2224 lines
72 KiB
C++
2224 lines
72 KiB
C++
//===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the Stmt interface and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_AST_STMT_H
|
|
#define LLVM_CLANG_AST_STMT_H
|
|
|
|
#include "clang/AST/DeclGroup.h"
|
|
#include "clang/AST/StmtIterator.h"
|
|
#include "clang/Basic/CapturedStmt.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <string>
|
|
|
|
namespace llvm {
|
|
class FoldingSetNodeID;
|
|
}
|
|
|
|
namespace clang {
|
|
class ASTContext;
|
|
class Attr;
|
|
class CapturedDecl;
|
|
class Decl;
|
|
class Expr;
|
|
class IdentifierInfo;
|
|
class LabelDecl;
|
|
class ParmVarDecl;
|
|
class PrinterHelper;
|
|
struct PrintingPolicy;
|
|
class QualType;
|
|
class RecordDecl;
|
|
class SourceManager;
|
|
class StringLiteral;
|
|
class SwitchStmt;
|
|
class Token;
|
|
class VarDecl;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AST classes for statements.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Stmt - This represents one statement.
|
|
///
|
|
class alignas(void *) Stmt {
|
|
public:
|
|
enum StmtClass {
|
|
NoStmtClass = 0,
|
|
#define STMT(CLASS, PARENT) CLASS##Class,
|
|
#define STMT_RANGE(BASE, FIRST, LAST) \
|
|
first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class,
|
|
#define LAST_STMT_RANGE(BASE, FIRST, LAST) \
|
|
first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class
|
|
#define ABSTRACT_STMT(STMT)
|
|
#include "clang/AST/StmtNodes.inc"
|
|
};
|
|
|
|
// Make vanilla 'new' and 'delete' illegal for Stmts.
|
|
protected:
|
|
void *operator new(size_t bytes) noexcept {
|
|
llvm_unreachable("Stmts cannot be allocated with regular 'new'.");
|
|
}
|
|
void operator delete(void *data) noexcept {
|
|
llvm_unreachable("Stmts cannot be released with regular 'delete'.");
|
|
}
|
|
|
|
class StmtBitfields {
|
|
friend class Stmt;
|
|
|
|
/// \brief The statement class.
|
|
unsigned sClass : 8;
|
|
};
|
|
enum { NumStmtBits = 8 };
|
|
|
|
class CompoundStmtBitfields {
|
|
friend class CompoundStmt;
|
|
unsigned : NumStmtBits;
|
|
|
|
unsigned NumStmts : 32 - NumStmtBits;
|
|
};
|
|
|
|
class IfStmtBitfields {
|
|
friend class IfStmt;
|
|
unsigned : NumStmtBits;
|
|
|
|
unsigned IsConstexpr : 1;
|
|
};
|
|
|
|
class ExprBitfields {
|
|
friend class Expr;
|
|
friend class DeclRefExpr; // computeDependence
|
|
friend class InitListExpr; // ctor
|
|
friend class DesignatedInitExpr; // ctor
|
|
friend class BlockDeclRefExpr; // ctor
|
|
friend class ASTStmtReader; // deserialization
|
|
friend class CXXNewExpr; // ctor
|
|
friend class DependentScopeDeclRefExpr; // ctor
|
|
friend class CXXConstructExpr; // ctor
|
|
friend class CallExpr; // ctor
|
|
friend class OffsetOfExpr; // ctor
|
|
friend class ObjCMessageExpr; // ctor
|
|
friend class ObjCArrayLiteral; // ctor
|
|
friend class ObjCDictionaryLiteral; // ctor
|
|
friend class ShuffleVectorExpr; // ctor
|
|
friend class ParenListExpr; // ctor
|
|
friend class CXXUnresolvedConstructExpr; // ctor
|
|
friend class CXXDependentScopeMemberExpr; // ctor
|
|
friend class OverloadExpr; // ctor
|
|
friend class PseudoObjectExpr; // ctor
|
|
friend class AtomicExpr; // ctor
|
|
friend class OpaqueValueExpr; // ctor
|
|
unsigned : NumStmtBits;
|
|
|
|
unsigned ValueKind : 2;
|
|
unsigned ObjectKind : 2;
|
|
unsigned TypeDependent : 1;
|
|
unsigned ValueDependent : 1;
|
|
unsigned InstantiationDependent : 1;
|
|
unsigned ContainsUnexpandedParameterPack : 1;
|
|
};
|
|
enum { NumExprBits = 16 };
|
|
|
|
class CharacterLiteralBitfields {
|
|
friend class CharacterLiteral;
|
|
unsigned : NumExprBits;
|
|
|
|
unsigned Kind : 3;
|
|
};
|
|
|
|
enum APFloatSemantics {
|
|
IEEEhalf,
|
|
IEEEsingle,
|
|
IEEEdouble,
|
|
x87DoubleExtended,
|
|
IEEEquad,
|
|
PPCDoubleDouble
|
|
};
|
|
|
|
class FloatingLiteralBitfields {
|
|
friend class FloatingLiteral;
|
|
unsigned : NumExprBits;
|
|
|
|
unsigned Semantics : 3; // Provides semantics for APFloat construction
|
|
unsigned IsExact : 1;
|
|
};
|
|
|
|
class UnaryExprOrTypeTraitExprBitfields {
|
|
friend class UnaryExprOrTypeTraitExpr;
|
|
unsigned : NumExprBits;
|
|
|
|
unsigned Kind : 2;
|
|
unsigned IsType : 1; // true if operand is a type, false if an expression.
|
|
};
|
|
|
|
class DeclRefExprBitfields {
|
|
friend class DeclRefExpr;
|
|
friend class ASTStmtReader; // deserialization
|
|
unsigned : NumExprBits;
|
|
|
|
unsigned HasQualifier : 1;
|
|
unsigned HasTemplateKWAndArgsInfo : 1;
|
|
unsigned HasFoundDecl : 1;
|
|
unsigned HadMultipleCandidates : 1;
|
|
unsigned RefersToEnclosingVariableOrCapture : 1;
|
|
};
|
|
|
|
class CastExprBitfields {
|
|
friend class CastExpr;
|
|
unsigned : NumExprBits;
|
|
|
|
unsigned Kind : 6;
|
|
unsigned BasePathSize : 32 - 6 - NumExprBits;
|
|
};
|
|
|
|
class CallExprBitfields {
|
|
friend class CallExpr;
|
|
unsigned : NumExprBits;
|
|
|
|
unsigned NumPreArgs : 1;
|
|
};
|
|
|
|
class ExprWithCleanupsBitfields {
|
|
friend class ExprWithCleanups;
|
|
friend class ASTStmtReader; // deserialization
|
|
|
|
unsigned : NumExprBits;
|
|
|
|
// When false, it must not have side effects.
|
|
unsigned CleanupsHaveSideEffects : 1;
|
|
|
|
unsigned NumObjects : 32 - 1 - NumExprBits;
|
|
};
|
|
|
|
class PseudoObjectExprBitfields {
|
|
friend class PseudoObjectExpr;
|
|
friend class ASTStmtReader; // deserialization
|
|
|
|
unsigned : NumExprBits;
|
|
|
|
// These don't need to be particularly wide, because they're
|
|
// strictly limited by the forms of expressions we permit.
|
|
unsigned NumSubExprs : 8;
|
|
unsigned ResultIndex : 32 - 8 - NumExprBits;
|
|
};
|
|
|
|
class ObjCIndirectCopyRestoreExprBitfields {
|
|
friend class ObjCIndirectCopyRestoreExpr;
|
|
unsigned : NumExprBits;
|
|
|
|
unsigned ShouldCopy : 1;
|
|
};
|
|
|
|
class InitListExprBitfields {
|
|
friend class InitListExpr;
|
|
|
|
unsigned : NumExprBits;
|
|
|
|
/// Whether this initializer list originally had a GNU array-range
|
|
/// designator in it. This is a temporary marker used by CodeGen.
|
|
unsigned HadArrayRangeDesignator : 1;
|
|
};
|
|
|
|
class TypeTraitExprBitfields {
|
|
friend class TypeTraitExpr;
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
|
|
unsigned : NumExprBits;
|
|
|
|
/// \brief The kind of type trait, which is a value of a TypeTrait enumerator.
|
|
unsigned Kind : 8;
|
|
|
|
/// \brief If this expression is not value-dependent, this indicates whether
|
|
/// the trait evaluated true or false.
|
|
unsigned Value : 1;
|
|
|
|
/// \brief The number of arguments to this type trait.
|
|
unsigned NumArgs : 32 - 8 - 1 - NumExprBits;
|
|
};
|
|
|
|
union {
|
|
StmtBitfields StmtBits;
|
|
CompoundStmtBitfields CompoundStmtBits;
|
|
IfStmtBitfields IfStmtBits;
|
|
ExprBitfields ExprBits;
|
|
CharacterLiteralBitfields CharacterLiteralBits;
|
|
FloatingLiteralBitfields FloatingLiteralBits;
|
|
UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits;
|
|
DeclRefExprBitfields DeclRefExprBits;
|
|
CastExprBitfields CastExprBits;
|
|
CallExprBitfields CallExprBits;
|
|
ExprWithCleanupsBitfields ExprWithCleanupsBits;
|
|
PseudoObjectExprBitfields PseudoObjectExprBits;
|
|
ObjCIndirectCopyRestoreExprBitfields ObjCIndirectCopyRestoreExprBits;
|
|
InitListExprBitfields InitListExprBits;
|
|
TypeTraitExprBitfields TypeTraitExprBits;
|
|
};
|
|
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
|
|
public:
|
|
// Only allow allocation of Stmts using the allocator in ASTContext
|
|
// or by doing a placement new.
|
|
void* operator new(size_t bytes, const ASTContext& C,
|
|
unsigned alignment = 8);
|
|
|
|
void* operator new(size_t bytes, const ASTContext* C,
|
|
unsigned alignment = 8) {
|
|
return operator new(bytes, *C, alignment);
|
|
}
|
|
|
|
void *operator new(size_t bytes, void *mem) noexcept { return mem; }
|
|
|
|
void operator delete(void *, const ASTContext &, unsigned) noexcept {}
|
|
void operator delete(void *, const ASTContext *, unsigned) noexcept {}
|
|
void operator delete(void *, size_t) noexcept {}
|
|
void operator delete(void *, void *) noexcept {}
|
|
|
|
public:
|
|
/// \brief A placeholder type used to construct an empty shell of a
|
|
/// type, that will be filled in later (e.g., by some
|
|
/// de-serialization).
|
|
struct EmptyShell { };
|
|
|
|
protected:
|
|
/// Iterator for iterating over Stmt * arrays that contain only Expr *
|
|
///
|
|
/// This is needed because AST nodes use Stmt* arrays to store
|
|
/// references to children (to be compatible with StmtIterator).
|
|
struct ExprIterator
|
|
: llvm::iterator_adaptor_base<ExprIterator, Stmt **,
|
|
std::random_access_iterator_tag, Expr *> {
|
|
ExprIterator() : iterator_adaptor_base(nullptr) {}
|
|
ExprIterator(Stmt **I) : iterator_adaptor_base(I) {}
|
|
|
|
reference operator*() const {
|
|
assert((*I)->getStmtClass() >= firstExprConstant &&
|
|
(*I)->getStmtClass() <= lastExprConstant);
|
|
return *reinterpret_cast<Expr **>(I);
|
|
}
|
|
};
|
|
|
|
/// Const iterator for iterating over Stmt * arrays that contain only Expr *
|
|
struct ConstExprIterator
|
|
: llvm::iterator_adaptor_base<ConstExprIterator, const Stmt *const *,
|
|
std::random_access_iterator_tag,
|
|
const Expr *const> {
|
|
ConstExprIterator() : iterator_adaptor_base(nullptr) {}
|
|
ConstExprIterator(const Stmt *const *I) : iterator_adaptor_base(I) {}
|
|
|
|
reference operator*() const {
|
|
assert((*I)->getStmtClass() >= firstExprConstant &&
|
|
(*I)->getStmtClass() <= lastExprConstant);
|
|
return *reinterpret_cast<const Expr *const *>(I);
|
|
}
|
|
};
|
|
|
|
private:
|
|
/// \brief Whether statistic collection is enabled.
|
|
static bool StatisticsEnabled;
|
|
|
|
protected:
|
|
/// \brief Construct an empty statement.
|
|
explicit Stmt(StmtClass SC, EmptyShell) : Stmt(SC) {}
|
|
|
|
public:
|
|
Stmt(StmtClass SC) {
|
|
static_assert(sizeof(*this) % alignof(void *) == 0,
|
|
"Insufficient alignment!");
|
|
StmtBits.sClass = SC;
|
|
if (StatisticsEnabled) Stmt::addStmtClass(SC);
|
|
}
|
|
|
|
StmtClass getStmtClass() const {
|
|
return static_cast<StmtClass>(StmtBits.sClass);
|
|
}
|
|
const char *getStmtClassName() const;
|
|
|
|
/// SourceLocation tokens are not useful in isolation - they are low level
|
|
/// value objects created/interpreted by SourceManager. We assume AST
|
|
/// clients will have a pointer to the respective SourceManager.
|
|
SourceRange getSourceRange() const LLVM_READONLY;
|
|
SourceLocation getLocStart() const LLVM_READONLY;
|
|
SourceLocation getLocEnd() const LLVM_READONLY;
|
|
|
|
// global temp stats (until we have a per-module visitor)
|
|
static void addStmtClass(const StmtClass s);
|
|
static void EnableStatistics();
|
|
static void PrintStats();
|
|
|
|
/// \brief Dumps the specified AST fragment and all subtrees to
|
|
/// \c llvm::errs().
|
|
void dump() const;
|
|
void dump(SourceManager &SM) const;
|
|
void dump(raw_ostream &OS, SourceManager &SM) const;
|
|
void dump(raw_ostream &OS) const;
|
|
|
|
/// dumpColor - same as dump(), but forces color highlighting.
|
|
void dumpColor() const;
|
|
|
|
/// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
|
|
/// back to its original source language syntax.
|
|
void dumpPretty(const ASTContext &Context) const;
|
|
void printPretty(raw_ostream &OS, PrinterHelper *Helper,
|
|
const PrintingPolicy &Policy,
|
|
unsigned Indentation = 0) const;
|
|
|
|
/// viewAST - Visualize an AST rooted at this Stmt* using GraphViz. Only
|
|
/// works on systems with GraphViz (Mac OS X) or dot+gv installed.
|
|
void viewAST() const;
|
|
|
|
/// Skip past any implicit AST nodes which might surround this
|
|
/// statement, such as ExprWithCleanups or ImplicitCastExpr nodes.
|
|
Stmt *IgnoreImplicit();
|
|
const Stmt *IgnoreImplicit() const {
|
|
return const_cast<Stmt *>(this)->IgnoreImplicit();
|
|
}
|
|
|
|
/// \brief Skip no-op (attributed, compound) container stmts and skip captured
|
|
/// stmt at the top, if \a IgnoreCaptured is true.
|
|
Stmt *IgnoreContainers(bool IgnoreCaptured = false);
|
|
|
|
const Stmt *stripLabelLikeStatements() const;
|
|
Stmt *stripLabelLikeStatements() {
|
|
return const_cast<Stmt*>(
|
|
const_cast<const Stmt*>(this)->stripLabelLikeStatements());
|
|
}
|
|
|
|
/// Child Iterators: All subclasses must implement 'children'
|
|
/// to permit easy iteration over the substatements/subexpessions of an
|
|
/// AST node. This permits easy iteration over all nodes in the AST.
|
|
typedef StmtIterator child_iterator;
|
|
typedef ConstStmtIterator const_child_iterator;
|
|
|
|
typedef llvm::iterator_range<child_iterator> child_range;
|
|
typedef llvm::iterator_range<const_child_iterator> const_child_range;
|
|
|
|
child_range children();
|
|
const_child_range children() const {
|
|
auto Children = const_cast<Stmt *>(this)->children();
|
|
return const_child_range(Children.begin(), Children.end());
|
|
}
|
|
|
|
child_iterator child_begin() { return children().begin(); }
|
|
child_iterator child_end() { return children().end(); }
|
|
|
|
const_child_iterator child_begin() const { return children().begin(); }
|
|
const_child_iterator child_end() const { return children().end(); }
|
|
|
|
/// \brief Produce a unique representation of the given statement.
|
|
///
|
|
/// \param ID once the profiling operation is complete, will contain
|
|
/// the unique representation of the given statement.
|
|
///
|
|
/// \param Context the AST context in which the statement resides
|
|
///
|
|
/// \param Canonical whether the profile should be based on the canonical
|
|
/// representation of this statement (e.g., where non-type template
|
|
/// parameters are identified by index/level rather than their
|
|
/// declaration pointers) or the exact representation of the statement as
|
|
/// written in the source.
|
|
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
|
|
bool Canonical) const;
|
|
};
|
|
|
|
/// DeclStmt - Adaptor class for mixing declarations with statements and
|
|
/// expressions. For example, CompoundStmt mixes statements, expressions
|
|
/// and declarations (variables, types). Another example is ForStmt, where
|
|
/// the first statement can be an expression or a declaration.
|
|
///
|
|
class DeclStmt : public Stmt {
|
|
DeclGroupRef DG;
|
|
SourceLocation StartLoc, EndLoc;
|
|
|
|
public:
|
|
DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
|
|
SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
|
|
StartLoc(startLoc), EndLoc(endLoc) {}
|
|
|
|
/// \brief Build an empty declaration statement.
|
|
explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }
|
|
|
|
/// isSingleDecl - This method returns true if this DeclStmt refers
|
|
/// to a single Decl.
|
|
bool isSingleDecl() const {
|
|
return DG.isSingleDecl();
|
|
}
|
|
|
|
const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
|
|
Decl *getSingleDecl() { return DG.getSingleDecl(); }
|
|
|
|
const DeclGroupRef getDeclGroup() const { return DG; }
|
|
DeclGroupRef getDeclGroup() { return DG; }
|
|
void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }
|
|
|
|
SourceLocation getStartLoc() const { return StartLoc; }
|
|
void setStartLoc(SourceLocation L) { StartLoc = L; }
|
|
SourceLocation getEndLoc() const { return EndLoc; }
|
|
void setEndLoc(SourceLocation L) { EndLoc = L; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return StartLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return EndLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == DeclStmtClass;
|
|
}
|
|
|
|
// Iterators over subexpressions.
|
|
child_range children() {
|
|
return child_range(child_iterator(DG.begin(), DG.end()),
|
|
child_iterator(DG.end(), DG.end()));
|
|
}
|
|
|
|
typedef DeclGroupRef::iterator decl_iterator;
|
|
typedef DeclGroupRef::const_iterator const_decl_iterator;
|
|
typedef llvm::iterator_range<decl_iterator> decl_range;
|
|
typedef llvm::iterator_range<const_decl_iterator> decl_const_range;
|
|
|
|
decl_range decls() { return decl_range(decl_begin(), decl_end()); }
|
|
decl_const_range decls() const {
|
|
return decl_const_range(decl_begin(), decl_end());
|
|
}
|
|
decl_iterator decl_begin() { return DG.begin(); }
|
|
decl_iterator decl_end() { return DG.end(); }
|
|
const_decl_iterator decl_begin() const { return DG.begin(); }
|
|
const_decl_iterator decl_end() const { return DG.end(); }
|
|
|
|
typedef std::reverse_iterator<decl_iterator> reverse_decl_iterator;
|
|
reverse_decl_iterator decl_rbegin() {
|
|
return reverse_decl_iterator(decl_end());
|
|
}
|
|
reverse_decl_iterator decl_rend() {
|
|
return reverse_decl_iterator(decl_begin());
|
|
}
|
|
};
|
|
|
|
/// NullStmt - This is the null statement ";": C99 6.8.3p3.
|
|
///
|
|
class NullStmt : public Stmt {
|
|
SourceLocation SemiLoc;
|
|
|
|
/// \brief True if the null statement was preceded by an empty macro, e.g:
|
|
/// @code
|
|
/// #define CALL(x)
|
|
/// CALL(0);
|
|
/// @endcode
|
|
bool HasLeadingEmptyMacro;
|
|
public:
|
|
NullStmt(SourceLocation L, bool hasLeadingEmptyMacro = false)
|
|
: Stmt(NullStmtClass), SemiLoc(L),
|
|
HasLeadingEmptyMacro(hasLeadingEmptyMacro) {}
|
|
|
|
/// \brief Build an empty null statement.
|
|
explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty),
|
|
HasLeadingEmptyMacro(false) { }
|
|
|
|
SourceLocation getSemiLoc() const { return SemiLoc; }
|
|
void setSemiLoc(SourceLocation L) { SemiLoc = L; }
|
|
|
|
bool hasLeadingEmptyMacro() const { return HasLeadingEmptyMacro; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return SemiLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return SemiLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == NullStmtClass;
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
};
|
|
|
|
/// CompoundStmt - This represents a group of statements like { stmt stmt }.
|
|
///
|
|
class CompoundStmt : public Stmt {
|
|
Stmt** Body;
|
|
SourceLocation LBraceLoc, RBraceLoc;
|
|
|
|
friend class ASTStmtReader;
|
|
|
|
public:
|
|
CompoundStmt(const ASTContext &C, ArrayRef<Stmt*> Stmts,
|
|
SourceLocation LB, SourceLocation RB);
|
|
|
|
// \brief Build an empty compound statement with a location.
|
|
explicit CompoundStmt(SourceLocation Loc)
|
|
: Stmt(CompoundStmtClass), Body(nullptr), LBraceLoc(Loc), RBraceLoc(Loc) {
|
|
CompoundStmtBits.NumStmts = 0;
|
|
}
|
|
|
|
// \brief Build an empty compound statement.
|
|
explicit CompoundStmt(EmptyShell Empty)
|
|
: Stmt(CompoundStmtClass, Empty), Body(nullptr) {
|
|
CompoundStmtBits.NumStmts = 0;
|
|
}
|
|
|
|
void setStmts(const ASTContext &C, ArrayRef<Stmt *> Stmts);
|
|
|
|
bool body_empty() const { return CompoundStmtBits.NumStmts == 0; }
|
|
unsigned size() const { return CompoundStmtBits.NumStmts; }
|
|
|
|
typedef Stmt** body_iterator;
|
|
typedef llvm::iterator_range<body_iterator> body_range;
|
|
|
|
body_range body() { return body_range(body_begin(), body_end()); }
|
|
body_iterator body_begin() { return Body; }
|
|
body_iterator body_end() { return Body + size(); }
|
|
Stmt *body_front() { return !body_empty() ? Body[0] : nullptr; }
|
|
Stmt *body_back() { return !body_empty() ? Body[size()-1] : nullptr; }
|
|
|
|
void setLastStmt(Stmt *S) {
|
|
assert(!body_empty() && "setLastStmt");
|
|
Body[size()-1] = S;
|
|
}
|
|
|
|
typedef Stmt* const * const_body_iterator;
|
|
typedef llvm::iterator_range<const_body_iterator> body_const_range;
|
|
|
|
body_const_range body() const {
|
|
return body_const_range(body_begin(), body_end());
|
|
}
|
|
const_body_iterator body_begin() const { return Body; }
|
|
const_body_iterator body_end() const { return Body + size(); }
|
|
const Stmt *body_front() const {
|
|
return !body_empty() ? Body[0] : nullptr;
|
|
}
|
|
const Stmt *body_back() const {
|
|
return !body_empty() ? Body[size() - 1] : nullptr;
|
|
}
|
|
|
|
typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
|
|
reverse_body_iterator body_rbegin() {
|
|
return reverse_body_iterator(body_end());
|
|
}
|
|
reverse_body_iterator body_rend() {
|
|
return reverse_body_iterator(body_begin());
|
|
}
|
|
|
|
typedef std::reverse_iterator<const_body_iterator>
|
|
const_reverse_body_iterator;
|
|
|
|
const_reverse_body_iterator body_rbegin() const {
|
|
return const_reverse_body_iterator(body_end());
|
|
}
|
|
|
|
const_reverse_body_iterator body_rend() const {
|
|
return const_reverse_body_iterator(body_begin());
|
|
}
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return LBraceLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return RBraceLoc; }
|
|
|
|
SourceLocation getLBracLoc() const { return LBraceLoc; }
|
|
SourceLocation getRBracLoc() const { return RBraceLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CompoundStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(Body, Body + CompoundStmtBits.NumStmts);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(child_iterator(Body),
|
|
child_iterator(Body + CompoundStmtBits.NumStmts));
|
|
}
|
|
};
|
|
|
|
// SwitchCase is the base class for CaseStmt and DefaultStmt,
|
|
class SwitchCase : public Stmt {
|
|
protected:
|
|
// A pointer to the following CaseStmt or DefaultStmt class,
|
|
// used by SwitchStmt.
|
|
SwitchCase *NextSwitchCase;
|
|
SourceLocation KeywordLoc;
|
|
SourceLocation ColonLoc;
|
|
|
|
SwitchCase(StmtClass SC, SourceLocation KWLoc, SourceLocation ColonLoc)
|
|
: Stmt(SC), NextSwitchCase(nullptr), KeywordLoc(KWLoc), ColonLoc(ColonLoc) {
|
|
}
|
|
|
|
SwitchCase(StmtClass SC, EmptyShell)
|
|
: Stmt(SC), NextSwitchCase(nullptr) {}
|
|
|
|
public:
|
|
const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }
|
|
|
|
SwitchCase *getNextSwitchCase() { return NextSwitchCase; }
|
|
|
|
void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }
|
|
|
|
SourceLocation getKeywordLoc() const { return KeywordLoc; }
|
|
void setKeywordLoc(SourceLocation L) { KeywordLoc = L; }
|
|
SourceLocation getColonLoc() const { return ColonLoc; }
|
|
void setColonLoc(SourceLocation L) { ColonLoc = L; }
|
|
|
|
Stmt *getSubStmt();
|
|
const Stmt *getSubStmt() const {
|
|
return const_cast<SwitchCase*>(this)->getSubStmt();
|
|
}
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY;
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CaseStmtClass ||
|
|
T->getStmtClass() == DefaultStmtClass;
|
|
}
|
|
};
|
|
|
|
class CaseStmt : public SwitchCase {
|
|
SourceLocation EllipsisLoc;
|
|
enum { LHS, RHS, SUBSTMT, END_EXPR };
|
|
Stmt* SubExprs[END_EXPR]; // The expression for the RHS is Non-null for
|
|
// GNU "case 1 ... 4" extension
|
|
public:
|
|
CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc,
|
|
SourceLocation ellipsisLoc, SourceLocation colonLoc)
|
|
: SwitchCase(CaseStmtClass, caseLoc, colonLoc) {
|
|
SubExprs[SUBSTMT] = nullptr;
|
|
SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
|
|
SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
|
|
EllipsisLoc = ellipsisLoc;
|
|
}
|
|
|
|
/// \brief Build an empty switch case statement.
|
|
explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass, Empty) { }
|
|
|
|
SourceLocation getCaseLoc() const { return KeywordLoc; }
|
|
void setCaseLoc(SourceLocation L) { KeywordLoc = L; }
|
|
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
|
|
void setEllipsisLoc(SourceLocation L) { EllipsisLoc = L; }
|
|
SourceLocation getColonLoc() const { return ColonLoc; }
|
|
void setColonLoc(SourceLocation L) { ColonLoc = L; }
|
|
|
|
Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
|
|
Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
|
|
Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }
|
|
|
|
const Expr *getLHS() const {
|
|
return reinterpret_cast<const Expr*>(SubExprs[LHS]);
|
|
}
|
|
const Expr *getRHS() const {
|
|
return reinterpret_cast<const Expr*>(SubExprs[RHS]);
|
|
}
|
|
const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }
|
|
|
|
void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
|
|
void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
|
|
void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY {
|
|
// Handle deeply nested case statements with iteration instead of recursion.
|
|
const CaseStmt *CS = this;
|
|
while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
|
|
CS = CS2;
|
|
|
|
return CS->getSubStmt()->getLocEnd();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CaseStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(&SubExprs[0], &SubExprs[END_EXPR]);
|
|
}
|
|
};
|
|
|
|
class DefaultStmt : public SwitchCase {
|
|
Stmt* SubStmt;
|
|
public:
|
|
DefaultStmt(SourceLocation DL, SourceLocation CL, Stmt *substmt) :
|
|
SwitchCase(DefaultStmtClass, DL, CL), SubStmt(substmt) {}
|
|
|
|
/// \brief Build an empty default statement.
|
|
explicit DefaultStmt(EmptyShell Empty)
|
|
: SwitchCase(DefaultStmtClass, Empty) { }
|
|
|
|
Stmt *getSubStmt() { return SubStmt; }
|
|
const Stmt *getSubStmt() const { return SubStmt; }
|
|
void setSubStmt(Stmt *S) { SubStmt = S; }
|
|
|
|
SourceLocation getDefaultLoc() const { return KeywordLoc; }
|
|
void setDefaultLoc(SourceLocation L) { KeywordLoc = L; }
|
|
SourceLocation getColonLoc() const { return ColonLoc; }
|
|
void setColonLoc(SourceLocation L) { ColonLoc = L; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == DefaultStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(&SubStmt, &SubStmt+1); }
|
|
};
|
|
|
|
inline SourceLocation SwitchCase::getLocEnd() const {
|
|
if (const CaseStmt *CS = dyn_cast<CaseStmt>(this))
|
|
return CS->getLocEnd();
|
|
return cast<DefaultStmt>(this)->getLocEnd();
|
|
}
|
|
|
|
/// LabelStmt - Represents a label, which has a substatement. For example:
|
|
/// foo: return;
|
|
///
|
|
class LabelStmt : public Stmt {
|
|
SourceLocation IdentLoc;
|
|
LabelDecl *TheDecl;
|
|
Stmt *SubStmt;
|
|
|
|
public:
|
|
LabelStmt(SourceLocation IL, LabelDecl *D, Stmt *substmt)
|
|
: Stmt(LabelStmtClass), IdentLoc(IL), TheDecl(D), SubStmt(substmt) {
|
|
static_assert(sizeof(LabelStmt) ==
|
|
2 * sizeof(SourceLocation) + 2 * sizeof(void *),
|
|
"LabelStmt too big");
|
|
}
|
|
|
|
// \brief Build an empty label statement.
|
|
explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }
|
|
|
|
SourceLocation getIdentLoc() const { return IdentLoc; }
|
|
LabelDecl *getDecl() const { return TheDecl; }
|
|
void setDecl(LabelDecl *D) { TheDecl = D; }
|
|
const char *getName() const;
|
|
Stmt *getSubStmt() { return SubStmt; }
|
|
const Stmt *getSubStmt() const { return SubStmt; }
|
|
void setIdentLoc(SourceLocation L) { IdentLoc = L; }
|
|
void setSubStmt(Stmt *SS) { SubStmt = SS; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return IdentLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
|
|
|
|
child_range children() { return child_range(&SubStmt, &SubStmt+1); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == LabelStmtClass;
|
|
}
|
|
};
|
|
|
|
|
|
/// \brief Represents an attribute applied to a statement.
|
|
///
|
|
/// Represents an attribute applied to a statement. For example:
|
|
/// [[omp::for(...)]] for (...) { ... }
|
|
///
|
|
class AttributedStmt : public Stmt {
|
|
Stmt *SubStmt;
|
|
SourceLocation AttrLoc;
|
|
unsigned NumAttrs;
|
|
|
|
friend class ASTStmtReader;
|
|
|
|
AttributedStmt(SourceLocation Loc, ArrayRef<const Attr*> Attrs, Stmt *SubStmt)
|
|
: Stmt(AttributedStmtClass), SubStmt(SubStmt), AttrLoc(Loc),
|
|
NumAttrs(Attrs.size()) {
|
|
std::copy(Attrs.begin(), Attrs.end(), getAttrArrayPtr());
|
|
}
|
|
|
|
explicit AttributedStmt(EmptyShell Empty, unsigned NumAttrs)
|
|
: Stmt(AttributedStmtClass, Empty), NumAttrs(NumAttrs) {
|
|
std::fill_n(getAttrArrayPtr(), NumAttrs, nullptr);
|
|
}
|
|
|
|
const Attr *const *getAttrArrayPtr() const {
|
|
return reinterpret_cast<const Attr *const *>(this + 1);
|
|
}
|
|
const Attr **getAttrArrayPtr() {
|
|
return reinterpret_cast<const Attr **>(this + 1);
|
|
}
|
|
|
|
public:
|
|
static AttributedStmt *Create(const ASTContext &C, SourceLocation Loc,
|
|
ArrayRef<const Attr*> Attrs, Stmt *SubStmt);
|
|
// \brief Build an empty attributed statement.
|
|
static AttributedStmt *CreateEmpty(const ASTContext &C, unsigned NumAttrs);
|
|
|
|
SourceLocation getAttrLoc() const { return AttrLoc; }
|
|
ArrayRef<const Attr*> getAttrs() const {
|
|
return llvm::makeArrayRef(getAttrArrayPtr(), NumAttrs);
|
|
}
|
|
Stmt *getSubStmt() { return SubStmt; }
|
|
const Stmt *getSubStmt() const { return SubStmt; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return AttrLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
|
|
|
|
child_range children() { return child_range(&SubStmt, &SubStmt + 1); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == AttributedStmtClass;
|
|
}
|
|
};
|
|
|
|
|
|
/// IfStmt - This represents an if/then/else.
|
|
///
|
|
class IfStmt : public Stmt {
|
|
enum { INIT, VAR, COND, THEN, ELSE, END_EXPR };
|
|
Stmt* SubExprs[END_EXPR];
|
|
|
|
SourceLocation IfLoc;
|
|
SourceLocation ElseLoc;
|
|
|
|
public:
|
|
IfStmt(const ASTContext &C, SourceLocation IL,
|
|
bool IsConstexpr, Stmt *init, VarDecl *var, Expr *cond,
|
|
Stmt *then, SourceLocation EL = SourceLocation(),
|
|
Stmt *elsev = nullptr);
|
|
|
|
/// \brief Build an empty if/then/else statement
|
|
explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }
|
|
|
|
/// \brief Retrieve the variable declared in this "if" statement, if any.
|
|
///
|
|
/// In the following example, "x" is the condition variable.
|
|
/// \code
|
|
/// if (int x = foo()) {
|
|
/// printf("x is %d", x);
|
|
/// }
|
|
/// \endcode
|
|
VarDecl *getConditionVariable() const;
|
|
void setConditionVariable(const ASTContext &C, VarDecl *V);
|
|
|
|
/// If this IfStmt has a condition variable, return the faux DeclStmt
|
|
/// associated with the creation of that condition variable.
|
|
const DeclStmt *getConditionVariableDeclStmt() const {
|
|
return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
|
|
}
|
|
|
|
Stmt *getInit() { return SubExprs[INIT]; }
|
|
const Stmt *getInit() const { return SubExprs[INIT]; }
|
|
void setInit(Stmt *S) { SubExprs[INIT] = S; }
|
|
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
|
|
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
|
|
const Stmt *getThen() const { return SubExprs[THEN]; }
|
|
void setThen(Stmt *S) { SubExprs[THEN] = S; }
|
|
const Stmt *getElse() const { return SubExprs[ELSE]; }
|
|
void setElse(Stmt *S) { SubExprs[ELSE] = S; }
|
|
|
|
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
|
|
Stmt *getThen() { return SubExprs[THEN]; }
|
|
Stmt *getElse() { return SubExprs[ELSE]; }
|
|
|
|
SourceLocation getIfLoc() const { return IfLoc; }
|
|
void setIfLoc(SourceLocation L) { IfLoc = L; }
|
|
SourceLocation getElseLoc() const { return ElseLoc; }
|
|
void setElseLoc(SourceLocation L) { ElseLoc = L; }
|
|
|
|
bool isConstexpr() const { return IfStmtBits.IsConstexpr; }
|
|
void setConstexpr(bool C) { IfStmtBits.IsConstexpr = C; }
|
|
|
|
bool isObjCAvailabilityCheck() const;
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return IfLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY {
|
|
if (SubExprs[ELSE])
|
|
return SubExprs[ELSE]->getLocEnd();
|
|
else
|
|
return SubExprs[THEN]->getLocEnd();
|
|
}
|
|
|
|
// Iterators over subexpressions. The iterators will include iterating
|
|
// over the initialization expression referenced by the condition variable.
|
|
child_range children() {
|
|
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == IfStmtClass;
|
|
}
|
|
};
|
|
|
|
/// SwitchStmt - This represents a 'switch' stmt.
|
|
///
|
|
class SwitchStmt : public Stmt {
|
|
SourceLocation SwitchLoc;
|
|
enum { INIT, VAR, COND, BODY, END_EXPR };
|
|
Stmt* SubExprs[END_EXPR];
|
|
// This points to a linked list of case and default statements and, if the
|
|
// SwitchStmt is a switch on an enum value, records whether all the enum
|
|
// values were covered by CaseStmts. The coverage information value is meant
|
|
// to be a hint for possible clients.
|
|
llvm::PointerIntPair<SwitchCase *, 1, bool> FirstCase;
|
|
|
|
public:
|
|
SwitchStmt(const ASTContext &C, Stmt *Init, VarDecl *Var, Expr *cond);
|
|
|
|
/// \brief Build a empty switch statement.
|
|
explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }
|
|
|
|
/// \brief Retrieve the variable declared in this "switch" statement, if any.
|
|
///
|
|
/// In the following example, "x" is the condition variable.
|
|
/// \code
|
|
/// switch (int x = foo()) {
|
|
/// case 0: break;
|
|
/// // ...
|
|
/// }
|
|
/// \endcode
|
|
VarDecl *getConditionVariable() const;
|
|
void setConditionVariable(const ASTContext &C, VarDecl *V);
|
|
|
|
/// If this SwitchStmt has a condition variable, return the faux DeclStmt
|
|
/// associated with the creation of that condition variable.
|
|
const DeclStmt *getConditionVariableDeclStmt() const {
|
|
return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
|
|
}
|
|
|
|
Stmt *getInit() { return SubExprs[INIT]; }
|
|
const Stmt *getInit() const { return SubExprs[INIT]; }
|
|
void setInit(Stmt *S) { SubExprs[INIT] = S; }
|
|
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
|
|
const Stmt *getBody() const { return SubExprs[BODY]; }
|
|
const SwitchCase *getSwitchCaseList() const { return FirstCase.getPointer(); }
|
|
|
|
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
|
|
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
|
|
Stmt *getBody() { return SubExprs[BODY]; }
|
|
void setBody(Stmt *S) { SubExprs[BODY] = S; }
|
|
SwitchCase *getSwitchCaseList() { return FirstCase.getPointer(); }
|
|
|
|
/// \brief Set the case list for this switch statement.
|
|
void setSwitchCaseList(SwitchCase *SC) { FirstCase.setPointer(SC); }
|
|
|
|
SourceLocation getSwitchLoc() const { return SwitchLoc; }
|
|
void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }
|
|
|
|
void setBody(Stmt *S, SourceLocation SL) {
|
|
SubExprs[BODY] = S;
|
|
SwitchLoc = SL;
|
|
}
|
|
void addSwitchCase(SwitchCase *SC) {
|
|
assert(!SC->getNextSwitchCase()
|
|
&& "case/default already added to a switch");
|
|
SC->setNextSwitchCase(FirstCase.getPointer());
|
|
FirstCase.setPointer(SC);
|
|
}
|
|
|
|
/// Set a flag in the SwitchStmt indicating that if the 'switch (X)' is a
|
|
/// switch over an enum value then all cases have been explicitly covered.
|
|
void setAllEnumCasesCovered() { FirstCase.setInt(true); }
|
|
|
|
/// Returns true if the SwitchStmt is a switch of an enum value and all cases
|
|
/// have been explicitly covered.
|
|
bool isAllEnumCasesCovered() const { return FirstCase.getInt(); }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return SwitchLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY {
|
|
return SubExprs[BODY] ? SubExprs[BODY]->getLocEnd() : SubExprs[COND]->getLocEnd();
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == SwitchStmtClass;
|
|
}
|
|
};
|
|
|
|
|
|
/// WhileStmt - This represents a 'while' stmt.
|
|
///
|
|
class WhileStmt : public Stmt {
|
|
SourceLocation WhileLoc;
|
|
enum { VAR, COND, BODY, END_EXPR };
|
|
Stmt* SubExprs[END_EXPR];
|
|
public:
|
|
WhileStmt(const ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
|
|
SourceLocation WL);
|
|
|
|
/// \brief Build an empty while statement.
|
|
explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }
|
|
|
|
/// \brief Retrieve the variable declared in this "while" statement, if any.
|
|
///
|
|
/// In the following example, "x" is the condition variable.
|
|
/// \code
|
|
/// while (int x = random()) {
|
|
/// // ...
|
|
/// }
|
|
/// \endcode
|
|
VarDecl *getConditionVariable() const;
|
|
void setConditionVariable(const ASTContext &C, VarDecl *V);
|
|
|
|
/// If this WhileStmt has a condition variable, return the faux DeclStmt
|
|
/// associated with the creation of that condition variable.
|
|
const DeclStmt *getConditionVariableDeclStmt() const {
|
|
return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
|
|
}
|
|
|
|
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
|
|
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
|
|
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
|
|
Stmt *getBody() { return SubExprs[BODY]; }
|
|
const Stmt *getBody() const { return SubExprs[BODY]; }
|
|
void setBody(Stmt *S) { SubExprs[BODY] = S; }
|
|
|
|
SourceLocation getWhileLoc() const { return WhileLoc; }
|
|
void setWhileLoc(SourceLocation L) { WhileLoc = L; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return WhileLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY {
|
|
return SubExprs[BODY]->getLocEnd();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == WhileStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
|
|
}
|
|
};
|
|
|
|
/// DoStmt - This represents a 'do/while' stmt.
|
|
///
|
|
class DoStmt : public Stmt {
|
|
SourceLocation DoLoc;
|
|
enum { BODY, COND, END_EXPR };
|
|
Stmt* SubExprs[END_EXPR];
|
|
SourceLocation WhileLoc;
|
|
SourceLocation RParenLoc; // Location of final ')' in do stmt condition.
|
|
|
|
public:
|
|
DoStmt(Stmt *body, Expr *cond, SourceLocation DL, SourceLocation WL,
|
|
SourceLocation RP)
|
|
: Stmt(DoStmtClass), DoLoc(DL), WhileLoc(WL), RParenLoc(RP) {
|
|
SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
|
|
SubExprs[BODY] = body;
|
|
}
|
|
|
|
/// \brief Build an empty do-while statement.
|
|
explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }
|
|
|
|
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
|
|
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
|
|
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
|
|
Stmt *getBody() { return SubExprs[BODY]; }
|
|
const Stmt *getBody() const { return SubExprs[BODY]; }
|
|
void setBody(Stmt *S) { SubExprs[BODY] = S; }
|
|
|
|
SourceLocation getDoLoc() const { return DoLoc; }
|
|
void setDoLoc(SourceLocation L) { DoLoc = L; }
|
|
SourceLocation getWhileLoc() const { return WhileLoc; }
|
|
void setWhileLoc(SourceLocation L) { WhileLoc = L; }
|
|
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return DoLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == DoStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
|
|
}
|
|
};
|
|
|
|
|
|
/// ForStmt - This represents a 'for (init;cond;inc)' stmt. Note that any of
|
|
/// the init/cond/inc parts of the ForStmt will be null if they were not
|
|
/// specified in the source.
|
|
///
|
|
class ForStmt : public Stmt {
|
|
SourceLocation ForLoc;
|
|
enum { INIT, CONDVAR, COND, INC, BODY, END_EXPR };
|
|
Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
|
|
SourceLocation LParenLoc, RParenLoc;
|
|
|
|
public:
|
|
ForStmt(const ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar,
|
|
Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP,
|
|
SourceLocation RP);
|
|
|
|
/// \brief Build an empty for statement.
|
|
explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }
|
|
|
|
Stmt *getInit() { return SubExprs[INIT]; }
|
|
|
|
/// \brief Retrieve the variable declared in this "for" statement, if any.
|
|
///
|
|
/// In the following example, "y" is the condition variable.
|
|
/// \code
|
|
/// for (int x = random(); int y = mangle(x); ++x) {
|
|
/// // ...
|
|
/// }
|
|
/// \endcode
|
|
VarDecl *getConditionVariable() const;
|
|
void setConditionVariable(const ASTContext &C, VarDecl *V);
|
|
|
|
/// If this ForStmt has a condition variable, return the faux DeclStmt
|
|
/// associated with the creation of that condition variable.
|
|
const DeclStmt *getConditionVariableDeclStmt() const {
|
|
return reinterpret_cast<DeclStmt*>(SubExprs[CONDVAR]);
|
|
}
|
|
|
|
Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
|
|
Expr *getInc() { return reinterpret_cast<Expr*>(SubExprs[INC]); }
|
|
Stmt *getBody() { return SubExprs[BODY]; }
|
|
|
|
const Stmt *getInit() const { return SubExprs[INIT]; }
|
|
const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
|
|
const Expr *getInc() const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
|
|
const Stmt *getBody() const { return SubExprs[BODY]; }
|
|
|
|
void setInit(Stmt *S) { SubExprs[INIT] = S; }
|
|
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
|
|
void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
|
|
void setBody(Stmt *S) { SubExprs[BODY] = S; }
|
|
|
|
SourceLocation getForLoc() const { return ForLoc; }
|
|
void setForLoc(SourceLocation L) { ForLoc = L; }
|
|
SourceLocation getLParenLoc() const { return LParenLoc; }
|
|
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return ForLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY {
|
|
return SubExprs[BODY]->getLocEnd();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ForStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
|
|
}
|
|
};
|
|
|
|
/// GotoStmt - This represents a direct goto.
|
|
///
|
|
class GotoStmt : public Stmt {
|
|
LabelDecl *Label;
|
|
SourceLocation GotoLoc;
|
|
SourceLocation LabelLoc;
|
|
public:
|
|
GotoStmt(LabelDecl *label, SourceLocation GL, SourceLocation LL)
|
|
: Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}
|
|
|
|
/// \brief Build an empty goto statement.
|
|
explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }
|
|
|
|
LabelDecl *getLabel() const { return Label; }
|
|
void setLabel(LabelDecl *D) { Label = D; }
|
|
|
|
SourceLocation getGotoLoc() const { return GotoLoc; }
|
|
void setGotoLoc(SourceLocation L) { GotoLoc = L; }
|
|
SourceLocation getLabelLoc() const { return LabelLoc; }
|
|
void setLabelLoc(SourceLocation L) { LabelLoc = L; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return GotoLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == GotoStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
};
|
|
|
|
/// IndirectGotoStmt - This represents an indirect goto.
|
|
///
|
|
class IndirectGotoStmt : public Stmt {
|
|
SourceLocation GotoLoc;
|
|
SourceLocation StarLoc;
|
|
Stmt *Target;
|
|
public:
|
|
IndirectGotoStmt(SourceLocation gotoLoc, SourceLocation starLoc,
|
|
Expr *target)
|
|
: Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), StarLoc(starLoc),
|
|
Target((Stmt*)target) {}
|
|
|
|
/// \brief Build an empty indirect goto statement.
|
|
explicit IndirectGotoStmt(EmptyShell Empty)
|
|
: Stmt(IndirectGotoStmtClass, Empty) { }
|
|
|
|
void setGotoLoc(SourceLocation L) { GotoLoc = L; }
|
|
SourceLocation getGotoLoc() const { return GotoLoc; }
|
|
void setStarLoc(SourceLocation L) { StarLoc = L; }
|
|
SourceLocation getStarLoc() const { return StarLoc; }
|
|
|
|
Expr *getTarget() { return reinterpret_cast<Expr*>(Target); }
|
|
const Expr *getTarget() const {return reinterpret_cast<const Expr*>(Target);}
|
|
void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }
|
|
|
|
/// getConstantTarget - Returns the fixed target of this indirect
|
|
/// goto, if one exists.
|
|
LabelDecl *getConstantTarget();
|
|
const LabelDecl *getConstantTarget() const {
|
|
return const_cast<IndirectGotoStmt*>(this)->getConstantTarget();
|
|
}
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return GotoLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return Target->getLocEnd(); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == IndirectGotoStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(&Target, &Target+1); }
|
|
};
|
|
|
|
|
|
/// ContinueStmt - This represents a continue.
|
|
///
|
|
class ContinueStmt : public Stmt {
|
|
SourceLocation ContinueLoc;
|
|
public:
|
|
ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}
|
|
|
|
/// \brief Build an empty continue statement.
|
|
explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }
|
|
|
|
SourceLocation getContinueLoc() const { return ContinueLoc; }
|
|
void setContinueLoc(SourceLocation L) { ContinueLoc = L; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return ContinueLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return ContinueLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ContinueStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
};
|
|
|
|
/// BreakStmt - This represents a break.
|
|
///
|
|
class BreakStmt : public Stmt {
|
|
SourceLocation BreakLoc;
|
|
|
|
public:
|
|
BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {
|
|
static_assert(sizeof(BreakStmt) == 2 * sizeof(SourceLocation),
|
|
"BreakStmt too large");
|
|
}
|
|
|
|
/// \brief Build an empty break statement.
|
|
explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }
|
|
|
|
SourceLocation getBreakLoc() const { return BreakLoc; }
|
|
void setBreakLoc(SourceLocation L) { BreakLoc = L; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return BreakLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return BreakLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == BreakStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
};
|
|
|
|
|
|
/// ReturnStmt - This represents a return, optionally of an expression:
|
|
/// return;
|
|
/// return 4;
|
|
///
|
|
/// Note that GCC allows return with no argument in a function declared to
|
|
/// return a value, and it allows returning a value in functions declared to
|
|
/// return void. We explicitly model this in the AST, which means you can't
|
|
/// depend on the return type of the function and the presence of an argument.
|
|
///
|
|
class ReturnStmt : public Stmt {
|
|
SourceLocation RetLoc;
|
|
Stmt *RetExpr;
|
|
const VarDecl *NRVOCandidate;
|
|
|
|
public:
|
|
explicit ReturnStmt(SourceLocation RL) : ReturnStmt(RL, nullptr, nullptr) {}
|
|
|
|
ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
|
|
: Stmt(ReturnStmtClass), RetLoc(RL), RetExpr((Stmt *)E),
|
|
NRVOCandidate(NRVOCandidate) {}
|
|
|
|
/// \brief Build an empty return expression.
|
|
explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }
|
|
|
|
const Expr *getRetValue() const;
|
|
Expr *getRetValue();
|
|
void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }
|
|
|
|
SourceLocation getReturnLoc() const { return RetLoc; }
|
|
void setReturnLoc(SourceLocation L) { RetLoc = L; }
|
|
|
|
/// \brief Retrieve the variable that might be used for the named return
|
|
/// value optimization.
|
|
///
|
|
/// The optimization itself can only be performed if the variable is
|
|
/// also marked as an NRVO object.
|
|
const VarDecl *getNRVOCandidate() const { return NRVOCandidate; }
|
|
void setNRVOCandidate(const VarDecl *Var) { NRVOCandidate = Var; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return RetLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY {
|
|
return RetExpr ? RetExpr->getLocEnd() : RetLoc;
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ReturnStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
if (RetExpr) return child_range(&RetExpr, &RetExpr+1);
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
};
|
|
|
|
/// AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
|
|
///
|
|
class AsmStmt : public Stmt {
|
|
protected:
|
|
SourceLocation AsmLoc;
|
|
/// \brief True if the assembly statement does not have any input or output
|
|
/// operands.
|
|
bool IsSimple;
|
|
|
|
/// \brief If true, treat this inline assembly as having side effects.
|
|
/// This assembly statement should not be optimized, deleted or moved.
|
|
bool IsVolatile;
|
|
|
|
unsigned NumOutputs;
|
|
unsigned NumInputs;
|
|
unsigned NumClobbers;
|
|
|
|
Stmt **Exprs;
|
|
|
|
AsmStmt(StmtClass SC, SourceLocation asmloc, bool issimple, bool isvolatile,
|
|
unsigned numoutputs, unsigned numinputs, unsigned numclobbers) :
|
|
Stmt (SC), AsmLoc(asmloc), IsSimple(issimple), IsVolatile(isvolatile),
|
|
NumOutputs(numoutputs), NumInputs(numinputs), NumClobbers(numclobbers) { }
|
|
|
|
friend class ASTStmtReader;
|
|
|
|
public:
|
|
/// \brief Build an empty inline-assembly statement.
|
|
explicit AsmStmt(StmtClass SC, EmptyShell Empty) :
|
|
Stmt(SC, Empty), Exprs(nullptr) { }
|
|
|
|
SourceLocation getAsmLoc() const { return AsmLoc; }
|
|
void setAsmLoc(SourceLocation L) { AsmLoc = L; }
|
|
|
|
bool isSimple() const { return IsSimple; }
|
|
void setSimple(bool V) { IsSimple = V; }
|
|
|
|
bool isVolatile() const { return IsVolatile; }
|
|
void setVolatile(bool V) { IsVolatile = V; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
|
|
|
|
//===--- Asm String Analysis ---===//
|
|
|
|
/// Assemble final IR asm string.
|
|
std::string generateAsmString(const ASTContext &C) const;
|
|
|
|
//===--- Output operands ---===//
|
|
|
|
unsigned getNumOutputs() const { return NumOutputs; }
|
|
|
|
/// getOutputConstraint - Return the constraint string for the specified
|
|
/// output operand. All output constraints are known to be non-empty (either
|
|
/// '=' or '+').
|
|
StringRef getOutputConstraint(unsigned i) const;
|
|
|
|
/// isOutputPlusConstraint - Return true if the specified output constraint
|
|
/// is a "+" constraint (which is both an input and an output) or false if it
|
|
/// is an "=" constraint (just an output).
|
|
bool isOutputPlusConstraint(unsigned i) const {
|
|
return getOutputConstraint(i)[0] == '+';
|
|
}
|
|
|
|
const Expr *getOutputExpr(unsigned i) const;
|
|
|
|
/// getNumPlusOperands - Return the number of output operands that have a "+"
|
|
/// constraint.
|
|
unsigned getNumPlusOperands() const;
|
|
|
|
//===--- Input operands ---===//
|
|
|
|
unsigned getNumInputs() const { return NumInputs; }
|
|
|
|
/// getInputConstraint - Return the specified input constraint. Unlike output
|
|
/// constraints, these can be empty.
|
|
StringRef getInputConstraint(unsigned i) const;
|
|
|
|
const Expr *getInputExpr(unsigned i) const;
|
|
|
|
//===--- Other ---===//
|
|
|
|
unsigned getNumClobbers() const { return NumClobbers; }
|
|
StringRef getClobber(unsigned i) const;
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == GCCAsmStmtClass ||
|
|
T->getStmtClass() == MSAsmStmtClass;
|
|
}
|
|
|
|
// Input expr iterators.
|
|
|
|
typedef ExprIterator inputs_iterator;
|
|
typedef ConstExprIterator const_inputs_iterator;
|
|
typedef llvm::iterator_range<inputs_iterator> inputs_range;
|
|
typedef llvm::iterator_range<const_inputs_iterator> inputs_const_range;
|
|
|
|
inputs_iterator begin_inputs() {
|
|
return &Exprs[0] + NumOutputs;
|
|
}
|
|
|
|
inputs_iterator end_inputs() {
|
|
return &Exprs[0] + NumOutputs + NumInputs;
|
|
}
|
|
|
|
inputs_range inputs() { return inputs_range(begin_inputs(), end_inputs()); }
|
|
|
|
const_inputs_iterator begin_inputs() const {
|
|
return &Exprs[0] + NumOutputs;
|
|
}
|
|
|
|
const_inputs_iterator end_inputs() const {
|
|
return &Exprs[0] + NumOutputs + NumInputs;
|
|
}
|
|
|
|
inputs_const_range inputs() const {
|
|
return inputs_const_range(begin_inputs(), end_inputs());
|
|
}
|
|
|
|
// Output expr iterators.
|
|
|
|
typedef ExprIterator outputs_iterator;
|
|
typedef ConstExprIterator const_outputs_iterator;
|
|
typedef llvm::iterator_range<outputs_iterator> outputs_range;
|
|
typedef llvm::iterator_range<const_outputs_iterator> outputs_const_range;
|
|
|
|
outputs_iterator begin_outputs() {
|
|
return &Exprs[0];
|
|
}
|
|
outputs_iterator end_outputs() {
|
|
return &Exprs[0] + NumOutputs;
|
|
}
|
|
outputs_range outputs() {
|
|
return outputs_range(begin_outputs(), end_outputs());
|
|
}
|
|
|
|
const_outputs_iterator begin_outputs() const {
|
|
return &Exprs[0];
|
|
}
|
|
const_outputs_iterator end_outputs() const {
|
|
return &Exprs[0] + NumOutputs;
|
|
}
|
|
outputs_const_range outputs() const {
|
|
return outputs_const_range(begin_outputs(), end_outputs());
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(&Exprs[0], &Exprs[0] + NumOutputs + NumInputs);
|
|
}
|
|
};
|
|
|
|
/// This represents a GCC inline-assembly statement extension.
|
|
///
|
|
class GCCAsmStmt : public AsmStmt {
|
|
SourceLocation RParenLoc;
|
|
StringLiteral *AsmStr;
|
|
|
|
// FIXME: If we wanted to, we could allocate all of these in one big array.
|
|
StringLiteral **Constraints;
|
|
StringLiteral **Clobbers;
|
|
IdentifierInfo **Names;
|
|
|
|
friend class ASTStmtReader;
|
|
|
|
public:
|
|
GCCAsmStmt(const ASTContext &C, SourceLocation asmloc, bool issimple,
|
|
bool isvolatile, unsigned numoutputs, unsigned numinputs,
|
|
IdentifierInfo **names, StringLiteral **constraints, Expr **exprs,
|
|
StringLiteral *asmstr, unsigned numclobbers,
|
|
StringLiteral **clobbers, SourceLocation rparenloc);
|
|
|
|
/// \brief Build an empty inline-assembly statement.
|
|
explicit GCCAsmStmt(EmptyShell Empty) : AsmStmt(GCCAsmStmtClass, Empty),
|
|
Constraints(nullptr), Clobbers(nullptr), Names(nullptr) { }
|
|
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
|
|
|
|
//===--- Asm String Analysis ---===//
|
|
|
|
const StringLiteral *getAsmString() const { return AsmStr; }
|
|
StringLiteral *getAsmString() { return AsmStr; }
|
|
void setAsmString(StringLiteral *E) { AsmStr = E; }
|
|
|
|
/// AsmStringPiece - this is part of a decomposed asm string specification
|
|
/// (for use with the AnalyzeAsmString function below). An asm string is
|
|
/// considered to be a concatenation of these parts.
|
|
class AsmStringPiece {
|
|
public:
|
|
enum Kind {
|
|
String, // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
|
|
Operand // Operand reference, with optional modifier %c4.
|
|
};
|
|
private:
|
|
Kind MyKind;
|
|
std::string Str;
|
|
unsigned OperandNo;
|
|
|
|
// Source range for operand references.
|
|
CharSourceRange Range;
|
|
public:
|
|
AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
|
|
AsmStringPiece(unsigned OpNo, const std::string &S, SourceLocation Begin,
|
|
SourceLocation End)
|
|
: MyKind(Operand), Str(S), OperandNo(OpNo),
|
|
Range(CharSourceRange::getCharRange(Begin, End)) {
|
|
}
|
|
|
|
bool isString() const { return MyKind == String; }
|
|
bool isOperand() const { return MyKind == Operand; }
|
|
|
|
const std::string &getString() const {
|
|
return Str;
|
|
}
|
|
|
|
unsigned getOperandNo() const {
|
|
assert(isOperand());
|
|
return OperandNo;
|
|
}
|
|
|
|
CharSourceRange getRange() const {
|
|
assert(isOperand() && "Range is currently used only for Operands.");
|
|
return Range;
|
|
}
|
|
|
|
/// getModifier - Get the modifier for this operand, if present. This
|
|
/// returns '\0' if there was no modifier.
|
|
char getModifier() const;
|
|
};
|
|
|
|
/// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
|
|
/// it into pieces. If the asm string is erroneous, emit errors and return
|
|
/// true, otherwise return false. This handles canonicalization and
|
|
/// translation of strings from GCC syntax to LLVM IR syntax, and handles
|
|
//// flattening of named references like %[foo] to Operand AsmStringPiece's.
|
|
unsigned AnalyzeAsmString(SmallVectorImpl<AsmStringPiece> &Pieces,
|
|
const ASTContext &C, unsigned &DiagOffs) const;
|
|
|
|
/// Assemble final IR asm string.
|
|
std::string generateAsmString(const ASTContext &C) const;
|
|
|
|
//===--- Output operands ---===//
|
|
|
|
IdentifierInfo *getOutputIdentifier(unsigned i) const {
|
|
return Names[i];
|
|
}
|
|
|
|
StringRef getOutputName(unsigned i) const {
|
|
if (IdentifierInfo *II = getOutputIdentifier(i))
|
|
return II->getName();
|
|
|
|
return StringRef();
|
|
}
|
|
|
|
StringRef getOutputConstraint(unsigned i) const;
|
|
|
|
const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
|
|
return Constraints[i];
|
|
}
|
|
StringLiteral *getOutputConstraintLiteral(unsigned i) {
|
|
return Constraints[i];
|
|
}
|
|
|
|
Expr *getOutputExpr(unsigned i);
|
|
|
|
const Expr *getOutputExpr(unsigned i) const {
|
|
return const_cast<GCCAsmStmt*>(this)->getOutputExpr(i);
|
|
}
|
|
|
|
//===--- Input operands ---===//
|
|
|
|
IdentifierInfo *getInputIdentifier(unsigned i) const {
|
|
return Names[i + NumOutputs];
|
|
}
|
|
|
|
StringRef getInputName(unsigned i) const {
|
|
if (IdentifierInfo *II = getInputIdentifier(i))
|
|
return II->getName();
|
|
|
|
return StringRef();
|
|
}
|
|
|
|
StringRef getInputConstraint(unsigned i) const;
|
|
|
|
const StringLiteral *getInputConstraintLiteral(unsigned i) const {
|
|
return Constraints[i + NumOutputs];
|
|
}
|
|
StringLiteral *getInputConstraintLiteral(unsigned i) {
|
|
return Constraints[i + NumOutputs];
|
|
}
|
|
|
|
Expr *getInputExpr(unsigned i);
|
|
void setInputExpr(unsigned i, Expr *E);
|
|
|
|
const Expr *getInputExpr(unsigned i) const {
|
|
return const_cast<GCCAsmStmt*>(this)->getInputExpr(i);
|
|
}
|
|
|
|
private:
|
|
void setOutputsAndInputsAndClobbers(const ASTContext &C,
|
|
IdentifierInfo **Names,
|
|
StringLiteral **Constraints,
|
|
Stmt **Exprs,
|
|
unsigned NumOutputs,
|
|
unsigned NumInputs,
|
|
StringLiteral **Clobbers,
|
|
unsigned NumClobbers);
|
|
public:
|
|
|
|
//===--- Other ---===//
|
|
|
|
/// getNamedOperand - Given a symbolic operand reference like %[foo],
|
|
/// translate this into a numeric value needed to reference the same operand.
|
|
/// This returns -1 if the operand name is invalid.
|
|
int getNamedOperand(StringRef SymbolicName) const;
|
|
|
|
StringRef getClobber(unsigned i) const;
|
|
StringLiteral *getClobberStringLiteral(unsigned i) { return Clobbers[i]; }
|
|
const StringLiteral *getClobberStringLiteral(unsigned i) const {
|
|
return Clobbers[i];
|
|
}
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return AsmLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == GCCAsmStmtClass;
|
|
}
|
|
};
|
|
|
|
/// This represents a Microsoft inline-assembly statement extension.
|
|
///
|
|
class MSAsmStmt : public AsmStmt {
|
|
SourceLocation LBraceLoc, EndLoc;
|
|
StringRef AsmStr;
|
|
|
|
unsigned NumAsmToks;
|
|
|
|
Token *AsmToks;
|
|
StringRef *Constraints;
|
|
StringRef *Clobbers;
|
|
|
|
friend class ASTStmtReader;
|
|
|
|
public:
|
|
MSAsmStmt(const ASTContext &C, SourceLocation asmloc,
|
|
SourceLocation lbraceloc, bool issimple, bool isvolatile,
|
|
ArrayRef<Token> asmtoks, unsigned numoutputs, unsigned numinputs,
|
|
ArrayRef<StringRef> constraints,
|
|
ArrayRef<Expr*> exprs, StringRef asmstr,
|
|
ArrayRef<StringRef> clobbers, SourceLocation endloc);
|
|
|
|
/// \brief Build an empty MS-style inline-assembly statement.
|
|
explicit MSAsmStmt(EmptyShell Empty) : AsmStmt(MSAsmStmtClass, Empty),
|
|
NumAsmToks(0), AsmToks(nullptr), Constraints(nullptr), Clobbers(nullptr) { }
|
|
|
|
SourceLocation getLBraceLoc() const { return LBraceLoc; }
|
|
void setLBraceLoc(SourceLocation L) { LBraceLoc = L; }
|
|
SourceLocation getEndLoc() const { return EndLoc; }
|
|
void setEndLoc(SourceLocation L) { EndLoc = L; }
|
|
|
|
bool hasBraces() const { return LBraceLoc.isValid(); }
|
|
|
|
unsigned getNumAsmToks() { return NumAsmToks; }
|
|
Token *getAsmToks() { return AsmToks; }
|
|
|
|
//===--- Asm String Analysis ---===//
|
|
StringRef getAsmString() const { return AsmStr; }
|
|
|
|
/// Assemble final IR asm string.
|
|
std::string generateAsmString(const ASTContext &C) const;
|
|
|
|
//===--- Output operands ---===//
|
|
|
|
StringRef getOutputConstraint(unsigned i) const {
|
|
assert(i < NumOutputs);
|
|
return Constraints[i];
|
|
}
|
|
|
|
Expr *getOutputExpr(unsigned i);
|
|
|
|
const Expr *getOutputExpr(unsigned i) const {
|
|
return const_cast<MSAsmStmt*>(this)->getOutputExpr(i);
|
|
}
|
|
|
|
//===--- Input operands ---===//
|
|
|
|
StringRef getInputConstraint(unsigned i) const {
|
|
assert(i < NumInputs);
|
|
return Constraints[i + NumOutputs];
|
|
}
|
|
|
|
Expr *getInputExpr(unsigned i);
|
|
void setInputExpr(unsigned i, Expr *E);
|
|
|
|
const Expr *getInputExpr(unsigned i) const {
|
|
return const_cast<MSAsmStmt*>(this)->getInputExpr(i);
|
|
}
|
|
|
|
//===--- Other ---===//
|
|
|
|
ArrayRef<StringRef> getAllConstraints() const {
|
|
return llvm::makeArrayRef(Constraints, NumInputs + NumOutputs);
|
|
}
|
|
ArrayRef<StringRef> getClobbers() const {
|
|
return llvm::makeArrayRef(Clobbers, NumClobbers);
|
|
}
|
|
ArrayRef<Expr*> getAllExprs() const {
|
|
return llvm::makeArrayRef(reinterpret_cast<Expr**>(Exprs),
|
|
NumInputs + NumOutputs);
|
|
}
|
|
|
|
StringRef getClobber(unsigned i) const { return getClobbers()[i]; }
|
|
|
|
private:
|
|
void initialize(const ASTContext &C, StringRef AsmString,
|
|
ArrayRef<Token> AsmToks, ArrayRef<StringRef> Constraints,
|
|
ArrayRef<Expr*> Exprs, ArrayRef<StringRef> Clobbers);
|
|
public:
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return AsmLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return EndLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == MSAsmStmtClass;
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(&Exprs[0], &Exprs[NumInputs + NumOutputs]);
|
|
}
|
|
};
|
|
|
|
class SEHExceptStmt : public Stmt {
|
|
SourceLocation Loc;
|
|
Stmt *Children[2];
|
|
|
|
enum { FILTER_EXPR, BLOCK };
|
|
|
|
SEHExceptStmt(SourceLocation Loc,
|
|
Expr *FilterExpr,
|
|
Stmt *Block);
|
|
|
|
friend class ASTReader;
|
|
friend class ASTStmtReader;
|
|
explicit SEHExceptStmt(EmptyShell E) : Stmt(SEHExceptStmtClass, E) { }
|
|
|
|
public:
|
|
static SEHExceptStmt* Create(const ASTContext &C,
|
|
SourceLocation ExceptLoc,
|
|
Expr *FilterExpr,
|
|
Stmt *Block);
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return getExceptLoc(); }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
|
|
|
|
SourceLocation getExceptLoc() const { return Loc; }
|
|
SourceLocation getEndLoc() const { return getBlock()->getLocEnd(); }
|
|
|
|
Expr *getFilterExpr() const {
|
|
return reinterpret_cast<Expr*>(Children[FILTER_EXPR]);
|
|
}
|
|
|
|
CompoundStmt *getBlock() const {
|
|
return cast<CompoundStmt>(Children[BLOCK]);
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(Children,Children+2);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == SEHExceptStmtClass;
|
|
}
|
|
|
|
};
|
|
|
|
class SEHFinallyStmt : public Stmt {
|
|
SourceLocation Loc;
|
|
Stmt *Block;
|
|
|
|
SEHFinallyStmt(SourceLocation Loc,
|
|
Stmt *Block);
|
|
|
|
friend class ASTReader;
|
|
friend class ASTStmtReader;
|
|
explicit SEHFinallyStmt(EmptyShell E) : Stmt(SEHFinallyStmtClass, E) { }
|
|
|
|
public:
|
|
static SEHFinallyStmt* Create(const ASTContext &C,
|
|
SourceLocation FinallyLoc,
|
|
Stmt *Block);
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return getFinallyLoc(); }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
|
|
|
|
SourceLocation getFinallyLoc() const { return Loc; }
|
|
SourceLocation getEndLoc() const { return Block->getLocEnd(); }
|
|
|
|
CompoundStmt *getBlock() const { return cast<CompoundStmt>(Block); }
|
|
|
|
child_range children() {
|
|
return child_range(&Block,&Block+1);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == SEHFinallyStmtClass;
|
|
}
|
|
|
|
};
|
|
|
|
class SEHTryStmt : public Stmt {
|
|
bool IsCXXTry;
|
|
SourceLocation TryLoc;
|
|
Stmt *Children[2];
|
|
|
|
enum { TRY = 0, HANDLER = 1 };
|
|
|
|
SEHTryStmt(bool isCXXTry, // true if 'try' otherwise '__try'
|
|
SourceLocation TryLoc,
|
|
Stmt *TryBlock,
|
|
Stmt *Handler);
|
|
|
|
friend class ASTReader;
|
|
friend class ASTStmtReader;
|
|
explicit SEHTryStmt(EmptyShell E) : Stmt(SEHTryStmtClass, E) { }
|
|
|
|
public:
|
|
static SEHTryStmt* Create(const ASTContext &C, bool isCXXTry,
|
|
SourceLocation TryLoc, Stmt *TryBlock,
|
|
Stmt *Handler);
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return getTryLoc(); }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
|
|
|
|
SourceLocation getTryLoc() const { return TryLoc; }
|
|
SourceLocation getEndLoc() const { return Children[HANDLER]->getLocEnd(); }
|
|
|
|
bool getIsCXXTry() const { return IsCXXTry; }
|
|
|
|
CompoundStmt* getTryBlock() const {
|
|
return cast<CompoundStmt>(Children[TRY]);
|
|
}
|
|
|
|
Stmt *getHandler() const { return Children[HANDLER]; }
|
|
|
|
/// Returns 0 if not defined
|
|
SEHExceptStmt *getExceptHandler() const;
|
|
SEHFinallyStmt *getFinallyHandler() const;
|
|
|
|
child_range children() {
|
|
return child_range(Children,Children+2);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == SEHTryStmtClass;
|
|
}
|
|
};
|
|
|
|
/// Represents a __leave statement.
|
|
///
|
|
class SEHLeaveStmt : public Stmt {
|
|
SourceLocation LeaveLoc;
|
|
public:
|
|
explicit SEHLeaveStmt(SourceLocation LL)
|
|
: Stmt(SEHLeaveStmtClass), LeaveLoc(LL) {}
|
|
|
|
/// \brief Build an empty __leave statement.
|
|
explicit SEHLeaveStmt(EmptyShell Empty) : Stmt(SEHLeaveStmtClass, Empty) { }
|
|
|
|
SourceLocation getLeaveLoc() const { return LeaveLoc; }
|
|
void setLeaveLoc(SourceLocation L) { LeaveLoc = L; }
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY { return LeaveLoc; }
|
|
SourceLocation getLocEnd() const LLVM_READONLY { return LeaveLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == SEHLeaveStmtClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
};
|
|
|
|
/// \brief This captures a statement into a function. For example, the following
|
|
/// pragma annotated compound statement can be represented as a CapturedStmt,
|
|
/// and this compound statement is the body of an anonymous outlined function.
|
|
/// @code
|
|
/// #pragma omp parallel
|
|
/// {
|
|
/// compute();
|
|
/// }
|
|
/// @endcode
|
|
class CapturedStmt : public Stmt {
|
|
public:
|
|
/// \brief The different capture forms: by 'this', by reference, capture for
|
|
/// variable-length array type etc.
|
|
enum VariableCaptureKind {
|
|
VCK_This,
|
|
VCK_ByRef,
|
|
VCK_ByCopy,
|
|
VCK_VLAType,
|
|
};
|
|
|
|
/// \brief Describes the capture of either a variable, or 'this', or
|
|
/// variable-length array type.
|
|
class Capture {
|
|
llvm::PointerIntPair<VarDecl *, 2, VariableCaptureKind> VarAndKind;
|
|
SourceLocation Loc;
|
|
|
|
public:
|
|
/// \brief Create a new capture.
|
|
///
|
|
/// \param Loc The source location associated with this capture.
|
|
///
|
|
/// \param Kind The kind of capture (this, ByRef, ...).
|
|
///
|
|
/// \param Var The variable being captured, or null if capturing this.
|
|
///
|
|
Capture(SourceLocation Loc, VariableCaptureKind Kind,
|
|
VarDecl *Var = nullptr);
|
|
|
|
/// \brief Determine the kind of capture.
|
|
VariableCaptureKind getCaptureKind() const;
|
|
|
|
/// \brief Retrieve the source location at which the variable or 'this' was
|
|
/// first used.
|
|
SourceLocation getLocation() const { return Loc; }
|
|
|
|
/// \brief Determine whether this capture handles the C++ 'this' pointer.
|
|
bool capturesThis() const { return getCaptureKind() == VCK_This; }
|
|
|
|
/// \brief Determine whether this capture handles a variable (by reference).
|
|
bool capturesVariable() const { return getCaptureKind() == VCK_ByRef; }
|
|
|
|
/// \brief Determine whether this capture handles a variable by copy.
|
|
bool capturesVariableByCopy() const {
|
|
return getCaptureKind() == VCK_ByCopy;
|
|
}
|
|
|
|
/// \brief Determine whether this capture handles a variable-length array
|
|
/// type.
|
|
bool capturesVariableArrayType() const {
|
|
return getCaptureKind() == VCK_VLAType;
|
|
}
|
|
|
|
/// \brief Retrieve the declaration of the variable being captured.
|
|
///
|
|
/// This operation is only valid if this capture captures a variable.
|
|
VarDecl *getCapturedVar() const;
|
|
|
|
friend class ASTStmtReader;
|
|
};
|
|
|
|
private:
|
|
/// \brief The number of variable captured, including 'this'.
|
|
unsigned NumCaptures;
|
|
|
|
/// \brief The pointer part is the implicit the outlined function and the
|
|
/// int part is the captured region kind, 'CR_Default' etc.
|
|
llvm::PointerIntPair<CapturedDecl *, 1, CapturedRegionKind> CapDeclAndKind;
|
|
|
|
/// \brief The record for captured variables, a RecordDecl or CXXRecordDecl.
|
|
RecordDecl *TheRecordDecl;
|
|
|
|
/// \brief Construct a captured statement.
|
|
CapturedStmt(Stmt *S, CapturedRegionKind Kind, ArrayRef<Capture> Captures,
|
|
ArrayRef<Expr *> CaptureInits, CapturedDecl *CD, RecordDecl *RD);
|
|
|
|
/// \brief Construct an empty captured statement.
|
|
CapturedStmt(EmptyShell Empty, unsigned NumCaptures);
|
|
|
|
Stmt **getStoredStmts() { return reinterpret_cast<Stmt **>(this + 1); }
|
|
|
|
Stmt *const *getStoredStmts() const {
|
|
return reinterpret_cast<Stmt *const *>(this + 1);
|
|
}
|
|
|
|
Capture *getStoredCaptures() const;
|
|
|
|
void setCapturedStmt(Stmt *S) { getStoredStmts()[NumCaptures] = S; }
|
|
|
|
public:
|
|
static CapturedStmt *Create(const ASTContext &Context, Stmt *S,
|
|
CapturedRegionKind Kind,
|
|
ArrayRef<Capture> Captures,
|
|
ArrayRef<Expr *> CaptureInits,
|
|
CapturedDecl *CD, RecordDecl *RD);
|
|
|
|
static CapturedStmt *CreateDeserialized(const ASTContext &Context,
|
|
unsigned NumCaptures);
|
|
|
|
/// \brief Retrieve the statement being captured.
|
|
Stmt *getCapturedStmt() { return getStoredStmts()[NumCaptures]; }
|
|
const Stmt *getCapturedStmt() const { return getStoredStmts()[NumCaptures]; }
|
|
|
|
/// \brief Retrieve the outlined function declaration.
|
|
CapturedDecl *getCapturedDecl();
|
|
const CapturedDecl *getCapturedDecl() const;
|
|
|
|
/// \brief Set the outlined function declaration.
|
|
void setCapturedDecl(CapturedDecl *D);
|
|
|
|
/// \brief Retrieve the captured region kind.
|
|
CapturedRegionKind getCapturedRegionKind() const;
|
|
|
|
/// \brief Set the captured region kind.
|
|
void setCapturedRegionKind(CapturedRegionKind Kind);
|
|
|
|
/// \brief Retrieve the record declaration for captured variables.
|
|
const RecordDecl *getCapturedRecordDecl() const { return TheRecordDecl; }
|
|
|
|
/// \brief Set the record declaration for captured variables.
|
|
void setCapturedRecordDecl(RecordDecl *D) {
|
|
assert(D && "null RecordDecl");
|
|
TheRecordDecl = D;
|
|
}
|
|
|
|
/// \brief True if this variable has been captured.
|
|
bool capturesVariable(const VarDecl *Var) const;
|
|
|
|
/// \brief An iterator that walks over the captures.
|
|
typedef Capture *capture_iterator;
|
|
typedef const Capture *const_capture_iterator;
|
|
typedef llvm::iterator_range<capture_iterator> capture_range;
|
|
typedef llvm::iterator_range<const_capture_iterator> capture_const_range;
|
|
|
|
capture_range captures() {
|
|
return capture_range(capture_begin(), capture_end());
|
|
}
|
|
capture_const_range captures() const {
|
|
return capture_const_range(capture_begin(), capture_end());
|
|
}
|
|
|
|
/// \brief Retrieve an iterator pointing to the first capture.
|
|
capture_iterator capture_begin() { return getStoredCaptures(); }
|
|
const_capture_iterator capture_begin() const { return getStoredCaptures(); }
|
|
|
|
/// \brief Retrieve an iterator pointing past the end of the sequence of
|
|
/// captures.
|
|
capture_iterator capture_end() const {
|
|
return getStoredCaptures() + NumCaptures;
|
|
}
|
|
|
|
/// \brief Retrieve the number of captures, including 'this'.
|
|
unsigned capture_size() const { return NumCaptures; }
|
|
|
|
/// \brief Iterator that walks over the capture initialization arguments.
|
|
typedef Expr **capture_init_iterator;
|
|
typedef llvm::iterator_range<capture_init_iterator> capture_init_range;
|
|
|
|
/// \brief Const iterator that walks over the capture initialization
|
|
/// arguments.
|
|
typedef Expr *const *const_capture_init_iterator;
|
|
typedef llvm::iterator_range<const_capture_init_iterator>
|
|
const_capture_init_range;
|
|
|
|
capture_init_range capture_inits() {
|
|
return capture_init_range(capture_init_begin(), capture_init_end());
|
|
}
|
|
|
|
const_capture_init_range capture_inits() const {
|
|
return const_capture_init_range(capture_init_begin(), capture_init_end());
|
|
}
|
|
|
|
/// \brief Retrieve the first initialization argument.
|
|
capture_init_iterator capture_init_begin() {
|
|
return reinterpret_cast<Expr **>(getStoredStmts());
|
|
}
|
|
|
|
const_capture_init_iterator capture_init_begin() const {
|
|
return reinterpret_cast<Expr *const *>(getStoredStmts());
|
|
}
|
|
|
|
/// \brief Retrieve the iterator pointing one past the last initialization
|
|
/// argument.
|
|
capture_init_iterator capture_init_end() {
|
|
return capture_init_begin() + NumCaptures;
|
|
}
|
|
|
|
const_capture_init_iterator capture_init_end() const {
|
|
return capture_init_begin() + NumCaptures;
|
|
}
|
|
|
|
SourceLocation getLocStart() const LLVM_READONLY {
|
|
return getCapturedStmt()->getLocStart();
|
|
}
|
|
SourceLocation getLocEnd() const LLVM_READONLY {
|
|
return getCapturedStmt()->getLocEnd();
|
|
}
|
|
SourceRange getSourceRange() const LLVM_READONLY {
|
|
return getCapturedStmt()->getSourceRange();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CapturedStmtClass;
|
|
}
|
|
|
|
child_range children();
|
|
|
|
friend class ASTStmtReader;
|
|
};
|
|
|
|
} // end namespace clang
|
|
|
|
#endif
|