freebsd-nq/sys/dev/isp/isp_pci.c
Alexander Motin 14e084ada5 Add support for Enhanced Gen 5 (16Gb) and Gen 6 (32Gb) QLogic FC HBAs.
MFC after:	2 weeks
Sponsored by:	iXsystems, Inc.
2018-02-28 16:24:32 +00:00

1995 lines
54 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2009-2018 Alexander Motin <mav@FreeBSD.org>
* Copyright (c) 1997-2008 by Matthew Jacob
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
* FreeBSD Version.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <sys/bus.h>
#include <sys/stdint.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#ifdef __sparc64__
#include <dev/ofw/openfirm.h>
#include <machine/ofw_machdep.h>
#endif
#include <dev/isp/isp_freebsd.h>
static uint32_t isp_pci_rd_reg(ispsoftc_t *, int);
static void isp_pci_wr_reg(ispsoftc_t *, int, uint32_t);
static uint32_t isp_pci_rd_reg_1080(ispsoftc_t *, int);
static void isp_pci_wr_reg_1080(ispsoftc_t *, int, uint32_t);
static uint32_t isp_pci_rd_reg_2400(ispsoftc_t *, int);
static void isp_pci_wr_reg_2400(ispsoftc_t *, int, uint32_t);
static uint32_t isp_pci_rd_reg_2600(ispsoftc_t *, int);
static void isp_pci_wr_reg_2600(ispsoftc_t *, int, uint32_t);
static void isp_pci_run_isr(ispsoftc_t *);
static void isp_pci_run_isr_2300(ispsoftc_t *);
static void isp_pci_run_isr_2400(ispsoftc_t *);
static int isp_pci_mbxdma(ispsoftc_t *);
static void isp_pci_mbxdmafree(ispsoftc_t *);
static int isp_pci_dmasetup(ispsoftc_t *, XS_T *, void *);
static int isp_pci_irqsetup(ispsoftc_t *);
static void isp_pci_dumpregs(ispsoftc_t *, const char *);
static struct ispmdvec mdvec = {
isp_pci_run_isr,
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
isp_pci_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static struct ispmdvec mdvec_1080 = {
isp_pci_run_isr,
isp_pci_rd_reg_1080,
isp_pci_wr_reg_1080,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
isp_pci_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static struct ispmdvec mdvec_12160 = {
isp_pci_run_isr,
isp_pci_rd_reg_1080,
isp_pci_wr_reg_1080,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
isp_pci_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static struct ispmdvec mdvec_2100 = {
isp_pci_run_isr,
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
isp_pci_dumpregs
};
static struct ispmdvec mdvec_2200 = {
isp_pci_run_isr,
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
isp_pci_dumpregs
};
static struct ispmdvec mdvec_2300 = {
isp_pci_run_isr_2300,
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
isp_pci_dumpregs
};
static struct ispmdvec mdvec_2400 = {
isp_pci_run_isr_2400,
isp_pci_rd_reg_2400,
isp_pci_wr_reg_2400,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
NULL
};
static struct ispmdvec mdvec_2500 = {
isp_pci_run_isr_2400,
isp_pci_rd_reg_2400,
isp_pci_wr_reg_2400,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
NULL
};
static struct ispmdvec mdvec_2600 = {
isp_pci_run_isr_2400,
isp_pci_rd_reg_2600,
isp_pci_wr_reg_2600,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
NULL
};
static struct ispmdvec mdvec_2700 = {
isp_pci_run_isr_2400,
isp_pci_rd_reg_2600,
isp_pci_wr_reg_2600,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_common_dmateardown,
isp_pci_irqsetup,
NULL
};
#ifndef PCIM_CMD_INVEN
#define PCIM_CMD_INVEN 0x10
#endif
#ifndef PCIM_CMD_BUSMASTEREN
#define PCIM_CMD_BUSMASTEREN 0x0004
#endif
#ifndef PCIM_CMD_PERRESPEN
#define PCIM_CMD_PERRESPEN 0x0040
#endif
#ifndef PCIM_CMD_SEREN
#define PCIM_CMD_SEREN 0x0100
#endif
#ifndef PCIM_CMD_INTX_DISABLE
#define PCIM_CMD_INTX_DISABLE 0x0400
#endif
#ifndef PCIR_COMMAND
#define PCIR_COMMAND 0x04
#endif
#ifndef PCIR_CACHELNSZ
#define PCIR_CACHELNSZ 0x0c
#endif
#ifndef PCIR_LATTIMER
#define PCIR_LATTIMER 0x0d
#endif
#ifndef PCIR_ROMADDR
#define PCIR_ROMADDR 0x30
#endif
#define PCI_VENDOR_QLOGIC 0x1077
#define PCI_PRODUCT_QLOGIC_ISP1020 0x1020
#define PCI_PRODUCT_QLOGIC_ISP1080 0x1080
#define PCI_PRODUCT_QLOGIC_ISP10160 0x1016
#define PCI_PRODUCT_QLOGIC_ISP12160 0x1216
#define PCI_PRODUCT_QLOGIC_ISP1240 0x1240
#define PCI_PRODUCT_QLOGIC_ISP1280 0x1280
#define PCI_PRODUCT_QLOGIC_ISP2100 0x2100
#define PCI_PRODUCT_QLOGIC_ISP2200 0x2200
#define PCI_PRODUCT_QLOGIC_ISP2300 0x2300
#define PCI_PRODUCT_QLOGIC_ISP2312 0x2312
#define PCI_PRODUCT_QLOGIC_ISP2322 0x2322
#define PCI_PRODUCT_QLOGIC_ISP2422 0x2422
#define PCI_PRODUCT_QLOGIC_ISP2432 0x2432
#define PCI_PRODUCT_QLOGIC_ISP2532 0x2532
#define PCI_PRODUCT_QLOGIC_ISP5432 0x5432
#define PCI_PRODUCT_QLOGIC_ISP6312 0x6312
#define PCI_PRODUCT_QLOGIC_ISP6322 0x6322
#define PCI_PRODUCT_QLOGIC_ISP2031 0x2031
#define PCI_PRODUCT_QLOGIC_ISP8031 0x8031
#define PCI_PRODUCT_QLOGIC_ISP2684 0x2171
#define PCI_PRODUCT_QLOGIC_ISP2692 0x2b61
#define PCI_PRODUCT_QLOGIC_ISP2714 0x2071
#define PCI_PRODUCT_QLOGIC_ISP2722 0x2261
#define PCI_QLOGIC_ISP1020 \
((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP1080 \
((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP10160 \
((PCI_PRODUCT_QLOGIC_ISP10160 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP12160 \
((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP1240 \
((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP1280 \
((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2100 \
((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2200 \
((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2300 \
((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2312 \
((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2322 \
((PCI_PRODUCT_QLOGIC_ISP2322 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2422 \
((PCI_PRODUCT_QLOGIC_ISP2422 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2432 \
((PCI_PRODUCT_QLOGIC_ISP2432 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2532 \
((PCI_PRODUCT_QLOGIC_ISP2532 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP5432 \
((PCI_PRODUCT_QLOGIC_ISP5432 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP6312 \
((PCI_PRODUCT_QLOGIC_ISP6312 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP6322 \
((PCI_PRODUCT_QLOGIC_ISP6322 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2031 \
((PCI_PRODUCT_QLOGIC_ISP2031 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP8031 \
((PCI_PRODUCT_QLOGIC_ISP8031 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2684 \
((PCI_PRODUCT_QLOGIC_ISP2684 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2692 \
((PCI_PRODUCT_QLOGIC_ISP2692 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2714 \
((PCI_PRODUCT_QLOGIC_ISP2714 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2722 \
((PCI_PRODUCT_QLOGIC_ISP2722 << 16) | PCI_VENDOR_QLOGIC)
/*
* Odd case for some AMI raid cards... We need to *not* attach to this.
*/
#define AMI_RAID_SUBVENDOR_ID 0x101e
#define PCI_DFLT_LTNCY 0x40
#define PCI_DFLT_LNSZ 0x10
static int isp_pci_probe (device_t);
static int isp_pci_attach (device_t);
static int isp_pci_detach (device_t);
#define ISP_PCD(isp) ((struct isp_pcisoftc *)isp)->pci_dev
struct isp_pcisoftc {
ispsoftc_t pci_isp;
device_t pci_dev;
struct resource * regs;
struct resource * regs1;
struct resource * regs2;
struct {
int iqd;
struct resource * irq;
void * ih;
} irq[ISP_MAX_IRQS];
int rtp;
int rgd;
int rtp1;
int rgd1;
int rtp2;
int rgd2;
int16_t pci_poff[_NREG_BLKS];
bus_dma_tag_t dmat;
int msicount;
};
static device_method_t isp_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, isp_pci_probe),
DEVMETHOD(device_attach, isp_pci_attach),
DEVMETHOD(device_detach, isp_pci_detach),
{ 0, 0 }
};
static driver_t isp_pci_driver = {
"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
};
static devclass_t isp_devclass;
DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
MODULE_DEPEND(isp, cam, 1, 1, 1);
MODULE_DEPEND(isp, firmware, 1, 1, 1);
static int isp_nvports = 0;
static int
isp_pci_probe(device_t dev)
{
switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
case PCI_QLOGIC_ISP1020:
device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP1080:
device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP1240:
device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP1280:
device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP10160:
device_set_desc(dev, "Qlogic ISP 10160 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP12160:
if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
return (ENXIO);
}
device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP2100:
device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2200:
device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2300:
device_set_desc(dev, "Qlogic ISP 2300 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2312:
device_set_desc(dev, "Qlogic ISP 2312 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2322:
device_set_desc(dev, "Qlogic ISP 2322 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2422:
device_set_desc(dev, "Qlogic ISP 2422 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2432:
device_set_desc(dev, "Qlogic ISP 2432 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2532:
device_set_desc(dev, "Qlogic ISP 2532 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP5432:
device_set_desc(dev, "Qlogic ISP 5432 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP6312:
device_set_desc(dev, "Qlogic ISP 6312 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP6322:
device_set_desc(dev, "Qlogic ISP 6322 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2031:
device_set_desc(dev, "Qlogic ISP 2031 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP8031:
device_set_desc(dev, "Qlogic ISP 8031 PCI FCoE Adapter");
break;
case PCI_QLOGIC_ISP2684:
device_set_desc(dev, "Qlogic ISP 2684 PCI FC Adapter");
break;
case PCI_QLOGIC_ISP2692:
device_set_desc(dev, "Qlogic ISP 2692 PCI FC Adapter");
break;
case PCI_QLOGIC_ISP2714:
device_set_desc(dev, "Qlogic ISP 2714 PCI FC Adapter");
break;
case PCI_QLOGIC_ISP2722:
device_set_desc(dev, "Qlogic ISP 2722 PCI FC Adapter");
break;
default:
return (ENXIO);
}
if (isp_announced == 0 && bootverbose) {
printf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
"Core Version %d.%d\n",
ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
isp_announced++;
}
/*
* XXXX: Here is where we might load the f/w module
* XXXX: (or increase a reference count to it).
*/
return (BUS_PROBE_DEFAULT);
}
static void
isp_get_generic_options(device_t dev, ispsoftc_t *isp)
{
int tval;
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev), "fwload_disable", &tval) == 0 && tval != 0) {
isp->isp_confopts |= ISP_CFG_NORELOAD;
}
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev), "ignore_nvram", &tval) == 0 && tval != 0) {
isp->isp_confopts |= ISP_CFG_NONVRAM;
}
tval = 0;
(void) resource_int_value(device_get_name(dev), device_get_unit(dev), "debug", &tval);
if (tval) {
isp->isp_dblev = tval;
} else {
isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
}
if (bootverbose) {
isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
}
tval = -1;
(void) resource_int_value(device_get_name(dev), device_get_unit(dev), "vports", &tval);
if (tval > 0 && tval <= 254) {
isp_nvports = tval;
}
tval = 7;
(void) resource_int_value(device_get_name(dev), device_get_unit(dev), "quickboot_time", &tval);
isp_quickboot_time = tval;
}
static void
isp_get_specific_options(device_t dev, int chan, ispsoftc_t *isp)
{
const char *sptr;
int tval = 0;
char prefix[12], name[16];
if (chan == 0)
prefix[0] = 0;
else
snprintf(prefix, sizeof(prefix), "chan%d.", chan);
snprintf(name, sizeof(name), "%siid", prefix);
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
name, &tval)) {
if (IS_FC(isp)) {
ISP_FC_PC(isp, chan)->default_id = 109 - chan;
} else {
#ifdef __sparc64__
ISP_SPI_PC(isp, chan)->iid = OF_getscsinitid(dev);
#else
ISP_SPI_PC(isp, chan)->iid = 7;
#endif
}
} else {
if (IS_FC(isp)) {
ISP_FC_PC(isp, chan)->default_id = tval - chan;
} else {
ISP_SPI_PC(isp, chan)->iid = tval;
}
isp->isp_confopts |= ISP_CFG_OWNLOOPID;
}
if (IS_SCSI(isp))
return;
tval = -1;
snprintf(name, sizeof(name), "%srole", prefix);
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
name, &tval) == 0) {
switch (tval) {
case ISP_ROLE_NONE:
case ISP_ROLE_INITIATOR:
case ISP_ROLE_TARGET:
case ISP_ROLE_BOTH:
device_printf(dev, "Chan %d setting role to 0x%x\n", chan, tval);
break;
default:
tval = -1;
break;
}
}
if (tval == -1) {
tval = ISP_DEFAULT_ROLES;
}
ISP_FC_PC(isp, chan)->def_role = tval;
tval = 0;
snprintf(name, sizeof(name), "%sfullduplex", prefix);
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
name, &tval) == 0 && tval != 0) {
isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
}
sptr = NULL;
snprintf(name, sizeof(name), "%stopology", prefix);
if (resource_string_value(device_get_name(dev), device_get_unit(dev),
name, (const char **) &sptr) == 0 && sptr != NULL) {
if (strcmp(sptr, "lport") == 0) {
isp->isp_confopts |= ISP_CFG_LPORT;
} else if (strcmp(sptr, "nport") == 0) {
isp->isp_confopts |= ISP_CFG_NPORT;
} else if (strcmp(sptr, "lport-only") == 0) {
isp->isp_confopts |= ISP_CFG_LPORT_ONLY;
} else if (strcmp(sptr, "nport-only") == 0) {
isp->isp_confopts |= ISP_CFG_NPORT_ONLY;
}
}
#ifdef ISP_FCTAPE_OFF
isp->isp_confopts |= ISP_CFG_NOFCTAPE;
#else
isp->isp_confopts |= ISP_CFG_FCTAPE;
#endif
tval = 0;
snprintf(name, sizeof(name), "%snofctape", prefix);
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
name, &tval);
if (tval) {
isp->isp_confopts &= ~ISP_CFG_FCTAPE;
isp->isp_confopts |= ISP_CFG_NOFCTAPE;
}
tval = 0;
snprintf(name, sizeof(name), "%sfctape", prefix);
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
name, &tval);
if (tval) {
isp->isp_confopts &= ~ISP_CFG_NOFCTAPE;
isp->isp_confopts |= ISP_CFG_FCTAPE;
}
/*
* Because the resource_*_value functions can neither return
* 64 bit integer values, nor can they be directly coerced
* to interpret the right hand side of the assignment as
* you want them to interpret it, we have to force WWN
* hint replacement to specify WWN strings with a leading
* 'w' (e..g w50000000aaaa0001). Sigh.
*/
sptr = NULL;
snprintf(name, sizeof(name), "%sportwwn", prefix);
tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
name, (const char **) &sptr);
if (tval == 0 && sptr != NULL && *sptr++ == 'w') {
char *eptr = NULL;
ISP_FC_PC(isp, chan)->def_wwpn = strtouq(sptr, &eptr, 16);
if (eptr < sptr + 16 || ISP_FC_PC(isp, chan)->def_wwpn == -1) {
device_printf(dev, "mangled portwwn hint '%s'\n", sptr);
ISP_FC_PC(isp, chan)->def_wwpn = 0;
}
}
sptr = NULL;
snprintf(name, sizeof(name), "%snodewwn", prefix);
tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
name, (const char **) &sptr);
if (tval == 0 && sptr != NULL && *sptr++ == 'w') {
char *eptr = NULL;
ISP_FC_PC(isp, chan)->def_wwnn = strtouq(sptr, &eptr, 16);
if (eptr < sptr + 16 || ISP_FC_PC(isp, chan)->def_wwnn == 0) {
device_printf(dev, "mangled nodewwn hint '%s'\n", sptr);
ISP_FC_PC(isp, chan)->def_wwnn = 0;
}
}
tval = -1;
snprintf(name, sizeof(name), "%sloop_down_limit", prefix);
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
name, &tval);
if (tval >= 0 && tval < 0xffff) {
ISP_FC_PC(isp, chan)->loop_down_limit = tval;
} else {
ISP_FC_PC(isp, chan)->loop_down_limit = isp_loop_down_limit;
}
tval = -1;
snprintf(name, sizeof(name), "%sgone_device_time", prefix);
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
name, &tval);
if (tval >= 0 && tval < 0xffff) {
ISP_FC_PC(isp, chan)->gone_device_time = tval;
} else {
ISP_FC_PC(isp, chan)->gone_device_time = isp_gone_device_time;
}
}
static int
isp_pci_attach(device_t dev)
{
struct isp_pcisoftc *pcs = device_get_softc(dev);
ispsoftc_t *isp = &pcs->pci_isp;
int i;
uint32_t data, cmd, linesz, did;
size_t psize, xsize;
char fwname[32];
pcs->pci_dev = dev;
isp->isp_dev = dev;
isp->isp_nchan = 1;
mtx_init(&isp->isp_lock, "isp", NULL, MTX_DEF);
/*
* Get Generic Options
*/
isp_nvports = 0;
isp_get_generic_options(dev, isp);
linesz = PCI_DFLT_LNSZ;
pcs->regs = pcs->regs2 = NULL;
pcs->rgd = pcs->rtp = 0;
pcs->pci_dev = dev;
pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
switch (pci_get_devid(dev)) {
case PCI_QLOGIC_ISP1020:
did = 0x1040;
isp->isp_mdvec = &mdvec;
isp->isp_type = ISP_HA_SCSI_UNKNOWN;
break;
case PCI_QLOGIC_ISP1080:
did = 0x1080;
isp->isp_mdvec = &mdvec_1080;
isp->isp_type = ISP_HA_SCSI_1080;
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF;
break;
case PCI_QLOGIC_ISP1240:
did = 0x1080;
isp->isp_mdvec = &mdvec_1080;
isp->isp_type = ISP_HA_SCSI_1240;
isp->isp_nchan = 2;
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF;
break;
case PCI_QLOGIC_ISP1280:
did = 0x1080;
isp->isp_mdvec = &mdvec_1080;
isp->isp_type = ISP_HA_SCSI_1280;
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF;
break;
case PCI_QLOGIC_ISP10160:
did = 0x12160;
isp->isp_mdvec = &mdvec_12160;
isp->isp_type = ISP_HA_SCSI_10160;
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF;
break;
case PCI_QLOGIC_ISP12160:
did = 0x12160;
isp->isp_nchan = 2;
isp->isp_mdvec = &mdvec_12160;
isp->isp_type = ISP_HA_SCSI_12160;
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF;
break;
case PCI_QLOGIC_ISP2100:
did = 0x2100;
isp->isp_mdvec = &mdvec_2100;
isp->isp_type = ISP_HA_FC_2100;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF;
if (pci_get_revid(dev) < 3) {
/*
* XXX: Need to get the actual revision
* XXX: number of the 2100 FB. At any rate,
* XXX: lower cache line size for early revision
* XXX; boards.
*/
linesz = 1;
}
break;
case PCI_QLOGIC_ISP2200:
did = 0x2200;
isp->isp_mdvec = &mdvec_2200;
isp->isp_type = ISP_HA_FC_2200;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF;
break;
case PCI_QLOGIC_ISP2300:
did = 0x2300;
isp->isp_mdvec = &mdvec_2300;
isp->isp_type = ISP_HA_FC_2300;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2300_OFF;
break;
case PCI_QLOGIC_ISP2312:
case PCI_QLOGIC_ISP6312:
did = 0x2300;
isp->isp_mdvec = &mdvec_2300;
isp->isp_type = ISP_HA_FC_2312;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2300_OFF;
break;
case PCI_QLOGIC_ISP2322:
case PCI_QLOGIC_ISP6322:
did = 0x2322;
isp->isp_mdvec = &mdvec_2300;
isp->isp_type = ISP_HA_FC_2322;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2300_OFF;
break;
case PCI_QLOGIC_ISP2422:
case PCI_QLOGIC_ISP2432:
did = 0x2400;
isp->isp_nchan += isp_nvports;
isp->isp_mdvec = &mdvec_2400;
isp->isp_type = ISP_HA_FC_2400;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2400_OFF;
break;
case PCI_QLOGIC_ISP2532:
did = 0x2500;
isp->isp_nchan += isp_nvports;
isp->isp_mdvec = &mdvec_2500;
isp->isp_type = ISP_HA_FC_2500;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2400_OFF;
break;
case PCI_QLOGIC_ISP5432:
did = 0x2500;
isp->isp_mdvec = &mdvec_2500;
isp->isp_type = ISP_HA_FC_2500;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2400_OFF;
break;
case PCI_QLOGIC_ISP2031:
case PCI_QLOGIC_ISP8031:
did = 0x2600;
isp->isp_nchan += isp_nvports;
isp->isp_mdvec = &mdvec_2600;
isp->isp_type = ISP_HA_FC_2600;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2400_OFF;
break;
case PCI_QLOGIC_ISP2684:
case PCI_QLOGIC_ISP2692:
case PCI_QLOGIC_ISP2714:
case PCI_QLOGIC_ISP2722:
did = 0x2700;
isp->isp_nchan += isp_nvports;
isp->isp_mdvec = &mdvec_2700;
isp->isp_type = ISP_HA_FC_2700;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2400_OFF;
break;
default:
device_printf(dev, "unknown device type\n");
goto bad;
break;
}
isp->isp_revision = pci_get_revid(dev);
if (IS_26XX(isp)) {
pcs->rtp = SYS_RES_MEMORY;
pcs->rgd = PCIR_BAR(0);
pcs->regs = bus_alloc_resource_any(dev, pcs->rtp, &pcs->rgd,
RF_ACTIVE);
pcs->rtp1 = SYS_RES_MEMORY;
pcs->rgd1 = PCIR_BAR(2);
pcs->regs1 = bus_alloc_resource_any(dev, pcs->rtp1, &pcs->rgd1,
RF_ACTIVE);
pcs->rtp2 = SYS_RES_MEMORY;
pcs->rgd2 = PCIR_BAR(4);
pcs->regs2 = bus_alloc_resource_any(dev, pcs->rtp2, &pcs->rgd2,
RF_ACTIVE);
} else {
pcs->rtp = SYS_RES_MEMORY;
pcs->rgd = PCIR_BAR(1);
pcs->regs = bus_alloc_resource_any(dev, pcs->rtp, &pcs->rgd,
RF_ACTIVE);
if (pcs->regs == NULL) {
pcs->rtp = SYS_RES_IOPORT;
pcs->rgd = PCIR_BAR(0);
pcs->regs = bus_alloc_resource_any(dev, pcs->rtp,
&pcs->rgd, RF_ACTIVE);
}
}
if (pcs->regs == NULL) {
device_printf(dev, "Unable to map any ports\n");
goto bad;
}
if (bootverbose) {
device_printf(dev, "Using %s space register mapping\n",
(pcs->rtp == SYS_RES_IOPORT)? "I/O" : "Memory");
}
isp->isp_regs = pcs->regs;
isp->isp_regs2 = pcs->regs2;
if (IS_FC(isp)) {
psize = sizeof (fcparam);
xsize = sizeof (struct isp_fc);
} else {
psize = sizeof (sdparam);
xsize = sizeof (struct isp_spi);
}
psize *= isp->isp_nchan;
xsize *= isp->isp_nchan;
isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT | M_ZERO);
if (isp->isp_param == NULL) {
device_printf(dev, "cannot allocate parameter data\n");
goto bad;
}
isp->isp_osinfo.pc.ptr = malloc(xsize, M_DEVBUF, M_NOWAIT | M_ZERO);
if (isp->isp_osinfo.pc.ptr == NULL) {
device_printf(dev, "cannot allocate parameter data\n");
goto bad;
}
/*
* Now that we know who we are (roughly) get/set specific options
*/
for (i = 0; i < isp->isp_nchan; i++) {
isp_get_specific_options(dev, i, isp);
}
isp->isp_osinfo.fw = NULL;
if (isp->isp_osinfo.fw == NULL) {
snprintf(fwname, sizeof (fwname), "isp_%04x", did);
isp->isp_osinfo.fw = firmware_get(fwname);
}
if (isp->isp_osinfo.fw != NULL) {
isp_prt(isp, ISP_LOGCONFIG, "loaded firmware %s", fwname);
isp->isp_mdvec->dv_ispfw = isp->isp_osinfo.fw->data;
}
/*
* Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER are set.
*/
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN | PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
if (IS_2300(isp)) { /* per QLogic errata */
cmd &= ~PCIM_CMD_INVEN;
}
if (IS_2322(isp) || pci_get_devid(dev) == PCI_QLOGIC_ISP6312) {
cmd &= ~PCIM_CMD_INTX_DISABLE;
}
if (IS_24XX(isp)) {
cmd &= ~PCIM_CMD_INTX_DISABLE;
}
pci_write_config(dev, PCIR_COMMAND, cmd, 2);
/*
* Make sure the Cache Line Size register is set sensibly.
*/
data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
if (data == 0 || (linesz != PCI_DFLT_LNSZ && data != linesz)) {
isp_prt(isp, ISP_LOGDEBUG0, "set PCI line size to %d from %d", linesz, data);
data = linesz;
pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
}
/*
* Make sure the Latency Timer is sane.
*/
data = pci_read_config(dev, PCIR_LATTIMER, 1);
if (data < PCI_DFLT_LTNCY) {
data = PCI_DFLT_LTNCY;
isp_prt(isp, ISP_LOGDEBUG0, "set PCI latency to %d", data);
pci_write_config(dev, PCIR_LATTIMER, data, 1);
}
/*
* Make sure we've disabled the ROM.
*/
data = pci_read_config(dev, PCIR_ROMADDR, 4);
data &= ~1;
pci_write_config(dev, PCIR_ROMADDR, data, 4);
/*
* Last minute checks...
*/
if (IS_23XX(isp) || IS_24XX(isp)) {
isp->isp_port = pci_get_function(dev);
}
/*
* Make sure we're in reset state.
*/
ISP_LOCK(isp);
if (isp_reinit(isp, 1) != 0) {
ISP_UNLOCK(isp);
goto bad;
}
ISP_UNLOCK(isp);
if (isp_attach(isp)) {
ISP_LOCK(isp);
isp_shutdown(isp);
ISP_UNLOCK(isp);
goto bad;
}
return (0);
bad:
for (i = 0; i < isp->isp_nirq; i++) {
(void) bus_teardown_intr(dev, pcs->irq[i].irq, pcs->irq[i].ih);
(void) bus_release_resource(dev, SYS_RES_IRQ, pcs->irq[i].iqd,
pcs->irq[0].irq);
}
if (pcs->msicount) {
pci_release_msi(dev);
}
if (pcs->regs)
(void) bus_release_resource(dev, pcs->rtp, pcs->rgd, pcs->regs);
if (pcs->regs1)
(void) bus_release_resource(dev, pcs->rtp1, pcs->rgd1, pcs->regs1);
if (pcs->regs2)
(void) bus_release_resource(dev, pcs->rtp2, pcs->rgd2, pcs->regs2);
if (pcs->pci_isp.isp_param) {
free(pcs->pci_isp.isp_param, M_DEVBUF);
pcs->pci_isp.isp_param = NULL;
}
if (pcs->pci_isp.isp_osinfo.pc.ptr) {
free(pcs->pci_isp.isp_osinfo.pc.ptr, M_DEVBUF);
pcs->pci_isp.isp_osinfo.pc.ptr = NULL;
}
mtx_destroy(&isp->isp_lock);
return (ENXIO);
}
static int
isp_pci_detach(device_t dev)
{
struct isp_pcisoftc *pcs = device_get_softc(dev);
ispsoftc_t *isp = &pcs->pci_isp;
int i, status;
status = isp_detach(isp);
if (status)
return (status);
ISP_LOCK(isp);
isp_shutdown(isp);
ISP_UNLOCK(isp);
for (i = 0; i < isp->isp_nirq; i++) {
(void) bus_teardown_intr(dev, pcs->irq[i].irq, pcs->irq[i].ih);
(void) bus_release_resource(dev, SYS_RES_IRQ, pcs->irq[i].iqd,
pcs->irq[i].irq);
}
if (pcs->msicount)
pci_release_msi(dev);
(void) bus_release_resource(dev, pcs->rtp, pcs->rgd, pcs->regs);
if (pcs->regs1)
(void) bus_release_resource(dev, pcs->rtp1, pcs->rgd1, pcs->regs1);
if (pcs->regs2)
(void) bus_release_resource(dev, pcs->rtp2, pcs->rgd2, pcs->regs2);
isp_pci_mbxdmafree(isp);
if (pcs->pci_isp.isp_param) {
free(pcs->pci_isp.isp_param, M_DEVBUF);
pcs->pci_isp.isp_param = NULL;
}
if (pcs->pci_isp.isp_osinfo.pc.ptr) {
free(pcs->pci_isp.isp_osinfo.pc.ptr, M_DEVBUF);
pcs->pci_isp.isp_osinfo.pc.ptr = NULL;
}
mtx_destroy(&isp->isp_lock);
return (0);
}
#define IspVirt2Off(a, x) \
(((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \
_BLK_REG_SHFT] + ((x) & 0xfff))
#define BXR2(isp, off) bus_read_2((isp)->isp_regs, (off))
#define BXW2(isp, off, v) bus_write_2((isp)->isp_regs, (off), (v))
#define BXR4(isp, off) bus_read_4((isp)->isp_regs, (off))
#define BXW4(isp, off, v) bus_write_4((isp)->isp_regs, (off), (v))
#define B2R4(isp, off) bus_read_4((isp)->isp_regs2, (off))
#define B2W4(isp, off, v) bus_write_4((isp)->isp_regs2, (off), (v))
static ISP_INLINE uint16_t
isp_pci_rd_debounced(ispsoftc_t *isp, int off)
{
uint16_t val, prev;
val = BXR2(isp, IspVirt2Off(isp, off));
do {
prev = val;
val = BXR2(isp, IspVirt2Off(isp, off));
} while (val != prev);
return (val);
}
static void
isp_pci_run_isr(ispsoftc_t *isp)
{
uint16_t isr, sema, info;
if (IS_2100(isp)) {
isr = isp_pci_rd_debounced(isp, BIU_ISR);
sema = isp_pci_rd_debounced(isp, BIU_SEMA);
} else {
isr = BXR2(isp, IspVirt2Off(isp, BIU_ISR));
sema = BXR2(isp, IspVirt2Off(isp, BIU_SEMA));
}
isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
isr &= INT_PENDING_MASK(isp);
sema &= BIU_SEMA_LOCK;
if (isr == 0 && sema == 0)
return;
if (sema != 0) {
if (IS_2100(isp))
info = isp_pci_rd_debounced(isp, OUTMAILBOX0);
else
info = BXR2(isp, IspVirt2Off(isp, OUTMAILBOX0));
if (info & MBOX_COMMAND_COMPLETE)
isp_intr_mbox(isp, info);
else
isp_intr_async(isp, info);
if (!IS_FC(isp) && isp->isp_state == ISP_RUNSTATE)
isp_intr_respq(isp);
} else
isp_intr_respq(isp);
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
if (sema)
ISP_WRITE(isp, BIU_SEMA, 0);
}
static void
isp_pci_run_isr_2300(ispsoftc_t *isp)
{
uint32_t hccr, r2hisr;
uint16_t isr, info;
if ((BXR2(isp, IspVirt2Off(isp, BIU_ISR)) & BIU2100_ISR_RISC_INT) == 0)
return;
r2hisr = BXR4(isp, IspVirt2Off(isp, BIU_R2HSTSLO));
isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
if ((r2hisr & BIU_R2HST_INTR) == 0)
return;
isr = r2hisr & BIU_R2HST_ISTAT_MASK;
info = r2hisr >> 16;
switch (isr) {
case ISPR2HST_ROM_MBX_OK:
case ISPR2HST_ROM_MBX_FAIL:
case ISPR2HST_MBX_OK:
case ISPR2HST_MBX_FAIL:
isp_intr_mbox(isp, info);
break;
case ISPR2HST_ASYNC_EVENT:
isp_intr_async(isp, info);
break;
case ISPR2HST_RIO_16:
isp_intr_async(isp, ASYNC_RIO16_1);
break;
case ISPR2HST_FPOST:
isp_intr_async(isp, ASYNC_CMD_CMPLT);
break;
case ISPR2HST_FPOST_CTIO:
isp_intr_async(isp, ASYNC_CTIO_DONE);
break;
case ISPR2HST_RSPQ_UPDATE:
isp_intr_respq(isp);
break;
default:
hccr = ISP_READ(isp, HCCR);
if (hccr & HCCR_PAUSE) {
ISP_WRITE(isp, HCCR, HCCR_RESET);
isp_prt(isp, ISP_LOGERR, "RISC paused at interrupt (%x->%x)", hccr, ISP_READ(isp, HCCR));
ISP_WRITE(isp, BIU_ICR, 0);
} else {
isp_prt(isp, ISP_LOGERR, "unknown interrupt 0x%x\n", r2hisr);
}
}
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
ISP_WRITE(isp, BIU_SEMA, 0);
}
static void
isp_pci_run_isr_2400(ispsoftc_t *isp)
{
uint32_t r2hisr;
uint16_t isr, info;
r2hisr = BXR4(isp, IspVirt2Off(isp, BIU2400_R2HSTSLO));
isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
if ((r2hisr & BIU_R2HST_INTR) == 0)
return;
isr = r2hisr & BIU_R2HST_ISTAT_MASK;
info = (r2hisr >> 16);
switch (isr) {
case ISPR2HST_ROM_MBX_OK:
case ISPR2HST_ROM_MBX_FAIL:
case ISPR2HST_MBX_OK:
case ISPR2HST_MBX_FAIL:
isp_intr_mbox(isp, info);
break;
case ISPR2HST_ASYNC_EVENT:
isp_intr_async(isp, info);
break;
case ISPR2HST_RSPQ_UPDATE:
isp_intr_respq(isp);
break;
case ISPR2HST_RSPQ_UPDATE2:
#ifdef ISP_TARGET_MODE
case ISPR2HST_ATIO_RSPQ_UPDATE:
#endif
isp_intr_respq(isp);
/* FALLTHROUGH */
#ifdef ISP_TARGET_MODE
case ISPR2HST_ATIO_UPDATE:
case ISPR2HST_ATIO_UPDATE2:
isp_intr_atioq(isp);
#endif
break;
default:
isp_prt(isp, ISP_LOGERR, "unknown interrupt 0x%x\n", r2hisr);
}
ISP_WRITE(isp, BIU2400_HCCR, HCCR_2400_CMD_CLEAR_RISC_INT);
}
static uint32_t
isp_pci_rd_reg(ispsoftc_t *isp, int regoff)
{
uint16_t rv;
int oldconf = 0;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
/*
* We will assume that someone has paused the RISC processor.
*/
oldconf = BXR2(isp, IspVirt2Off(isp, BIU_CONF1));
BXW2(isp, IspVirt2Off(isp, BIU_CONF1), oldconf | BIU_PCI_CONF1_SXP);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
}
rv = BXR2(isp, IspVirt2Off(isp, regoff));
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
BXW2(isp, IspVirt2Off(isp, BIU_CONF1), oldconf);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
}
return (rv);
}
static void
isp_pci_wr_reg(ispsoftc_t *isp, int regoff, uint32_t val)
{
int oldconf = 0;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
/*
* We will assume that someone has paused the RISC processor.
*/
oldconf = BXR2(isp, IspVirt2Off(isp, BIU_CONF1));
BXW2(isp, IspVirt2Off(isp, BIU_CONF1),
oldconf | BIU_PCI_CONF1_SXP);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
}
BXW2(isp, IspVirt2Off(isp, regoff), val);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, regoff), 2, -1);
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
BXW2(isp, IspVirt2Off(isp, BIU_CONF1), oldconf);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
}
}
static uint32_t
isp_pci_rd_reg_1080(ispsoftc_t *isp, int regoff)
{
uint32_t rv, oc = 0;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
uint32_t tc;
/*
* We will assume that someone has paused the RISC processor.
*/
oc = BXR2(isp, IspVirt2Off(isp, BIU_CONF1));
tc = oc & ~BIU_PCI1080_CONF1_DMA;
if (regoff & SXP_BANK1_SELECT)
tc |= BIU_PCI1080_CONF1_SXP1;
else
tc |= BIU_PCI1080_CONF1_SXP0;
BXW2(isp, IspVirt2Off(isp, BIU_CONF1), tc);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
oc = BXR2(isp, IspVirt2Off(isp, BIU_CONF1));
BXW2(isp, IspVirt2Off(isp, BIU_CONF1),
oc | BIU_PCI1080_CONF1_DMA);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
}
rv = BXR2(isp, IspVirt2Off(isp, regoff));
if (oc) {
BXW2(isp, IspVirt2Off(isp, BIU_CONF1), oc);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
}
return (rv);
}
static void
isp_pci_wr_reg_1080(ispsoftc_t *isp, int regoff, uint32_t val)
{
int oc = 0;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
uint32_t tc;
/*
* We will assume that someone has paused the RISC processor.
*/
oc = BXR2(isp, IspVirt2Off(isp, BIU_CONF1));
tc = oc & ~BIU_PCI1080_CONF1_DMA;
if (regoff & SXP_BANK1_SELECT)
tc |= BIU_PCI1080_CONF1_SXP1;
else
tc |= BIU_PCI1080_CONF1_SXP0;
BXW2(isp, IspVirt2Off(isp, BIU_CONF1), tc);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
oc = BXR2(isp, IspVirt2Off(isp, BIU_CONF1));
BXW2(isp, IspVirt2Off(isp, BIU_CONF1),
oc | BIU_PCI1080_CONF1_DMA);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
}
BXW2(isp, IspVirt2Off(isp, regoff), val);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, regoff), 2, -1);
if (oc) {
BXW2(isp, IspVirt2Off(isp, BIU_CONF1), oc);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2, -1);
}
}
static uint32_t
isp_pci_rd_reg_2400(ispsoftc_t *isp, int regoff)
{
uint32_t rv;
int block = regoff & _BLK_REG_MASK;
switch (block) {
case BIU_BLOCK:
break;
case MBOX_BLOCK:
return (BXR2(isp, IspVirt2Off(isp, regoff)));
case SXP_BLOCK:
isp_prt(isp, ISP_LOGERR, "SXP_BLOCK read at 0x%x", regoff);
return (0xffffffff);
case RISC_BLOCK:
isp_prt(isp, ISP_LOGERR, "RISC_BLOCK read at 0x%x", regoff);
return (0xffffffff);
case DMA_BLOCK:
isp_prt(isp, ISP_LOGERR, "DMA_BLOCK read at 0x%x", regoff);
return (0xffffffff);
default:
isp_prt(isp, ISP_LOGERR, "unknown block read at 0x%x", regoff);
return (0xffffffff);
}
switch (regoff) {
case BIU2400_FLASH_ADDR:
case BIU2400_FLASH_DATA:
case BIU2400_ICR:
case BIU2400_ISR:
case BIU2400_CSR:
case BIU2400_REQINP:
case BIU2400_REQOUTP:
case BIU2400_RSPINP:
case BIU2400_RSPOUTP:
case BIU2400_PRI_REQINP:
case BIU2400_PRI_REQOUTP:
case BIU2400_ATIO_RSPINP:
case BIU2400_ATIO_RSPOUTP:
case BIU2400_HCCR:
case BIU2400_GPIOD:
case BIU2400_GPIOE:
case BIU2400_HSEMA:
rv = BXR4(isp, IspVirt2Off(isp, regoff));
break;
case BIU2400_R2HSTSLO:
rv = BXR4(isp, IspVirt2Off(isp, regoff));
break;
case BIU2400_R2HSTSHI:
rv = BXR4(isp, IspVirt2Off(isp, regoff)) >> 16;
break;
default:
isp_prt(isp, ISP_LOGERR, "unknown register read at 0x%x",
regoff);
rv = 0xffffffff;
break;
}
return (rv);
}
static void
isp_pci_wr_reg_2400(ispsoftc_t *isp, int regoff, uint32_t val)
{
int block = regoff & _BLK_REG_MASK;
switch (block) {
case BIU_BLOCK:
break;
case MBOX_BLOCK:
BXW2(isp, IspVirt2Off(isp, regoff), val);
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, regoff), 2, -1);
return;
case SXP_BLOCK:
isp_prt(isp, ISP_LOGERR, "SXP_BLOCK write at 0x%x", regoff);
return;
case RISC_BLOCK:
isp_prt(isp, ISP_LOGERR, "RISC_BLOCK write at 0x%x", regoff);
return;
case DMA_BLOCK:
isp_prt(isp, ISP_LOGERR, "DMA_BLOCK write at 0x%x", regoff);
return;
default:
isp_prt(isp, ISP_LOGERR, "unknown block write at 0x%x", regoff);
break;
}
switch (regoff) {
case BIU2400_FLASH_ADDR:
case BIU2400_FLASH_DATA:
case BIU2400_ICR:
case BIU2400_ISR:
case BIU2400_CSR:
case BIU2400_REQINP:
case BIU2400_REQOUTP:
case BIU2400_RSPINP:
case BIU2400_RSPOUTP:
case BIU2400_PRI_REQINP:
case BIU2400_PRI_REQOUTP:
case BIU2400_ATIO_RSPINP:
case BIU2400_ATIO_RSPOUTP:
case BIU2400_HCCR:
case BIU2400_GPIOD:
case BIU2400_GPIOE:
case BIU2400_HSEMA:
BXW4(isp, IspVirt2Off(isp, regoff), val);
#ifdef MEMORYBARRIERW
if (regoff == BIU2400_REQINP ||
regoff == BIU2400_RSPOUTP ||
regoff == BIU2400_PRI_REQINP ||
regoff == BIU2400_ATIO_RSPOUTP)
MEMORYBARRIERW(isp, SYNC_REG,
IspVirt2Off(isp, regoff), 4, -1)
else
#endif
MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, regoff), 4, -1);
break;
default:
isp_prt(isp, ISP_LOGERR, "unknown register write at 0x%x",
regoff);
break;
}
}
static uint32_t
isp_pci_rd_reg_2600(ispsoftc_t *isp, int regoff)
{
uint32_t rv;
switch (regoff) {
case BIU2400_PRI_REQINP:
case BIU2400_PRI_REQOUTP:
isp_prt(isp, ISP_LOGERR, "unknown register read at 0x%x",
regoff);
rv = 0xffffffff;
break;
case BIU2400_REQINP:
rv = B2R4(isp, 0x00);
break;
case BIU2400_REQOUTP:
rv = B2R4(isp, 0x04);
break;
case BIU2400_RSPINP:
rv = B2R4(isp, 0x08);
break;
case BIU2400_RSPOUTP:
rv = B2R4(isp, 0x0c);
break;
case BIU2400_ATIO_RSPINP:
rv = B2R4(isp, 0x10);
break;
case BIU2400_ATIO_RSPOUTP:
rv = B2R4(isp, 0x14);
break;
default:
rv = isp_pci_rd_reg_2400(isp, regoff);
break;
}
return (rv);
}
static void
isp_pci_wr_reg_2600(ispsoftc_t *isp, int regoff, uint32_t val)
{
int off;
switch (regoff) {
case BIU2400_PRI_REQINP:
case BIU2400_PRI_REQOUTP:
isp_prt(isp, ISP_LOGERR, "unknown register write at 0x%x",
regoff);
return;
case BIU2400_REQINP:
off = 0x00;
break;
case BIU2400_REQOUTP:
off = 0x04;
break;
case BIU2400_RSPINP:
off = 0x08;
break;
case BIU2400_RSPOUTP:
off = 0x0c;
break;
case BIU2400_ATIO_RSPINP:
off = 0x10;
break;
case BIU2400_ATIO_RSPOUTP:
off = 0x14;
break;
default:
isp_pci_wr_reg_2400(isp, regoff, val);
return;
}
B2W4(isp, off, val);
}
struct imush {
bus_addr_t maddr;
int error;
};
static void
imc(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct imush *imushp = (struct imush *) arg;
if (!(imushp->error = error))
imushp->maddr = segs[0].ds_addr;
}
static int
isp_pci_mbxdma(ispsoftc_t *isp)
{
caddr_t base;
uint32_t len, nsegs;
int i, error, cmap = 0;
bus_size_t slim; /* segment size */
bus_addr_t llim; /* low limit of unavailable dma */
bus_addr_t hlim; /* high limit of unavailable dma */
struct imush im;
isp_ecmd_t *ecmd;
/* Already been here? If so, leave... */
if (isp->isp_xflist != NULL)
return (0);
if (isp->isp_rquest != NULL && isp->isp_maxcmds == 0)
return (0);
ISP_UNLOCK(isp);
if (isp->isp_rquest != NULL)
goto gotmaxcmds;
hlim = BUS_SPACE_MAXADDR;
if (IS_ULTRA2(isp) || IS_FC(isp) || IS_1240(isp)) {
if (sizeof (bus_size_t) > 4)
slim = (bus_size_t) (1ULL << 32);
else
slim = (bus_size_t) (1UL << 31);
llim = BUS_SPACE_MAXADDR;
} else {
slim = (1UL << 24);
llim = BUS_SPACE_MAXADDR_32BIT;
}
if (sizeof (bus_size_t) > 4)
nsegs = ISP_NSEG64_MAX;
else
nsegs = ISP_NSEG_MAX;
if (bus_dma_tag_create(bus_get_dma_tag(ISP_PCD(isp)), 1,
slim, llim, hlim, NULL, NULL, BUS_SPACE_MAXSIZE, nsegs, slim, 0,
busdma_lock_mutex, &isp->isp_lock, &isp->isp_osinfo.dmat)) {
ISP_LOCK(isp);
isp_prt(isp, ISP_LOGERR, "could not create master dma tag");
return (1);
}
/*
* Allocate and map the request queue and a region for external
* DMA addressable command/status structures (22XX and later).
*/
len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
if (isp->isp_type >= ISP_HA_FC_2200)
len += (N_XCMDS * XCMD_SIZE);
if (bus_dma_tag_create(isp->isp_osinfo.dmat, QENTRY_LEN, slim,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
len, 1, len, 0, busdma_lock_mutex, &isp->isp_lock,
&isp->isp_osinfo.reqdmat)) {
isp_prt(isp, ISP_LOGERR, "cannot create request DMA tag");
goto bad;
}
if (bus_dmamem_alloc(isp->isp_osinfo.reqdmat, (void **)&base,
BUS_DMA_COHERENT, &isp->isp_osinfo.reqmap) != 0) {
isp_prt(isp, ISP_LOGERR, "cannot allocate request DMA memory");
bus_dma_tag_destroy(isp->isp_osinfo.reqdmat);
goto bad;
}
isp->isp_rquest = base;
im.error = 0;
if (bus_dmamap_load(isp->isp_osinfo.reqdmat, isp->isp_osinfo.reqmap,
base, len, imc, &im, 0) || im.error) {
isp_prt(isp, ISP_LOGERR, "error loading request DMA map %d", im.error);
goto bad;
}
isp_prt(isp, ISP_LOGDEBUG0, "request area @ 0x%jx/0x%jx",
(uintmax_t)im.maddr, (uintmax_t)len);
isp->isp_rquest_dma = im.maddr;
base += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
im.maddr += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
if (isp->isp_type >= ISP_HA_FC_2200) {
isp->isp_osinfo.ecmd_dma = im.maddr;
isp->isp_osinfo.ecmd_free = (isp_ecmd_t *)base;
isp->isp_osinfo.ecmd_base = isp->isp_osinfo.ecmd_free;
for (ecmd = isp->isp_osinfo.ecmd_free;
ecmd < &isp->isp_osinfo.ecmd_free[N_XCMDS]; ecmd++) {
if (ecmd == &isp->isp_osinfo.ecmd_free[N_XCMDS - 1])
ecmd->next = NULL;
else
ecmd->next = ecmd + 1;
}
}
/*
* Allocate and map the result queue.
*/
len = ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
if (bus_dma_tag_create(isp->isp_osinfo.dmat, QENTRY_LEN, slim,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
len, 1, len, 0, busdma_lock_mutex, &isp->isp_lock,
&isp->isp_osinfo.respdmat)) {
isp_prt(isp, ISP_LOGERR, "cannot create response DMA tag");
goto bad;
}
if (bus_dmamem_alloc(isp->isp_osinfo.respdmat, (void **)&base,
BUS_DMA_COHERENT, &isp->isp_osinfo.respmap) != 0) {
isp_prt(isp, ISP_LOGERR, "cannot allocate response DMA memory");
bus_dma_tag_destroy(isp->isp_osinfo.respdmat);
goto bad;
}
isp->isp_result = base;
im.error = 0;
if (bus_dmamap_load(isp->isp_osinfo.respdmat, isp->isp_osinfo.respmap,
base, len, imc, &im, 0) || im.error) {
isp_prt(isp, ISP_LOGERR, "error loading response DMA map %d", im.error);
goto bad;
}
isp_prt(isp, ISP_LOGDEBUG0, "response area @ 0x%jx/0x%jx",
(uintmax_t)im.maddr, (uintmax_t)len);
isp->isp_result_dma = im.maddr;
#ifdef ISP_TARGET_MODE
/*
* Allocate and map ATIO queue on 24xx with target mode.
*/
if (IS_24XX(isp)) {
len = ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
if (bus_dma_tag_create(isp->isp_osinfo.dmat, QENTRY_LEN, slim,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
len, 1, len, 0, busdma_lock_mutex, &isp->isp_lock,
&isp->isp_osinfo.atiodmat)) {
isp_prt(isp, ISP_LOGERR, "cannot create ATIO DMA tag");
goto bad;
}
if (bus_dmamem_alloc(isp->isp_osinfo.atiodmat, (void **)&base,
BUS_DMA_COHERENT, &isp->isp_osinfo.atiomap) != 0) {
isp_prt(isp, ISP_LOGERR, "cannot allocate ATIO DMA memory");
bus_dma_tag_destroy(isp->isp_osinfo.atiodmat);
goto bad;
}
isp->isp_atioq = base;
im.error = 0;
if (bus_dmamap_load(isp->isp_osinfo.atiodmat, isp->isp_osinfo.atiomap,
base, len, imc, &im, 0) || im.error) {
isp_prt(isp, ISP_LOGERR, "error loading ATIO DMA map %d", im.error);
goto bad;
}
isp_prt(isp, ISP_LOGDEBUG0, "ATIO area @ 0x%jx/0x%jx",
(uintmax_t)im.maddr, (uintmax_t)len);
isp->isp_atioq_dma = im.maddr;
}
#endif
if (IS_FC(isp)) {
if (bus_dma_tag_create(isp->isp_osinfo.dmat, 64, slim,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2*QENTRY_LEN, 1, 2*QENTRY_LEN, 0, busdma_lock_mutex,
&isp->isp_lock, &isp->isp_osinfo.iocbdmat)) {
goto bad;
}
if (bus_dmamem_alloc(isp->isp_osinfo.iocbdmat,
(void **)&base, BUS_DMA_COHERENT, &isp->isp_osinfo.iocbmap) != 0)
goto bad;
isp->isp_iocb = base;
im.error = 0;
if (bus_dmamap_load(isp->isp_osinfo.iocbdmat, isp->isp_osinfo.iocbmap,
base, 2*QENTRY_LEN, imc, &im, 0) || im.error)
goto bad;
isp->isp_iocb_dma = im.maddr;
if (bus_dma_tag_create(isp->isp_osinfo.dmat, 64, slim,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
ISP_FC_SCRLEN, 1, ISP_FC_SCRLEN, 0, busdma_lock_mutex,
&isp->isp_lock, &isp->isp_osinfo.scdmat))
goto bad;
for (cmap = 0; cmap < isp->isp_nchan; cmap++) {
struct isp_fc *fc = ISP_FC_PC(isp, cmap);
if (bus_dmamem_alloc(isp->isp_osinfo.scdmat,
(void **)&base, BUS_DMA_COHERENT, &fc->scmap) != 0)
goto bad;
FCPARAM(isp, cmap)->isp_scratch = base;
im.error = 0;
if (bus_dmamap_load(isp->isp_osinfo.scdmat, fc->scmap,
base, ISP_FC_SCRLEN, imc, &im, 0) || im.error) {
bus_dmamem_free(isp->isp_osinfo.scdmat,
base, fc->scmap);
FCPARAM(isp, cmap)->isp_scratch = NULL;
goto bad;
}
FCPARAM(isp, cmap)->isp_scdma = im.maddr;
if (!IS_2100(isp)) {
for (i = 0; i < INITIAL_NEXUS_COUNT; i++) {
struct isp_nexus *n = malloc(sizeof (struct isp_nexus), M_DEVBUF, M_NOWAIT | M_ZERO);
if (n == NULL) {
while (fc->nexus_free_list) {
n = fc->nexus_free_list;
fc->nexus_free_list = n->next;
free(n, M_DEVBUF);
}
goto bad;
}
n->next = fc->nexus_free_list;
fc->nexus_free_list = n;
}
}
}
}
if (isp->isp_maxcmds == 0) {
ISP_LOCK(isp);
return (0);
}
gotmaxcmds:
len = isp->isp_maxcmds * sizeof (struct isp_pcmd);
isp->isp_osinfo.pcmd_pool = (struct isp_pcmd *)
malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
for (i = 0; i < isp->isp_maxcmds; i++) {
struct isp_pcmd *pcmd = &isp->isp_osinfo.pcmd_pool[i];
error = bus_dmamap_create(isp->isp_osinfo.dmat, 0, &pcmd->dmap);
if (error) {
isp_prt(isp, ISP_LOGERR, "error %d creating per-cmd DMA maps", error);
while (--i >= 0) {
bus_dmamap_destroy(isp->isp_osinfo.dmat,
isp->isp_osinfo.pcmd_pool[i].dmap);
}
goto bad;
}
callout_init_mtx(&pcmd->wdog, &isp->isp_lock, 0);
if (i == isp->isp_maxcmds-1)
pcmd->next = NULL;
else
pcmd->next = &isp->isp_osinfo.pcmd_pool[i+1];
}
isp->isp_osinfo.pcmd_free = &isp->isp_osinfo.pcmd_pool[0];
len = sizeof (isp_hdl_t) * isp->isp_maxcmds;
isp->isp_xflist = (isp_hdl_t *) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
for (len = 0; len < isp->isp_maxcmds - 1; len++)
isp->isp_xflist[len].cmd = &isp->isp_xflist[len+1];
isp->isp_xffree = isp->isp_xflist;
ISP_LOCK(isp);
return (0);
bad:
isp_pci_mbxdmafree(isp);
ISP_LOCK(isp);
return (1);
}
static void
isp_pci_mbxdmafree(ispsoftc_t *isp)
{
int i;
if (isp->isp_xflist != NULL) {
free(isp->isp_xflist, M_DEVBUF);
isp->isp_xflist = NULL;
}
if (isp->isp_osinfo.pcmd_pool != NULL) {
for (i = 0; i < isp->isp_maxcmds; i++) {
bus_dmamap_destroy(isp->isp_osinfo.dmat,
isp->isp_osinfo.pcmd_pool[i].dmap);
}
free(isp->isp_osinfo.pcmd_pool, M_DEVBUF);
isp->isp_osinfo.pcmd_pool = NULL;
}
if (IS_FC(isp)) {
for (i = 0; i < isp->isp_nchan; i++) {
struct isp_fc *fc = ISP_FC_PC(isp, i);
if (FCPARAM(isp, i)->isp_scdma != 0) {
bus_dmamap_unload(isp->isp_osinfo.scdmat,
fc->scmap);
FCPARAM(isp, i)->isp_scdma = 0;
}
if (FCPARAM(isp, i)->isp_scratch != NULL) {
bus_dmamem_free(isp->isp_osinfo.scdmat,
FCPARAM(isp, i)->isp_scratch, fc->scmap);
FCPARAM(isp, i)->isp_scratch = NULL;
}
while (fc->nexus_free_list) {
struct isp_nexus *n = fc->nexus_free_list;
fc->nexus_free_list = n->next;
free(n, M_DEVBUF);
}
}
if (isp->isp_iocb_dma != 0) {
bus_dma_tag_destroy(isp->isp_osinfo.scdmat);
bus_dmamap_unload(isp->isp_osinfo.iocbdmat,
isp->isp_osinfo.iocbmap);
isp->isp_iocb_dma = 0;
}
if (isp->isp_iocb != NULL) {
bus_dmamem_free(isp->isp_osinfo.iocbdmat,
isp->isp_iocb, isp->isp_osinfo.iocbmap);
bus_dma_tag_destroy(isp->isp_osinfo.iocbdmat);
}
}
#ifdef ISP_TARGET_MODE
if (IS_24XX(isp)) {
if (isp->isp_atioq_dma != 0) {
bus_dmamap_unload(isp->isp_osinfo.atiodmat,
isp->isp_osinfo.atiomap);
isp->isp_atioq_dma = 0;
}
if (isp->isp_atioq != NULL) {
bus_dmamem_free(isp->isp_osinfo.atiodmat, isp->isp_atioq,
isp->isp_osinfo.atiomap);
bus_dma_tag_destroy(isp->isp_osinfo.atiodmat);
isp->isp_atioq = NULL;
}
}
#endif
if (isp->isp_result_dma != 0) {
bus_dmamap_unload(isp->isp_osinfo.respdmat,
isp->isp_osinfo.respmap);
isp->isp_result_dma = 0;
}
if (isp->isp_result != NULL) {
bus_dmamem_free(isp->isp_osinfo.respdmat, isp->isp_result,
isp->isp_osinfo.respmap);
bus_dma_tag_destroy(isp->isp_osinfo.respdmat);
isp->isp_result = NULL;
}
if (isp->isp_rquest_dma != 0) {
bus_dmamap_unload(isp->isp_osinfo.reqdmat,
isp->isp_osinfo.reqmap);
isp->isp_rquest_dma = 0;
}
if (isp->isp_rquest != NULL) {
bus_dmamem_free(isp->isp_osinfo.reqdmat, isp->isp_rquest,
isp->isp_osinfo.reqmap);
bus_dma_tag_destroy(isp->isp_osinfo.reqdmat);
isp->isp_rquest = NULL;
}
}
typedef struct {
ispsoftc_t *isp;
void *cmd_token;
void *rq; /* original request */
int error;
} mush_t;
#define MUSHERR_NOQENTRIES -2
static void
dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp = (mush_t *) arg;
ispsoftc_t *isp= mp->isp;
struct ccb_scsiio *csio = mp->cmd_token;
isp_ddir_t ddir;
int sdir;
if (error) {
mp->error = error;
return;
}
if (nseg == 0) {
ddir = ISP_NOXFR;
} else {
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
ddir = ISP_FROM_DEVICE;
} else {
ddir = ISP_TO_DEVICE;
}
if ((csio->ccb_h.func_code == XPT_CONT_TARGET_IO) ^
((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)) {
sdir = BUS_DMASYNC_PREREAD;
} else {
sdir = BUS_DMASYNC_PREWRITE;
}
bus_dmamap_sync(isp->isp_osinfo.dmat, PISP_PCMD(csio)->dmap,
sdir);
}
error = isp_send_cmd(isp, mp->rq, dm_segs, nseg, XS_XFRLEN(csio),
ddir, (ispds64_t *)csio->req_map);
switch (error) {
case CMD_EAGAIN:
mp->error = MUSHERR_NOQENTRIES;
break;
case CMD_QUEUED:
break;
default:
mp->error = EIO;
break;
}
}
static int
isp_pci_dmasetup(ispsoftc_t *isp, struct ccb_scsiio *csio, void *ff)
{
mush_t mush, *mp;
int error;
mp = &mush;
mp->isp = isp;
mp->cmd_token = csio;
mp->rq = ff;
mp->error = 0;
error = bus_dmamap_load_ccb(isp->isp_osinfo.dmat, PISP_PCMD(csio)->dmap,
(union ccb *)csio, dma2, mp, 0);
if (error == EINPROGRESS) {
bus_dmamap_unload(isp->isp_osinfo.dmat, PISP_PCMD(csio)->dmap);
mp->error = EINVAL;
isp_prt(isp, ISP_LOGERR, "deferred dma allocation not supported");
} else if (error && mp->error == 0) {
#ifdef DIAGNOSTIC
isp_prt(isp, ISP_LOGERR, "error %d in dma mapping code", error);
#endif
mp->error = error;
}
if (mp->error) {
int retval = CMD_COMPLETE;
if (mp->error == MUSHERR_NOQENTRIES) {
retval = CMD_EAGAIN;
} else if (mp->error == EFBIG) {
csio->ccb_h.status = CAM_REQ_TOO_BIG;
} else if (mp->error == EINVAL) {
csio->ccb_h.status = CAM_REQ_INVALID;
} else {
csio->ccb_h.status = CAM_UNREC_HBA_ERROR;
}
return (retval);
}
return (CMD_QUEUED);
}
static int
isp_pci_irqsetup(ispsoftc_t *isp)
{
device_t dev = isp->isp_osinfo.dev;
struct isp_pcisoftc *pcs = device_get_softc(dev);
driver_intr_t *f;
int i, max_irq;
/* Allocate IRQs only once. */
if (isp->isp_nirq > 0)
return (0);
ISP_UNLOCK(isp);
if (ISP_CAP_MSIX(isp)) {
max_irq = min(ISP_MAX_IRQS, IS_26XX(isp) ? 3 : 2);
pcs->msicount = imin(pci_msix_count(dev), max_irq);
if (pcs->msicount > 0 &&
pci_alloc_msix(dev, &pcs->msicount) != 0)
pcs->msicount = 0;
}
if (pcs->msicount == 0) {
pcs->msicount = imin(pci_msi_count(dev), 1);
if (pcs->msicount > 0 &&
pci_alloc_msi(dev, &pcs->msicount) != 0)
pcs->msicount = 0;
}
for (i = 0; i < MAX(1, pcs->msicount); i++) {
pcs->irq[i].iqd = i + (pcs->msicount > 0);
pcs->irq[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&pcs->irq[i].iqd, RF_ACTIVE | RF_SHAREABLE);
if (pcs->irq[i].irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
break;
}
if (i == 0)
f = isp_platform_intr;
else if (i == 1)
f = isp_platform_intr_resp;
else
f = isp_platform_intr_atio;
if (bus_setup_intr(dev, pcs->irq[i].irq, ISP_IFLAGS, NULL,
f, isp, &pcs->irq[i].ih)) {
device_printf(dev, "could not setup interrupt\n");
(void) bus_release_resource(dev, SYS_RES_IRQ,
pcs->irq[i].iqd, pcs->irq[i].irq);
break;
}
if (pcs->msicount > 1) {
bus_describe_intr(dev, pcs->irq[i].irq, pcs->irq[i].ih,
"%d", i);
}
isp->isp_nirq = i + 1;
}
ISP_LOCK(isp);
return (isp->isp_nirq == 0);
}
static void
isp_pci_dumpregs(ispsoftc_t *isp, const char *msg)
{
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
if (msg)
printf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
else
printf("%s:\n", device_get_nameunit(isp->isp_dev));
if (IS_SCSI(isp))
printf(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
else
printf(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
printf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
if (IS_SCSI(isp)) {
ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
printf(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
ISP_READ(isp, CDMA_FIFO_STS));
printf(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
ISP_READ(isp, DDMA_FIFO_STS));
printf(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
ISP_READ(isp, SXP_INTERRUPT),
ISP_READ(isp, SXP_GROSS_ERR),
ISP_READ(isp, SXP_PINS_CTRL));
ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
}
printf(" mbox regs: %x %x %x %x %x\n",
ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
ISP_READ(isp, OUTMAILBOX4));
printf(" PCI Status Command/Status=%x\n",
pci_read_config(pcs->pci_dev, PCIR_COMMAND, 1));
}