9feff969a0
These ones were unambiguous cases where the Foundation was the only listed copyright holder (in the associated license block). Sponsored by: The FreeBSD Foundation
330 lines
9.3 KiB
C
330 lines
9.3 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2013 The FreeBSD Foundation
|
|
*
|
|
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_acpi.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/memdesc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/tree.h>
|
|
#include <sys/vmem.h>
|
|
#include <machine/bus.h>
|
|
#include <contrib/dev/acpica/include/acpi.h>
|
|
#include <contrib/dev/acpica/include/accommon.h>
|
|
#include <dev/acpica/acpivar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <x86/include/busdma_impl.h>
|
|
#include <x86/iommu/intel_reg.h>
|
|
#include <dev/iommu/busdma_iommu.h>
|
|
#include <x86/iommu/intel_dmar.h>
|
|
|
|
/*
|
|
* Fault interrupt handling for DMARs. If advanced fault logging is
|
|
* not implemented by hardware, the code emulates it. Fast interrupt
|
|
* handler flushes the fault registers into circular buffer at
|
|
* unit->fault_log, and schedules a task.
|
|
*
|
|
* The fast handler is used since faults usually come in bursts, and
|
|
* number of fault log registers is limited, e.g. down to one for 5400
|
|
* MCH. We are trying to reduce the latency for clearing the fault
|
|
* register file. The task is usually long-running, since printf() is
|
|
* slow, but this is not problematic because bursts are rare.
|
|
*
|
|
* For the same reason, each translation unit task is executed in its
|
|
* own thread.
|
|
*
|
|
* XXXKIB It seems there is no hardware available which implements
|
|
* advanced fault logging, so the code to handle AFL is not written.
|
|
*/
|
|
|
|
static int
|
|
dmar_fault_next(struct dmar_unit *unit, int faultp)
|
|
{
|
|
|
|
faultp += 2;
|
|
if (faultp == unit->fault_log_size)
|
|
faultp = 0;
|
|
return (faultp);
|
|
}
|
|
|
|
static void
|
|
dmar_fault_intr_clear(struct dmar_unit *unit, uint32_t fsts)
|
|
{
|
|
uint32_t clear;
|
|
|
|
clear = 0;
|
|
if ((fsts & DMAR_FSTS_ITE) != 0) {
|
|
printf("DMAR%d: Invalidation timed out\n", unit->iommu.unit);
|
|
clear |= DMAR_FSTS_ITE;
|
|
}
|
|
if ((fsts & DMAR_FSTS_ICE) != 0) {
|
|
printf("DMAR%d: Invalidation completion error\n",
|
|
unit->iommu.unit);
|
|
clear |= DMAR_FSTS_ICE;
|
|
}
|
|
if ((fsts & DMAR_FSTS_IQE) != 0) {
|
|
printf("DMAR%d: Invalidation queue error\n",
|
|
unit->iommu.unit);
|
|
clear |= DMAR_FSTS_IQE;
|
|
}
|
|
if ((fsts & DMAR_FSTS_APF) != 0) {
|
|
printf("DMAR%d: Advanced pending fault\n", unit->iommu.unit);
|
|
clear |= DMAR_FSTS_APF;
|
|
}
|
|
if ((fsts & DMAR_FSTS_AFO) != 0) {
|
|
printf("DMAR%d: Advanced fault overflow\n", unit->iommu.unit);
|
|
clear |= DMAR_FSTS_AFO;
|
|
}
|
|
if (clear != 0)
|
|
dmar_write4(unit, DMAR_FSTS_REG, clear);
|
|
}
|
|
|
|
int
|
|
dmar_fault_intr(void *arg)
|
|
{
|
|
struct dmar_unit *unit;
|
|
uint64_t fault_rec[2];
|
|
uint32_t fsts;
|
|
int fri, frir, faultp;
|
|
bool enqueue;
|
|
|
|
unit = arg;
|
|
enqueue = false;
|
|
fsts = dmar_read4(unit, DMAR_FSTS_REG);
|
|
dmar_fault_intr_clear(unit, fsts);
|
|
|
|
if ((fsts & DMAR_FSTS_PPF) == 0)
|
|
goto done;
|
|
|
|
fri = DMAR_FSTS_FRI(fsts);
|
|
for (;;) {
|
|
frir = (DMAR_CAP_FRO(unit->hw_cap) + fri) * 16;
|
|
fault_rec[1] = dmar_read8(unit, frir + 8);
|
|
if ((fault_rec[1] & DMAR_FRCD2_F) == 0)
|
|
break;
|
|
fault_rec[0] = dmar_read8(unit, frir);
|
|
dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
|
|
DMAR_FAULT_LOCK(unit);
|
|
faultp = unit->fault_log_head;
|
|
if (dmar_fault_next(unit, faultp) == unit->fault_log_tail) {
|
|
/* XXXKIB log overflow */
|
|
} else {
|
|
unit->fault_log[faultp] = fault_rec[0];
|
|
unit->fault_log[faultp + 1] = fault_rec[1];
|
|
unit->fault_log_head = dmar_fault_next(unit, faultp);
|
|
enqueue = true;
|
|
}
|
|
DMAR_FAULT_UNLOCK(unit);
|
|
fri += 1;
|
|
if (fri >= DMAR_CAP_NFR(unit->hw_cap))
|
|
fri = 0;
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* On SandyBridge, due to errata BJ124, IvyBridge errata
|
|
* BV100, and Haswell errata HSD40, "Spurious Intel VT-d
|
|
* Interrupts May Occur When the PFO Bit is Set". Handle the
|
|
* cases by clearing overflow bit even if no fault is
|
|
* reported.
|
|
*
|
|
* On IvyBridge, errata BV30 states that clearing clear
|
|
* DMAR_FRCD2_F bit in the fault register causes spurious
|
|
* interrupt. Do nothing.
|
|
*
|
|
*/
|
|
if ((fsts & DMAR_FSTS_PFO) != 0) {
|
|
printf("DMAR%d: Fault Overflow\n", unit->iommu.unit);
|
|
dmar_write4(unit, DMAR_FSTS_REG, DMAR_FSTS_PFO);
|
|
}
|
|
|
|
if (enqueue) {
|
|
taskqueue_enqueue(unit->fault_taskqueue,
|
|
&unit->fault_task);
|
|
}
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static void
|
|
dmar_fault_task(void *arg, int pending __unused)
|
|
{
|
|
struct dmar_unit *unit;
|
|
struct dmar_ctx *ctx;
|
|
uint64_t fault_rec[2];
|
|
int sid, bus, slot, func, faultp;
|
|
|
|
unit = arg;
|
|
DMAR_FAULT_LOCK(unit);
|
|
for (;;) {
|
|
faultp = unit->fault_log_tail;
|
|
if (faultp == unit->fault_log_head)
|
|
break;
|
|
|
|
fault_rec[0] = unit->fault_log[faultp];
|
|
fault_rec[1] = unit->fault_log[faultp + 1];
|
|
unit->fault_log_tail = dmar_fault_next(unit, faultp);
|
|
DMAR_FAULT_UNLOCK(unit);
|
|
|
|
sid = DMAR_FRCD2_SID(fault_rec[1]);
|
|
printf("DMAR%d: ", unit->iommu.unit);
|
|
DMAR_LOCK(unit);
|
|
ctx = dmar_find_ctx_locked(unit, sid);
|
|
if (ctx == NULL) {
|
|
printf("<unknown dev>:");
|
|
|
|
/*
|
|
* Note that the slot and function will not be correct
|
|
* if ARI is in use, but without a ctx entry we have
|
|
* no way of knowing whether ARI is in use or not.
|
|
*/
|
|
bus = PCI_RID2BUS(sid);
|
|
slot = PCI_RID2SLOT(sid);
|
|
func = PCI_RID2FUNC(sid);
|
|
} else {
|
|
ctx->context.flags |= IOMMU_CTX_FAULTED;
|
|
ctx->last_fault_rec[0] = fault_rec[0];
|
|
ctx->last_fault_rec[1] = fault_rec[1];
|
|
device_print_prettyname(ctx->context.tag->owner);
|
|
bus = pci_get_bus(ctx->context.tag->owner);
|
|
slot = pci_get_slot(ctx->context.tag->owner);
|
|
func = pci_get_function(ctx->context.tag->owner);
|
|
}
|
|
DMAR_UNLOCK(unit);
|
|
printf(
|
|
"pci%d:%d:%d sid %x fault acc %x adt 0x%x reason 0x%x "
|
|
"addr %jx\n",
|
|
bus, slot, func, sid, DMAR_FRCD2_T(fault_rec[1]),
|
|
DMAR_FRCD2_AT(fault_rec[1]), DMAR_FRCD2_FR(fault_rec[1]),
|
|
(uintmax_t)fault_rec[0]);
|
|
DMAR_FAULT_LOCK(unit);
|
|
}
|
|
DMAR_FAULT_UNLOCK(unit);
|
|
}
|
|
|
|
static void
|
|
dmar_clear_faults(struct dmar_unit *unit)
|
|
{
|
|
uint32_t frec, frir, fsts;
|
|
int i;
|
|
|
|
for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) {
|
|
frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16;
|
|
frec = dmar_read4(unit, frir + 12);
|
|
if ((frec & DMAR_FRCD2_F32) == 0)
|
|
continue;
|
|
dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
|
|
}
|
|
fsts = dmar_read4(unit, DMAR_FSTS_REG);
|
|
dmar_write4(unit, DMAR_FSTS_REG, fsts);
|
|
}
|
|
|
|
int
|
|
dmar_init_fault_log(struct dmar_unit *unit)
|
|
{
|
|
|
|
mtx_init(&unit->fault_lock, "dmarflt", NULL, MTX_SPIN);
|
|
unit->fault_log_size = 256; /* 128 fault log entries */
|
|
TUNABLE_INT_FETCH("hw.dmar.fault_log_size", &unit->fault_log_size);
|
|
if (unit->fault_log_size % 2 != 0)
|
|
panic("hw.dmar_fault_log_size must be even");
|
|
unit->fault_log = malloc(sizeof(uint64_t) * unit->fault_log_size,
|
|
M_DEVBUF, M_WAITOK | M_ZERO);
|
|
|
|
TASK_INIT(&unit->fault_task, 0, dmar_fault_task, unit);
|
|
unit->fault_taskqueue = taskqueue_create_fast("dmarff", M_WAITOK,
|
|
taskqueue_thread_enqueue, &unit->fault_taskqueue);
|
|
taskqueue_start_threads(&unit->fault_taskqueue, 1, PI_AV,
|
|
"dmar%d fault taskq", unit->iommu.unit);
|
|
|
|
DMAR_LOCK(unit);
|
|
dmar_disable_fault_intr(unit);
|
|
dmar_clear_faults(unit);
|
|
dmar_enable_fault_intr(unit);
|
|
DMAR_UNLOCK(unit);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dmar_fini_fault_log(struct dmar_unit *unit)
|
|
{
|
|
|
|
if (unit->fault_taskqueue == NULL)
|
|
return;
|
|
|
|
DMAR_LOCK(unit);
|
|
dmar_disable_fault_intr(unit);
|
|
DMAR_UNLOCK(unit);
|
|
|
|
taskqueue_drain(unit->fault_taskqueue, &unit->fault_task);
|
|
taskqueue_free(unit->fault_taskqueue);
|
|
unit->fault_taskqueue = NULL;
|
|
mtx_destroy(&unit->fault_lock);
|
|
|
|
free(unit->fault_log, M_DEVBUF);
|
|
unit->fault_log = NULL;
|
|
unit->fault_log_head = unit->fault_log_tail = 0;
|
|
}
|
|
|
|
void
|
|
dmar_enable_fault_intr(struct dmar_unit *unit)
|
|
{
|
|
uint32_t fectl;
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
fectl = dmar_read4(unit, DMAR_FECTL_REG);
|
|
fectl &= ~DMAR_FECTL_IM;
|
|
dmar_write4(unit, DMAR_FECTL_REG, fectl);
|
|
}
|
|
|
|
void
|
|
dmar_disable_fault_intr(struct dmar_unit *unit)
|
|
{
|
|
uint32_t fectl;
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
fectl = dmar_read4(unit, DMAR_FECTL_REG);
|
|
dmar_write4(unit, DMAR_FECTL_REG, fectl | DMAR_FECTL_IM);
|
|
}
|