Ruslan Bukin fed1ca4b71 Add initial DTrace support for RISC-V.
Sponsored by:	DARPA, AFRL
Sponsored by:	HEIF5
2016-05-24 16:41:37 +00:00

730 lines
17 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Portions Copyright 2006-2008 John Birrell jb@freebsd.org
*
* $FreeBSD$
*
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/cpuvar.h>
#include <sys/fcntl.h>
#include <sys/filio.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/limits.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/selinfo.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <sys/unistd.h>
#include <machine/cpu.h>
#include <machine/stdarg.h>
#include <sys/dtrace.h>
#include <sys/dtrace_bsd.h>
#define PROF_NAMELEN 15
#define PROF_PROFILE 0
#define PROF_TICK 1
#define PROF_PREFIX_PROFILE "profile-"
#define PROF_PREFIX_TICK "tick-"
/*
* Regardless of platform, there are five artificial frames in the case of the
* profile provider:
*
* profile_fire
* cyclic_expire
* cyclic_fire
* [ cbe ]
* [ locore ]
*
* On amd64, there are two frames associated with locore: one in locore, and
* another in common interrupt dispatch code. (i386 has not been modified to
* use this common layer.) Further, on i386, the interrupted instruction
* appears as its own stack frame. All of this means that we need to add one
* frame for amd64, and then take one away for both amd64 and i386.
*
* On SPARC, the picture is further complicated because the compiler
* optimizes away tail-calls -- so the following frames are optimized away:
*
* profile_fire
* cyclic_expire
*
* This gives three frames. However, on DEBUG kernels, the cyclic_expire
* frame cannot be tail-call eliminated, yielding four frames in this case.
*
* All of the above constraints lead to the mess below. Yes, the profile
* provider should ideally figure this out on-the-fly by hiting one of its own
* probes and then walking its own stack trace. This is complicated, however,
* and the static definition doesn't seem to be overly brittle. Still, we
* allow for a manual override in case we get it completely wrong.
*/
#ifdef __amd64
#define PROF_ARTIFICIAL_FRAMES 10
#else
#ifdef __i386
#define PROF_ARTIFICIAL_FRAMES 6
#else
#ifdef __sparc
#ifdef DEBUG
#define PROF_ARTIFICIAL_FRAMES 4
#else
#define PROF_ARTIFICIAL_FRAMES 3
#endif
#endif
#endif
#endif
#ifdef __mips
/*
* This value is bogus just to make module compilable on mips
*/
#define PROF_ARTIFICIAL_FRAMES 3
#endif
#ifdef __powerpc__
/*
* This value is bogus just to make module compilable on powerpc
*/
#define PROF_ARTIFICIAL_FRAMES 3
#endif
struct profile_probe_percpu;
#ifdef __mips
/* bogus */
#define PROF_ARTIFICIAL_FRAMES 3
#endif
#ifdef __arm__
#define PROF_ARTIFICIAL_FRAMES 3
#endif
#ifdef __aarch64__
/* TODO: verify */
#define PROF_ARTIFICIAL_FRAMES 10
#endif
#ifdef __riscv__
/* TODO: verify */
#define PROF_ARTIFICIAL_FRAMES 10
#endif
typedef struct profile_probe {
char prof_name[PROF_NAMELEN];
dtrace_id_t prof_id;
int prof_kind;
#ifdef illumos
hrtime_t prof_interval;
cyclic_id_t prof_cyclic;
#else
sbintime_t prof_interval;
struct callout prof_cyclic;
sbintime_t prof_expected;
struct profile_probe_percpu **prof_pcpus;
#endif
} profile_probe_t;
typedef struct profile_probe_percpu {
hrtime_t profc_expected;
hrtime_t profc_interval;
profile_probe_t *profc_probe;
#ifdef __FreeBSD__
struct callout profc_cyclic;
#endif
} profile_probe_percpu_t;
static d_open_t profile_open;
static int profile_unload(void);
static void profile_create(hrtime_t, char *, int);
static void profile_destroy(void *, dtrace_id_t, void *);
static void profile_enable(void *, dtrace_id_t, void *);
static void profile_disable(void *, dtrace_id_t, void *);
static void profile_load(void *);
static void profile_provide(void *, dtrace_probedesc_t *);
static int profile_rates[] = {
97, 199, 499, 997, 1999,
4001, 4999, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0
};
static int profile_ticks[] = {
1, 10, 100, 500, 1000,
5000, 0, 0, 0, 0,
0, 0, 0, 0, 0
};
/*
* profile_max defines the upper bound on the number of profile probes that
* can exist (this is to prevent malicious or clumsy users from exhausing
* system resources by creating a slew of profile probes). At mod load time,
* this gets its value from PROFILE_MAX_DEFAULT or profile-max-probes if it's
* present in the profile.conf file.
*/
#define PROFILE_MAX_DEFAULT 1000 /* default max. number of probes */
static uint32_t profile_max = PROFILE_MAX_DEFAULT;
/* maximum number of profile probes */
static uint32_t profile_total; /* current number of profile probes */
static struct cdevsw profile_cdevsw = {
.d_version = D_VERSION,
.d_open = profile_open,
.d_name = "profile",
};
static dtrace_pattr_t profile_attr = {
{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
};
static dtrace_pops_t profile_pops = {
profile_provide,
NULL,
profile_enable,
profile_disable,
NULL,
NULL,
NULL,
NULL,
NULL,
profile_destroy
};
static struct cdev *profile_cdev;
static dtrace_provider_id_t profile_id;
static hrtime_t profile_interval_min = NANOSEC / 5000; /* 5000 hz */
static int profile_aframes = PROF_ARTIFICIAL_FRAMES;
SYSCTL_DECL(_kern_dtrace);
SYSCTL_NODE(_kern_dtrace, OID_AUTO, profile, CTLFLAG_RD, 0, "DTrace profile parameters");
SYSCTL_INT(_kern_dtrace_profile, OID_AUTO, aframes, CTLFLAG_RW, &profile_aframes,
0, "Skipped frames for profile provider");
static sbintime_t
nsec_to_sbt(hrtime_t nsec)
{
time_t sec;
/*
* We need to calculate nsec * 2^32 / 10^9
* Seconds and nanoseconds are split to avoid overflow.
*/
sec = nsec / NANOSEC;
nsec = nsec % NANOSEC;
return (((sbintime_t)sec << 32) | ((sbintime_t)nsec << 32) / NANOSEC);
}
static hrtime_t
sbt_to_nsec(sbintime_t sbt)
{
return ((sbt >> 32) * NANOSEC +
(((uint32_t)sbt * (hrtime_t)NANOSEC) >> 32));
}
static void
profile_fire(void *arg)
{
profile_probe_percpu_t *pcpu = arg;
profile_probe_t *prof = pcpu->profc_probe;
hrtime_t late;
struct trapframe *frame;
uintfptr_t pc, upc;
#ifdef illumos
late = gethrtime() - pcpu->profc_expected;
#else
late = sbt_to_nsec(sbinuptime() - pcpu->profc_expected);
#endif
pc = 0;
upc = 0;
/*
* td_intr_frame can be unset if this is a catch up event
* after waking up from idle sleep.
* This can only happen on a CPU idle thread.
*/
frame = curthread->td_intr_frame;
if (frame != NULL) {
if (TRAPF_USERMODE(frame))
upc = TRAPF_PC(frame);
else
pc = TRAPF_PC(frame);
}
dtrace_probe(prof->prof_id, pc, upc, late, 0, 0);
pcpu->profc_expected += pcpu->profc_interval;
callout_schedule_sbt_curcpu(&pcpu->profc_cyclic,
pcpu->profc_expected, 0, C_DIRECT_EXEC | C_ABSOLUTE);
}
static void
profile_tick(void *arg)
{
profile_probe_t *prof = arg;
struct trapframe *frame;
uintfptr_t pc, upc;
pc = 0;
upc = 0;
/*
* td_intr_frame can be unset if this is a catch up event
* after waking up from idle sleep.
* This can only happen on a CPU idle thread.
*/
frame = curthread->td_intr_frame;
if (frame != NULL) {
if (TRAPF_USERMODE(frame))
upc = TRAPF_PC(frame);
else
pc = TRAPF_PC(frame);
}
dtrace_probe(prof->prof_id, pc, upc, 0, 0, 0);
prof->prof_expected += prof->prof_interval;
callout_schedule_sbt(&prof->prof_cyclic,
prof->prof_expected, 0, C_DIRECT_EXEC | C_ABSOLUTE);
}
static void
profile_create(hrtime_t interval, char *name, int kind)
{
profile_probe_t *prof;
if (interval < profile_interval_min)
return;
if (dtrace_probe_lookup(profile_id, NULL, NULL, name) != 0)
return;
atomic_add_32(&profile_total, 1);
if (profile_total > profile_max) {
atomic_add_32(&profile_total, -1);
return;
}
prof = kmem_zalloc(sizeof (profile_probe_t), KM_SLEEP);
(void) strcpy(prof->prof_name, name);
#ifdef illumos
prof->prof_interval = interval;
prof->prof_cyclic = CYCLIC_NONE;
#else
prof->prof_interval = nsec_to_sbt(interval);
callout_init(&prof->prof_cyclic, 1);
#endif
prof->prof_kind = kind;
prof->prof_id = dtrace_probe_create(profile_id,
NULL, NULL, name,
profile_aframes, prof);
}
/*ARGSUSED*/
static void
profile_provide(void *arg, dtrace_probedesc_t *desc)
{
int i, j, rate, kind;
hrtime_t val = 0, mult = 1, len = 0;
char *name, *suffix = NULL;
const struct {
char *prefix;
int kind;
} types[] = {
{ PROF_PREFIX_PROFILE, PROF_PROFILE },
{ PROF_PREFIX_TICK, PROF_TICK },
{ 0, 0 }
};
const struct {
char *name;
hrtime_t mult;
} suffixes[] = {
{ "ns", NANOSEC / NANOSEC },
{ "nsec", NANOSEC / NANOSEC },
{ "us", NANOSEC / MICROSEC },
{ "usec", NANOSEC / MICROSEC },
{ "ms", NANOSEC / MILLISEC },
{ "msec", NANOSEC / MILLISEC },
{ "s", NANOSEC / SEC },
{ "sec", NANOSEC / SEC },
{ "m", NANOSEC * (hrtime_t)60 },
{ "min", NANOSEC * (hrtime_t)60 },
{ "h", NANOSEC * (hrtime_t)(60 * 60) },
{ "hour", NANOSEC * (hrtime_t)(60 * 60) },
{ "d", NANOSEC * (hrtime_t)(24 * 60 * 60) },
{ "day", NANOSEC * (hrtime_t)(24 * 60 * 60) },
{ "hz", 0 },
{ NULL }
};
if (desc == NULL) {
char n[PROF_NAMELEN];
/*
* If no description was provided, provide all of our probes.
*/
for (i = 0; i < sizeof (profile_rates) / sizeof (int); i++) {
if ((rate = profile_rates[i]) == 0)
continue;
(void) snprintf(n, PROF_NAMELEN, "%s%d",
PROF_PREFIX_PROFILE, rate);
profile_create(NANOSEC / rate, n, PROF_PROFILE);
}
for (i = 0; i < sizeof (profile_ticks) / sizeof (int); i++) {
if ((rate = profile_ticks[i]) == 0)
continue;
(void) snprintf(n, PROF_NAMELEN, "%s%d",
PROF_PREFIX_TICK, rate);
profile_create(NANOSEC / rate, n, PROF_TICK);
}
return;
}
name = desc->dtpd_name;
for (i = 0; types[i].prefix != NULL; i++) {
len = strlen(types[i].prefix);
if (strncmp(name, types[i].prefix, len) != 0)
continue;
break;
}
if (types[i].prefix == NULL)
return;
kind = types[i].kind;
j = strlen(name) - len;
/*
* We need to start before any time suffix.
*/
for (j = strlen(name); j >= len; j--) {
if (name[j] >= '0' && name[j] <= '9')
break;
suffix = &name[j];
}
ASSERT(suffix != NULL);
/*
* Now determine the numerical value present in the probe name.
*/
for (; j >= len; j--) {
if (name[j] < '0' || name[j] > '9')
return;
val += (name[j] - '0') * mult;
mult *= (hrtime_t)10;
}
if (val == 0)
return;
/*
* Look-up the suffix to determine the multiplier.
*/
for (i = 0, mult = 0; suffixes[i].name != NULL; i++) {
if (strcasecmp(suffixes[i].name, suffix) == 0) {
mult = suffixes[i].mult;
break;
}
}
if (suffixes[i].name == NULL && *suffix != '\0')
return;
if (mult == 0) {
/*
* The default is frequency-per-second.
*/
val = NANOSEC / val;
} else {
val *= mult;
}
profile_create(val, name, kind);
}
/* ARGSUSED */
static void
profile_destroy(void *arg, dtrace_id_t id, void *parg)
{
profile_probe_t *prof = parg;
#ifdef illumos
ASSERT(prof->prof_cyclic == CYCLIC_NONE);
#else
ASSERT(!callout_active(&prof->prof_cyclic) && prof->prof_pcpus == NULL);
#endif
kmem_free(prof, sizeof (profile_probe_t));
ASSERT(profile_total >= 1);
atomic_add_32(&profile_total, -1);
}
#ifdef illumos
/*ARGSUSED*/
static void
profile_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
{
profile_probe_t *prof = arg;
profile_probe_percpu_t *pcpu;
pcpu = kmem_zalloc(sizeof (profile_probe_percpu_t), KM_SLEEP);
pcpu->profc_probe = prof;
hdlr->cyh_func = profile_fire;
hdlr->cyh_arg = pcpu;
when->cyt_interval = prof->prof_interval;
when->cyt_when = gethrtime() + when->cyt_interval;
pcpu->profc_expected = when->cyt_when;
pcpu->profc_interval = when->cyt_interval;
}
/*ARGSUSED*/
static void
profile_offline(void *arg, cpu_t *cpu, void *oarg)
{
profile_probe_percpu_t *pcpu = oarg;
ASSERT(pcpu->profc_probe == arg);
kmem_free(pcpu, sizeof (profile_probe_percpu_t));
}
/* ARGSUSED */
static void
profile_enable(void *arg, dtrace_id_t id, void *parg)
{
profile_probe_t *prof = parg;
cyc_omni_handler_t omni;
cyc_handler_t hdlr;
cyc_time_t when;
ASSERT(prof->prof_interval != 0);
ASSERT(MUTEX_HELD(&cpu_lock));
if (prof->prof_kind == PROF_TICK) {
hdlr.cyh_func = profile_tick;
hdlr.cyh_arg = prof;
when.cyt_interval = prof->prof_interval;
when.cyt_when = gethrtime() + when.cyt_interval;
} else {
ASSERT(prof->prof_kind == PROF_PROFILE);
omni.cyo_online = profile_online;
omni.cyo_offline = profile_offline;
omni.cyo_arg = prof;
}
if (prof->prof_kind == PROF_TICK) {
prof->prof_cyclic = cyclic_add(&hdlr, &when);
} else {
prof->prof_cyclic = cyclic_add_omni(&omni);
}
}
/* ARGSUSED */
static void
profile_disable(void *arg, dtrace_id_t id, void *parg)
{
profile_probe_t *prof = parg;
ASSERT(prof->prof_cyclic != CYCLIC_NONE);
ASSERT(MUTEX_HELD(&cpu_lock));
cyclic_remove(prof->prof_cyclic);
prof->prof_cyclic = CYCLIC_NONE;
}
#else
static void
profile_enable_omni(profile_probe_t *prof)
{
profile_probe_percpu_t *pcpu;
int cpu;
prof->prof_pcpus = kmem_zalloc((mp_maxid + 1) * sizeof(pcpu), KM_SLEEP);
CPU_FOREACH(cpu) {
pcpu = kmem_zalloc(sizeof(profile_probe_percpu_t), KM_SLEEP);
prof->prof_pcpus[cpu] = pcpu;
pcpu->profc_probe = prof;
pcpu->profc_expected = sbinuptime() + prof->prof_interval;
pcpu->profc_interval = prof->prof_interval;
callout_init(&pcpu->profc_cyclic, 1);
callout_reset_sbt_on(&pcpu->profc_cyclic,
pcpu->profc_expected, 0, profile_fire, pcpu,
cpu, C_DIRECT_EXEC | C_ABSOLUTE);
}
}
static void
profile_disable_omni(profile_probe_t *prof)
{
profile_probe_percpu_t *pcpu;
int cpu;
ASSERT(prof->prof_pcpus != NULL);
CPU_FOREACH(cpu) {
pcpu = prof->prof_pcpus[cpu];
ASSERT(pcpu->profc_probe == prof);
ASSERT(callout_active(&pcpu->profc_cyclic));
callout_stop(&pcpu->profc_cyclic);
callout_drain(&pcpu->profc_cyclic);
kmem_free(pcpu, sizeof(profile_probe_percpu_t));
}
kmem_free(prof->prof_pcpus, (mp_maxid + 1) * sizeof(pcpu));
prof->prof_pcpus = NULL;
}
/* ARGSUSED */
static void
profile_enable(void *arg, dtrace_id_t id, void *parg)
{
profile_probe_t *prof = parg;
if (prof->prof_kind == PROF_TICK) {
prof->prof_expected = sbinuptime() + prof->prof_interval;
callout_reset_sbt(&prof->prof_cyclic,
prof->prof_expected, 0, profile_tick, prof,
C_DIRECT_EXEC | C_ABSOLUTE);
} else {
ASSERT(prof->prof_kind == PROF_PROFILE);
profile_enable_omni(prof);
}
}
/* ARGSUSED */
static void
profile_disable(void *arg, dtrace_id_t id, void *parg)
{
profile_probe_t *prof = parg;
if (prof->prof_kind == PROF_TICK) {
ASSERT(callout_active(&prof->prof_cyclic));
callout_stop(&prof->prof_cyclic);
callout_drain(&prof->prof_cyclic);
} else {
ASSERT(prof->prof_kind == PROF_PROFILE);
profile_disable_omni(prof);
}
}
#endif
static void
profile_load(void *dummy)
{
/* Create the /dev/dtrace/profile entry. */
profile_cdev = make_dev(&profile_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
"dtrace/profile");
if (dtrace_register("profile", &profile_attr, DTRACE_PRIV_USER,
NULL, &profile_pops, NULL, &profile_id) != 0)
return;
}
static int
profile_unload()
{
int error = 0;
if ((error = dtrace_unregister(profile_id)) != 0)
return (error);
destroy_dev(profile_cdev);
return (error);
}
/* ARGSUSED */
static int
profile_modevent(module_t mod __unused, int type, void *data __unused)
{
int error = 0;
switch (type) {
case MOD_LOAD:
break;
case MOD_UNLOAD:
break;
case MOD_SHUTDOWN:
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
/* ARGSUSED */
static int
profile_open(struct cdev *dev __unused, int oflags __unused, int devtype __unused, struct thread *td __unused)
{
return (0);
}
SYSINIT(profile_load, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, profile_load, NULL);
SYSUNINIT(profile_unload, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, profile_unload, NULL);
DEV_MODULE(profile, profile_modevent, NULL);
MODULE_VERSION(profile, 1);
MODULE_DEPEND(profile, dtrace, 1, 1, 1);
MODULE_DEPEND(profile, opensolaris, 1, 1, 1);