm = &msp->ms_map;
avl_tree_t *t = sm->sm_pp_root;
int free_pct = sm->sm_space * 100 / sm->sm_size;
nicenum(space_map_maxsize(sm), maxbuf);
(void) printf("\t %20s %10lu %7s %6s %4s %4d%%\n",
"segments", avl_numnodes(t), "maxsize", maxbuf,
"freepct", free_pct);
}
static void
dump_metaslab(metaslab_t *msp)
{
char freebuf[5];
space_map_obj_t *smo = &msp->ms_smo;
vdev_t *vd = msp->ms_group->mg_vd;
spa_t *spa = vd->vdev_spa;
nicenum(msp->ms_map.sm_size - smo->smo_alloc, freebuf);
(void) printf(
"\tvdev %5llu offset %12llx spacemap %6llu free %5s\n",
(u_longlong_t)vd->vdev_id, (u_longlong_t)msp->ms_map.sm_start,
(u_longlong_t)smo->smo_object, freebuf);
if (dump_opt['m'] > 1) {
mutex_enter(&msp->ms_lock);
VERIFY(space_map_load(&msp->ms_map, zfs_metaslab_ops,
SM_FREE, &msp->ms_smo, spa->spa_meta_objset) == 0);
dump_metaslab_stats(msp);
space_map_unload(&msp->ms_map);
mutex_exit(&msp->ms_lock);
}
if (dump_opt['d'] > 5 || dump_opt['m'] > 2) {
ASSERT(msp->ms_map.sm_size == (1ULL << vd->vdev_ms_shift));
mutex_enter(&msp->ms_lock);
dump_spacemap(spa->spa_meta_objset, smo, &msp->ms_map);
mutex_exit(&msp->ms_lock);
}
}
static void
dump_metaslabs(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd;
int c, m;
(void) printf("\nMetaslabs:\n");
for (c = 0; c < rvd->vdev_children; c++) {
vd = rvd->vdev_child[c];
(void) printf("\t%-10s %-19s %-15s %-10s\n",
"vdev", "offset", "spacemap", "free");
(void) printf("\t%10s %19s %15s %10s\n",
"----------", "-------------------",
"---------------", "-------------");
for (m = 0; m < vd->vdev_ms_count; m++)
dump_metaslab(vd->vdev_ms[m]);
(void) printf("\n");
}
}
static void
dump_dtl_seg(space_map_t *sm, uint64_t start, uint64_t size)
{
char *prefix = (void *)sm;
(void) printf("%s [%llu,%llu) length %llu\n",
prefix,
(u_longlong_t)start,
(u_longlong_t)(start + size),
(u_longlong_t)(size));
}
static void
dump_dtl(vdev_t *vd, int indent)
{
spa_t *spa = vd->vdev_spa;
boolean_t required;
char *name[DTL_TYPES] = { "missing", "partial", "scrub", "outage" };
char prefix[256];
spa_vdev_state_enter(spa);
required = vdev_dtl_required(vd);
(void) spa_vdev_state_exit(spa, NULL, 0);
if (indent == 0)
(void) printf("\nDirty time logs:\n\n");
(void) printf("\t%*s%s [%s]\n", indent, "",
vd->vdev_path ? vd->vdev_path :
vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
required ? "DTL-required" : "DTL-expendable");
for (int t = 0; t < DTL_TYPES; t++) {
space_map_t *sm = &vd->vdev_dtl[t];
if (sm->sm_space == 0)
continue;
(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
indent + 2, "", name[t]);
mutex_enter(sm->sm_lock);
space_map_walk(sm, dump_dtl_seg, (void *)prefix);
mutex_exit(sm->sm_lock);
if (dump_opt['d'] > 5 && vd->vdev_children == 0)
dump_spacemap(spa->spa_meta_objset,
&vd->vdev_dtl_smo, sm);
}
for (int c = 0; c < vd->vdev_children; c++)
dump_dtl(vd->vdev_child[c], indent + 4);
}
/*ARGSUSED*/
static void
dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
{
}
static uint64_t
blkid2offset(const dnode_phys_t *dnp, int level, uint64_t blkid)
{
if (level < 0)
return (blkid);
return ((blkid << (level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
}
static void
sprintf_blkptr_compact(char *blkbuf, blkptr_t *bp, int alldvas)
{
dva_t *dva = bp->blk_dva;
int ndvas = alldvas ? BP_GET_NDVAS(bp) : 1;
int i;
blkbuf[0] = '\0';
for (i = 0; i < ndvas; i++)
(void) sprintf(blkbuf + strlen(blkbuf), "%llu:%llx:%llx ",
(u_longlong_t)DVA_GET_VDEV(&dva[i]),
(u_longlong_t)DVA_GET_OFFSET(&dva[i]),
(u_longlong_t)DVA_GET_ASIZE(&dva[i]));
(void) sprintf(blkbuf + strlen(blkbuf), "%llxL/%llxP F=%llu B=%llu",
(u_longlong_t)BP_GET_LSIZE(bp),
(u_longlong_t)BP_GET_PSIZE(bp),
(u_longlong_t)bp->blk_fill,
(u_longlong_t)bp->blk_birth);
}
static void
print_indirect(blkptr_t *bp, const zbookmark_t *zb,
const dnode_phys_t *dnp)
{
char blkbuf[BP_SPRINTF_LEN];
int l;
ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
(void) printf("%16llx ",
(u_longlong_t)blkid2offset(dnp, zb->zb_level, zb->zb_blkid));
ASSERT(zb->zb_level >= 0);
for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
if (l == zb->zb_level) {
(void) printf("L%llx", (u_longlong_t)zb->zb_level);
} else {
(void) printf(" ");
}
}
sprintf_blkptr_compact(blkbuf, bp, dump_opt['d'] > 5 ? 1 : 0);
(void) printf("%s\n", blkbuf);
}
#define SET_BOOKMARK(zb, objset, object, level, blkid) \
{ \
(zb)->zb_objset = objset; \
(zb)->zb_object = object; \
(zb)->zb_level = level; \
(zb)->zb_blkid = blkid; \
}
static int
visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
blkptr_t *bp, const zbookmark_t *zb)
{
int err;
if (bp->blk_birth == 0)
return (0);
print_indirect(bp, zb, dnp);
if (BP_GET_LEVEL(bp) > 0) {
uint32_t flags = ARC_WAIT;
int i;
blkptr_t *cbp;
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
arc_buf_t *buf;
uint64_t fill = 0;
err = arc_read_nolock(NULL, spa, bp, arc_getbuf_func, &buf,
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
if (err)
return (err);
/* recursively visit blocks below this */
cbp = buf->b_data;
for (i = 0; i < epb; i++, cbp++) {
zbookmark_t czb;
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
zb->zb_level - 1,
zb->zb_blkid * epb + i);
err = visit_indirect(spa, dnp, cbp, &czb);
if (err)
break;
fill += cbp->blk_fill;
}
if (!err)
ASSERT3U(fill, ==, bp->blk_fill);
(void) arc_buf_remove_ref(buf, &buf);
}
return (err);
}
/*ARGSUSED*/
static void
dump_indirect(dnode_t *dn)
{
dnode_phys_t *dnp = dn->dn_phys;
int j;
zbookmark_t czb;
(void) printf("Indirect blocks:\n");
SET_BOOKMARK(&czb, dmu_objset_id(&dn->dn_objset->os),
dn->dn_object, dnp->dn_nlevels - 1, 0);
for (j = 0; j < dnp->dn_nblkptr; j++) {
czb.zb_blkid = j;
(void) visit_indirect(dmu_objset_spa(&dn->dn_objset->os), dnp,
&dnp->dn_blkptr[j], &czb);
}
(void) printf("\n");
}
/*ARGSUSED*/
static void
dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
{
dsl_dir_phys_t *dd = data;
time_t crtime;
char nice[6];
if (dd == NULL)
return;
ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
crtime = dd->dd_creation_time;
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
(void) printf("\t\thead_dataset_obj = %llu\n",
(u_longlong_t)dd->dd_head_dataset_obj);
(void) printf("\t\tparent_dir_obj = %llu\n",
(u_longlong_t)dd->dd_parent_obj);
(void) printf("\t\torigin_obj = %llu\n",
(u_longlong_t)dd->dd_origin_obj);
(void) printf("\t\tchild_dir_zapobj = %llu\n",
(u_longlong_t)dd->dd_child_dir_zapobj);
nicenum(dd->dd_used_bytes, nice);
(void) printf("\t\tused_bytes = %s\n", nice);
nicenum(dd->dd_compressed_bytes, nice);
(void) printf("\t\tcompressed_bytes = %s\n", nice);
nicenum(dd->dd_uncompressed_bytes, nice);
(void) printf("\t\tuncompressed_bytes = %s\n", nice);
nicenum(dd->dd_quota, nice);
(void) printf("\t\tquota = %s\n", nice);
nicenum(dd->dd_reserved, nice);
(void) printf("\t\treserved = %s\n", nice);
(void) printf("\t\tprops_zapobj = %llu\n",
(u_longlong_t)dd->dd_props_zapobj);
(void) printf("\t\tdeleg_zapobj = %llu\n",
(u_longlong_t)dd->dd_deleg_zapobj);
(void) printf("\t\tflags = %llx\n",
(u_longlong_t)dd->dd_flags);
#define DO(which) \
nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice); \
(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
DO(HEAD);
DO(SNAP);
DO(CHILD);
DO(CHILD_RSRV);
DO(REFRSRV);
#undef DO
}
/*ARGSUSED*/
static void
dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
{
dsl_dataset_phys_t *ds = data;
time_t crtime;
char used[6], compressed[6], uncompressed[6], unique[6];
char blkbuf[BP_SPRINTF_LEN];
if (ds == NULL)
return;
ASSERT(size == sizeof (*ds));
crtime = ds->ds_creation_time;
nicenum(ds->ds_used_bytes, used);
nicenum(ds->ds_compressed_bytes, compressed);
nicenum(ds->ds_uncompressed_bytes, uncompressed);
nicenum(ds->ds_unique_bytes, unique);
sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, &ds->ds_bp);
(void) printf("\t\tdir_obj = %llu\n",
(u_longlong_t)ds->ds_dir_obj);
(void) printf("\t\tprev_snap_obj = %llu\n",
(u_longlong_t)ds->ds_prev_snap_obj);
(void) printf("\t\tprev_snap_txg = %llu\n",
(u_longlong_t)ds->ds_prev_snap_txg);
(void) printf("\t\tnext_snap_obj = %llu\n",
(u_longlong_t)ds->ds_next_snap_obj);
(void) printf("\t\tsnapnames_zapobj = %llu\n",
(u_longlong_t)ds->ds_snapnames_zapobj);
(void) printf("\t\tnum_children = %llu\n",
(u_longlong_t)ds->ds_num_children);
(void) printf("\t\tuserrefs_obj = %llu\n",
(u_longlong_t)ds->ds_userrefs_obj);
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
(void) printf("\t\tcreation_txg = %llu\n",
(u_longlong_t)ds->ds_creation_txg);
(void) printf("\t\tdeadlist_obj = %llu\n",
(u_longlong_t)ds->ds_deadlist_obj);
(void) printf("\t\tused_bytes = %s\n", used);
(void) printf("\t\tcompressed_bytes = %s\n", compressed);
(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
(void) printf("\t\tunique = %s\n", unique);
(void) printf("\t\tfsid_guid = %llu\n",
(u_longlong_t)ds->ds_fsid_guid);
(void) printf("\t\tguid = %llu\n",
(u_longlong_t)ds->ds_guid);
(void) printf("\t\tflags = %llx\n",
(u_longlong_t)ds->ds_flags);
(void) printf("\t\tnext_clones_obj = %llu\n",
(u_longlong_t)ds->ds_next_clones_obj);
(void) printf("\t\tprops_obj = %llu\n",
(u_longlong_t)ds->ds_props_obj);
(void) printf("\t\tbp = %s\n", blkbuf);
}
static void
dump_bplist(objset_t *mos, uint64_t object, char *name)
{
bplist_t bpl = { 0 };
blkptr_t blk, *bp = &blk;
uint64_t itor = 0;
char bytes[6];
char comp[6];
char uncomp[6];
if (dump_opt['d'] < 3)
return;
mutex_init(&bpl.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
VERIFY(0 == bplist_open(&bpl, mos, object));
if (bplist_empty(&bpl)) {
bplist_close(&bpl);
mutex_destroy(&bpl.bpl_lock);
return;
}
nicenum(bpl.bpl_phys->bpl_bytes, bytes);
if (bpl.bpl_dbuf->db_size == sizeof (bplist_phys_t)) {
nicenum(bpl.bpl_phys->bpl_comp, comp);
nicenum(bpl.bpl_phys->bpl_uncomp, uncomp);
(void) printf("\n %s: %llu entries, %s (%s/%s comp)\n",
name, (u_longlong_t)bpl.bpl_phys->bpl_entries,
bytes, comp, uncomp);
} else {
(void) printf("\n %s: %llu entries, %s\n",
name, (u_longlong_t)bpl.bpl_phys->bpl_entries, bytes);
}
if (dump_opt['d'] < 5) {
bplist_close(&bpl);
mutex_destroy(&bpl.bpl_lock);
return;
}
(void) printf("\n");
while (bplist_iterate(&bpl, &itor, bp) == 0) {
char blkbuf[BP_SPRINTF_LEN];
ASSERT(bp->blk_birth != 0);
sprintf_blkptr_compact(blkbuf, bp, dump_opt['d'] > 5 ? 1 : 0);
(void) printf("\tItem %3llu: %s\n",
(u_longlong_t)itor - 1, blkbuf);
}
bplist_close(&bpl);
mutex_destroy(&bpl.bpl_lock);
}
static avl_tree_t idx_tree;
static avl_tree_t domain_tree;
static boolean_t fuid_table_loaded;
static void
fuid_table_destroy()
{
if (fuid_table_loaded) {
zfs_fuid_table_destroy(&idx_tree, &domain_tree);
fuid_table_loaded = B_FALSE;
}
}
/*
* print uid or gid information.
* For normal POSIX id just the id is printed in decimal format.
* For CIFS files with FUID the fuid is printed in hex followed by
* the doman-rid string.
*/
static void
print_idstr(uint64_t id, const char *id_type)
{
if (FUID_INDEX(id)) {
char *domain;
domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
(void) printf("\t%s %llx [%s-%d]\n", id_type,
(u_longlong_t)id, domain, (int)FUID_RID(id));
} else {
(void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
}
}
static void
dump_uidgid(objset_t *os, znode_phys_t *zp)
{
uint32_t uid_idx, gid_idx;
uid_idx = FUID_INDEX(zp->zp_uid);
gid_idx = FUID_INDEX(zp->zp_gid);
/* Load domain table, if not already loaded */
if (!fuid_table_loaded && (uid_idx || gid_idx)) {
uint64_t fuid_obj;
/* first find the fuid object. It lives in the master node */
VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
8, 1, &fuid_obj) == 0);
zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
(void) zfs_fuid_table_load(os, fuid_obj,
&idx_tree, &domain_tree);
fuid_table_loaded = B_TRUE;
}
print_idstr(zp->zp_uid, "uid");
print_idstr(zp->zp_gid, "gid");
}
/*ARGSUSED*/
static void
dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
{
znode_phys_t *zp = data;
time_t z_crtime, z_atime, z_mtime, z_ctime;
char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
int error;
ASSERT(size >= sizeof (znode_phys_t));
error = zfs_obj_to_path(os, object, path, sizeof (path));
if (error != 0) {
(void) snprintf(path, sizeof (path), "\?\?\?<object#%llu>",
(u_longlong_t)object);
}
if (dump_opt['d'] < 3) {
(void) printf("\t%s\n", path);
return;
}
z_crtime = (time_t)zp->zp_crtime[0];
z_atime = (time_t)zp->zp_atime[0];
z_mtime = (time_t)zp->zp_mtime[0];
z_ctime = (time_t)zp->zp_ctime[0];
(void) printf("\tpath %s\n", path);
dump_uidgid(os, zp);
(void) printf("\tatime %s", ctime(&z_atime));
(void) printf("\tmtime %s", ctime(&z_mtime));
(void) printf("\tctime %s", ctime(&z_ctime));
(void) printf("\tcrtime %s", ctime(&z_crtime));
(void) printf("\tgen %llu\n", (u_longlong_t)zp->zp_gen);
(void) printf("\tmode %llo\n", (u_longlong_t)zp->zp_mode);
(void) printf("\tsize %llu\n", (u_longlong_t)zp->zp_size);
(void) printf("\tparent %llu\n", (u_longlong_t)zp->zp_parent);
(void) printf("\tlinks %llu\n", (u_longlong_t)zp->zp_links);
(void) printf("\txattr %llu\n", (u_longlong_t)zp->zp_xattr);
(void) printf("\trdev 0x%016llx\n", (u_longlong_t)zp->zp_rdev);
}
/*ARGSUSED*/
static void
dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
{
}
/*ARGSUSED*/
static void
dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
{
}
static object_viewer_t *object_viewer[DMU_OT_NUMTYPES] = {
dump_none, /* unallocated */
dump_zap, /* object directory */
dump_uint64, /* object array */
dump_none, /* packed nvlist */
dump_packed_nvlist, /* packed nvlist size */
dump_none, /* bplist */
dump_none, /* bplist header */
dump_none, /* SPA space map header */
dump_none, /* SPA space map */
dump_none, /* ZIL intent log */
dump_dnode, /* DMU dnode */
dump_dmu_objset, /* DMU objset */
dump_dsl_dir, /* DSL directory */
dump_zap, /* DSL directory child map */
dump_zap, /* DSL dataset snap map */
dump_zap, /* DSL props */
dump_dsl_dataset, /* DSL dataset */
dump_znode, /* ZFS znode */
dump_acl, /* ZFS V0 ACL */
dump_uint8, /* ZFS plain file */
dump_zpldir, /* ZFS directory */
dump_zap, /* ZFS master node */
dump_zap, /* ZFS delete queue */
dump_uint8, /* zvol object */
dump_zap, /* zvol prop */
dump_uint8, /* other uint8[] */
dump_uint64, /* other uint64[] */
dump_zap, /* other ZAP */
dump_zap, /* persistent error log */
dump_uint8, /* SPA history */
dump_uint64, /* SPA history offsets */
dump_zap, /* Pool properties */
dump_zap, /* DSL permissions */
dump_acl, /* ZFS ACL */
dump_uint8, /* ZFS SYSACL */
dump_none, /* FUID nvlist */
dump_packed_nvlist, /* FUID nvlist size */
dump_zap, /* DSL dataset next clones */
dump_zap, /* DSL scrub queue */
dump_zap, /* ZFS user/group used */
dump_zap, /* ZFS user/group quota */
dump_zap, /* snapshot refcount tags */
};
static void
dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header)
{
dmu_buf_t *db = NULL;
dmu_object_info_t doi;
dnode_t *dn;
void *bonus = NULL;
size_t bsize = 0;
char iblk[6], dblk[6], lsize[6], asize[6], bonus_size[6], segsize[6];
char aux[50];
int error;
if (*print_header) {
(void) printf("\n Object lvl iblk dblk lsize"
" asize type\n");
*print_header = 0;
}
if (object == 0) {
dn = os->os->os_meta_dnode;
} else {
error = dmu_bonus_hold(os, object, FTAG, &db);
if (error)
fatal("dmu_bonus_hold(%llu) failed, errno %u",
object, error);
bonus = db->db_data;
bsize = db->db_size;
dn = ((dmu_buf_impl_t *)db)->db_dnode;
}
dmu_object_info_from_dnode(dn, &doi);
nicenum(doi.doi_metadata_block_size, iblk);
nicenum(doi.doi_data_block_size, dblk);
nicenum(doi.doi_data_block_size * (doi.doi_max_block_offset + 1),
lsize);
nicenum(doi.doi_physical_blks << 9, asize);
nicenum(doi.doi_bonus_size, bonus_size);
aux[0] = '\0';
if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
(void) snprintf(aux + strlen(aux), sizeof (aux), " (K=%s)",
zio_checksum_table[doi.doi_checksum].ci_name);
}
if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
(void) snprintf(aux + strlen(aux), sizeof (aux), " (Z=%s)",
zio_compress_table[doi.doi_compress].ci_name);
}
(void) printf("%10lld %3u %5s %5s %5s %5s %s%s\n",
(u_longlong_t)object, doi.doi_indirection, iblk, dblk, lsize,
asize, dmu_ot[doi.doi_type].ot_name, aux);
if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
(void) printf("%10s %3s %5s %5s %5s %5s %s\n",
"", "", "", "", bonus_size, "bonus",
dmu_ot[doi.doi_bonus_type].ot_name);
}
if (verbosity >= 4) {
(void) printf("\tdnode flags: %s%s\n",
(dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
"USED_BYTES " : "",
(dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
"USERUSED_ACCOUNTED " : "");
(void) printf("\tdnode maxblkid: %llu\n",
(longlong_t)dn->dn_phys->dn_maxblkid);
object_viewer[doi.doi_bonus_type](os, object, bonus, bsize);
object_viewer[doi.doi_type](os, object, NULL, 0);
*print_header = 1;
}
if (verbosity >= 5)
dump_indirect(dn);
if (verbosity >= 5) {
/*
* Report the list of segments that comprise the object.
*/
uint64_t start = 0;
uint64_t end;
uint64_t blkfill = 1;
int minlvl = 1;
if (dn->dn_type == DMU_OT_DNODE) {
minlvl = 0;
blkfill = DNODES_PER_BLOCK;
}
for (;;) {
error = dnode_next_offset(dn,
0, &start, minlvl, blkfill, 0);
if (error)
break;
end = start;
error = dnode_next_offset(dn,
DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
nicenum(end - start, segsize);
(void) printf("\t\tsegment [%016llx, %016llx)"
" size %5s\n", (u_longlong_t)start,
(u_longlong_t)end, segsize);
if (error)
break;
start = end;
}
}
if (db != NULL)
dmu_buf_rele(db, FTAG);
}
static char *objset_types[DMU_OST_NUMTYPES] = {
"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
static void
dump_dir(objset_t *os)
{
dmu_objset_stats_t dds;
uint64_t object, object_count;
uint64_t refdbytes, usedobjs, scratch;
char numbuf[8];
char blkbuf[BP_SPRINTF_LEN + 20];
char osname[MAXNAMELEN];
char *type = "UNKNOWN";
int verbosity = dump_opt['d'];
int print_header = 1;
int i, error;
dmu_objset_fast_stat(os, &dds);
if (dds.dds_type < DMU_OST_NUMTYPES)
type = objset_types[dds.dds_type];
if (dds.dds_type == DMU_OST_META) {
dds.dds_creation_txg = TXG_INITIAL;
usedobjs = os->os->os_rootbp->blk_fill;
refdbytes = os->os->os_spa->spa_dsl_pool->
dp_mos_dir->dd_phys->dd_used_bytes;
} else {
dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
}
ASSERT3U(usedobjs, ==, os->os->os_rootbp->blk_fill);
nicenum(refdbytes, numbuf);
if (verbosity >= 4) {
(void) sprintf(blkbuf + strlen(blkbuf), ", rootbp ");
(void) sprintf_blkptr(blkbuf + strlen(blkbuf),
BP_SPRINTF_LEN - strlen(blkbuf), os->os->os_rootbp);
} else {
blkbuf[0] = '\0';
}
dmu_objset_name(os, osname);
(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
"%s, %llu objects%s\n",
osname, type, (u_longlong_t)dmu_objset_id(os),
(u_longlong_t)dds.dds_creation_txg,
numbuf, (u_longlong_t)usedobjs, blkbuf);
dump_intent_log(dmu_objset_zil(os));
if (dmu_objset_ds(os) != NULL)
dump_bplist(dmu_objset_pool(os)->dp_meta_objset,
dmu_objset_ds(os)->ds_phys->ds_deadlist_obj, "Deadlist");
if (verbosity < 2)
return;
if (os->os->os_rootbp->blk_birth == 0)
return;
if (zopt_objects != 0) {
for (i = 0; i < zopt_objects; i++)
dump_object(os, zopt_object[i], verbosity,
&print_header);
(void) printf("\n");
return;
}
dump_object(os, 0, verbosity, &print_header);
object_count = 0;
if (os->os->os_userused_dnode &&
os->os->os_userused_dnode->dn_type != 0) {
dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header);
dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header);
}
object = 0;
while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
dump_object(os, object, verbosity, &print_header);
object_count++;
}
ASSERT3U(object_count, ==, usedobjs);
(void) printf("\n");
if (error != ESRCH) {
(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
abort();
}
}
static void
dump_uberblock(uberblock_t *ub)
{
time_t timestamp = ub->ub_timestamp;
(void) printf("Uberblock\n\n");
(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
(void) printf("\ttimestamp = %llu UTC = %s",
(u_longlong_t)ub->ub_timestamp, asctime(localtime(&timestamp)));
if (dump_opt['u'] >= 3) {
char blkbuf[BP_SPRINTF_LEN];
sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, &ub->ub_rootbp);
(void) printf("\trootbp = %s\n", blkbuf);
}
(void) printf("\n");
}
static void
dump_config(const char *pool)
{
spa_t *spa = NULL;
mutex_enter(&spa_namespace_lock);
while ((spa = spa_next(spa)) != NULL) {
if (pool == NULL)
(void) printf("%s\n", spa_name(spa));
if (pool == NULL || strcmp(pool, spa_name(spa)) == 0)
dump_nvlist(spa->spa_config, 4);
}
mutex_exit(&spa_namespace_lock);
}
static void
dump_cachefile(const char *cachefile)
{
int fd;
struct stat64 statbuf;
char *buf;
nvlist_t *config;
if ((fd = open64(cachefile, O_RDONLY)) < 0) {
(void) printf("cannot open '%s': %s\n", cachefile,
strerror(errno));
exit(1);
}
if (fstat64(fd, &statbuf) != 0) {
(void) printf("failed to stat '%s': %s\n", cachefile,
strerror(errno));
exit(1);
}
if ((buf = malloc(statbuf.st_size)) == NULL) {
(void) fprintf(stderr, "failed to allocate %llu bytes\n",
(u_longlong_t)statbuf.st_size);
exit(1);
}
if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
(void) fprintf(stderr, "failed to read %llu bytes\n",
(u_longlong_t)statbuf.st_size);
exit(1);
}
(void) close(fd);
if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
(void) fprintf(stderr, "failed to unpack nvlist\n");
exit(1);
}
free(buf);
dump_nvlist(config, 0);
nvlist_free(config);
}
static void
dump_label(const char *dev)
{
int fd;
vdev_label_t label;
char *buf = label.vl_vdev_phys.vp_nvlist;
size_t buflen = sizeof (label.vl_vdev_phys.vp_nvlist);
struct stat64 statbuf;
uint64_t psize;
int l;
if ((fd = open64(dev, O_RDONLY)) < 0) {
(void) printf("cannot open '%s': %s\n", dev, strerror(errno));
exit(1);
}
if (fstat64(fd, &statbuf) != 0) {
(void) printf("failed to stat '%s': %s\n", dev,
strerror(errno));
exit(1);
}
psize = statbuf.st_size;
psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
for (l = 0; l < VDEV_LABELS; l++) {
nvlist_t *config = NULL;
(void) printf("--------------------------------------------\n");
(void) printf("LABEL %d\n", l);
(void) printf("--------------------------------------------\n");
if (pread64(fd, &label, sizeof (label),
vdev_label_offset(psize, l, 0)) != sizeof (label)) {
(void) printf("failed to read label %d\n", l);
continue;
}
if (nvlist_unpack(buf, buflen, &config, 0) != 0) {
(void) printf("failed to unpack label %d\n", l);
continue;
}
dump_nvlist(config, 4);
nvlist_free(config);
}
}
/*ARGSUSED*/
static int
dump_one_dir(char *dsname, void *arg)
{
int error;
objset_t *os;
error = dmu_objset_open(dsname, DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &os);
if (error) {
(void) printf("Could not open %s\n", dsname);
return (0);
}
dump_dir(os);
dmu_objset_close(os);
fuid_table_destroy();
return (0);
}
static void
zdb_leak(space_map_t *sm, uint64_t start, uint64_t size)
{
vdev_t *vd = sm->sm_ppd;
(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
(u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
}
/* ARGSUSED */
static void
zdb_space_map_load(space_map_t *sm)
{
}
static void
zdb_space_map_unload(space_map_t *sm)
{
space_map_vacate(sm, zdb_leak, sm);
}
/* ARGSUSED */
static void
zdb_space_map_claim(space_map_t *sm, uint64_t start, uint64_t size)
{
}
static space_map_ops_t zdb_space_map_ops = {
zdb_space_map_load,
zdb_space_map_unload,
NULL, /* alloc */
zdb_space_map_claim,
NULL, /* free */
NULL /* maxsize */
};
static void
zdb_leak_init(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
for (int c = 0; c < rvd->vdev_children; c++) {
vdev_t *vd = rvd->vdev_child[c];
for (int m = 0; m < vd->vdev_ms_count; m++) {
metaslab_t *msp = vd->vdev_ms[m];
mutex_enter(&msp->ms_lock);
VERIFY(space_map_load(&msp->ms_map, &zdb_space_map_ops,
SM_ALLOC, &msp->ms_smo, spa->spa_meta_objset) == 0);
msp->ms_map.sm_ppd = vd;
mutex_exit(&msp->ms_lock);
}
}
}
static void
zdb_leak_fini(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
for (int c = 0; c < rvd->vdev_children; c++) {
vdev_t *vd = rvd->vdev_child[c];
for (int m = 0; m < vd->vdev_ms_count; m++) {
metaslab_t *msp = vd->vdev_ms[m];
mutex_enter(&msp->ms_lock);
space_map_unload(&msp->ms_map);
mutex_exit(&msp->ms_lock);
}
}
}
/*
* Verify that the sum of the sizes of all blocks in the pool adds up
* to the SPA's sa_alloc total.
*/
typedef struct zdb_blkstats {
uint64_t zb_asize;
uint64_t zb_lsize;
uint64_t zb_psize;
uint64_t zb_count;
} zdb_blkstats_t;
#define DMU_OT_DEFERRED DMU_OT_NONE
#define DMU_OT_TOTAL DMU_OT_NUMTYPES
#define ZB_TOTAL DN_MAX_LEVELS
typedef struct zdb_cb {
zdb_blkstats_t zcb_type[ZB_TOTAL + 1][DMU_OT_TOTAL + 1];
uint64_t zcb_errors[256];
int zcb_readfails;
int zcb_haderrors;
} zdb_cb_t;
static void
zdb_count_block(spa_t *spa, zdb_cb_t *zcb, blkptr_t *bp, dmu_object_type_t type)
{
for (int i = 0; i < 4; i++) {
int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
int t = (i & 1) ? type : DMU_OT_TOTAL;
zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
zb->zb_asize += BP_GET_ASIZE(bp);
zb->zb_lsize += BP_GET_LSIZE(bp);
zb->zb_psize += BP_GET_PSIZE(bp);
zb->zb_count++;
}
if (dump_opt['S']) {
boolean_t print_sig;
print_sig = !zdb_sig_user_data || (BP_GET_LEVEL(bp) == 0 &&
BP_GET_TYPE(bp) == DMU_OT_PLAIN_FILE_CONTENTS);
if (BP_GET_CHECKSUM(bp) < zdb_sig_cksumalg)
print_sig = B_FALSE;
if (print_sig) {
(void) printf("%llu\t%lld\t%lld\t%s\t%s\t%s\t"
"%llx:%llx:%llx:%llx\n",
(u_longlong_t)BP_GET_LEVEL(bp),
(longlong_t)BP_GET_PSIZE(bp),
(longlong_t)BP_GET_NDVAS(bp),
dmu_ot[BP_GET_TYPE(bp)].ot_name,
zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
(u_longlong_t)bp->blk_cksum.zc_word[0],
(u_longlong_t)bp->blk_cksum.zc_word[1],
(u_longlong_t)bp->blk_cksum.zc_word[2],
(u_longlong_t)bp->blk_cksum.zc_word[3]);
}
}
if (!dump_opt['L'])
VERIFY(zio_wait(zio_claim(NULL, spa, spa_first_txg(spa), bp,
NULL, NULL, ZIO_FLAG_MUSTSUCCEED)) == 0);
}
static int
zdb_blkptr_cb(spa_t *spa, blkptr_t *bp, const zbookmark_t *zb,
const dnode_phys_t *dnp, void *arg)
{
zdb_cb_t *zcb = arg;
char blkbuf[BP_SPRINTF_LEN];
dmu_object_type_t type;
boolean_t is_l0_metadata;
if (bp == NULL)
return (0);
type = BP_GET_TYPE(bp);
zdb_count_block(spa, zcb, bp, type);
/*
* if we do metadata-only checksumming there's no need to checksum
* indirect blocks here because it is done during traverse
*/
is_l0_metadata = (BP_GET_LEVEL(bp) == 0 && type < DMU_OT_NUMTYPES &&
dmu_ot[type].ot_metadata);
if (dump_opt['c'] > 1 || dump_opt['S'] ||
(dump_opt['c'] && is_l0_metadata)) {
int ioerr, size;
void *data;
size = BP_GET_LSIZE(bp);
data = malloc(size);
ioerr = zio_wait(zio_read(NULL, spa, bp, data, size,
NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB, zb));
free(data);
/* We expect io errors on intent log */
if (ioerr && type != DMU_OT_INTENT_LOG) {
zcb->zcb_haderrors = 1;
zcb->zcb_errors[ioerr]++;
if (dump_opt['b'] >= 2)
sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, bp);
else
blkbuf[0] = '\0';
if (!dump_opt['S']) {
(void) printf("zdb_blkptr_cb: "
"Got error %d reading "
"<%llu, %llu, %lld, %llx> %s -- skipping\n",
ioerr,
(u_longlong_t)zb->zb_objset,
(u_longlong_t)zb->zb_object,
(u_longlong_t)zb->zb_level,
(u_longlong_t)zb->zb_blkid,
blkbuf);
}
}
}
zcb->zcb_readfails = 0;
if (dump_opt['b'] >= 4) {
sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, bp);
(void) printf("objset %llu object %llu offset 0x%llx %s\n",
(u_longlong_t)zb->zb_objset,
(u_longlong_t)zb->zb_object,
(u_longlong_t)blkid2offset(dnp, zb->zb_level, zb->zb_blkid),
blkbuf);
}
return (0);
}
static int
dump_block_stats(spa_t *spa)
{
zdb_cb_t zcb = { 0 };
zdb_blkstats_t *zb, *tzb;
uint64_t alloc, space, logalloc;
vdev_t *rvd = spa->spa_root_vdev;
int leaks = 0;
int c, e;
if (!dump_opt['S']) {
(void) printf("\nTraversing all blocks %s%s%s%s%s...\n",
(dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
(dump_opt['c'] == 1) ? "metadata " : "",
dump_opt['c'] ? "checksums " : "",
(dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
!dump_opt['L'] ? "nothing leaked " : "");
}
/*
* Load all space maps as SM_ALLOC maps, then traverse the pool
* claiming each block we discover. If the pool is perfectly
* consistent, the space maps will be empty when we're done.
* Anything left over is a leak; any block we can't claim (because
* it's not part of any space map) is a double allocation,
* reference to a freed block, or an unclaimed log block.
*/
if (!dump_opt['L'])
zdb_leak_init(spa);
/*
* If there's a deferred-free bplist, process that first.
*/
if (spa->spa_sync_bplist_obj != 0) {
bplist_t *bpl = &spa->spa_sync_bplist;
blkptr_t blk;
uint64_t itor = 0;
VERIFY(0 == bplist_open(bpl, spa->spa_meta_objset,
spa->spa_sync_bplist_obj));
while (bplist_iterate(bpl, &itor, &blk) == 0) {
if (dump_opt['b'] >= 4) {
char blkbuf[BP_SPRINTF_LEN];
sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, &blk);
(void) printf("[%s] %s\n",
"deferred free", blkbuf);
}
zdb_count_block(spa, &zcb, &blk, DMU_OT_DEFERRED);
}
bplist_close(bpl);
}
zcb.zcb_haderrors |= traverse_pool(spa, zdb_blkptr_cb, &zcb);
if (zcb.zcb_haderrors && !dump_opt['S']) {
(void) printf("\nError counts:\n\n");
(void) printf("\t%5s %s\n", "errno", "count");
for (e = 0; e < 256; e++) {
if (zcb.zcb_errors[e] != 0) {
(void) printf("\t%5d %llu\n",
e, (u_longlong_t)zcb.zcb_errors[e]);
}
}
}
/*
* Report any leaked segments.
*/
if (!dump_opt['L'])
zdb_leak_fini(spa);
/*
* If we're interested in printing out the blkptr signatures,
* return now as we don't print out anything else (including
* errors and leaks).
*/
if (dump_opt['S'])
return (zcb.zcb_haderrors ? 3 : 0);
alloc = spa_get_alloc(spa);
space = spa_get_space(spa);
/*
* Log blocks allocated from a separate log device don't count
* as part of the normal pool space; factor them in here.
*/
logalloc = 0;
for (c = 0; c < rvd->vdev_children; c++)
if (rvd->vdev_child[c]->vdev_islog)
logalloc += rvd->vdev_child[c]->vdev_stat.vs_alloc;
tzb = &zcb.zcb_type[ZB_TOTAL][DMU_OT_TOTAL];
if (tzb->zb_asize == alloc + logalloc) {
if (!dump_opt['L'])
(void) printf("\n\tNo leaks (block sum matches space"
" maps exactly)\n");
} else {
(void) printf("block traversal size %llu != alloc %llu "
"(%s %lld)\n",
(u_longlong_t)tzb->zb_asize,
(u_longlong_t)alloc + logalloc,
(dump_opt['L']) ? "unreachable" : "leaked",
(longlong_t)(alloc + logalloc - tzb->zb_asize));
leaks = 1;
}
if (tzb->zb_count == 0)
return (2);
(void) printf("\n");
(void) printf("\tbp count: %10llu\n",
(u_longlong_t)tzb->zb_count);
(void) printf("\tbp logical: %10llu\t avg: %6llu\n",
(u_longlong_t)tzb->zb_lsize,
(u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
(void) printf("\tbp physical: %10llu\t avg:"
" %6llu\tcompression: %6.2f\n",
(u_longlong_t)tzb->zb_psize,
(u_longlong_t)(tzb->zb_psize / tzb->zb_count),
(double)tzb->zb_lsize / tzb->zb_psize);
(void) printf("\tbp allocated: %10llu\t avg:"
" %6llu\tcompression: %6.2f\n",
(u_longlong_t)tzb->zb_asize,
(u_longlong_t)(tzb->zb_asize / tzb->zb_count),
(double)tzb->zb_lsize / tzb->zb_asize);
(void) printf("\tSPA allocated: %10llu\tused: %5.2f%%\n",
(u_longlong_t)alloc, 100.0 * alloc / space);
if (dump_opt['b'] >= 2) {
int l, t, level;
(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
"\t avg\t comp\t%%Total\tType\n");
for (t = 0; t <= DMU_OT_NUMTYPES; t++) {
char csize[6], lsize[6], psize[6], asize[6], avg[6];
char *typename;
typename = t == DMU_OT_DEFERRED ? "deferred free" :
t == DMU_OT_TOTAL ? "Total" : dmu_ot[t].ot_name;
if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) {
(void) printf("%6s\t%5s\t%5s\t%5s"
"\t%5s\t%5s\t%6s\t%s\n",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
typename);
continue;
}
for (l = ZB_TOTAL - 1; l >= -1; l--) {
level = (l == -1 ? ZB_TOTAL : l);
zb = &zcb.zcb_type[level][t];
if (zb->zb_asize == 0)
continue;
if (dump_opt['b'] < 3 && level != ZB_TOTAL)
continue;
if (level == 0 && zb->zb_asize ==
zcb.zcb_type[ZB_TOTAL][t].zb_asize)
continue;
nicenum(zb->zb_count, csize);
nicenum(zb->zb_lsize, lsize);
nicenum(zb->zb_psize, psize);
nicenum(zb->zb_asize, asize);
nicenum(zb->zb_asize / zb->zb_count, avg);
(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
"\t%5.2f\t%6.2f\t",
csize, lsize, psize, asize, avg,
(double)zb->zb_lsize / zb->zb_psize,
100.0 * zb->zb_asize / tzb->zb_asize);
if (level == ZB_TOTAL)
(void) printf("%s\n", typename);
else
(void) printf(" L%d %s\n",
level, typename);
}
}
}
(void) printf("\n");
if (leaks)
return (2);
if (zcb.zcb_haderrors)
return (3);
return (0);
}
static void
dump_zpool(spa_t *spa)
{
dsl_pool_t *dp = spa_get_dsl(spa);
int rc = 0;
if (dump_opt['u'])
dump_uberblock(&spa->spa_uberblock);
if (dump_opt['d'] || dump_opt['i'] || dump_opt['m']) {
dump_dir(dp->dp_meta_objset);
if (dump_opt['d'] >= 3) {
dump_bplist(dp->dp_meta_objset,
spa->spa_sync_bplist_obj, "Deferred frees");
dump_dtl(spa->spa_root_vdev, 0);
}
if (dump_opt['d'] >= 3 || dump_opt['m'])
dump_metaslabs(spa);
(void) dmu_objset_find(spa_name(spa), dump_one_dir, NULL,
DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
}
if (dump_opt['b'] || dump_opt['c'] || dump_opt['S'])
rc = dump_block_stats(spa);
if (dump_opt['s'])
show_pool_stats(spa);
if (rc != 0)
exit(rc);
}
#define ZDB_FLAG_CHECKSUM 0x0001
#define ZDB_FLAG_DECOMPRESS 0x0002
#define ZDB_FLAG_BSWAP 0x0004
#define ZDB_FLAG_GBH 0x0008
#define ZDB_FLAG_INDIRECT 0x0010
#define ZDB_FLAG_PHYS 0x0020
#define ZDB_FLAG_RAW 0x0040
#define ZDB_FLAG_PRINT_BLKPTR 0x0080
int flagbits[256];
static void
zdb_print_blkptr(blkptr_t *bp, int flags)
{
dva_t *dva = bp->blk_dva;
int d;
if (flags & ZDB_FLAG_BSWAP)
byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
/*
* Super-ick warning: This code is also duplicated in
* cmd/mdb/common/modules/zfs/zfs.c . Yeah, I hate code
* replication, too.
*/
for (d = 0; d < BP_GET_NDVAS(bp); d++) {
(void) printf("\tDVA[%d]: vdev_id %lld / %llx\n", d,
(longlong_t)DVA_GET_VDEV(&dva[d]),
(longlong_t)DVA_GET_OFFSET(&dva[d]));
(void) printf("\tDVA[%d]: GANG: %-5s GRID: %04llx\t"
"ASIZE: %llx\n", d,
DVA_GET_GANG(&dva[d]) ? "TRUE" : "FALSE",
(longlong_t)DVA_GET_GRID(&dva[d]),
(longlong_t)DVA_GET_ASIZE(&dva[d]));
(void) printf("\tDVA[%d]: :%llu:%llx:%llx:%s%s%s%s\n", d,
(u_longlong_t)DVA_GET_VDEV(&dva[d]),
(longlong_t)DVA_GET_OFFSET(&dva[d]),
(longlong_t)BP_GET_PSIZE(bp),
BP_SHOULD_BYTESWAP(bp) ? "e" : "",
!DVA_GET_GANG(&dva[d]) && BP_GET_LEVEL(bp) != 0 ?
"d" : "",
DVA_GET_GANG(&dva[d]) ? "g" : "",
BP_GET_COMPRESS(bp) != 0 ? "d" : "");
}
(void) printf("\tLSIZE: %-16llx\t\tPSIZE: %llx\n",
(longlong_t)BP_GET_LSIZE(bp), (longlong_t)BP_GET_PSIZE(bp));
(void) printf("\tENDIAN: %6s\t\t\t\t\tTYPE: %s\n",
BP_GET_BYTEORDER(bp) ? "LITTLE" : "BIG",
dmu_ot[BP_GET_TYPE(bp)].ot_name);
(void) printf("\tBIRTH: %-16llx LEVEL: %-2llu\tFILL: %llx\n",
(u_longlong_t)bp->blk_birth, (u_longlong_t)BP_GET_LEVEL(bp),
(u_longlong_t)bp->blk_fill);
(void) printf("\tCKFUNC: %-16s\t\tCOMP: %s\n",
zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
zio_compress_table[BP_GET_COMPRESS(bp)].ci_name);
(void) printf("\tCKSUM: %llx:%llx:%llx:%llx\n",
(u_longlong_t)bp->blk_cksum.zc_word[0],
(u_longlong_t)bp->blk_cksum.zc_word[1],
(u_longlong_t)bp->blk_cksum.zc_word[2],
(u_longlong_t)bp->blk_cksum.zc_word[3]);
}
static void
zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
{
int i;
for (i = 0; i < nbps; i++)
zdb_print_blkptr(&bp[i], flags);
}
static void
zdb_dump_gbh(void *buf, int flags)
{
zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
}
static void
zdb_dump_block_raw(void *buf, uint64_t size, int flags)
{
if (flags & ZDB_FLAG_BSWAP)
byteswap_uint64_array(buf, size);
(void) write(2, buf, size);
}
static void
zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
{
uint64_t *d = (uint64_t *)buf;
int nwords = size / sizeof (uint64_t);
int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
int i, j;
char *hdr, *c;
if (do_bswap)
hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
else
hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
(void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
for (i = 0; i < nwords; i += 2) {
(void) printf("%06llx: %016llx %016llx ",
(u_longlong_t)(i * sizeof (uint64_t)),
(u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
(u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
c = (char *)&d[i];
for (j = 0; j < 2 * sizeof (uint64_t); j++)
(void) printf("%c", isprint(c[j]) ? c[j] : '.');
(void) printf("\n");
}
}
/*
* There are two acceptable formats:
* leaf_name - For example: c1t0d0 or /tmp/ztest.0a
* child[.child]* - For example: 0.1.1
*
* The second form can be used to specify arbitrary vdevs anywhere
* in the heirarchy. For example, in a pool with a mirror of
* RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
*/
static vdev_t *
zdb_vdev_lookup(vdev_t *vdev, char *path)
{
char *s, *p, *q;
int i;
if (vdev == NULL)
return (NULL);
/* First, assume the x.x.x.x format */
i = (int)strtoul(path, &s, 10);
if (s == path || (s && *s != '.' && *s != '\0'))
goto name;
if (i < 0 || i >= vdev->vdev_children)
return (NULL);
vdev = vdev->vdev_child[i];
if (*s == '\0')
return (vdev);
return (zdb_vdev_lookup(vdev, s+1));
name:
for (i = 0; i < vdev->vdev_children; i++) {
vdev_t *vc = vdev->vdev_child[i];
if (vc->vdev_path == NULL) {
vc = zdb_vdev_lookup(vc, path);
if (vc == NULL)
continue;
else
return (vc);
}
p = strrchr(vc->vdev_path, '/');
p = p ? p + 1 : vc->vdev_path;
q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
if (strcmp(vc->vdev_path, path) == 0)
return (vc);
if (strcmp(p, path) == 0)
return (vc);
if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
return (vc);
}
return (NULL);
}
/*
* Read a block from a pool and print it out. The syntax of the
* block descriptor is:
*
* pool:vdev_specifier:offset:size[:flags]
*
* pool - The name of the pool you wish to read from
* vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
* offset - offset, in hex, in bytes
* size - Amount of data to read, in hex, in bytes
* flags - A string of characters specifying options
* b: Decode a blkptr at given offset within block
* *c: Calculate and display checksums
* *d: Decompress data before dumping
* e: Byteswap data before dumping
* *g: Display data as a gang block header
* *i: Display as an indirect block
* p: Do I/O to physical offset
* r: Dump raw data to stdout
*
* * = not yet implemented
*/
static void
zdb_read_block(char *thing, spa_t **spap)
{
spa_t *spa = *spap;
int flags = 0;
uint64_t offset = 0, size = 0, blkptr_offset = 0;
zio_t *zio;
vdev_t *vd;
void *buf;
char *s, *p, *dup, *pool, *vdev, *flagstr;
int i, error, zio_flags;
dup = strdup(thing);
s = strtok(dup, ":");
pool = s ? s : "";
s = strtok(NULL, ":");
vdev = s ? s : "";
s = strtok(NULL, ":");
offset = strtoull(s ? s : "", NULL, 16);
s = strtok(NULL, ":");
size = strtoull(s ? s : "", NULL, 16);
s = strtok(NULL, ":");
flagstr = s ? s : "";
s = NULL;
if (size == 0)
s = "size must not be zero";
if (!IS_P2ALIGNED(size, DEV_BSIZE))
s = "size must be a multiple of sector size";
if (!IS_P2ALIGNED(offset, DEV_BSIZE))
s = "offset must be a multiple of sector size";
if (s) {
(void) printf("Invalid block specifier: %s - %s\n", thing, s);
free(dup);
return;
}
for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) {
for (i = 0; flagstr[i]; i++) {
int bit = flagbits[(uchar_t)flagstr[i]];
if (bit == 0) {
(void) printf("***Invalid flag: %c\n",
flagstr[i]);
continue;
}
flags |= bit;
/* If it's not something with an argument, keep going */
if ((bit & (ZDB_FLAG_CHECKSUM | ZDB_FLAG_DECOMPRESS |
ZDB_FLAG_PRINT_BLKPTR)) == 0)
continue;
p = &flagstr[i + 1];
if (bit == ZDB_FLAG_PRINT_BLKPTR)
blkptr_offset = strtoull(p, &p, 16);
if (*p != ':' && *p != '\0') {
(void) printf("***Invalid flag arg: '%s'\n", s);
free(dup);
return;
}
}
}
if (spa == NULL || strcmp(spa_name(spa), pool) != 0) {
if (spa)
spa_close(spa, (void *)zdb_read_block);
error = spa_open(pool, spap, (void *)zdb_read_block);
if (error)
fatal("Failed to open pool '%s': %s",
pool, strerror(error));
spa = *spap;
}
vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
if (vd == NULL) {
(void) printf("***Invalid vdev: %s\n", vdev);
free(dup);
return;
} else {
if (vd->vdev_path)
(void) printf("Found vdev: %s\n", vd->vdev_path);
else
(void) printf("Found vdev type: %s\n",
vd->vdev_ops->vdev_op_type);
}
buf = umem_alloc(size, UMEM_NOFAIL);
zio_flags = ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE |
ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY;
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
zio = zio_root(spa, NULL, NULL, 0);
/* XXX todo - cons up a BP so RAID-Z will be happy */
zio_nowait(zio_vdev_child_io(zio, NULL, vd, offset, buf, size,
ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, zio_flags, NULL, NULL));
error = zio_wait(zio);
spa_config_exit(spa, SCL_STATE, FTAG);
if (error) {
(void) printf("Read of %s failed, error: %d\n", thing, error);
goto out;
}
if (flags & ZDB_FLAG_PRINT_BLKPTR)
zdb_print_blkptr((blkptr_t *)(void *)
((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
else if (flags & ZDB_FLAG_RAW)
zdb_dump_block_raw(buf, size, flags);
else if (flags & ZDB_FLAG_INDIRECT)
zdb_dump_indirect((blkptr_t *)buf, size / sizeof (blkptr_t),
flags);
else if (flags & ZDB_FLAG_GBH)
zdb_dump_gbh(buf, flags);
else
zdb_dump_block(thing, buf, size, flags);
out:
umem_free(buf, size);
free(dup);
}
static boolean_t
nvlist_string_match(nvlist_t *config, char *name, char *tgt)
{
char *s;
if (nvlist_lookup_string(config, name, &s) != 0)
return (B_FALSE);
return (strcmp(s, tgt) == 0);
}
static boolean_t
nvlist_uint64_match(nvlist_t *config, char *name, uint64_t tgt)
{
uint64_t val;
if (nvlist_lookup_uint64(config, name, &val) != 0)
return (B_FALSE);
return (val == tgt);
}
static boolean_t
vdev_child_guid_match(nvlist_t *vdev, uint64_t guid)
{
nvlist_t **child;
uint_t c, children;
verify(nvlist_lookup_nvlist_array(vdev, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0);
for (c = 0; c < children; ++c)
if (nvlist_uint64_match(child[c], ZPOOL_CONFIG_GUID, guid))
return (B_TRUE);
return (B_FALSE);
}
static boolean_t
vdev_child_string_match(nvlist_t *vdev, char *tgt)
{
nvlist_t **child;
uint_t c, children;
verify(nvlist_lookup_nvlist_array(vdev, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0);
for (c = 0; c < children; ++c) {
if (nvlist_string_match(child[c], ZPOOL_CONFIG_PATH, tgt) ||
nvlist_string_match(child[c], ZPOOL_CONFIG_DEVID, tgt))
return (B_TRUE);
}
return (B_FALSE);
}
static boolean_t
vdev_guid_match(nvlist_t *config, uint64_t guid)
{
nvlist_t *nvroot;
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) == 0);
return (nvlist_uint64_match(nvroot, ZPOOL_CONFIG_GUID, guid) ||
vdev_child_guid_match(nvroot, guid));
}
static boolean_t
vdev_string_match(nvlist_t *config, char *tgt)
{
nvlist_t *nvroot;
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) == 0);
return (vdev_child_string_match(nvroot, tgt));
}
static boolean_t
pool_match(nvlist_t *config, char *tgt)
{
uint64_t guid = strtoull(tgt, NULL, 0);
if (guid != 0) {
return (
nvlist_uint64_match(config, ZPOOL_CONFIG_POOL_GUID, guid) ||
vdev_guid_match(config, guid));
} else {
return (
nvlist_string_match(config, ZPOOL_CONFIG_POOL_NAME, tgt) ||
vdev_string_match(config, tgt));
}
}
static int
find_exported_zpool(char *pool_id, nvlist_t **configp, char *vdev_dir)
{
nvlist_t *pools;
int error = ENOENT;
nvlist_t *match = NULL;
if (vdev_dir != NULL)
pools = zpool_find_import_activeok(g_zfs, 1, &vdev_dir);
else
pools = zpool_find_import_activeok(g_zfs, 0, NULL);
if (pools != NULL) {
nvpair_t *elem = NULL;
while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
verify(nvpair_value_nvlist(elem, configp) == 0);
if (pool_match(*configp, pool_id)) {
if (match != NULL) {
(void) fatal(
"More than one matching pool - "
"specify guid/devid/device path.");
} else {
match = *configp;
error = 0;
}
}
}
}
*configp = error ? NULL : match;
return (error);
}
int
main(int argc, char **argv)
{
int i, c;
struct rlimit rl = { 1024, 1024 };
spa_t *spa;
objset_t *os = NULL;
char *endstr;
int dump_all = 1;
int verbose = 0;
int error;
int exported = 0;
char *vdev_dir = NULL;
(void) setrlimit(RLIMIT_NOFILE, &rl);
(void) enable_extended_FILE_stdio(-1, -1);
dprintf_setup(&argc, argv);
while ((c = getopt(argc, argv, "udibcmsvCLS:U:lRep:t:")) != -1) {
switch (c) {
case 'u':
case 'd':
case 'i':
case 'b':
case 'c':
case 'm':
case 's':
case 'C':
case 'l':
case 'R':
dump_opt[c]++;
dump_all = 0;
break;
case 'L':
dump_opt[c]++;
break;
case 'v':
verbose++;
break;
case 'U':
spa_config_path = optarg;
break;
case 'e':
exported = 1;
break;
case 'p':
vdev_dir = optarg;
break;
case 'S':
dump_opt[c]++;
dump_all = 0;
zdb_sig_user_data = (strncmp(optarg, "user:", 5) == 0);
if (!zdb_sig_user_data && strncmp(optarg, "all:", 4))
usage();
endstr = strchr(optarg, ':') + 1;
if (strcmp(endstr, "fletcher2") == 0)
zdb_sig_cksumalg = ZIO_CHECKSUM_FLETCHER_2;
else if (strcmp(endstr, "fletcher4") == 0)
zdb_sig_cksumalg = ZIO_CHECKSUM_FLETCHER_4;
else if (strcmp(endstr, "sha256") == 0)
zdb_sig_cksumalg = ZIO_CHECKSUM_SHA256;
else if (strcmp(endstr, "all") == 0)
zdb_sig_cksumalg = ZIO_CHECKSUM_FLETCHER_2;
else
usage();
break;
case 't':
ub_max_txg = strtoull(optarg, NULL, 0);
if (ub_max_txg < TXG_INITIAL) {
(void) fprintf(stderr, "incorrect txg "
"specified: %s\n", optarg);
usage();
}
break;
default:
usage();
break;
}
}
if (vdev_dir != NULL && exported == 0) {
(void) fprintf(stderr, "-p option requires use of -e\n");
usage();
}
kernel_init(FREAD);
g_zfs = libzfs_init();
ASSERT(g_zfs != NULL);
for (c = 0; c < 256; c++) {
if (dump_all && c != 'l' && c != 'R')
dump_opt[c] = 1;
if (dump_opt[c])
dump_opt[c] += verbose;
}
argc -= optind;
argv += optind;
if (argc < 1) {
if (dump_opt['C']) {
dump_cachefile(spa_config_path);
return (0);
}
usage();
}
if (dump_opt['l']) {
dump_label(argv[0]);
return (0);
}
if (dump_opt['R']) {
flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
flagbits['c'] = ZDB_FLAG_CHECKSUM;
flagbits['d'] = ZDB_FLAG_DECOMPRESS;
flagbits['e'] = ZDB_FLAG_BSWAP;
flagbits['g'] = ZDB_FLAG_GBH;
flagbits['i'] = ZDB_FLAG_INDIRECT;
flagbits['p'] = ZDB_FLAG_PHYS;
flagbits['r'] = ZDB_FLAG_RAW;
spa = NULL;
while (argv[0]) {
zdb_read_block(argv[0], &spa);
argv++;
argc--;
}
if (spa)
spa_close(spa, (void *)zdb_read_block);
return (0);
}
if (dump_opt['C'])
dump_config(argv[0]);
error = 0;
if (exported) {
/*
* Check to see if the name refers to an exported zpool
*/
char *slash;
nvlist_t *exported_conf = NULL;
if ((slash = strchr(argv[0], '/')) != NULL)
*slash = '\0';
error = find_exported_zpool(argv[0], &exported_conf, vdev_dir);
if (error == 0) {
nvlist_t *nvl = NULL;
if (vdev_dir != NULL) {
if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0)
error = ENOMEM;
else if (nvlist_add_string(nvl,
zpool_prop_to_name(ZPOOL_PROP_ALTROOT),
vdev_dir) != 0)
error = ENOMEM;
}
if (error == 0)
error = spa_import_verbatim(argv[0],
exported_conf, nvl);
nvlist_free(nvl);
}
if (slash != NULL)
*slash = '/';
}
if (error == 0) {
if (strchr(argv[0], '/') != NULL) {
error = dmu_objset_open(argv[0], DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &os);
} else {
error = spa_open(argv[0], &spa, FTAG);
}
}
if (error)
fatal("can't open %s: %s", argv[0], strerror(error));
argv++;
if (--argc > 0) {
zopt_objects = argc;
zopt_object = calloc(zopt_objects, sizeof (uint64_t));
for (i = 0; i < zopt_objects; i++) {
errno = 0;
zopt_object[i] = strtoull(argv[i], NULL, 0);
if (zopt_object[i] == 0 && errno != 0)
fatal("bad object number %s: %s",
argv[i], strerror(errno));
}
}
if (os != NULL) {
dump_dir(os);
dmu_objset_close(os);
} else {
dump_zpool(spa);
spa_close(spa, FTAG);
}
fuid_table_destroy();
libzfs_fini(g_zfs);
kernel_fini();
return (0);
}