Cy Schubert f44e67d120 MFV d60fa10fd872db7e3d8cb1e161cfdae026c43b14:
Update unbound 1.13.0 --> 1.13.1.

Includes numerous bugfixes documented at:
https://www.nlnetlabs.nl/projects/unbound/download/#unbound-1-13-1

MFC after:	1 month
2021-02-09 20:27:25 -08:00

1614 lines
43 KiB
C

/*
* util/net_help.c - implementation of the network helper code
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
* Implementation of net_help.h.
*/
#include "config.h"
#include "util/net_help.h"
#include "util/log.h"
#include "util/data/dname.h"
#include "util/module.h"
#include "util/regional.h"
#include "util/config_file.h"
#include "sldns/parseutil.h"
#include "sldns/wire2str.h"
#include <fcntl.h>
#ifdef HAVE_OPENSSL_SSL_H
#include <openssl/ssl.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#endif
#ifdef HAVE_OPENSSL_ERR_H
#include <openssl/err.h>
#endif
#ifdef HAVE_OPENSSL_CORE_NAMES_H
#include <openssl/core_names.h>
#endif
#ifdef USE_WINSOCK
#include <wincrypt.h>
#endif
#ifdef HAVE_NGHTTP2_NGHTTP2_H
#include <nghttp2/nghttp2.h>
#endif
/** max length of an IP address (the address portion) that we allow */
#define MAX_ADDR_STRLEN 128 /* characters */
/** default value for EDNS ADVERTISED size */
uint16_t EDNS_ADVERTISED_SIZE = 4096;
/** minimal responses when positive answer: default is no */
int MINIMAL_RESPONSES = 0;
/** rrset order roundrobin: default is yes */
int RRSET_ROUNDROBIN = 1;
/** log tag queries with name instead of 'info' for filtering */
int LOG_TAG_QUERYREPLY = 0;
static struct tls_session_ticket_key {
unsigned char *key_name;
unsigned char *aes_key;
unsigned char *hmac_key;
} *ticket_keys;
#ifdef HAVE_SSL
/**
* callback TLS session ticket encrypt and decrypt
* For use with SSL_CTX_set_tlsext_ticket_key_cb or
* SSL_CTX_set_tlsext_ticket_key_evp_cb
* @param s: the SSL_CTX to use (from connect_sslctx_create())
* @param key_name: secret name, 16 bytes
* @param iv: up to EVP_MAX_IV_LENGTH.
* @param evp_ctx: the evp cipher context, function sets this.
* @param hmac_ctx: the hmac context, function sets this.
* with ..key_cb it is of type HMAC_CTX*
* with ..key_evp_cb it is of type EVP_MAC_CTX*
* @param enc: 1 is encrypt, 0 is decrypt
* @return 0 on no ticket, 1 for okay, and 2 for okay but renew the ticket
* (the ticket is decrypt only). and <0 for failures.
*/
int tls_session_ticket_key_cb(SSL *s, unsigned char* key_name,
unsigned char* iv, EVP_CIPHER_CTX *evp_ctx,
#ifdef HAVE_SSL_CTX_SET_TLSEXT_TICKET_KEY_EVP_CB
EVP_MAC_CTX *hmac_ctx,
#else
HMAC_CTX* hmac_ctx,
#endif
int enc);
#endif /* HAVE_SSL */
/* returns true is string addr is an ip6 specced address */
int
str_is_ip6(const char* str)
{
if(strchr(str, ':'))
return 1;
else return 0;
}
int
fd_set_nonblock(int s)
{
#ifdef HAVE_FCNTL
int flag;
if((flag = fcntl(s, F_GETFL)) == -1) {
log_err("can't fcntl F_GETFL: %s", strerror(errno));
flag = 0;
}
flag |= O_NONBLOCK;
if(fcntl(s, F_SETFL, flag) == -1) {
log_err("can't fcntl F_SETFL: %s", strerror(errno));
return 0;
}
#elif defined(HAVE_IOCTLSOCKET)
unsigned long on = 1;
if(ioctlsocket(s, FIONBIO, &on) != 0) {
log_err("can't ioctlsocket FIONBIO on: %s",
wsa_strerror(WSAGetLastError()));
}
#endif
return 1;
}
int
fd_set_block(int s)
{
#ifdef HAVE_FCNTL
int flag;
if((flag = fcntl(s, F_GETFL)) == -1) {
log_err("cannot fcntl F_GETFL: %s", strerror(errno));
flag = 0;
}
flag &= ~O_NONBLOCK;
if(fcntl(s, F_SETFL, flag) == -1) {
log_err("cannot fcntl F_SETFL: %s", strerror(errno));
return 0;
}
#elif defined(HAVE_IOCTLSOCKET)
unsigned long off = 0;
if(ioctlsocket(s, FIONBIO, &off) != 0) {
if(WSAGetLastError() != WSAEINVAL || verbosity >= 4)
log_err("can't ioctlsocket FIONBIO off: %s",
wsa_strerror(WSAGetLastError()));
}
#endif
return 1;
}
int
is_pow2(size_t num)
{
if(num == 0) return 1;
return (num & (num-1)) == 0;
}
void*
memdup(void* data, size_t len)
{
void* d;
if(!data) return NULL;
if(len == 0) return NULL;
d = malloc(len);
if(!d) return NULL;
memcpy(d, data, len);
return d;
}
void
log_addr(enum verbosity_value v, const char* str,
struct sockaddr_storage* addr, socklen_t addrlen)
{
uint16_t port;
const char* family = "unknown";
char dest[100];
int af = (int)((struct sockaddr_in*)addr)->sin_family;
void* sinaddr = &((struct sockaddr_in*)addr)->sin_addr;
if(verbosity < v)
return;
switch(af) {
case AF_INET: family="ip4"; break;
case AF_INET6: family="ip6";
sinaddr = &((struct sockaddr_in6*)addr)->sin6_addr;
break;
case AF_LOCAL:
dest[0]=0;
(void)inet_ntop(af, sinaddr, dest,
(socklen_t)sizeof(dest));
verbose(v, "%s local %s", str, dest);
return; /* do not continue and try to get port */
default: break;
}
if(inet_ntop(af, sinaddr, dest, (socklen_t)sizeof(dest)) == 0) {
(void)strlcpy(dest, "(inet_ntop error)", sizeof(dest));
}
dest[sizeof(dest)-1] = 0;
port = ntohs(((struct sockaddr_in*)addr)->sin_port);
if(verbosity >= 4)
verbose(v, "%s %s %s port %d (len %d)", str, family, dest,
(int)port, (int)addrlen);
else verbose(v, "%s %s port %d", str, dest, (int)port);
}
int
extstrtoaddr(const char* str, struct sockaddr_storage* addr,
socklen_t* addrlen)
{
char* s;
int port = UNBOUND_DNS_PORT;
if((s=strchr(str, '@'))) {
char buf[MAX_ADDR_STRLEN];
if(s-str >= MAX_ADDR_STRLEN) {
return 0;
}
(void)strlcpy(buf, str, sizeof(buf));
buf[s-str] = 0;
port = atoi(s+1);
if(port == 0 && strcmp(s+1,"0")!=0) {
return 0;
}
return ipstrtoaddr(buf, port, addr, addrlen);
}
return ipstrtoaddr(str, port, addr, addrlen);
}
int
ipstrtoaddr(const char* ip, int port, struct sockaddr_storage* addr,
socklen_t* addrlen)
{
uint16_t p;
if(!ip) return 0;
p = (uint16_t) port;
if(str_is_ip6(ip)) {
char buf[MAX_ADDR_STRLEN];
char* s;
struct sockaddr_in6* sa = (struct sockaddr_in6*)addr;
*addrlen = (socklen_t)sizeof(struct sockaddr_in6);
memset(sa, 0, *addrlen);
sa->sin6_family = AF_INET6;
sa->sin6_port = (in_port_t)htons(p);
if((s=strchr(ip, '%'))) { /* ip6%interface, rfc 4007 */
if(s-ip >= MAX_ADDR_STRLEN)
return 0;
(void)strlcpy(buf, ip, sizeof(buf));
buf[s-ip]=0;
sa->sin6_scope_id = (uint32_t)atoi(s+1);
ip = buf;
}
if(inet_pton((int)sa->sin6_family, ip, &sa->sin6_addr) <= 0) {
return 0;
}
} else { /* ip4 */
struct sockaddr_in* sa = (struct sockaddr_in*)addr;
*addrlen = (socklen_t)sizeof(struct sockaddr_in);
memset(sa, 0, *addrlen);
sa->sin_family = AF_INET;
sa->sin_port = (in_port_t)htons(p);
if(inet_pton((int)sa->sin_family, ip, &sa->sin_addr) <= 0) {
return 0;
}
}
return 1;
}
int netblockstrtoaddr(const char* str, int port, struct sockaddr_storage* addr,
socklen_t* addrlen, int* net)
{
char buf[64];
char* s;
*net = (str_is_ip6(str)?128:32);
if((s=strchr(str, '/'))) {
if(atoi(s+1) > *net) {
log_err("netblock too large: %s", str);
return 0;
}
*net = atoi(s+1);
if(*net == 0 && strcmp(s+1, "0") != 0) {
log_err("cannot parse netblock: '%s'", str);
return 0;
}
strlcpy(buf, str, sizeof(buf));
s = strchr(buf, '/');
if(s) *s = 0;
s = buf;
}
if(!ipstrtoaddr(s?s:str, port, addr, addrlen)) {
log_err("cannot parse ip address: '%s'", str);
return 0;
}
if(s) {
addr_mask(addr, *addrlen, *net);
}
return 1;
}
/* RPZ format address dname to network byte order address */
static int ipdnametoaddr(uint8_t* dname, size_t dnamelen,
struct sockaddr_storage* addr, socklen_t* addrlen, int* af)
{
uint8_t* ia;
int dnamelabs = dname_count_labels(dname);
uint8_t lablen;
char* e = NULL;
int z = 0;
size_t len = 0;
int i;
*af = AF_INET;
/* need 1 byte for label length */
if(dnamelen < 1)
return 0;
if(dnamelabs > 6 ||
dname_has_label(dname, dnamelen, (uint8_t*)"\002zz")) {
*af = AF_INET6;
}
len = *dname;
lablen = *dname++;
i = (*af == AF_INET) ? 3 : 15;
if(*af == AF_INET6) {
struct sockaddr_in6* sa = (struct sockaddr_in6*)addr;
*addrlen = (socklen_t)sizeof(struct sockaddr_in6);
memset(sa, 0, *addrlen);
sa->sin6_family = AF_INET6;
ia = (uint8_t*)&sa->sin6_addr;
} else { /* ip4 */
struct sockaddr_in* sa = (struct sockaddr_in*)addr;
*addrlen = (socklen_t)sizeof(struct sockaddr_in);
memset(sa, 0, *addrlen);
sa->sin_family = AF_INET;
ia = (uint8_t*)&sa->sin_addr;
}
while(lablen && i >= 0 && len <= dnamelen) {
char buff[LDNS_MAX_LABELLEN+1];
uint16_t chunk; /* big enough to not overflow on IPv6 hextet */
if((*af == AF_INET && (lablen > 3 || dnamelabs > 6)) ||
(*af == AF_INET6 && (lablen > 4 || dnamelabs > 10))) {
return 0;
}
if(memcmp(dname, "zz", 2) == 0 && *af == AF_INET6) {
/* Add one or more 0 labels. Address is initialised at
* 0, so just skip the zero part. */
int zl = 11 - dnamelabs;
if(z || zl < 0)
return 0;
z = 1;
i -= (zl*2);
} else {
memcpy(buff, dname, lablen);
buff[lablen] = '\0';
chunk = strtol(buff, &e, (*af == AF_INET) ? 10 : 16);
if(!e || *e != '\0' || (*af == AF_INET && chunk > 255))
return 0;
if(*af == AF_INET) {
log_assert(i < 4 && i >= 0);
ia[i] = (uint8_t)chunk;
i--;
} else {
log_assert(i < 16 && i >= 1);
/* ia in network byte order */
ia[i-1] = (uint8_t)(chunk >> 8);
ia[i] = (uint8_t)(chunk & 0x00FF);
i -= 2;
}
}
dname += lablen;
lablen = *dname++;
len += lablen;
}
if(i != -1)
/* input too short */
return 0;
return 1;
}
int netblockdnametoaddr(uint8_t* dname, size_t dnamelen,
struct sockaddr_storage* addr, socklen_t* addrlen, int* net, int* af)
{
char buff[3 /* 3 digit netblock */ + 1];
size_t nlablen;
if(dnamelen < 1 || *dname > 3)
/* netblock invalid */
return 0;
nlablen = *dname;
if(dnamelen < 1 + nlablen)
return 0;
memcpy(buff, dname+1, nlablen);
buff[nlablen] = '\0';
*net = atoi(buff);
if(*net == 0 && strcmp(buff, "0") != 0)
return 0;
dname += nlablen;
dname++;
if(!ipdnametoaddr(dname, dnamelen-1-nlablen, addr, addrlen, af))
return 0;
if((*af == AF_INET6 && *net > 128) || (*af == AF_INET && *net > 32))
return 0;
return 1;
}
int authextstrtoaddr(char* str, struct sockaddr_storage* addr,
socklen_t* addrlen, char** auth_name)
{
char* s;
int port = UNBOUND_DNS_PORT;
if((s=strchr(str, '@'))) {
char buf[MAX_ADDR_STRLEN];
size_t len = (size_t)(s-str);
char* hash = strchr(s+1, '#');
if(hash) {
*auth_name = hash+1;
} else {
*auth_name = NULL;
}
if(len >= MAX_ADDR_STRLEN) {
return 0;
}
(void)strlcpy(buf, str, sizeof(buf));
buf[len] = 0;
port = atoi(s+1);
if(port == 0) {
if(!hash && strcmp(s+1,"0")!=0)
return 0;
if(hash && strncmp(s+1,"0#",2)!=0)
return 0;
}
return ipstrtoaddr(buf, port, addr, addrlen);
}
if((s=strchr(str, '#'))) {
char buf[MAX_ADDR_STRLEN];
size_t len = (size_t)(s-str);
if(len >= MAX_ADDR_STRLEN) {
return 0;
}
(void)strlcpy(buf, str, sizeof(buf));
buf[len] = 0;
port = UNBOUND_DNS_OVER_TLS_PORT;
*auth_name = s+1;
return ipstrtoaddr(buf, port, addr, addrlen);
}
*auth_name = NULL;
return ipstrtoaddr(str, port, addr, addrlen);
}
/** store port number into sockaddr structure */
void
sockaddr_store_port(struct sockaddr_storage* addr, socklen_t addrlen, int port)
{
if(addr_is_ip6(addr, addrlen)) {
struct sockaddr_in6* sa = (struct sockaddr_in6*)addr;
sa->sin6_port = (in_port_t)htons((uint16_t)port);
} else {
struct sockaddr_in* sa = (struct sockaddr_in*)addr;
sa->sin_port = (in_port_t)htons((uint16_t)port);
}
}
void
log_nametypeclass(enum verbosity_value v, const char* str, uint8_t* name,
uint16_t type, uint16_t dclass)
{
char buf[LDNS_MAX_DOMAINLEN+1];
char t[12], c[12];
const char *ts, *cs;
if(verbosity < v)
return;
dname_str(name, buf);
if(type == LDNS_RR_TYPE_TSIG) ts = "TSIG";
else if(type == LDNS_RR_TYPE_IXFR) ts = "IXFR";
else if(type == LDNS_RR_TYPE_AXFR) ts = "AXFR";
else if(type == LDNS_RR_TYPE_MAILB) ts = "MAILB";
else if(type == LDNS_RR_TYPE_MAILA) ts = "MAILA";
else if(type == LDNS_RR_TYPE_ANY) ts = "ANY";
else if(sldns_rr_descript(type) && sldns_rr_descript(type)->_name)
ts = sldns_rr_descript(type)->_name;
else {
snprintf(t, sizeof(t), "TYPE%d", (int)type);
ts = t;
}
if(sldns_lookup_by_id(sldns_rr_classes, (int)dclass) &&
sldns_lookup_by_id(sldns_rr_classes, (int)dclass)->name)
cs = sldns_lookup_by_id(sldns_rr_classes, (int)dclass)->name;
else {
snprintf(c, sizeof(c), "CLASS%d", (int)dclass);
cs = c;
}
log_info("%s %s %s %s", str, buf, ts, cs);
}
void
log_query_in(const char* str, uint8_t* name, uint16_t type, uint16_t dclass)
{
char buf[LDNS_MAX_DOMAINLEN+1];
char t[12], c[12];
const char *ts, *cs;
dname_str(name, buf);
if(type == LDNS_RR_TYPE_TSIG) ts = "TSIG";
else if(type == LDNS_RR_TYPE_IXFR) ts = "IXFR";
else if(type == LDNS_RR_TYPE_AXFR) ts = "AXFR";
else if(type == LDNS_RR_TYPE_MAILB) ts = "MAILB";
else if(type == LDNS_RR_TYPE_MAILA) ts = "MAILA";
else if(type == LDNS_RR_TYPE_ANY) ts = "ANY";
else if(sldns_rr_descript(type) && sldns_rr_descript(type)->_name)
ts = sldns_rr_descript(type)->_name;
else {
snprintf(t, sizeof(t), "TYPE%d", (int)type);
ts = t;
}
if(sldns_lookup_by_id(sldns_rr_classes, (int)dclass) &&
sldns_lookup_by_id(sldns_rr_classes, (int)dclass)->name)
cs = sldns_lookup_by_id(sldns_rr_classes, (int)dclass)->name;
else {
snprintf(c, sizeof(c), "CLASS%d", (int)dclass);
cs = c;
}
if(LOG_TAG_QUERYREPLY)
log_query("%s %s %s %s", str, buf, ts, cs);
else log_info("%s %s %s %s", str, buf, ts, cs);
}
void log_name_addr(enum verbosity_value v, const char* str, uint8_t* zone,
struct sockaddr_storage* addr, socklen_t addrlen)
{
uint16_t port;
const char* family = "unknown_family ";
char namebuf[LDNS_MAX_DOMAINLEN+1];
char dest[100];
int af = (int)((struct sockaddr_in*)addr)->sin_family;
void* sinaddr = &((struct sockaddr_in*)addr)->sin_addr;
if(verbosity < v)
return;
switch(af) {
case AF_INET: family=""; break;
case AF_INET6: family="";
sinaddr = &((struct sockaddr_in6*)addr)->sin6_addr;
break;
case AF_LOCAL: family="local "; break;
default: break;
}
if(inet_ntop(af, sinaddr, dest, (socklen_t)sizeof(dest)) == 0) {
(void)strlcpy(dest, "(inet_ntop error)", sizeof(dest));
}
dest[sizeof(dest)-1] = 0;
port = ntohs(((struct sockaddr_in*)addr)->sin_port);
dname_str(zone, namebuf);
if(af != AF_INET && af != AF_INET6)
verbose(v, "%s <%s> %s%s#%d (addrlen %d)",
str, namebuf, family, dest, (int)port, (int)addrlen);
else verbose(v, "%s <%s> %s%s#%d",
str, namebuf, family, dest, (int)port);
}
void log_err_addr(const char* str, const char* err,
struct sockaddr_storage* addr, socklen_t addrlen)
{
uint16_t port;
char dest[100];
int af = (int)((struct sockaddr_in*)addr)->sin_family;
void* sinaddr = &((struct sockaddr_in*)addr)->sin_addr;
if(af == AF_INET6)
sinaddr = &((struct sockaddr_in6*)addr)->sin6_addr;
if(inet_ntop(af, sinaddr, dest, (socklen_t)sizeof(dest)) == 0) {
(void)strlcpy(dest, "(inet_ntop error)", sizeof(dest));
}
dest[sizeof(dest)-1] = 0;
port = ntohs(((struct sockaddr_in*)addr)->sin_port);
if(verbosity >= 4)
log_err("%s: %s for %s port %d (len %d)", str, err, dest,
(int)port, (int)addrlen);
else log_err("%s: %s for %s port %d", str, err, dest, (int)port);
}
int
sockaddr_cmp(struct sockaddr_storage* addr1, socklen_t len1,
struct sockaddr_storage* addr2, socklen_t len2)
{
struct sockaddr_in* p1_in = (struct sockaddr_in*)addr1;
struct sockaddr_in* p2_in = (struct sockaddr_in*)addr2;
struct sockaddr_in6* p1_in6 = (struct sockaddr_in6*)addr1;
struct sockaddr_in6* p2_in6 = (struct sockaddr_in6*)addr2;
if(len1 < len2)
return -1;
if(len1 > len2)
return 1;
log_assert(len1 == len2);
if( p1_in->sin_family < p2_in->sin_family)
return -1;
if( p1_in->sin_family > p2_in->sin_family)
return 1;
log_assert( p1_in->sin_family == p2_in->sin_family );
/* compare ip4 */
if( p1_in->sin_family == AF_INET ) {
/* just order it, ntohs not required */
if(p1_in->sin_port < p2_in->sin_port)
return -1;
if(p1_in->sin_port > p2_in->sin_port)
return 1;
log_assert(p1_in->sin_port == p2_in->sin_port);
return memcmp(&p1_in->sin_addr, &p2_in->sin_addr, INET_SIZE);
} else if (p1_in6->sin6_family == AF_INET6) {
/* just order it, ntohs not required */
if(p1_in6->sin6_port < p2_in6->sin6_port)
return -1;
if(p1_in6->sin6_port > p2_in6->sin6_port)
return 1;
log_assert(p1_in6->sin6_port == p2_in6->sin6_port);
return memcmp(&p1_in6->sin6_addr, &p2_in6->sin6_addr,
INET6_SIZE);
} else {
/* eek unknown type, perform this comparison for sanity. */
return memcmp(addr1, addr2, len1);
}
}
int
sockaddr_cmp_addr(struct sockaddr_storage* addr1, socklen_t len1,
struct sockaddr_storage* addr2, socklen_t len2)
{
struct sockaddr_in* p1_in = (struct sockaddr_in*)addr1;
struct sockaddr_in* p2_in = (struct sockaddr_in*)addr2;
struct sockaddr_in6* p1_in6 = (struct sockaddr_in6*)addr1;
struct sockaddr_in6* p2_in6 = (struct sockaddr_in6*)addr2;
if(len1 < len2)
return -1;
if(len1 > len2)
return 1;
log_assert(len1 == len2);
if( p1_in->sin_family < p2_in->sin_family)
return -1;
if( p1_in->sin_family > p2_in->sin_family)
return 1;
log_assert( p1_in->sin_family == p2_in->sin_family );
/* compare ip4 */
if( p1_in->sin_family == AF_INET ) {
return memcmp(&p1_in->sin_addr, &p2_in->sin_addr, INET_SIZE);
} else if (p1_in6->sin6_family == AF_INET6) {
return memcmp(&p1_in6->sin6_addr, &p2_in6->sin6_addr,
INET6_SIZE);
} else {
/* eek unknown type, perform this comparison for sanity. */
return memcmp(addr1, addr2, len1);
}
}
int
addr_is_ip6(struct sockaddr_storage* addr, socklen_t len)
{
if(len == (socklen_t)sizeof(struct sockaddr_in6) &&
((struct sockaddr_in6*)addr)->sin6_family == AF_INET6)
return 1;
else return 0;
}
void
addr_mask(struct sockaddr_storage* addr, socklen_t len, int net)
{
uint8_t mask[8] = {0x0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe};
int i, max;
uint8_t* s;
if(addr_is_ip6(addr, len)) {
s = (uint8_t*)&((struct sockaddr_in6*)addr)->sin6_addr;
max = 128;
} else {
s = (uint8_t*)&((struct sockaddr_in*)addr)->sin_addr;
max = 32;
}
if(net >= max)
return;
for(i=net/8+1; i<max/8; i++) {
s[i] = 0;
}
s[net/8] &= mask[net&0x7];
}
int
addr_in_common(struct sockaddr_storage* addr1, int net1,
struct sockaddr_storage* addr2, int net2, socklen_t addrlen)
{
int min = (net1<net2)?net1:net2;
int i, to;
int match = 0;
uint8_t* s1, *s2;
if(addr_is_ip6(addr1, addrlen)) {
s1 = (uint8_t*)&((struct sockaddr_in6*)addr1)->sin6_addr;
s2 = (uint8_t*)&((struct sockaddr_in6*)addr2)->sin6_addr;
to = 16;
} else {
s1 = (uint8_t*)&((struct sockaddr_in*)addr1)->sin_addr;
s2 = (uint8_t*)&((struct sockaddr_in*)addr2)->sin_addr;
to = 4;
}
/* match = bits_in_common(s1, s2, to); */
for(i=0; i<to; i++) {
if(s1[i] == s2[i]) {
match += 8;
} else {
uint8_t z = s1[i]^s2[i];
log_assert(z);
while(!(z&0x80)) {
match++;
z<<=1;
}
break;
}
}
if(match > min) match = min;
return match;
}
void
addr_to_str(struct sockaddr_storage* addr, socklen_t addrlen,
char* buf, size_t len)
{
int af = (int)((struct sockaddr_in*)addr)->sin_family;
void* sinaddr = &((struct sockaddr_in*)addr)->sin_addr;
if(addr_is_ip6(addr, addrlen))
sinaddr = &((struct sockaddr_in6*)addr)->sin6_addr;
if(inet_ntop(af, sinaddr, buf, (socklen_t)len) == 0) {
snprintf(buf, len, "(inet_ntop_error)");
}
}
int
addr_is_ip4mapped(struct sockaddr_storage* addr, socklen_t addrlen)
{
/* prefix for ipv4 into ipv6 mapping is ::ffff:x.x.x.x */
const uint8_t map_prefix[16] =
{0,0,0,0, 0,0,0,0, 0,0,0xff,0xff, 0,0,0,0};
uint8_t* s;
if(!addr_is_ip6(addr, addrlen))
return 0;
/* s is 16 octet ipv6 address string */
s = (uint8_t*)&((struct sockaddr_in6*)addr)->sin6_addr;
return (memcmp(s, map_prefix, 12) == 0);
}
int addr_is_broadcast(struct sockaddr_storage* addr, socklen_t addrlen)
{
int af = (int)((struct sockaddr_in*)addr)->sin_family;
void* sinaddr = &((struct sockaddr_in*)addr)->sin_addr;
return af == AF_INET && addrlen>=(socklen_t)sizeof(struct sockaddr_in)
&& memcmp(sinaddr, "\377\377\377\377", 4) == 0;
}
int addr_is_any(struct sockaddr_storage* addr, socklen_t addrlen)
{
int af = (int)((struct sockaddr_in*)addr)->sin_family;
void* sinaddr = &((struct sockaddr_in*)addr)->sin_addr;
void* sin6addr = &((struct sockaddr_in6*)addr)->sin6_addr;
if(af == AF_INET && addrlen>=(socklen_t)sizeof(struct sockaddr_in)
&& memcmp(sinaddr, "\000\000\000\000", 4) == 0)
return 1;
else if(af==AF_INET6 && addrlen>=(socklen_t)sizeof(struct sockaddr_in6)
&& memcmp(sin6addr, "\000\000\000\000\000\000\000\000"
"\000\000\000\000\000\000\000\000", 16) == 0)
return 1;
return 0;
}
void sock_list_insert(struct sock_list** list, struct sockaddr_storage* addr,
socklen_t len, struct regional* region)
{
struct sock_list* add = (struct sock_list*)regional_alloc(region,
sizeof(*add) - sizeof(add->addr) + (size_t)len);
if(!add) {
log_err("out of memory in socketlist insert");
return;
}
log_assert(list);
add->next = *list;
add->len = len;
*list = add;
if(len) memmove(&add->addr, addr, len);
}
void sock_list_prepend(struct sock_list** list, struct sock_list* add)
{
struct sock_list* last = add;
if(!last)
return;
while(last->next)
last = last->next;
last->next = *list;
*list = add;
}
int sock_list_find(struct sock_list* list, struct sockaddr_storage* addr,
socklen_t len)
{
while(list) {
if(len == list->len) {
if(len == 0 || sockaddr_cmp_addr(addr, len,
&list->addr, list->len) == 0)
return 1;
}
list = list->next;
}
return 0;
}
void sock_list_merge(struct sock_list** list, struct regional* region,
struct sock_list* add)
{
struct sock_list* p;
for(p=add; p; p=p->next) {
if(!sock_list_find(*list, &p->addr, p->len))
sock_list_insert(list, &p->addr, p->len, region);
}
}
void
log_crypto_err(const char* str)
{
#ifdef HAVE_SSL
log_crypto_err_code(str, ERR_get_error());
#else
(void)str;
#endif /* HAVE_SSL */
}
void log_crypto_err_code(const char* str, unsigned long err)
{
#ifdef HAVE_SSL
/* error:[error code]:[library name]:[function name]:[reason string] */
char buf[128];
unsigned long e;
ERR_error_string_n(err, buf, sizeof(buf));
log_err("%s crypto %s", str, buf);
while( (e=ERR_get_error()) ) {
ERR_error_string_n(e, buf, sizeof(buf));
log_err("and additionally crypto %s", buf);
}
#else
(void)str;
(void)err;
#endif /* HAVE_SSL */
}
#ifdef HAVE_SSL
/** log certificate details */
void
log_cert(unsigned level, const char* str, void* cert)
{
BIO* bio;
char nul = 0;
char* pp = NULL;
long len;
if(verbosity < level) return;
bio = BIO_new(BIO_s_mem());
if(!bio) return;
X509_print_ex(bio, (X509*)cert, 0, (unsigned long)-1
^(X509_FLAG_NO_SUBJECT
|X509_FLAG_NO_ISSUER|X509_FLAG_NO_VALIDITY
|X509_FLAG_NO_EXTENSIONS|X509_FLAG_NO_AUX
|X509_FLAG_NO_ATTRIBUTES));
BIO_write(bio, &nul, (int)sizeof(nul));
len = BIO_get_mem_data(bio, &pp);
if(len != 0 && pp) {
verbose(level, "%s: \n%s", str, pp);
}
BIO_free(bio);
}
#endif /* HAVE_SSL */
#if defined(HAVE_SSL) && defined(HAVE_NGHTTP2)
static int alpn_select_cb(SSL* ATTR_UNUSED(ssl), const unsigned char** out,
unsigned char* outlen, const unsigned char* in, unsigned int inlen,
void* ATTR_UNUSED(arg))
{
int rv = nghttp2_select_next_protocol((unsigned char **)out, outlen, in,
inlen);
if(rv == -1) {
return SSL_TLSEXT_ERR_NOACK;
}
/* either http/1.1 or h2 selected */
return SSL_TLSEXT_ERR_OK;
}
#endif
int
listen_sslctx_setup(void* ctxt)
{
#ifdef HAVE_SSL
SSL_CTX* ctx = (SSL_CTX*)ctxt;
/* no SSLv2, SSLv3 because has defects */
#if SSL_OP_NO_SSLv2 != 0
if((SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2) & SSL_OP_NO_SSLv2)
!= SSL_OP_NO_SSLv2){
log_crypto_err("could not set SSL_OP_NO_SSLv2");
return 0;
}
#endif
if((SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv3) & SSL_OP_NO_SSLv3)
!= SSL_OP_NO_SSLv3){
log_crypto_err("could not set SSL_OP_NO_SSLv3");
return 0;
}
#if defined(SSL_OP_NO_TLSv1) && defined(SSL_OP_NO_TLSv1_1)
/* if we have tls 1.1 disable 1.0 */
if((SSL_CTX_set_options(ctx, SSL_OP_NO_TLSv1) & SSL_OP_NO_TLSv1)
!= SSL_OP_NO_TLSv1){
log_crypto_err("could not set SSL_OP_NO_TLSv1");
return 0;
}
#endif
#if defined(SSL_OP_NO_TLSv1_1) && defined(SSL_OP_NO_TLSv1_2)
/* if we have tls 1.2 disable 1.1 */
if((SSL_CTX_set_options(ctx, SSL_OP_NO_TLSv1_1) & SSL_OP_NO_TLSv1_1)
!= SSL_OP_NO_TLSv1_1){
log_crypto_err("could not set SSL_OP_NO_TLSv1_1");
return 0;
}
#endif
#if defined(SSL_OP_NO_RENEGOTIATION)
/* disable client renegotiation */
if((SSL_CTX_set_options(ctx, SSL_OP_NO_RENEGOTIATION) &
SSL_OP_NO_RENEGOTIATION) != SSL_OP_NO_RENEGOTIATION) {
log_crypto_err("could not set SSL_OP_NO_RENEGOTIATION");
return 0;
}
#endif
#if defined(SHA256_DIGEST_LENGTH) && defined(USE_ECDSA)
/* if we have sha256, set the cipher list to have no known vulns */
if(!SSL_CTX_set_cipher_list(ctx, "TLS13-CHACHA20-POLY1305-SHA256:TLS13-AES-256-GCM-SHA384:TLS13-AES-128-GCM-SHA256:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256"))
log_crypto_err("could not set cipher list with SSL_CTX_set_cipher_list");
#endif
if((SSL_CTX_set_options(ctx, SSL_OP_CIPHER_SERVER_PREFERENCE) &
SSL_OP_CIPHER_SERVER_PREFERENCE) !=
SSL_OP_CIPHER_SERVER_PREFERENCE) {
log_crypto_err("could not set SSL_OP_CIPHER_SERVER_PREFERENCE");
return 0;
}
#ifdef HAVE_SSL_CTX_SET_SECURITY_LEVEL
SSL_CTX_set_security_level(ctx, 0);
#endif
#if defined(HAVE_SSL_CTX_SET_ALPN_SELECT_CB) && defined(HAVE_NGHTTP2)
SSL_CTX_set_alpn_select_cb(ctx, alpn_select_cb, NULL);
#endif
#else
(void)ctxt;
#endif /* HAVE_SSL */
return 1;
}
void
listen_sslctx_setup_2(void* ctxt)
{
#ifdef HAVE_SSL
SSL_CTX* ctx = (SSL_CTX*)ctxt;
(void)ctx;
#if HAVE_DECL_SSL_CTX_SET_ECDH_AUTO
if(!SSL_CTX_set_ecdh_auto(ctx,1)) {
log_crypto_err("Error in SSL_CTX_ecdh_auto, not enabling ECDHE");
}
#elif defined(USE_ECDSA)
if(1) {
EC_KEY *ecdh = EC_KEY_new_by_curve_name (NID_X9_62_prime256v1);
if (!ecdh) {
log_crypto_err("could not find p256, not enabling ECDHE");
} else {
if (1 != SSL_CTX_set_tmp_ecdh (ctx, ecdh)) {
log_crypto_err("Error in SSL_CTX_set_tmp_ecdh, not enabling ECDHE");
}
EC_KEY_free (ecdh);
}
}
#endif
#else
(void)ctxt;
#endif /* HAVE_SSL */
}
void* listen_sslctx_create(char* key, char* pem, char* verifypem)
{
#ifdef HAVE_SSL
SSL_CTX* ctx = SSL_CTX_new(SSLv23_server_method());
if(!ctx) {
log_crypto_err("could not SSL_CTX_new");
return NULL;
}
if(!key || key[0] == 0) {
log_err("error: no tls-service-key file specified");
SSL_CTX_free(ctx);
return NULL;
}
if(!pem || pem[0] == 0) {
log_err("error: no tls-service-pem file specified");
SSL_CTX_free(ctx);
return NULL;
}
if(!listen_sslctx_setup(ctx)) {
SSL_CTX_free(ctx);
return NULL;
}
if(!SSL_CTX_use_certificate_chain_file(ctx, pem)) {
log_err("error for cert file: %s", pem);
log_crypto_err("error in SSL_CTX use_certificate_chain_file");
SSL_CTX_free(ctx);
return NULL;
}
if(!SSL_CTX_use_PrivateKey_file(ctx, key, SSL_FILETYPE_PEM)) {
log_err("error for private key file: %s", key);
log_crypto_err("Error in SSL_CTX use_PrivateKey_file");
SSL_CTX_free(ctx);
return NULL;
}
if(!SSL_CTX_check_private_key(ctx)) {
log_err("error for key file: %s", key);
log_crypto_err("Error in SSL_CTX check_private_key");
SSL_CTX_free(ctx);
return NULL;
}
listen_sslctx_setup_2(ctx);
if(verifypem && verifypem[0]) {
if(!SSL_CTX_load_verify_locations(ctx, verifypem, NULL)) {
log_crypto_err("Error in SSL_CTX verify locations");
SSL_CTX_free(ctx);
return NULL;
}
SSL_CTX_set_client_CA_list(ctx, SSL_load_client_CA_file(
verifypem));
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT, NULL);
}
return ctx;
#else
(void)key; (void)pem; (void)verifypem;
return NULL;
#endif
}
#ifdef USE_WINSOCK
/* For windows, the CA trust store is not read by openssl.
Add code to open the trust store using wincrypt API and add
the root certs into openssl trust store */
static int
add_WIN_cacerts_to_openssl_store(SSL_CTX* tls_ctx)
{
HCERTSTORE hSystemStore;
PCCERT_CONTEXT pTargetCert = NULL;
X509_STORE* store;
verbose(VERB_ALGO, "Adding Windows certificates from system root store to CA store");
/* load just once per context lifetime for this version
TODO: dynamically update CA trust changes as they are available */
if (!tls_ctx)
return 0;
/* Call wincrypt's CertOpenStore to open the CA root store. */
if ((hSystemStore = CertOpenStore(
CERT_STORE_PROV_SYSTEM,
0,
0,
/* NOTE: mingw does not have this const: replace with 1 << 16 from code
CERT_SYSTEM_STORE_CURRENT_USER, */
1 << 16,
L"root")) == 0)
{
return 0;
}
store = SSL_CTX_get_cert_store(tls_ctx);
if (!store)
return 0;
/* failure if the CA store is empty or the call fails */
if ((pTargetCert = CertEnumCertificatesInStore(
hSystemStore, pTargetCert)) == 0) {
verbose(VERB_ALGO, "CA certificate store for Windows is empty.");
return 0;
}
/* iterate over the windows cert store and add to openssl store */
do
{
X509 *cert1 = d2i_X509(NULL,
(const unsigned char **)&pTargetCert->pbCertEncoded,
pTargetCert->cbCertEncoded);
if (!cert1) {
/* return error if a cert fails */
verbose(VERB_ALGO, "%s %d:%s",
"Unable to parse certificate in memory",
(int)ERR_get_error(), ERR_error_string(ERR_get_error(), NULL));
return 0;
}
else {
/* return error if a cert add to store fails */
if (X509_STORE_add_cert(store, cert1) == 0) {
unsigned long error = ERR_peek_last_error();
/* Ignore error X509_R_CERT_ALREADY_IN_HASH_TABLE which means the
* certificate is already in the store. */
if(ERR_GET_LIB(error) != ERR_LIB_X509 ||
ERR_GET_REASON(error) != X509_R_CERT_ALREADY_IN_HASH_TABLE) {
verbose(VERB_ALGO, "%s %d:%s\n",
"Error adding certificate", (int)ERR_get_error(),
ERR_error_string(ERR_get_error(), NULL));
X509_free(cert1);
return 0;
}
}
X509_free(cert1);
}
} while ((pTargetCert = CertEnumCertificatesInStore(
hSystemStore, pTargetCert)) != 0);
/* Clean up memory and quit. */
if (pTargetCert)
CertFreeCertificateContext(pTargetCert);
if (hSystemStore)
{
if (!CertCloseStore(
hSystemStore, 0))
return 0;
}
verbose(VERB_ALGO, "Completed adding Windows certificates to CA store successfully");
return 1;
}
#endif /* USE_WINSOCK */
void* connect_sslctx_create(char* key, char* pem, char* verifypem, int wincert)
{
#ifdef HAVE_SSL
SSL_CTX* ctx = SSL_CTX_new(SSLv23_client_method());
if(!ctx) {
log_crypto_err("could not allocate SSL_CTX pointer");
return NULL;
}
#if SSL_OP_NO_SSLv2 != 0
if((SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2) & SSL_OP_NO_SSLv2)
!= SSL_OP_NO_SSLv2) {
log_crypto_err("could not set SSL_OP_NO_SSLv2");
SSL_CTX_free(ctx);
return NULL;
}
#endif
if((SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv3) & SSL_OP_NO_SSLv3)
!= SSL_OP_NO_SSLv3) {
log_crypto_err("could not set SSL_OP_NO_SSLv3");
SSL_CTX_free(ctx);
return NULL;
}
#if defined(SSL_OP_NO_RENEGOTIATION)
/* disable client renegotiation */
if((SSL_CTX_set_options(ctx, SSL_OP_NO_RENEGOTIATION) &
SSL_OP_NO_RENEGOTIATION) != SSL_OP_NO_RENEGOTIATION) {
log_crypto_err("could not set SSL_OP_NO_RENEGOTIATION");
return 0;
}
#endif
if(key && key[0]) {
if(!SSL_CTX_use_certificate_chain_file(ctx, pem)) {
log_err("error in client certificate %s", pem);
log_crypto_err("error in certificate file");
SSL_CTX_free(ctx);
return NULL;
}
if(!SSL_CTX_use_PrivateKey_file(ctx, key, SSL_FILETYPE_PEM)) {
log_err("error in client private key %s", key);
log_crypto_err("error in key file");
SSL_CTX_free(ctx);
return NULL;
}
if(!SSL_CTX_check_private_key(ctx)) {
log_err("error in client key %s", key);
log_crypto_err("error in SSL_CTX_check_private_key");
SSL_CTX_free(ctx);
return NULL;
}
}
if((verifypem && verifypem[0]) || wincert) {
if(verifypem && verifypem[0]) {
if(!SSL_CTX_load_verify_locations(ctx, verifypem, NULL)) {
log_crypto_err("error in SSL_CTX verify");
SSL_CTX_free(ctx);
return NULL;
}
}
#ifdef USE_WINSOCK
if(wincert) {
if(!add_WIN_cacerts_to_openssl_store(ctx)) {
log_crypto_err("error in add_WIN_cacerts_to_openssl_store");
SSL_CTX_free(ctx);
return NULL;
}
}
#else
(void)wincert;
#endif
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, NULL);
}
return ctx;
#else
(void)key; (void)pem; (void)verifypem; (void)wincert;
return NULL;
#endif
}
void* incoming_ssl_fd(void* sslctx, int fd)
{
#ifdef HAVE_SSL
SSL* ssl = SSL_new((SSL_CTX*)sslctx);
if(!ssl) {
log_crypto_err("could not SSL_new");
return NULL;
}
SSL_set_accept_state(ssl);
(void)SSL_set_mode(ssl, (long)SSL_MODE_AUTO_RETRY);
if(!SSL_set_fd(ssl, fd)) {
log_crypto_err("could not SSL_set_fd");
SSL_free(ssl);
return NULL;
}
return ssl;
#else
(void)sslctx; (void)fd;
return NULL;
#endif
}
void* outgoing_ssl_fd(void* sslctx, int fd)
{
#ifdef HAVE_SSL
SSL* ssl = SSL_new((SSL_CTX*)sslctx);
if(!ssl) {
log_crypto_err("could not SSL_new");
return NULL;
}
SSL_set_connect_state(ssl);
(void)SSL_set_mode(ssl, (long)SSL_MODE_AUTO_RETRY);
if(!SSL_set_fd(ssl, fd)) {
log_crypto_err("could not SSL_set_fd");
SSL_free(ssl);
return NULL;
}
return ssl;
#else
(void)sslctx; (void)fd;
return NULL;
#endif
}
int check_auth_name_for_ssl(char* auth_name)
{
if(!auth_name) return 1;
#if defined(HAVE_SSL) && !defined(HAVE_SSL_SET1_HOST) && !defined(HAVE_X509_VERIFY_PARAM_SET1_HOST)
log_err("the query has an auth_name %s, but libssl has no call to "
"perform TLS authentication. Remove that name from config "
"or upgrade the ssl crypto library.", auth_name);
return 0;
#else
return 1;
#endif
}
/** set the authname on an SSL structure, SSL* ssl */
int set_auth_name_on_ssl(void* ssl, char* auth_name, int use_sni)
{
if(!auth_name) return 1;
#ifdef HAVE_SSL
if(use_sni) {
(void)SSL_set_tlsext_host_name(ssl, auth_name);
}
#else
(void)ssl;
(void)use_sni;
#endif
#ifdef HAVE_SSL_SET1_HOST
SSL_set_verify(ssl, SSL_VERIFY_PEER, NULL);
/* setting the hostname makes openssl verify the
* host name in the x509 certificate in the
* SSL connection*/
if(!SSL_set1_host(ssl, auth_name)) {
log_err("SSL_set1_host failed");
return 0;
}
#elif defined(HAVE_X509_VERIFY_PARAM_SET1_HOST)
/* openssl 1.0.2 has this function that can be used for
* set1_host like verification */
if(auth_name) {
X509_VERIFY_PARAM* param = SSL_get0_param(ssl);
# ifdef X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS
X509_VERIFY_PARAM_set_hostflags(param, X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS);
# endif
if(!X509_VERIFY_PARAM_set1_host(param, auth_name, strlen(auth_name))) {
log_err("X509_VERIFY_PARAM_set1_host failed");
return 0;
}
SSL_set_verify(ssl, SSL_VERIFY_PEER, NULL);
}
#else
verbose(VERB_ALGO, "the query has an auth_name, but libssl has no call to perform TLS authentication");
#endif /* HAVE_SSL_SET1_HOST */
return 1;
}
#if defined(HAVE_SSL) && defined(OPENSSL_THREADS) && !defined(THREADS_DISABLED) && defined(CRYPTO_LOCK) && OPENSSL_VERSION_NUMBER < 0x10100000L
/** global lock list for openssl locks */
static lock_basic_type *ub_openssl_locks = NULL;
/** callback that gets thread id for openssl */
#ifdef HAVE_CRYPTO_THREADID_SET_CALLBACK
static void
ub_crypto_id_cb(CRYPTO_THREADID *id)
{
CRYPTO_THREADID_set_numeric(id, (unsigned long)log_thread_get());
}
#else
static unsigned long
ub_crypto_id_cb(void)
{
return (unsigned long)log_thread_get();
}
#endif
static void
ub_crypto_lock_cb(int mode, int type, const char *ATTR_UNUSED(file),
int ATTR_UNUSED(line))
{
if((mode&CRYPTO_LOCK)) {
lock_basic_lock(&ub_openssl_locks[type]);
} else {
lock_basic_unlock(&ub_openssl_locks[type]);
}
}
#endif /* OPENSSL_THREADS */
int ub_openssl_lock_init(void)
{
#if defined(HAVE_SSL) && defined(OPENSSL_THREADS) && !defined(THREADS_DISABLED) && defined(CRYPTO_LOCK) && OPENSSL_VERSION_NUMBER < 0x10100000L
int i;
ub_openssl_locks = (lock_basic_type*)reallocarray(
NULL, (size_t)CRYPTO_num_locks(), sizeof(lock_basic_type));
if(!ub_openssl_locks)
return 0;
for(i=0; i<CRYPTO_num_locks(); i++) {
lock_basic_init(&ub_openssl_locks[i]);
}
# ifdef HAVE_CRYPTO_THREADID_SET_CALLBACK
CRYPTO_THREADID_set_callback(&ub_crypto_id_cb);
# else
CRYPTO_set_id_callback(&ub_crypto_id_cb);
# endif
CRYPTO_set_locking_callback(&ub_crypto_lock_cb);
#endif /* OPENSSL_THREADS */
return 1;
}
void ub_openssl_lock_delete(void)
{
#if defined(HAVE_SSL) && defined(OPENSSL_THREADS) && !defined(THREADS_DISABLED) && defined(CRYPTO_LOCK) && OPENSSL_VERSION_NUMBER < 0x10100000L
int i;
if(!ub_openssl_locks)
return;
# ifdef HAVE_CRYPTO_THREADID_SET_CALLBACK
CRYPTO_THREADID_set_callback(NULL);
# else
CRYPTO_set_id_callback(NULL);
# endif
CRYPTO_set_locking_callback(NULL);
for(i=0; i<CRYPTO_num_locks(); i++) {
lock_basic_destroy(&ub_openssl_locks[i]);
}
free(ub_openssl_locks);
#endif /* OPENSSL_THREADS */
}
int listen_sslctx_setup_ticket_keys(void* sslctx, struct config_strlist* tls_session_ticket_keys) {
#ifdef HAVE_SSL
size_t s = 1;
struct config_strlist* p;
struct tls_session_ticket_key *keys;
for(p = tls_session_ticket_keys; p; p = p->next) {
s++;
}
keys = calloc(s, sizeof(struct tls_session_ticket_key));
if(!keys)
return 0;
memset(keys, 0, s*sizeof(*keys));
ticket_keys = keys;
for(p = tls_session_ticket_keys; p; p = p->next) {
size_t n;
unsigned char *data;
FILE *f;
data = (unsigned char *)malloc(80);
if(!data)
return 0;
f = fopen(p->str, "rb");
if(!f) {
log_err("could not read tls-session-ticket-key %s: %s", p->str, strerror(errno));
free(data);
return 0;
}
n = fread(data, 1, 80, f);
fclose(f);
if(n != 80) {
log_err("tls-session-ticket-key %s is %d bytes, must be 80 bytes", p->str, (int)n);
free(data);
return 0;
}
verbose(VERB_OPS, "read tls-session-ticket-key: %s", p->str);
keys->key_name = data;
keys->aes_key = data + 16;
keys->hmac_key = data + 48;
keys++;
}
/* terminate array with NULL key name entry */
keys->key_name = NULL;
# ifdef HAVE_SSL_CTX_SET_TLSEXT_TICKET_KEY_EVP_CB
if(SSL_CTX_set_tlsext_ticket_key_evp_cb(sslctx, tls_session_ticket_key_cb) == 0) {
log_err("no support for TLS session ticket");
return 0;
}
# else
if(SSL_CTX_set_tlsext_ticket_key_cb(sslctx, tls_session_ticket_key_cb) == 0) {
log_err("no support for TLS session ticket");
return 0;
}
# endif
return 1;
#else
(void)sslctx;
(void)tls_session_ticket_keys;
return 0;
#endif
}
#ifdef HAVE_SSL
int tls_session_ticket_key_cb(SSL *ATTR_UNUSED(sslctx), unsigned char* key_name,
unsigned char* iv, EVP_CIPHER_CTX *evp_sctx,
#ifdef HAVE_SSL_CTX_SET_TLSEXT_TICKET_KEY_EVP_CB
EVP_MAC_CTX *hmac_ctx,
#else
HMAC_CTX* hmac_ctx,
#endif
int enc)
{
#ifdef HAVE_SSL
# ifdef HAVE_SSL_CTX_SET_TLSEXT_TICKET_KEY_EVP_CB
OSSL_PARAM params[3];
# else
const EVP_MD *digest;
# endif
const EVP_CIPHER *cipher;
int evp_cipher_length;
# ifndef HAVE_SSL_CTX_SET_TLSEXT_TICKET_KEY_EVP_CB
digest = EVP_sha256();
# endif
cipher = EVP_aes_256_cbc();
evp_cipher_length = EVP_CIPHER_iv_length(cipher);
if( enc == 1 ) {
/* encrypt */
verbose(VERB_CLIENT, "start session encrypt");
memcpy(key_name, ticket_keys->key_name, 16);
if (RAND_bytes(iv, evp_cipher_length) != 1) {
verbose(VERB_CLIENT, "RAND_bytes failed");
return -1;
}
if (EVP_EncryptInit_ex(evp_sctx, cipher, NULL, ticket_keys->aes_key, iv) != 1) {
verbose(VERB_CLIENT, "EVP_EncryptInit_ex failed");
return -1;
}
#ifdef HAVE_SSL_CTX_SET_TLSEXT_TICKET_KEY_EVP_CB
params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
ticket_keys->hmac_key, 32);
params[1] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
"sha256", 0);
params[2] = OSSL_PARAM_construct_end();
#ifdef HAVE_EVP_MAC_CTX_SET_PARAMS
EVP_MAC_CTX_set_params(hmac_ctx, params);
#else
EVP_MAC_set_ctx_params(hmac_ctx, params);
#endif
#elif !defined(HMAC_INIT_EX_RETURNS_VOID)
if (HMAC_Init_ex(hmac_ctx, ticket_keys->hmac_key, 32, digest, NULL) != 1) {
verbose(VERB_CLIENT, "HMAC_Init_ex failed");
return -1;
}
#else
HMAC_Init_ex(hmac_ctx, ticket_keys->hmac_key, 32, digest, NULL);
#endif
return 1;
} else if (enc == 0) {
/* decrypt */
struct tls_session_ticket_key *key;
verbose(VERB_CLIENT, "start session decrypt");
for(key = ticket_keys; key->key_name != NULL; key++) {
if (!memcmp(key_name, key->key_name, 16)) {
verbose(VERB_CLIENT, "Found session_key");
break;
}
}
if(key->key_name == NULL) {
verbose(VERB_CLIENT, "Not found session_key");
return 0;
}
#ifdef HAVE_SSL_CTX_SET_TLSEXT_TICKET_KEY_EVP_CB
params[0] = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY,
key->hmac_key, 32);
params[1] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
"sha256", 0);
params[2] = OSSL_PARAM_construct_end();
#ifdef HAVE_EVP_MAC_CTX_SET_PARAMS
EVP_MAC_CTX_set_params(hmac_ctx, params);
#else
EVP_MAC_set_ctx_params(hmac_ctx, params);
#endif
#elif !defined(HMAC_INIT_EX_RETURNS_VOID)
if (HMAC_Init_ex(hmac_ctx, key->hmac_key, 32, digest, NULL) != 1) {
verbose(VERB_CLIENT, "HMAC_Init_ex failed");
return -1;
}
#else
HMAC_Init_ex(hmac_ctx, key->hmac_key, 32, digest, NULL);
#endif
if (EVP_DecryptInit_ex(evp_sctx, cipher, NULL, key->aes_key, iv) != 1) {
log_err("EVP_DecryptInit_ex failed");
return -1;
}
return (key == ticket_keys) ? 1 : 2;
}
return -1;
#else
(void)key_name;
(void)iv;
(void)evp_sctx;
(void)hmac_ctx;
(void)enc;
return 0;
#endif
}
#endif /* HAVE_SSL */
void
listen_sslctx_delete_ticket_keys(void)
{
struct tls_session_ticket_key *key;
if(!ticket_keys) return;
for(key = ticket_keys; key->key_name != NULL; key++) {
/* wipe key data from memory*/
#ifdef HAVE_EXPLICIT_BZERO
explicit_bzero(key->key_name, 80);
#else
memset(key->key_name, 0xdd, 80);
#endif
free(key->key_name);
}
free(ticket_keys);
ticket_keys = NULL;
}
# ifndef USE_WINSOCK
char*
sock_strerror(int errn)
{
return strerror(errn);
}
void
sock_close(int socket)
{
close(socket);
}
# else
char*
sock_strerror(int ATTR_UNUSED(errn))
{
return wsa_strerror(WSAGetLastError());
}
void
sock_close(int socket)
{
closesocket(socket);
}
# endif /* USE_WINSOCK */