freebsd-nq/module/zfs/zfs_ioctl.c
Brian Behlendorf 60101509ee Add linux kernel disk support
Native Linux vdev disk interfaces

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-31 13:41:57 -07:00

5273 lines
120 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/buf.h>
#include <sys/modctl.h>
#include <sys/open.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_znode.h>
#include <sys/zap.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/vdev.h>
#include <sys/priv_impl.h>
#include <sys/dmu.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_deleg.h>
#include <sys/dmu_objset.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunldi.h>
#include <sys/policy.h>
#include <sys/zone.h>
#include <sys/nvpair.h>
#include <sys/pathname.h>
#include <sys/mount.h>
#include <sys/sdt.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_onexit.h>
#include <sys/zvol.h>
#include <sys/dsl_scan.h>
#include <sharefs/share.h>
#include <sys/dmu_objset.h>
#include <sys/fm/util.h>
#include <linux/miscdevice.h>
#include "zfs_namecheck.h"
#include "zfs_prop.h"
#include "zfs_deleg.h"
#include "zfs_comutil.h"
kmutex_t zfsdev_state_lock;
list_t zfsdev_state_list;
extern void zfs_init(void);
extern void zfs_fini(void);
typedef int zfs_ioc_func_t(zfs_cmd_t *);
typedef int zfs_secpolicy_func_t(zfs_cmd_t *, cred_t *);
typedef enum {
NO_NAME,
POOL_NAME,
DATASET_NAME
} zfs_ioc_namecheck_t;
typedef enum {
POOL_CHECK_NONE = 1 << 0,
POOL_CHECK_SUSPENDED = 1 << 1,
POOL_CHECK_READONLY = 1 << 2
} zfs_ioc_poolcheck_t;
typedef struct zfs_ioc_vec {
zfs_ioc_func_t *zvec_func;
zfs_secpolicy_func_t *zvec_secpolicy;
zfs_ioc_namecheck_t zvec_namecheck;
boolean_t zvec_his_log;
zfs_ioc_poolcheck_t zvec_pool_check;
} zfs_ioc_vec_t;
/* This array is indexed by zfs_userquota_prop_t */
static const char *userquota_perms[] = {
ZFS_DELEG_PERM_USERUSED,
ZFS_DELEG_PERM_USERQUOTA,
ZFS_DELEG_PERM_GROUPUSED,
ZFS_DELEG_PERM_GROUPQUOTA,
};
static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc);
static int zfs_check_settable(const char *name, nvpair_t *property,
cred_t *cr);
static int zfs_check_clearable(char *dataset, nvlist_t *props,
nvlist_t **errors);
static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *,
boolean_t *);
int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t **);
/* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */
void
__dprintf(const char *file, const char *func, int line, const char *fmt, ...)
{
const char *newfile;
char buf[512];
va_list adx;
/*
* Get rid of annoying "../common/" prefix to filename.
*/
newfile = strrchr(file, '/');
if (newfile != NULL) {
newfile = newfile + 1; /* Get rid of leading / */
} else {
newfile = file;
}
va_start(adx, fmt);
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
va_end(adx);
/*
* To get this data, use the zfs-dprintf probe as so:
* dtrace -q -n 'zfs-dprintf \
* /stringof(arg0) == "dbuf.c"/ \
* {printf("%s: %s", stringof(arg1), stringof(arg3))}'
* arg0 = file name
* arg1 = function name
* arg2 = line number
* arg3 = message
*/
DTRACE_PROBE4(zfs__dprintf,
char *, newfile, char *, func, int, line, char *, buf);
}
static void
history_str_free(char *buf)
{
kmem_free(buf, HIS_MAX_RECORD_LEN);
}
static char *
history_str_get(zfs_cmd_t *zc)
{
char *buf;
if (zc->zc_history == 0)
return (NULL);
buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP);
if (copyinstr((void *)(uintptr_t)zc->zc_history,
buf, HIS_MAX_RECORD_LEN, NULL) != 0) {
history_str_free(buf);
return (NULL);
}
buf[HIS_MAX_RECORD_LEN -1] = '\0';
return (buf);
}
/*
* Check to see if the named dataset is currently defined as bootable
*/
static boolean_t
zfs_is_bootfs(const char *name)
{
objset_t *os;
if (dmu_objset_hold(name, FTAG, &os) == 0) {
boolean_t ret;
ret = (dmu_objset_id(os) == spa_bootfs(dmu_objset_spa(os)));
dmu_objset_rele(os, FTAG);
return (ret);
}
return (B_FALSE);
}
/*
* zfs_earlier_version
*
* Return non-zero if the spa version is less than requested version.
*/
static int
zfs_earlier_version(const char *name, int version)
{
spa_t *spa;
if (spa_open(name, &spa, FTAG) == 0) {
if (spa_version(spa) < version) {
spa_close(spa, FTAG);
return (1);
}
spa_close(spa, FTAG);
}
return (0);
}
/*
* zpl_earlier_version
*
* Return TRUE if the ZPL version is less than requested version.
*/
static boolean_t
zpl_earlier_version(const char *name, int version)
{
objset_t *os;
boolean_t rc = B_TRUE;
if (dmu_objset_hold(name, FTAG, &os) == 0) {
uint64_t zplversion;
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele(os, FTAG);
return (B_TRUE);
}
/* XXX reading from non-owned objset */
if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0)
rc = zplversion < version;
dmu_objset_rele(os, FTAG);
}
return (rc);
}
static void
zfs_log_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *buf;
if ((buf = history_str_get(zc)) == NULL)
return;
if (spa_open(zc->zc_name, &spa, FTAG) == 0) {
if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY)
(void) spa_history_log(spa, buf, LOG_CMD_NORMAL);
spa_close(spa, FTAG);
}
history_str_free(buf);
}
/*
* Policy for top-level read operations (list pools). Requires no privileges,
* and can be used in the local zone, as there is no associated dataset.
*/
/* ARGSUSED */
static int
zfs_secpolicy_none(zfs_cmd_t *zc, cred_t *cr)
{
return (0);
}
/*
* Policy for dataset read operations (list children, get statistics). Requires
* no privileges, but must be visible in the local zone.
*/
/* ARGSUSED */
static int
zfs_secpolicy_read(zfs_cmd_t *zc, cred_t *cr)
{
if (INGLOBALZONE(curproc) ||
zone_dataset_visible(zc->zc_name, NULL))
return (0);
return (ENOENT);
}
static int
zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr)
{
int writable = 1;
/*
* The dataset must be visible by this zone -- check this first
* so they don't see EPERM on something they shouldn't know about.
*/
if (!INGLOBALZONE(curproc) &&
!zone_dataset_visible(dataset, &writable))
return (ENOENT);
if (INGLOBALZONE(curproc)) {
/*
* If the fs is zoned, only root can access it from the
* global zone.
*/
if (secpolicy_zfs(cr) && zoned)
return (EPERM);
} else {
/*
* If we are in a local zone, the 'zoned' property must be set.
*/
if (!zoned)
return (EPERM);
/* must be writable by this zone */
if (!writable)
return (EPERM);
}
return (0);
}
static int
zfs_dozonecheck(const char *dataset, cred_t *cr)
{
uint64_t zoned;
if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL))
return (ENOENT);
return (zfs_dozonecheck_impl(dataset, zoned, cr));
}
static int
zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr)
{
uint64_t zoned;
rw_enter(&ds->ds_dir->dd_pool->dp_config_rwlock, RW_READER);
if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL)) {
rw_exit(&ds->ds_dir->dd_pool->dp_config_rwlock);
return (ENOENT);
}
rw_exit(&ds->ds_dir->dd_pool->dp_config_rwlock);
return (zfs_dozonecheck_impl(dataset, zoned, cr));
}
int
zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr)
{
int error;
error = zfs_dozonecheck(name, cr);
if (error == 0) {
error = secpolicy_zfs(cr);
if (error)
error = dsl_deleg_access(name, perm, cr);
}
return (error);
}
int
zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds,
const char *perm, cred_t *cr)
{
int error;
error = zfs_dozonecheck_ds(name, ds, cr);
if (error == 0) {
error = secpolicy_zfs(cr);
if (error)
error = dsl_deleg_access_impl(ds, perm, cr);
}
return (error);
}
/*
* Policy for setting the security label property.
*
* Returns 0 for success, non-zero for access and other errors.
*/
static int
zfs_set_slabel_policy(const char *name, char *strval, cred_t *cr)
{
#ifdef HAVE_MLSLABEL
char ds_hexsl[MAXNAMELEN];
bslabel_t ds_sl, new_sl;
boolean_t new_default = FALSE;
uint64_t zoned;
int needed_priv = -1;
int error;
/* First get the existing dataset label. */
error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1, sizeof (ds_hexsl), &ds_hexsl, NULL);
if (error)
return (EPERM);
if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0)
new_default = TRUE;
/* The label must be translatable */
if (!new_default && (hexstr_to_label(strval, &new_sl) != 0))
return (EINVAL);
/*
* In a non-global zone, disallow attempts to set a label that
* doesn't match that of the zone; otherwise no other checks
* are needed.
*/
if (!INGLOBALZONE(curproc)) {
if (new_default || !blequal(&new_sl, CR_SL(CRED())))
return (EPERM);
return (0);
}
/*
* For global-zone datasets (i.e., those whose zoned property is
* "off", verify that the specified new label is valid for the
* global zone.
*/
if (dsl_prop_get_integer(name,
zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
return (EPERM);
if (!zoned) {
if (zfs_check_global_label(name, strval) != 0)
return (EPERM);
}
/*
* If the existing dataset label is nondefault, check if the
* dataset is mounted (label cannot be changed while mounted).
* Get the zfsvfs; if there isn't one, then the dataset isn't
* mounted (or isn't a dataset, doesn't exist, ...).
*/
if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) {
objset_t *os;
static char *setsl_tag = "setsl_tag";
/*
* Try to own the dataset; abort if there is any error,
* (e.g., already mounted, in use, or other error).
*/
error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE,
setsl_tag, &os);
if (error)
return (EPERM);
dmu_objset_disown(os, setsl_tag);
if (new_default) {
needed_priv = PRIV_FILE_DOWNGRADE_SL;
goto out_check;
}
if (hexstr_to_label(strval, &new_sl) != 0)
return (EPERM);
if (blstrictdom(&ds_sl, &new_sl))
needed_priv = PRIV_FILE_DOWNGRADE_SL;
else if (blstrictdom(&new_sl, &ds_sl))
needed_priv = PRIV_FILE_UPGRADE_SL;
} else {
/* dataset currently has a default label */
if (!new_default)
needed_priv = PRIV_FILE_UPGRADE_SL;
}
out_check:
if (needed_priv != -1)
return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL));
return (0);
#else
return ENOTSUP;
#endif /* HAVE_MLSLABEL */
}
static int
zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval,
cred_t *cr)
{
char *strval;
/*
* Check permissions for special properties.
*/
switch (prop) {
default:
break;
case ZFS_PROP_ZONED:
/*
* Disallow setting of 'zoned' from within a local zone.
*/
if (!INGLOBALZONE(curproc))
return (EPERM);
break;
case ZFS_PROP_QUOTA:
if (!INGLOBALZONE(curproc)) {
uint64_t zoned;
char setpoint[MAXNAMELEN];
/*
* Unprivileged users are allowed to modify the
* quota on things *under* (ie. contained by)
* the thing they own.
*/
if (dsl_prop_get_integer(dsname, "zoned", &zoned,
setpoint))
return (EPERM);
if (!zoned || strlen(dsname) <= strlen(setpoint))
return (EPERM);
}
break;
case ZFS_PROP_MLSLABEL:
if (!is_system_labeled())
return (EPERM);
if (nvpair_value_string(propval, &strval) == 0) {
int err;
err = zfs_set_slabel_policy(dsname, strval, CRED());
if (err != 0)
return (err);
}
break;
}
return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr));
}
int
zfs_secpolicy_fsacl(zfs_cmd_t *zc, cred_t *cr)
{
int error;
error = zfs_dozonecheck(zc->zc_name, cr);
if (error)
return (error);
/*
* permission to set permissions will be evaluated later in
* dsl_deleg_can_allow()
*/
return (0);
}
int
zfs_secpolicy_rollback(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_ROLLBACK, cr));
}
int
zfs_secpolicy_send(zfs_cmd_t *zc, cred_t *cr)
{
spa_t *spa;
dsl_pool_t *dp;
dsl_dataset_t *ds;
char *cp;
int error;
/*
* Generate the current snapshot name from the given objsetid, then
* use that name for the secpolicy/zone checks.
*/
cp = strchr(zc->zc_name, '@');
if (cp == NULL)
return (EINVAL);
error = spa_open(zc->zc_name, &spa, FTAG);
if (error)
return (error);
dp = spa_get_dsl(spa);
rw_enter(&dp->dp_config_rwlock, RW_READER);
error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
rw_exit(&dp->dp_config_rwlock);
spa_close(spa, FTAG);
if (error)
return (error);
dsl_dataset_name(ds, zc->zc_name);
error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds,
ZFS_DELEG_PERM_SEND, cr);
dsl_dataset_rele(ds, FTAG);
return (error);
}
#ifdef HAVE_ZPL
static int
zfs_secpolicy_deleg_share(zfs_cmd_t *zc, cred_t *cr)
{
vnode_t *vp;
int error;
if ((error = lookupname(zc->zc_value, UIO_SYSSPACE,
NO_FOLLOW, NULL, &vp)) != 0)
return (error);
/* Now make sure mntpnt and dataset are ZFS */
if (vp->v_vfsp->vfs_fstype != zfsfstype ||
(strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource),
zc->zc_name) != 0)) {
VN_RELE(vp);
return (EPERM);
}
VN_RELE(vp);
return (dsl_deleg_access(zc->zc_name,
ZFS_DELEG_PERM_SHARE, cr));
}
#endif /* HAVE_ZPL */
int
zfs_secpolicy_share(zfs_cmd_t *zc, cred_t *cr)
{
#ifdef HAVE_ZPL
if (!INGLOBALZONE(curproc))
return (EPERM);
if (secpolicy_nfs(cr) == 0) {
return (0);
} else {
return (zfs_secpolicy_deleg_share(zc, cr));
}
#else
return (ENOTSUP);
#endif /* HAVE_ZPL */
}
int
zfs_secpolicy_smb_acl(zfs_cmd_t *zc, cred_t *cr)
{
#ifdef HAVE_ZPL
if (!INGLOBALZONE(curproc))
return (EPERM);
if (secpolicy_smb(cr) == 0) {
return (0);
} else {
return (zfs_secpolicy_deleg_share(zc, cr));
}
#else
return (ENOTSUP);
#endif /* HAVE_ZPL */
}
static int
zfs_get_parent(const char *datasetname, char *parent, int parentsize)
{
char *cp;
/*
* Remove the @bla or /bla from the end of the name to get the parent.
*/
(void) strncpy(parent, datasetname, parentsize);
cp = strrchr(parent, '@');
if (cp != NULL) {
cp[0] = '\0';
} else {
cp = strrchr(parent, '/');
if (cp == NULL)
return (ENOENT);
cp[0] = '\0';
}
return (0);
}
int
zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
{
int error;
if ((error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr));
}
static int
zfs_secpolicy_destroy(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_destroy_perms(zc->zc_name, cr));
}
/*
* Destroying snapshots with delegated permissions requires
* descendent mount and destroy permissions.
* Reassemble the full filesystem@snap name so dsl_deleg_access()
* can do the correct permission check.
*
* Since this routine is used when doing a recursive destroy of snapshots
* and destroying snapshots requires descendent permissions, a successfull
* check of the top level snapshot applies to snapshots of all descendent
* datasets as well.
*/
static int
zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, cred_t *cr)
{
int error;
char *dsname;
dsname = kmem_asprintf("%s@%s", zc->zc_name, zc->zc_value);
error = zfs_secpolicy_destroy_perms(dsname, cr);
strfree(dsname);
return (error);
}
int
zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
{
char parentname[MAXNAMELEN];
int error;
if ((error = zfs_secpolicy_write_perms(from,
ZFS_DELEG_PERM_RENAME, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(from,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
if ((error = zfs_get_parent(to, parentname,
sizeof (parentname))) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_CREATE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (error);
}
static int
zfs_secpolicy_rename(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr));
}
static int
zfs_secpolicy_promote(zfs_cmd_t *zc, cred_t *cr)
{
char parentname[MAXNAMELEN];
objset_t *clone;
int error;
error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_PROMOTE, cr);
if (error)
return (error);
error = dmu_objset_hold(zc->zc_name, FTAG, &clone);
if (error == 0) {
dsl_dataset_t *pclone = NULL;
dsl_dir_t *dd;
dd = clone->os_dsl_dataset->ds_dir;
rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER);
error = dsl_dataset_hold_obj(dd->dd_pool,
dd->dd_phys->dd_origin_obj, FTAG, &pclone);
rw_exit(&dd->dd_pool->dp_config_rwlock);
if (error) {
dmu_objset_rele(clone, FTAG);
return (error);
}
error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_MOUNT, cr);
dsl_dataset_name(pclone, parentname);
dmu_objset_rele(clone, FTAG);
dsl_dataset_rele(pclone, FTAG);
if (error == 0)
error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_PROMOTE, cr);
}
return (error);
}
static int
zfs_secpolicy_receive(zfs_cmd_t *zc, cred_t *cr)
{
int error;
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_RECEIVE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_CREATE, cr));
}
int
zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
{
return (zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_SNAPSHOT, cr));
}
static int
zfs_secpolicy_snapshot(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_snapshot_perms(zc->zc_name, cr));
}
static int
zfs_secpolicy_create(zfs_cmd_t *zc, cred_t *cr)
{
char parentname[MAXNAMELEN];
int error;
if ((error = zfs_get_parent(zc->zc_name, parentname,
sizeof (parentname))) != 0)
return (error);
if (zc->zc_value[0] != '\0') {
if ((error = zfs_secpolicy_write_perms(zc->zc_value,
ZFS_DELEG_PERM_CLONE, cr)) != 0)
return (error);
}
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_CREATE, cr)) != 0)
return (error);
error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_MOUNT, cr);
return (error);
}
#ifdef HAVE_ZPL
static int
zfs_secpolicy_umount(zfs_cmd_t *zc, cred_t *cr)
{
int error;
error = secpolicy_fs_unmount(cr, NULL);
if (error) {
error = dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr);
}
return (error);
}
#endif /* HAVE_ZPL */
/*
* Policy for pool operations - create/destroy pools, add vdevs, etc. Requires
* SYS_CONFIG privilege, which is not available in a local zone.
*/
/* ARGSUSED */
static int
zfs_secpolicy_config(zfs_cmd_t *zc, cred_t *cr)
{
if (secpolicy_sys_config(cr, B_FALSE) != 0)
return (EPERM);
return (0);
}
/*
* Policy for object to name lookups.
*/
/* ARGSUSED */
static int
zfs_secpolicy_diff(zfs_cmd_t *zc, cred_t *cr)
{
int error;
if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0)
return (0);
error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr);
return (error);
}
/*
* Policy for fault injection. Requires all privileges.
*/
/* ARGSUSED */
static int
zfs_secpolicy_inject(zfs_cmd_t *zc, cred_t *cr)
{
return (secpolicy_zinject(cr));
}
static int
zfs_secpolicy_inherit(zfs_cmd_t *zc, cred_t *cr)
{
zfs_prop_t prop = zfs_name_to_prop(zc->zc_value);
if (prop == ZPROP_INVAL) {
if (!zfs_prop_user(zc->zc_value))
return (EINVAL);
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_USERPROP, cr));
} else {
return (zfs_secpolicy_setprop(zc->zc_name, prop,
NULL, cr));
}
}
static int
zfs_secpolicy_userspace_one(zfs_cmd_t *zc, cred_t *cr)
{
int err = zfs_secpolicy_read(zc, cr);
if (err)
return (err);
if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
return (EINVAL);
if (zc->zc_value[0] == 0) {
/*
* They are asking about a posix uid/gid. If it's
* themself, allow it.
*/
if (zc->zc_objset_type == ZFS_PROP_USERUSED ||
zc->zc_objset_type == ZFS_PROP_USERQUOTA) {
if (zc->zc_guid == crgetuid(cr))
return (0);
} else {
if (groupmember(zc->zc_guid, cr))
return (0);
}
}
return (zfs_secpolicy_write_perms(zc->zc_name,
userquota_perms[zc->zc_objset_type], cr));
}
static int
zfs_secpolicy_userspace_many(zfs_cmd_t *zc, cred_t *cr)
{
int err = zfs_secpolicy_read(zc, cr);
if (err)
return (err);
if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
return (EINVAL);
return (zfs_secpolicy_write_perms(zc->zc_name,
userquota_perms[zc->zc_objset_type], cr));
}
static int
zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION,
NULL, cr));
}
static int
zfs_secpolicy_hold(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_HOLD, cr));
}
static int
zfs_secpolicy_release(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_RELEASE, cr));
}
/*
* Policy for allowing temporary snapshots to be taken or released
*/
static int
zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, cred_t *cr)
{
/*
* A temporary snapshot is the same as a snapshot,
* hold, destroy and release all rolled into one.
* Delegated diff alone is sufficient that we allow this.
*/
int error;
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_DIFF, cr)) == 0)
return (0);
error = zfs_secpolicy_snapshot(zc, cr);
if (!error)
error = zfs_secpolicy_hold(zc, cr);
if (!error)
error = zfs_secpolicy_release(zc, cr);
if (!error)
error = zfs_secpolicy_destroy(zc, cr);
return (error);
}
/*
* Returns the nvlist as specified by the user in the zfs_cmd_t.
*/
static int
get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp)
{
char *packed;
int error;
nvlist_t *list = NULL;
/*
* Read in and unpack the user-supplied nvlist.
*/
if (size == 0)
return (EINVAL);
packed = kmem_alloc(size, KM_SLEEP);
if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size,
iflag)) != 0) {
kmem_free(packed, size);
return (error);
}
if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) {
kmem_free(packed, size);
return (error);
}
kmem_free(packed, size);
*nvp = list;
return (0);
}
static int
fit_error_list(zfs_cmd_t *zc, nvlist_t **errors)
{
size_t size;
VERIFY(nvlist_size(*errors, &size, NV_ENCODE_NATIVE) == 0);
if (size > zc->zc_nvlist_dst_size) {
nvpair_t *more_errors;
int n = 0;
if (zc->zc_nvlist_dst_size < 1024)
return (ENOMEM);
VERIFY(nvlist_add_int32(*errors, ZPROP_N_MORE_ERRORS, 0) == 0);
more_errors = nvlist_prev_nvpair(*errors, NULL);
do {
nvpair_t *pair = nvlist_prev_nvpair(*errors,
more_errors);
VERIFY(nvlist_remove_nvpair(*errors, pair) == 0);
n++;
VERIFY(nvlist_size(*errors, &size,
NV_ENCODE_NATIVE) == 0);
} while (size > zc->zc_nvlist_dst_size);
VERIFY(nvlist_remove_nvpair(*errors, more_errors) == 0);
VERIFY(nvlist_add_int32(*errors, ZPROP_N_MORE_ERRORS, n) == 0);
ASSERT(nvlist_size(*errors, &size, NV_ENCODE_NATIVE) == 0);
ASSERT(size <= zc->zc_nvlist_dst_size);
}
return (0);
}
static int
put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl)
{
char *packed = NULL;
int error = 0;
size_t size;
VERIFY(nvlist_size(nvl, &size, NV_ENCODE_NATIVE) == 0);
if (size > zc->zc_nvlist_dst_size) {
error = ENOMEM;
} else {
packed = kmem_alloc(size, KM_SLEEP);
VERIFY(nvlist_pack(nvl, &packed, &size, NV_ENCODE_NATIVE,
KM_SLEEP) == 0);
if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst,
size, zc->zc_iflags) != 0)
error = EFAULT;
kmem_free(packed, size);
}
zc->zc_nvlist_dst_size = size;
return (error);
}
#ifdef HAVE_ZPL
static int
getzfsvfs(const char *dsname, zfsvfs_t **zfvp)
{
objset_t *os;
int error;
error = dmu_objset_hold(dsname, FTAG, &os);
if (error)
return (error);
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele(os, FTAG);
return (EINVAL);
}
mutex_enter(&os->os_user_ptr_lock);
*zfvp = dmu_objset_get_user(os);
if (*zfvp) {
VFS_HOLD((*zfvp)->z_vfs);
} else {
error = ESRCH;
}
mutex_exit(&os->os_user_ptr_lock);
dmu_objset_rele(os, FTAG);
return (error);
}
#endif
/*
* Find a zfsvfs_t for a mounted filesystem, or create our own, in which
* case its z_vfs will be NULL, and it will be opened as the owner.
*/
static int
zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp, boolean_t writer)
{
#ifdef HAVE_ZPL
int error = 0;
if (getzfsvfs(name, zfvp) != 0)
error = zfsvfs_create(name, zfvp);
if (error == 0) {
rrw_enter(&(*zfvp)->z_teardown_lock, (writer) ? RW_WRITER :
RW_READER, tag);
if ((*zfvp)->z_unmounted) {
/*
* XXX we could probably try again, since the unmounting
* thread should be just about to disassociate the
* objset from the zfsvfs.
*/
rrw_exit(&(*zfvp)->z_teardown_lock, tag);
return (EBUSY);
}
}
return (error);
#else
return ENOTSUP;
#endif
}
static void
zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag)
{
#ifdef HAVE_ZPL
rrw_exit(&zfsvfs->z_teardown_lock, tag);
if (zfsvfs->z_vfs) {
VFS_RELE(zfsvfs->z_vfs);
} else {
dmu_objset_disown(zfsvfs->z_os, zfsvfs);
zfsvfs_free(zfsvfs);
}
#endif
}
static int
zfs_ioc_pool_create(zfs_cmd_t *zc)
{
int error;
nvlist_t *config, *props = NULL;
nvlist_t *rootprops = NULL;
nvlist_t *zplprops = NULL;
char *buf;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)))
return (error);
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
nvlist_free(config);
return (error);
}
if (props) {
nvlist_t *nvl = NULL;
uint64_t version = SPA_VERSION;
(void) nvlist_lookup_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_VERSION), &version);
if (version < SPA_VERSION_INITIAL || version > SPA_VERSION) {
error = EINVAL;
goto pool_props_bad;
}
(void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl);
if (nvl) {
error = nvlist_dup(nvl, &rootprops, KM_SLEEP);
if (error != 0) {
nvlist_free(config);
nvlist_free(props);
return (error);
}
(void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS);
}
VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
error = zfs_fill_zplprops_root(version, rootprops,
zplprops, NULL);
if (error)
goto pool_props_bad;
}
buf = history_str_get(zc);
error = spa_create(zc->zc_name, config, props, buf, zplprops);
/*
* Set the remaining root properties
*/
if (!error && (error = zfs_set_prop_nvlist(zc->zc_name,
ZPROP_SRC_LOCAL, rootprops, NULL)) != 0)
(void) spa_destroy(zc->zc_name);
if (buf != NULL)
history_str_free(buf);
pool_props_bad:
nvlist_free(rootprops);
nvlist_free(zplprops);
nvlist_free(config);
nvlist_free(props);
return (error);
}
static int
zfs_ioc_pool_destroy(zfs_cmd_t *zc)
{
int error;
zfs_log_history(zc);
error = spa_destroy(zc->zc_name);
if (error == 0)
zvol_remove_minors(zc->zc_name);
return (error);
}
static int
zfs_ioc_pool_import(zfs_cmd_t *zc)
{
nvlist_t *config, *props = NULL;
uint64_t guid;
int error;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)) != 0)
return (error);
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
nvlist_free(config);
return (error);
}
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
guid != zc->zc_guid)
error = EINVAL;
else
error = spa_import(zc->zc_name, config, props, zc->zc_cookie);
if (zc->zc_nvlist_dst != 0) {
int err;
if ((err = put_nvlist(zc, config)) != 0)
error = err;
}
if (error == 0)
zvol_create_minors(zc->zc_name);
nvlist_free(config);
if (props)
nvlist_free(props);
return (error);
}
static int
zfs_ioc_pool_export(zfs_cmd_t *zc)
{
int error;
boolean_t force = (boolean_t)zc->zc_cookie;
boolean_t hardforce = (boolean_t)zc->zc_guid;
zfs_log_history(zc);
error = spa_export(zc->zc_name, NULL, force, hardforce);
if (error == 0)
zvol_remove_minors(zc->zc_name);
return (error);
}
static int
zfs_ioc_pool_configs(zfs_cmd_t *zc)
{
nvlist_t *configs;
int error;
if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL)
return (EEXIST);
error = put_nvlist(zc, configs);
nvlist_free(configs);
return (error);
}
static int
zfs_ioc_pool_stats(zfs_cmd_t *zc)
{
nvlist_t *config;
int error;
int ret = 0;
error = spa_get_stats(zc->zc_name, &config, zc->zc_value,
sizeof (zc->zc_value));
if (config != NULL) {
ret = put_nvlist(zc, config);
nvlist_free(config);
/*
* The config may be present even if 'error' is non-zero.
* In this case we return success, and preserve the real errno
* in 'zc_cookie'.
*/
zc->zc_cookie = error;
} else {
ret = error;
}
return (ret);
}
/*
* Try to import the given pool, returning pool stats as appropriate so that
* user land knows which devices are available and overall pool health.
*/
static int
zfs_ioc_pool_tryimport(zfs_cmd_t *zc)
{
nvlist_t *tryconfig, *config;
int error;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &tryconfig)) != 0)
return (error);
config = spa_tryimport(tryconfig);
nvlist_free(tryconfig);
if (config == NULL)
return (EINVAL);
error = put_nvlist(zc, config);
nvlist_free(config);
return (error);
}
/*
* inputs:
* zc_name name of the pool
* zc_cookie scan func (pool_scan_func_t)
*/
static int
zfs_ioc_pool_scan(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (zc->zc_cookie == POOL_SCAN_NONE)
error = spa_scan_stop(spa);
else
error = spa_scan(spa, zc->zc_cookie);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_freeze(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error == 0) {
spa_freeze(spa);
spa_close(spa, FTAG);
}
return (error);
}
static int
zfs_ioc_pool_upgrade(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (zc->zc_cookie < spa_version(spa) || zc->zc_cookie > SPA_VERSION) {
spa_close(spa, FTAG);
return (EINVAL);
}
spa_upgrade(spa, zc->zc_cookie);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *hist_buf;
uint64_t size;
int error;
if ((size = zc->zc_history_len) == 0)
return (EINVAL);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
spa_close(spa, FTAG);
return (ENOTSUP);
}
hist_buf = kmem_alloc(size, KM_SLEEP);
if ((error = spa_history_get(spa, &zc->zc_history_offset,
&zc->zc_history_len, hist_buf)) == 0) {
error = ddi_copyout(hist_buf,
(void *)(uintptr_t)zc->zc_history,
zc->zc_history_len, zc->zc_iflags);
}
spa_close(spa, FTAG);
kmem_free(hist_buf, size);
return (error);
}
static int
zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc)
{
int error;
if ((error = dsl_dsobj_to_dsname(zc->zc_name,zc->zc_obj,zc->zc_value)))
return (error);
return (0);
}
/*
* inputs:
* zc_name name of filesystem
* zc_obj object to find
*
* outputs:
* zc_value name of object
*/
static int
zfs_ioc_obj_to_path(zfs_cmd_t *zc)
{
objset_t *os;
int error;
/* XXX reading from objset not owned */
if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0)
return (error);
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele(os, FTAG);
return (EINVAL);
}
error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value,
sizeof (zc->zc_value));
dmu_objset_rele(os, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_obj object to find
*
* outputs:
* zc_stat stats on object
* zc_value path to object
*/
static int
zfs_ioc_obj_to_stats(zfs_cmd_t *zc)
{
objset_t *os;
int error;
/* XXX reading from objset not owned */
if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0)
return (error);
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele(os, FTAG);
return (EINVAL);
}
error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value,
sizeof (zc->zc_value));
dmu_objset_rele(os, FTAG);
return (error);
}
static int
zfs_ioc_vdev_add(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *config, **l2cache, **spares;
uint_t nl2cache = 0, nspares = 0;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config);
(void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_L2CACHE,
&l2cache, &nl2cache);
(void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_SPARES,
&spares, &nspares);
/*
* A root pool with concatenated devices is not supported.
* Thus, can not add a device to a root pool.
*
* Intent log device can not be added to a rootpool because
* during mountroot, zil is replayed, a seperated log device
* can not be accessed during the mountroot time.
*
* l2cache and spare devices are ok to be added to a rootpool.
*/
if (spa_bootfs(spa) != 0 && nl2cache == 0 && nspares == 0) {
nvlist_free(config);
spa_close(spa, FTAG);
return (EDOM);
}
if (error == 0) {
error = spa_vdev_add(spa, config);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of the pool
* zc_nvlist_conf nvlist of devices to remove
* zc_cookie to stop the remove?
*/
static int
zfs_ioc_vdev_remove(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_set_state(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
vdev_state_t newstate = VDEV_STATE_UNKNOWN;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
switch (zc->zc_cookie) {
case VDEV_STATE_ONLINE:
error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
break;
case VDEV_STATE_OFFLINE:
error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
break;
case VDEV_STATE_FAULTED:
if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
zc->zc_obj != VDEV_AUX_EXTERNAL)
zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;
error = vdev_fault(spa, zc->zc_guid, zc->zc_obj);
break;
case VDEV_STATE_DEGRADED:
if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
zc->zc_obj != VDEV_AUX_EXTERNAL)
zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;
error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj);
break;
default:
error = EINVAL;
}
zc->zc_cookie = newstate;
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_attach(zfs_cmd_t *zc)
{
spa_t *spa;
int replacing = zc->zc_cookie;
nvlist_t *config;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)) == 0) {
error = spa_vdev_attach(spa, zc->zc_guid, config, replacing);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_detach(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_split(zfs_cmd_t *zc)
{
spa_t *spa;
nvlist_t *config, *props = NULL;
int error;
boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config))) {
spa_close(spa, FTAG);
return (error);
}
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
spa_close(spa, FTAG);
nvlist_free(config);
return (error);
}
error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp);
spa_close(spa, FTAG);
nvlist_free(config);
nvlist_free(props);
return (error);
}
static int
zfs_ioc_vdev_setpath(zfs_cmd_t *zc)
{
spa_t *spa;
char *path = zc->zc_value;
uint64_t guid = zc->zc_guid;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_setpath(spa, guid, path);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_setfru(zfs_cmd_t *zc)
{
spa_t *spa;
char *fru = zc->zc_value;
uint64_t guid = zc->zc_guid;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_setfru(spa, guid, fru);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os)
{
int error = 0;
nvlist_t *nv;
dmu_objset_fast_stat(os, &zc->zc_objset_stats);
if (zc->zc_nvlist_dst != 0 &&
(error = dsl_prop_get_all(os, &nv)) == 0) {
dmu_objset_stats(os, nv);
/*
* NB: zvol_get_stats() will read the objset contents,
* which we aren't supposed to do with a
* DS_MODE_USER hold, because it could be
* inconsistent. So this is a bit of a workaround...
* XXX reading with out owning
*/
if (!zc->zc_objset_stats.dds_inconsistent) {
if (dmu_objset_type(os) == DMU_OST_ZVOL)
error = zvol_get_stats(os, nv);
}
if (error == 0)
error = put_nvlist(zc, nv);
nvlist_free(nv);
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_objset_stats(zfs_cmd_t *zc)
{
objset_t *os = NULL;
int error;
if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)))
return (error);
error = zfs_ioc_objset_stats_impl(zc, os);
dmu_objset_rele(os, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_nvlist_dst received property nvlist
* zc_nvlist_dst_size size of received property nvlist
*
* Gets received properties (distinct from local properties on or after
* SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from
* local property values.
*/
static int
zfs_ioc_objset_recvd_props(zfs_cmd_t *zc)
{
objset_t *os = NULL;
int error;
nvlist_t *nv;
if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)))
return (error);
/*
* Without this check, we would return local property values if the
* caller has not already received properties on or after
* SPA_VERSION_RECVD_PROPS.
*/
if (!dsl_prop_get_hasrecvd(os)) {
dmu_objset_rele(os, FTAG);
return (ENOTSUP);
}
if (zc->zc_nvlist_dst != 0 &&
(error = dsl_prop_get_received(os, &nv)) == 0) {
error = put_nvlist(zc, nv);
nvlist_free(nv);
}
dmu_objset_rele(os, FTAG);
return (error);
}
static int
nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop)
{
uint64_t value;
int error;
/*
* zfs_get_zplprop() will either find a value or give us
* the default value (if there is one).
*/
if ((error = zfs_get_zplprop(os, prop, &value)) != 0)
return (error);
VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0);
return (0);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for zpl property nvlist
*
* outputs:
* zc_nvlist_dst zpl property nvlist
* zc_nvlist_dst_size size of zpl property nvlist
*/
static int
zfs_ioc_objset_zplprops(zfs_cmd_t *zc)
{
objset_t *os;
int err;
/* XXX reading without owning */
if ((err = dmu_objset_hold(zc->zc_name, FTAG, &os)))
return (err);
dmu_objset_fast_stat(os, &zc->zc_objset_stats);
/*
* NB: nvl_add_zplprop() will read the objset contents,
* which we aren't supposed to do with a DS_MODE_USER
* hold, because it could be inconsistent.
*/
if (zc->zc_nvlist_dst != 0 &&
!zc->zc_objset_stats.dds_inconsistent &&
dmu_objset_type(os) == DMU_OST_ZFS) {
nvlist_t *nv;
VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0)
err = put_nvlist(zc, nv);
nvlist_free(nv);
} else {
err = ENOENT;
}
dmu_objset_rele(os, FTAG);
return (err);
}
static boolean_t
dataset_name_hidden(const char *name)
{
/*
* Skip over datasets that are not visible in this zone,
* internal datasets (which have a $ in their name), and
* temporary datasets (which have a % in their name).
*/
if (strchr(name, '$') != NULL)
return (B_TRUE);
if (strchr(name, '%') != NULL)
return (B_TRUE);
if (!INGLOBALZONE(curproc) && !zone_dataset_visible(name, NULL))
return (B_TRUE);
return (B_FALSE);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_name name of next filesystem
* zc_cookie zap cursor
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_dataset_list_next(zfs_cmd_t *zc)
{
objset_t *os;
int error;
char *p;
size_t orig_len = strlen(zc->zc_name);
top:
if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os))) {
if (error == ENOENT)
error = ESRCH;
return (error);
}
p = strrchr(zc->zc_name, '/');
if (p == NULL || p[1] != '\0')
(void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name));
p = zc->zc_name + strlen(zc->zc_name);
/*
* Pre-fetch the datasets. dmu_objset_prefetch() always returns 0
* but is not declared void because its called by dmu_objset_find().
*/
if (zc->zc_cookie == 0) {
uint64_t cookie = 0;
int len = sizeof (zc->zc_name) - (p - zc->zc_name);
while (dmu_dir_list_next(os, len, p, NULL, &cookie) == 0)
(void) dmu_objset_prefetch(p, NULL);
}
do {
error = dmu_dir_list_next(os,
sizeof (zc->zc_name) - (p - zc->zc_name), p,
NULL, &zc->zc_cookie);
if (error == ENOENT)
error = ESRCH;
} while (error == 0 && dataset_name_hidden(zc->zc_name) &&
!(zc->zc_iflags & FKIOCTL));
dmu_objset_rele(os, FTAG);
/*
* If it's an internal dataset (ie. with a '$' in its name),
* don't try to get stats for it, otherwise we'll return ENOENT.
*/
if (error == 0 && strchr(zc->zc_name, '$') == NULL) {
error = zfs_ioc_objset_stats(zc); /* fill in the stats */
if (error == ENOENT) {
/* We lost a race with destroy, get the next one. */
zc->zc_name[orig_len] = '\0';
goto top;
}
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_name name of next snapshot
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_snapshot_list_next(zfs_cmd_t *zc)
{
objset_t *os;
int error;
top:
if (zc->zc_cookie == 0)
(void) dmu_objset_find(zc->zc_name, dmu_objset_prefetch,
NULL, DS_FIND_SNAPSHOTS);
error = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (error)
return (error == ENOENT ? ESRCH : error);
/*
* A dataset name of maximum length cannot have any snapshots,
* so exit immediately.
*/
if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) {
dmu_objset_rele(os, FTAG);
return (ESRCH);
}
error = dmu_snapshot_list_next(os,
sizeof (zc->zc_name) - strlen(zc->zc_name),
zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie,
NULL);
if (error == 0) {
dsl_dataset_t *ds;
dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool;
/*
* Since we probably don't have a hold on this snapshot,
* it's possible that the objsetid could have been destroyed
* and reused for a new objset. It's OK if this happens during
* a zfs send operation, since the new createtxg will be
* beyond the range we're interested in.
*/
rw_enter(&dp->dp_config_rwlock, RW_READER);
error = dsl_dataset_hold_obj(dp, zc->zc_obj, FTAG, &ds);
rw_exit(&dp->dp_config_rwlock);
if (error) {
if (error == ENOENT) {
/* Racing with destroy, get the next one. */
*strchr(zc->zc_name, '@') = '\0';
dmu_objset_rele(os, FTAG);
goto top;
}
} else {
objset_t *ossnap;
error = dmu_objset_from_ds(ds, &ossnap);
if (error == 0)
error = zfs_ioc_objset_stats_impl(zc, ossnap);
dsl_dataset_rele(ds, FTAG);
}
} else if (error == ENOENT) {
error = ESRCH;
}
dmu_objset_rele(os, FTAG);
/* if we failed, undo the @ that we tacked on to zc_name */
if (error)
*strchr(zc->zc_name, '@') = '\0';
return (error);
}
static int
zfs_prop_set_userquota(const char *dsname, nvpair_t *pair)
{
#ifdef HAVE_ZPL
const char *propname = nvpair_name(pair);
uint64_t *valary;
unsigned int vallen;
const char *domain;
char *dash;
zfs_userquota_prop_t type;
uint64_t rid;
uint64_t quota;
zfsvfs_t *zfsvfs;
int err;
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&pair) != 0)
return (EINVAL);
}
/*
* A correctly constructed propname is encoded as
* userquota@<rid>-<domain>.
*/
if ((dash = strchr(propname, '-')) == NULL ||
nvpair_value_uint64_array(pair, &valary, &vallen) != 0 ||
vallen != 3)
return (EINVAL);
domain = dash + 1;
type = valary[0];
rid = valary[1];
quota = valary[2];
err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE);
if (err == 0) {
err = zfs_set_userquota(zfsvfs, type, domain, rid, quota);
zfsvfs_rele(zfsvfs, FTAG);
}
return (err);
#else
return ENOTSUP;
#endif
}
/*
* If the named property is one that has a special function to set its value,
* return 0 on success and a positive error code on failure; otherwise if it is
* not one of the special properties handled by this function, return -1.
*
* XXX: It would be better for callers of the property interface if we handled
* these special cases in dsl_prop.c (in the dsl layer).
*/
static int
zfs_prop_set_special(const char *dsname, zprop_source_t source,
nvpair_t *pair)
{
const char *propname = nvpair_name(pair);
zfs_prop_t prop = zfs_name_to_prop(propname);
uint64_t intval;
int err;
if (prop == ZPROP_INVAL) {
if (zfs_prop_userquota(propname))
return (zfs_prop_set_userquota(dsname, pair));
return (-1);
}
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&pair) == 0);
}
if (zfs_prop_get_type(prop) == PROP_TYPE_STRING)
return (-1);
VERIFY(0 == nvpair_value_uint64(pair, &intval));
switch (prop) {
case ZFS_PROP_QUOTA:
err = dsl_dir_set_quota(dsname, source, intval);
break;
case ZFS_PROP_REFQUOTA:
err = dsl_dataset_set_quota(dsname, source, intval);
break;
case ZFS_PROP_RESERVATION:
err = dsl_dir_set_reservation(dsname, source, intval);
break;
case ZFS_PROP_REFRESERVATION:
err = dsl_dataset_set_reservation(dsname, source, intval);
break;
case ZFS_PROP_VOLSIZE:
err = zvol_set_volsize(dsname, intval);
break;
case ZFS_PROP_VERSION:
{
zfsvfs_t *zfsvfs;
if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0)
break;
#ifdef HAVE_ZPL
err = zfs_set_version(zfsvfs, intval);
#endif
zfsvfs_rele(zfsvfs, FTAG);
if (err == 0 && intval >= ZPL_VERSION_USERSPACE) {
zfs_cmd_t *zc;
zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);
(void) strcpy(zc->zc_name, dsname);
(void) zfs_ioc_userspace_upgrade(zc);
kmem_free(zc, sizeof (zfs_cmd_t));
}
break;
}
default:
err = -1;
}
return (err);
}
/*
* This function is best effort. If it fails to set any of the given properties,
* it continues to set as many as it can and returns the first error
* encountered. If the caller provides a non-NULL errlist, it also gives the
* complete list of names of all the properties it failed to set along with the
* corresponding error numbers. The caller is responsible for freeing the
* returned errlist.
*
* If every property is set successfully, zero is returned and the list pointed
* at by errlist is NULL.
*/
int
zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl,
nvlist_t **errlist)
{
nvpair_t *pair;
nvpair_t *propval;
int rv = 0;
uint64_t intval;
char *strval;
nvlist_t *genericnvl;
nvlist_t *errors;
nvlist_t *retrynvl;
VERIFY(nvlist_alloc(&genericnvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0);
VERIFY(nvlist_alloc(&retrynvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
retry:
pair = NULL;
while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
const char *propname = nvpair_name(pair);
zfs_prop_t prop = zfs_name_to_prop(propname);
int err = 0;
/* decode the property value */
propval = pair;
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&propval) != 0)
err = EINVAL;
}
/* Validate value type */
if (err == 0 && prop == ZPROP_INVAL) {
if (zfs_prop_user(propname)) {
if (nvpair_type(propval) != DATA_TYPE_STRING)
err = EINVAL;
} else if (zfs_prop_userquota(propname)) {
if (nvpair_type(propval) !=
DATA_TYPE_UINT64_ARRAY)
err = EINVAL;
}
} else if (err == 0) {
if (nvpair_type(propval) == DATA_TYPE_STRING) {
if (zfs_prop_get_type(prop) != PROP_TYPE_STRING)
err = EINVAL;
} else if (nvpair_type(propval) == DATA_TYPE_UINT64) {
const char *unused;
VERIFY(nvpair_value_uint64(propval,
&intval) == 0);
switch (zfs_prop_get_type(prop)) {
case PROP_TYPE_NUMBER:
break;
case PROP_TYPE_STRING:
err = EINVAL;
break;
case PROP_TYPE_INDEX:
if (zfs_prop_index_to_string(prop,
intval, &unused) != 0)
err = EINVAL;
break;
default:
cmn_err(CE_PANIC,
"unknown property type");
}
} else {
err = EINVAL;
}
}
/* Validate permissions */
if (err == 0)
err = zfs_check_settable(dsname, pair, CRED());
if (err == 0) {
err = zfs_prop_set_special(dsname, source, pair);
if (err == -1) {
/*
* For better performance we build up a list of
* properties to set in a single transaction.
*/
err = nvlist_add_nvpair(genericnvl, pair);
} else if (err != 0 && nvl != retrynvl) {
/*
* This may be a spurious error caused by
* receiving quota and reservation out of order.
* Try again in a second pass.
*/
err = nvlist_add_nvpair(retrynvl, pair);
}
}
if (err != 0)
VERIFY(nvlist_add_int32(errors, propname, err) == 0);
}
if (nvl != retrynvl && !nvlist_empty(retrynvl)) {
nvl = retrynvl;
goto retry;
}
if (!nvlist_empty(genericnvl) &&
dsl_props_set(dsname, source, genericnvl) != 0) {
/*
* If this fails, we still want to set as many properties as we
* can, so try setting them individually.
*/
pair = NULL;
while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) {
const char *propname = nvpair_name(pair);
int err = 0;
propval = pair;
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&propval) == 0);
}
if (nvpair_type(propval) == DATA_TYPE_STRING) {
VERIFY(nvpair_value_string(propval,
&strval) == 0);
err = dsl_prop_set(dsname, propname, source, 1,
strlen(strval) + 1, strval);
} else {
VERIFY(nvpair_value_uint64(propval,
&intval) == 0);
err = dsl_prop_set(dsname, propname, source, 8,
1, &intval);
}
if (err != 0) {
VERIFY(nvlist_add_int32(errors, propname,
err) == 0);
}
}
}
nvlist_free(genericnvl);
nvlist_free(retrynvl);
if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) {
nvlist_free(errors);
errors = NULL;
} else {
VERIFY(nvpair_value_int32(pair, &rv) == 0);
}
if (errlist == NULL)
nvlist_free(errors);
else
*errlist = errors;
return (rv);
}
/*
* Check that all the properties are valid user properties.
*/
static int
zfs_check_userprops(char *fsname, nvlist_t *nvl)
{
nvpair_t *pair = NULL;
int error = 0;
while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
const char *propname = nvpair_name(pair);
char *valstr;
if (!zfs_prop_user(propname) ||
nvpair_type(pair) != DATA_TYPE_STRING)
return (EINVAL);
if ((error = zfs_secpolicy_write_perms(fsname,
ZFS_DELEG_PERM_USERPROP, CRED())))
return (error);
if (strlen(propname) >= ZAP_MAXNAMELEN)
return (ENAMETOOLONG);
VERIFY(nvpair_value_string(pair, &valstr) == 0);
if (strlen(valstr) >= ZAP_MAXVALUELEN)
return (E2BIG);
}
return (0);
}
static void
props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops)
{
nvpair_t *pair;
VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
pair = NULL;
while ((pair = nvlist_next_nvpair(props, pair)) != NULL) {
if (nvlist_exists(skipped, nvpair_name(pair)))
continue;
VERIFY(nvlist_add_nvpair(*newprops, pair) == 0);
}
}
static int
clear_received_props(objset_t *os, const char *fs, nvlist_t *props,
nvlist_t *skipped)
{
int err = 0;
nvlist_t *cleared_props = NULL;
props_skip(props, skipped, &cleared_props);
if (!nvlist_empty(cleared_props)) {
/*
* Acts on local properties until the dataset has received
* properties at least once on or after SPA_VERSION_RECVD_PROPS.
*/
zprop_source_t flags = (ZPROP_SRC_NONE |
(dsl_prop_get_hasrecvd(os) ? ZPROP_SRC_RECEIVED : 0));
err = zfs_set_prop_nvlist(fs, flags, cleared_props, NULL);
}
nvlist_free(cleared_props);
return (err);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of property to set
* zc_nvlist_src{_size} nvlist of properties to apply
* zc_cookie received properties flag
*
* outputs:
* zc_nvlist_dst{_size} error for each unapplied received property
*/
static int
zfs_ioc_set_prop(zfs_cmd_t *zc)
{
nvlist_t *nvl;
boolean_t received = zc->zc_cookie;
zprop_source_t source = (received ? ZPROP_SRC_RECEIVED :
ZPROP_SRC_LOCAL);
nvlist_t *errors = NULL;
int error;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &nvl)) != 0)
return (error);
if (received) {
nvlist_t *origprops;
objset_t *os;
if (dmu_objset_hold(zc->zc_name, FTAG, &os) == 0) {
if (dsl_prop_get_received(os, &origprops) == 0) {
(void) clear_received_props(os,
zc->zc_name, origprops, nvl);
nvlist_free(origprops);
}
dsl_prop_set_hasrecvd(os);
dmu_objset_rele(os, FTAG);
}
}
error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, &errors);
if (zc->zc_nvlist_dst != 0 && errors != NULL) {
(void) put_nvlist(zc, errors);
}
nvlist_free(errors);
nvlist_free(nvl);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of property to inherit
* zc_cookie revert to received value if TRUE
*
* outputs: none
*/
static int
zfs_ioc_inherit_prop(zfs_cmd_t *zc)
{
const char *propname = zc->zc_value;
zfs_prop_t prop = zfs_name_to_prop(propname);
boolean_t received = zc->zc_cookie;
zprop_source_t source = (received
? ZPROP_SRC_NONE /* revert to received value, if any */
: ZPROP_SRC_INHERITED); /* explicitly inherit */
if (received) {
nvlist_t *dummy;
nvpair_t *pair;
zprop_type_t type;
int err;
/*
* zfs_prop_set_special() expects properties in the form of an
* nvpair with type info.
*/
if (prop == ZPROP_INVAL) {
if (!zfs_prop_user(propname))
return (EINVAL);
type = PROP_TYPE_STRING;
} else if (prop == ZFS_PROP_VOLSIZE ||
prop == ZFS_PROP_VERSION) {
return (EINVAL);
} else {
type = zfs_prop_get_type(prop);
}
VERIFY(nvlist_alloc(&dummy, NV_UNIQUE_NAME, KM_SLEEP) == 0);
switch (type) {
case PROP_TYPE_STRING:
VERIFY(0 == nvlist_add_string(dummy, propname, ""));
break;
case PROP_TYPE_NUMBER:
case PROP_TYPE_INDEX:
VERIFY(0 == nvlist_add_uint64(dummy, propname, 0));
break;
default:
nvlist_free(dummy);
return (EINVAL);
}
pair = nvlist_next_nvpair(dummy, NULL);
err = zfs_prop_set_special(zc->zc_name, source, pair);
nvlist_free(dummy);
if (err != -1)
return (err); /* special property already handled */
} else {
/*
* Only check this in the non-received case. We want to allow
* 'inherit -S' to revert non-inheritable properties like quota
* and reservation to the received or default values even though
* they are not considered inheritable.
*/
if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop))
return (EINVAL);
}
/* the property name has been validated by zfs_secpolicy_inherit() */
return (dsl_prop_set(zc->zc_name, zc->zc_value, source, 0, 0, NULL));
}
static int
zfs_ioc_pool_set_props(zfs_cmd_t *zc)
{
nvlist_t *props;
spa_t *spa;
int error;
nvpair_t *pair;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props)))
return (error);
/*
* If the only property is the configfile, then just do a spa_lookup()
* to handle the faulted case.
*/
pair = nvlist_next_nvpair(props, NULL);
if (pair != NULL && strcmp(nvpair_name(pair),
zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 &&
nvlist_next_nvpair(props, pair) == NULL) {
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(zc->zc_name)) != NULL) {
spa_configfile_set(spa, props, B_FALSE);
spa_config_sync(spa, B_FALSE, B_TRUE);
}
mutex_exit(&spa_namespace_lock);
if (spa != NULL) {
nvlist_free(props);
return (0);
}
}
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
nvlist_free(props);
return (error);
}
error = spa_prop_set(spa, props);
nvlist_free(props);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_props(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *nvp = NULL;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
/*
* If the pool is faulted, there may be properties we can still
* get (such as altroot and cachefile), so attempt to get them
* anyway.
*/
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(zc->zc_name)) != NULL)
error = spa_prop_get(spa, &nvp);
mutex_exit(&spa_namespace_lock);
} else {
error = spa_prop_get(spa, &nvp);
spa_close(spa, FTAG);
}
if (error == 0 && zc->zc_nvlist_dst != 0)
error = put_nvlist(zc, nvp);
else
error = EFAULT;
nvlist_free(nvp);
return (error);
}
/*
* inputs:
* zc_name name of volume
*
* outputs: none
*/
static int
zfs_ioc_create_minor(zfs_cmd_t *zc)
{
return (zvol_create_minor(zc->zc_name));
}
/*
* inputs:
* zc_name name of volume
*
* outputs: none
*/
static int
zfs_ioc_remove_minor(zfs_cmd_t *zc)
{
return (zvol_remove_minor(zc->zc_name));
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_src{_size} nvlist of delegated permissions
* zc_perm_action allow/unallow flag
*
* outputs: none
*/
static int
zfs_ioc_set_fsacl(zfs_cmd_t *zc)
{
int error;
nvlist_t *fsaclnv = NULL;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &fsaclnv)) != 0)
return (error);
/*
* Verify nvlist is constructed correctly
*/
if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) {
nvlist_free(fsaclnv);
return (EINVAL);
}
/*
* If we don't have PRIV_SYS_MOUNT, then validate
* that user is allowed to hand out each permission in
* the nvlist(s)
*/
error = secpolicy_zfs(CRED());
if (error) {
if (zc->zc_perm_action == B_FALSE) {
error = dsl_deleg_can_allow(zc->zc_name,
fsaclnv, CRED());
} else {
error = dsl_deleg_can_unallow(zc->zc_name,
fsaclnv, CRED());
}
}
if (error == 0)
error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action);
nvlist_free(fsaclnv);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* zc_nvlist_src{_size} nvlist of delegated permissions
*/
static int
zfs_ioc_get_fsacl(zfs_cmd_t *zc)
{
nvlist_t *nvp;
int error;
if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) {
error = put_nvlist(zc, nvp);
nvlist_free(nvp);
}
return (error);
}
#ifdef HAVE_ZPL
/*
* Search the vfs list for a specified resource. Returns a pointer to it
* or NULL if no suitable entry is found. The caller of this routine
* is responsible for releasing the returned vfs pointer.
*/
static vfs_t *
zfs_get_vfs(const char *resource)
{
struct vfs *vfsp;
struct vfs *vfs_found = NULL;
vfs_list_read_lock();
vfsp = rootvfs;
do {
if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) {
VFS_HOLD(vfsp);
vfs_found = vfsp;
break;
}
vfsp = vfsp->vfs_next;
} while (vfsp != rootvfs);
vfs_list_unlock();
return (vfs_found);
}
#endif /* HAVE_ZPL */
/* ARGSUSED */
static void
zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
{
zfs_creat_t *zct = arg;
zfs_create_fs(os, cr, zct->zct_zplprops, tx);
}
#define ZFS_PROP_UNDEFINED ((uint64_t)-1)
/*
* inputs:
* createprops list of properties requested by creator
* default_zplver zpl version to use if unspecified in createprops
* fuids_ok fuids allowed in this version of the spa?
* os parent objset pointer (NULL if root fs)
*
* outputs:
* zplprops values for the zplprops we attach to the master node object
* is_ci true if requested file system will be purely case-insensitive
*
* Determine the settings for utf8only, normalization and
* casesensitivity. Specific values may have been requested by the
* creator and/or we can inherit values from the parent dataset. If
* the file system is of too early a vintage, a creator can not
* request settings for these properties, even if the requested
* setting is the default value. We don't actually want to create dsl
* properties for these, so remove them from the source nvlist after
* processing.
*/
static int
zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver,
boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
uint64_t sense = ZFS_PROP_UNDEFINED;
uint64_t norm = ZFS_PROP_UNDEFINED;
uint64_t u8 = ZFS_PROP_UNDEFINED;
ASSERT(zplprops != NULL);
/*
* Pull out creator prop choices, if any.
*/
if (createprops) {
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_VERSION), &zplver);
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE));
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_CASE), &sense);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_CASE));
}
/*
* If the zpl version requested is whacky or the file system
* or pool is version is too "young" to support normalization
* and the creator tried to set a value for one of the props,
* error out.
*/
if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) ||
(zplver >= ZPL_VERSION_FUID && !fuids_ok) ||
(zplver >= ZPL_VERSION_SA && !sa_ok) ||
(zplver < ZPL_VERSION_NORMALIZATION &&
(norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED ||
sense != ZFS_PROP_UNDEFINED)))
return (ENOTSUP);
/*
* Put the version in the zplprops
*/
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0);
if (norm == ZFS_PROP_UNDEFINED)
VERIFY(zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm) == 0);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0);
/*
* If we're normalizing, names must always be valid UTF-8 strings.
*/
if (norm)
u8 = 1;
if (u8 == ZFS_PROP_UNDEFINED)
VERIFY(zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8) == 0);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0);
if (sense == ZFS_PROP_UNDEFINED)
VERIFY(zfs_get_zplprop(os, ZFS_PROP_CASE, &sense) == 0);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0);
if (is_ci)
*is_ci = (sense == ZFS_CASE_INSENSITIVE);
return (0);
}
static int
zfs_fill_zplprops(const char *dataset, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
boolean_t fuids_ok, sa_ok;
uint64_t zplver = ZPL_VERSION;
objset_t *os = NULL;
char parentname[MAXNAMELEN];
char *cp;
spa_t *spa;
uint64_t spa_vers;
int error;
(void) strlcpy(parentname, dataset, sizeof (parentname));
cp = strrchr(parentname, '/');
ASSERT(cp != NULL);
cp[0] = '\0';
if ((error = spa_open(dataset, &spa, FTAG)) != 0)
return (error);
spa_vers = spa_version(spa);
spa_close(spa, FTAG);
zplver = zfs_zpl_version_map(spa_vers);
fuids_ok = (zplver >= ZPL_VERSION_FUID);
sa_ok = (zplver >= ZPL_VERSION_SA);
/*
* Open parent object set so we can inherit zplprop values.
*/
if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0)
return (error);
error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops,
zplprops, is_ci);
dmu_objset_rele(os, FTAG);
return (error);
}
static int
zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
boolean_t fuids_ok;
boolean_t sa_ok;
uint64_t zplver = ZPL_VERSION;
int error;
zplver = zfs_zpl_version_map(spa_vers);
fuids_ok = (zplver >= ZPL_VERSION_FUID);
sa_ok = (zplver >= ZPL_VERSION_SA);
error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok,
createprops, zplprops, is_ci);
return (error);
}
/*
* inputs:
* zc_objset_type type of objset to create (fs vs zvol)
* zc_name name of new objset
* zc_value name of snapshot to clone from (may be empty)
* zc_nvlist_src{_size} nvlist of properties to apply
*
* outputs: none
*/
static int
zfs_ioc_create(zfs_cmd_t *zc)
{
objset_t *clone;
int error = 0;
zfs_creat_t zct;
nvlist_t *nvprops = NULL;
void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx);
dmu_objset_type_t type = zc->zc_objset_type;
switch (type) {
case DMU_OST_ZFS:
cbfunc = zfs_create_cb;
break;
case DMU_OST_ZVOL:
cbfunc = zvol_create_cb;
break;
default:
cbfunc = NULL;
break;
}
if (strchr(zc->zc_name, '@') ||
strchr(zc->zc_name, '%'))
return (EINVAL);
if (zc->zc_nvlist_src != 0 &&
(error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &nvprops)) != 0)
return (error);
zct.zct_zplprops = NULL;
zct.zct_props = nvprops;
if (zc->zc_value[0] != '\0') {
/*
* We're creating a clone of an existing snapshot.
*/
zc->zc_value[sizeof (zc->zc_value) - 1] = '\0';
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0) {
nvlist_free(nvprops);
return (EINVAL);
}
error = dmu_objset_hold(zc->zc_value, FTAG, &clone);
if (error) {
nvlist_free(nvprops);
return (error);
}
error = dmu_objset_clone(zc->zc_name, dmu_objset_ds(clone), 0);
dmu_objset_rele(clone, FTAG);
if (error) {
nvlist_free(nvprops);
return (error);
}
} else {
boolean_t is_insensitive = B_FALSE;
if (cbfunc == NULL) {
nvlist_free(nvprops);
return (EINVAL);
}
if (type == DMU_OST_ZVOL) {
uint64_t volsize, volblocksize;
if (nvprops == NULL ||
nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLSIZE),
&volsize) != 0) {
nvlist_free(nvprops);
return (EINVAL);
}
if ((error = nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
&volblocksize)) != 0 && error != ENOENT) {
nvlist_free(nvprops);
return (EINVAL);
}
if (error != 0)
volblocksize = zfs_prop_default_numeric(
ZFS_PROP_VOLBLOCKSIZE);
if ((error = zvol_check_volblocksize(
volblocksize)) != 0 ||
(error = zvol_check_volsize(volsize,
volblocksize)) != 0) {
nvlist_free(nvprops);
return (error);
}
} else if (type == DMU_OST_ZFS) {
int error;
/*
* We have to have normalization and
* case-folding flags correct when we do the
* file system creation, so go figure them out
* now.
*/
VERIFY(nvlist_alloc(&zct.zct_zplprops,
NV_UNIQUE_NAME, KM_SLEEP) == 0);
error = zfs_fill_zplprops(zc->zc_name, nvprops,
zct.zct_zplprops, &is_insensitive);
if (error != 0) {
nvlist_free(nvprops);
nvlist_free(zct.zct_zplprops);
return (error);
}
}
error = dmu_objset_create(zc->zc_name, type,
is_insensitive ? DS_FLAG_CI_DATASET : 0, cbfunc, &zct);
nvlist_free(zct.zct_zplprops);
}
/*
* It would be nice to do this atomically.
*/
if (error == 0) {
error = zfs_set_prop_nvlist(zc->zc_name, ZPROP_SRC_LOCAL,
nvprops, NULL);
if (error != 0)
(void) dmu_objset_destroy(zc->zc_name, B_FALSE);
}
nvlist_free(nvprops);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value short name of snapshot
* zc_cookie recursive flag
* zc_nvlist_src[_size] property list
*
* outputs:
* zc_value short snapname (i.e. part after the '@')
*/
static int
zfs_ioc_snapshot(zfs_cmd_t *zc)
{
nvlist_t *nvprops = NULL;
int error;
boolean_t recursive = zc->zc_cookie;
if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
return (EINVAL);
if (zc->zc_nvlist_src != 0 &&
(error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &nvprops)) != 0)
return (error);
error = zfs_check_userprops(zc->zc_name, nvprops);
if (error)
goto out;
if (!nvlist_empty(nvprops) &&
zfs_earlier_version(zc->zc_name, SPA_VERSION_SNAP_PROPS)) {
error = ENOTSUP;
goto out;
}
error = dmu_objset_snapshot(zc->zc_name, zc->zc_value, NULL,
nvprops, recursive, B_FALSE, -1);
out:
nvlist_free(nvprops);
return (error);
}
int
zfs_unmount_snap(const char *name, void *arg)
{
#ifdef HAVE_ZPL
vfs_t *vfsp = NULL;
if (arg) {
char *snapname = arg;
char *fullname = kmem_asprintf("%s@%s", name, snapname);
vfsp = zfs_get_vfs(fullname);
strfree(fullname);
} else if (strchr(name, '@')) {
vfsp = zfs_get_vfs(name);
}
if (vfsp) {
/*
* Always force the unmount for snapshots.
*/
int flag = MS_FORCE;
int err;
if ((err = vn_vfswlock(vfsp->vfs_vnodecovered)) != 0) {
VFS_RELE(vfsp);
return (err);
}
VFS_RELE(vfsp);
if ((err = dounmount(vfsp, flag, kcred)) != 0)
return (err);
}
#endif /* HAVE_ZPL */
return (0);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value short name of snapshot
* zc_defer_destroy mark for deferred destroy
*
* outputs: none
*/
static int
zfs_ioc_destroy_snaps(zfs_cmd_t *zc)
{
int err;
if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
return (EINVAL);
err = dmu_objset_find(zc->zc_name,
zfs_unmount_snap, zc->zc_value, DS_FIND_CHILDREN);
if (err)
return (err);
return (dmu_snapshots_destroy(zc->zc_name, zc->zc_value,
zc->zc_defer_destroy));
}
/*
* inputs:
* zc_name name of dataset to destroy
* zc_objset_type type of objset
* zc_defer_destroy mark for deferred destroy
*
* outputs: none
*/
static int
zfs_ioc_destroy(zfs_cmd_t *zc)
{
int err;
if (strchr(zc->zc_name, '@') && zc->zc_objset_type == DMU_OST_ZFS) {
err = zfs_unmount_snap(zc->zc_name, NULL);
if (err)
return (err);
}
err = dmu_objset_destroy(zc->zc_name, zc->zc_defer_destroy);
if (zc->zc_objset_type == DMU_OST_ZVOL && err == 0)
(void) zvol_remove_minor(zc->zc_name);
return (err);
}
/*
* inputs:
* zc_name name of dataset to rollback (to most recent snapshot)
*
* outputs: none
*/
static int
zfs_ioc_rollback(zfs_cmd_t *zc)
{
#ifdef HAVE_ZPL
dsl_dataset_t *ds, *clone;
int error;
zfsvfs_t *zfsvfs;
char *clone_name;
error = dsl_dataset_hold(zc->zc_name, FTAG, &ds);
if (error)
return (error);
/* must not be a snapshot */
if (dsl_dataset_is_snapshot(ds)) {
dsl_dataset_rele(ds, FTAG);
return (EINVAL);
}
/* must have a most recent snapshot */
if (ds->ds_phys->ds_prev_snap_txg < TXG_INITIAL) {
dsl_dataset_rele(ds, FTAG);
return (EINVAL);
}
/*
* Create clone of most recent snapshot.
*/
clone_name = kmem_asprintf("%s/%%rollback", zc->zc_name);
error = dmu_objset_clone(clone_name, ds->ds_prev, DS_FLAG_INCONSISTENT);
if (error)
goto out;
error = dsl_dataset_own(clone_name, B_TRUE, FTAG, &clone);
if (error)
goto out;
/*
* Do clone swap.
*/
if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) {
error = zfs_suspend_fs(zfsvfs);
if (error == 0) {
int resume_err;
if (dsl_dataset_tryown(ds, B_FALSE, FTAG)) {
error = dsl_dataset_clone_swap(clone, ds,
B_TRUE);
dsl_dataset_disown(ds, FTAG);
ds = NULL;
} else {
error = EBUSY;
}
resume_err = zfs_resume_fs(zfsvfs, zc->zc_name);
error = error ? error : resume_err;
}
VFS_RELE(zfsvfs->z_vfs);
} else {
if (dsl_dataset_tryown(ds, B_FALSE, FTAG)) {
error = dsl_dataset_clone_swap(clone, ds, B_TRUE);
dsl_dataset_disown(ds, FTAG);
ds = NULL;
} else {
error = EBUSY;
}
}
/*
* Destroy clone (which also closes it).
*/
(void) dsl_dataset_destroy(clone, FTAG, B_FALSE);
out:
strfree(clone_name);
if (ds)
dsl_dataset_rele(ds, FTAG);
return (error);
#else
return (ENOTSUP);
#endif /* HAVE_ZPL */
}
/*
* inputs:
* zc_name old name of dataset
* zc_value new name of dataset
* zc_cookie recursive flag (only valid for snapshots)
*
* outputs: none
*/
static int
zfs_ioc_rename(zfs_cmd_t *zc)
{
boolean_t recursive = zc->zc_cookie & 1;
zc->zc_value[sizeof (zc->zc_value) - 1] = '\0';
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
strchr(zc->zc_value, '%'))
return (EINVAL);
/*
* Unmount snapshot unless we're doing a recursive rename,
* in which case the dataset code figures out which snapshots
* to unmount.
*/
if (!recursive && strchr(zc->zc_name, '@') != NULL &&
zc->zc_objset_type == DMU_OST_ZFS) {
int err = zfs_unmount_snap(zc->zc_name, NULL);
if (err)
return (err);
}
if (zc->zc_objset_type == DMU_OST_ZVOL)
(void) zvol_remove_minor(zc->zc_name);
return (dmu_objset_rename(zc->zc_name, zc->zc_value, recursive));
}
static int
zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr)
{
const char *propname = nvpair_name(pair);
boolean_t issnap = (strchr(dsname, '@') != NULL);
zfs_prop_t prop = zfs_name_to_prop(propname);
uint64_t intval;
int err;
if (prop == ZPROP_INVAL) {
if (zfs_prop_user(propname)) {
if ((err = zfs_secpolicy_write_perms(dsname,
ZFS_DELEG_PERM_USERPROP, cr)))
return (err);
return (0);
}
if (!issnap && zfs_prop_userquota(propname)) {
const char *perm = NULL;
const char *uq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA];
const char *gq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA];
if (strncmp(propname, uq_prefix,
strlen(uq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_USERQUOTA;
} else if (strncmp(propname, gq_prefix,
strlen(gq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_GROUPQUOTA;
} else {
/* USERUSED and GROUPUSED are read-only */
return (EINVAL);
}
if ((err = zfs_secpolicy_write_perms(dsname, perm, cr)))
return (err);
return (0);
}
return (EINVAL);
}
if (issnap)
return (EINVAL);
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
/*
* dsl_prop_get_all_impl() returns properties in this
* format.
*/
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&pair) == 0);
}
/*
* Check that this value is valid for this pool version
*/
switch (prop) {
case ZFS_PROP_COMPRESSION:
/*
* If the user specified gzip compression, make sure
* the SPA supports it. We ignore any errors here since
* we'll catch them later.
*/
if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
nvpair_value_uint64(pair, &intval) == 0) {
if (intval >= ZIO_COMPRESS_GZIP_1 &&
intval <= ZIO_COMPRESS_GZIP_9 &&
zfs_earlier_version(dsname,
SPA_VERSION_GZIP_COMPRESSION)) {
return (ENOTSUP);
}
if (intval == ZIO_COMPRESS_ZLE &&
zfs_earlier_version(dsname,
SPA_VERSION_ZLE_COMPRESSION))
return (ENOTSUP);
/*
* If this is a bootable dataset then
* verify that the compression algorithm
* is supported for booting. We must return
* something other than ENOTSUP since it
* implies a downrev pool version.
*/
if (zfs_is_bootfs(dsname) &&
!BOOTFS_COMPRESS_VALID(intval)) {
return (ERANGE);
}
}
break;
case ZFS_PROP_COPIES:
if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS))
return (ENOTSUP);
break;
case ZFS_PROP_DEDUP:
if (zfs_earlier_version(dsname, SPA_VERSION_DEDUP))
return (ENOTSUP);
break;
case ZFS_PROP_SHARESMB:
if (zpl_earlier_version(dsname, ZPL_VERSION_FUID))
return (ENOTSUP);
break;
case ZFS_PROP_ACLINHERIT:
if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
nvpair_value_uint64(pair, &intval) == 0) {
if (intval == ZFS_ACL_PASSTHROUGH_X &&
zfs_earlier_version(dsname,
SPA_VERSION_PASSTHROUGH_X))
return (ENOTSUP);
}
break;
default:
break;
}
return (zfs_secpolicy_setprop(dsname, prop, pair, CRED()));
}
/*
* Removes properties from the given props list that fail permission checks
* needed to clear them and to restore them in case of a receive error. For each
* property, make sure we have both set and inherit permissions.
*
* Returns the first error encountered if any permission checks fail. If the
* caller provides a non-NULL errlist, it also gives the complete list of names
* of all the properties that failed a permission check along with the
* corresponding error numbers. The caller is responsible for freeing the
* returned errlist.
*
* If every property checks out successfully, zero is returned and the list
* pointed at by errlist is NULL.
*/
static int
zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errlist)
{
zfs_cmd_t *zc;
nvpair_t *pair, *next_pair;
nvlist_t *errors;
int err, rv = 0;
if (props == NULL)
return (0);
VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0);
zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP);
(void) strcpy(zc->zc_name, dataset);
pair = nvlist_next_nvpair(props, NULL);
while (pair != NULL) {
next_pair = nvlist_next_nvpair(props, pair);
(void) strcpy(zc->zc_value, nvpair_name(pair));
if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 ||
(err = zfs_secpolicy_inherit(zc, CRED())) != 0) {
VERIFY(nvlist_remove_nvpair(props, pair) == 0);
VERIFY(nvlist_add_int32(errors,
zc->zc_value, err) == 0);
}
pair = next_pair;
}
kmem_free(zc, sizeof (zfs_cmd_t));
if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) {
nvlist_free(errors);
errors = NULL;
} else {
VERIFY(nvpair_value_int32(pair, &rv) == 0);
}
if (errlist == NULL)
nvlist_free(errors);
else
*errlist = errors;
return (rv);
}
static boolean_t
propval_equals(nvpair_t *p1, nvpair_t *p2)
{
if (nvpair_type(p1) == DATA_TYPE_NVLIST) {
/* dsl_prop_get_all_impl() format */
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(p1, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&p1) == 0);
}
if (nvpair_type(p2) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(p2, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&p2) == 0);
}
if (nvpair_type(p1) != nvpair_type(p2))
return (B_FALSE);
if (nvpair_type(p1) == DATA_TYPE_STRING) {
char *valstr1, *valstr2;
VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0);
VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0);
return (strcmp(valstr1, valstr2) == 0);
} else {
uint64_t intval1, intval2;
VERIFY(nvpair_value_uint64(p1, &intval1) == 0);
VERIFY(nvpair_value_uint64(p2, &intval2) == 0);
return (intval1 == intval2);
}
}
/*
* Remove properties from props if they are not going to change (as determined
* by comparison with origprops). Remove them from origprops as well, since we
* do not need to clear or restore properties that won't change.
*/
static void
props_reduce(nvlist_t *props, nvlist_t *origprops)
{
nvpair_t *pair, *next_pair;
if (origprops == NULL)
return; /* all props need to be received */
pair = nvlist_next_nvpair(props, NULL);
while (pair != NULL) {
const char *propname = nvpair_name(pair);
nvpair_t *match;
next_pair = nvlist_next_nvpair(props, pair);
if ((nvlist_lookup_nvpair(origprops, propname,
&match) != 0) || !propval_equals(pair, match))
goto next; /* need to set received value */
/* don't clear the existing received value */
(void) nvlist_remove_nvpair(origprops, match);
/* don't bother receiving the property */
(void) nvlist_remove_nvpair(props, pair);
next:
pair = next_pair;
}
}
#ifdef DEBUG
static boolean_t zfs_ioc_recv_inject_err;
#endif
/*
* inputs:
* zc_name name of containing filesystem
* zc_nvlist_src{_size} nvlist of properties to apply
* zc_value name of snapshot to create
* zc_string name of clone origin (if DRR_FLAG_CLONE)
* zc_cookie file descriptor to recv from
* zc_begin_record the BEGIN record of the stream (not byteswapped)
* zc_guid force flag
* zc_cleanup_fd cleanup-on-exit file descriptor
* zc_action_handle handle for this guid/ds mapping (or zero on first call)
*
* outputs:
* zc_cookie number of bytes read
* zc_nvlist_dst{_size} error for each unapplied received property
* zc_obj zprop_errflags_t
* zc_action_handle handle for this guid/ds mapping
*/
static int
zfs_ioc_recv(zfs_cmd_t *zc)
{
file_t *fp;
objset_t *os;
dmu_recv_cookie_t drc;
boolean_t force = (boolean_t)zc->zc_guid;
int fd;
int error = 0;
int props_error = 0;
nvlist_t *errors;
offset_t off;
nvlist_t *props = NULL; /* sent properties */
nvlist_t *origprops = NULL; /* existing properties */
objset_t *origin = NULL;
char *tosnap;
char tofs[ZFS_MAXNAMELEN];
boolean_t first_recvd_props = B_FALSE;
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
strchr(zc->zc_value, '@') == NULL ||
strchr(zc->zc_value, '%'))
return (EINVAL);
(void) strcpy(tofs, zc->zc_value);
tosnap = strchr(tofs, '@');
*tosnap++ = '\0';
if (zc->zc_nvlist_src != 0 &&
(error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props)) != 0)
return (error);
fd = zc->zc_cookie;
fp = getf(fd);
if (fp == NULL) {
nvlist_free(props);
return (EBADF);
}
VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0);
if (props && dmu_objset_hold(tofs, FTAG, &os) == 0) {
if ((spa_version(os->os_spa) >= SPA_VERSION_RECVD_PROPS) &&
!dsl_prop_get_hasrecvd(os)) {
first_recvd_props = B_TRUE;
}
/*
* If new received properties are supplied, they are to
* completely replace the existing received properties, so stash
* away the existing ones.
*/
if (dsl_prop_get_received(os, &origprops) == 0) {
nvlist_t *errlist = NULL;
/*
* Don't bother writing a property if its value won't
* change (and avoid the unnecessary security checks).
*
* The first receive after SPA_VERSION_RECVD_PROPS is a
* special case where we blow away all local properties
* regardless.
*/
if (!first_recvd_props)
props_reduce(props, origprops);
if (zfs_check_clearable(tofs, origprops,
&errlist) != 0)
(void) nvlist_merge(errors, errlist, 0);
nvlist_free(errlist);
}
dmu_objset_rele(os, FTAG);
}
if (zc->zc_string[0]) {
error = dmu_objset_hold(zc->zc_string, FTAG, &origin);
if (error)
goto out;
}
error = dmu_recv_begin(tofs, tosnap, zc->zc_top_ds,
&zc->zc_begin_record, force, origin, &drc);
if (origin)
dmu_objset_rele(origin, FTAG);
if (error)
goto out;
/*
* Set properties before we receive the stream so that they are applied
* to the new data. Note that we must call dmu_recv_stream() if
* dmu_recv_begin() succeeds.
*/
if (props) {
nvlist_t *errlist;
if (dmu_objset_from_ds(drc.drc_logical_ds, &os) == 0) {
if (drc.drc_newfs) {
if (spa_version(os->os_spa) >=
SPA_VERSION_RECVD_PROPS)
first_recvd_props = B_TRUE;
} else if (origprops != NULL) {
if (clear_received_props(os, tofs, origprops,
first_recvd_props ? NULL : props) != 0)
zc->zc_obj |= ZPROP_ERR_NOCLEAR;
} else {
zc->zc_obj |= ZPROP_ERR_NOCLEAR;
}
dsl_prop_set_hasrecvd(os);
} else if (!drc.drc_newfs) {
zc->zc_obj |= ZPROP_ERR_NOCLEAR;
}
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED,
props, &errlist);
(void) nvlist_merge(errors, errlist, 0);
nvlist_free(errlist);
}
if (fit_error_list(zc, &errors) != 0 || put_nvlist(zc, errors) != 0) {
/*
* Caller made zc->zc_nvlist_dst less than the minimum expected
* size or supplied an invalid address.
*/
props_error = EINVAL;
}
off = fp->f_offset;
error = dmu_recv_stream(&drc, fp->f_vnode, &off, zc->zc_cleanup_fd,
&zc->zc_action_handle);
if (error == 0) {
#ifdef HAVE_ZPL
zfsvfs_t *zfsvfs = NULL;
if (getzfsvfs(tofs, &zfsvfs) == 0) {
/* online recv */
int end_err;
error = zfs_suspend_fs(zfsvfs);
/*
* If the suspend fails, then the recv_end will
* likely also fail, and clean up after itself.
*/
end_err = dmu_recv_end(&drc);
if (error == 0)
error = zfs_resume_fs(zfsvfs, tofs);
error = error ? error : end_err;
VFS_RELE(zfsvfs->z_vfs);
} else {
error = dmu_recv_end(&drc);
}
#else
error = dmu_recv_end(&drc);
#endif /* HAVE_ZPL */
}
zc->zc_cookie = off - fp->f_offset;
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
fp->f_offset = off;
#ifdef DEBUG
if (zfs_ioc_recv_inject_err) {
zfs_ioc_recv_inject_err = B_FALSE;
error = 1;
}
#endif
/*
* On error, restore the original props.
*/
if (error && props) {
if (dmu_objset_hold(tofs, FTAG, &os) == 0) {
if (clear_received_props(os, tofs, props, NULL) != 0) {
/*
* We failed to clear the received properties.
* Since we may have left a $recvd value on the
* system, we can't clear the $hasrecvd flag.
*/
zc->zc_obj |= ZPROP_ERR_NORESTORE;
} else if (first_recvd_props) {
dsl_prop_unset_hasrecvd(os);
}
dmu_objset_rele(os, FTAG);
} else if (!drc.drc_newfs) {
/* We failed to clear the received properties. */
zc->zc_obj |= ZPROP_ERR_NORESTORE;
}
if (origprops == NULL && !drc.drc_newfs) {
/* We failed to stash the original properties. */
zc->zc_obj |= ZPROP_ERR_NORESTORE;
}
/*
* dsl_props_set() will not convert RECEIVED to LOCAL on or
* after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL
* explictly if we're restoring local properties cleared in the
* first new-style receive.
*/
if (origprops != NULL &&
zfs_set_prop_nvlist(tofs, (first_recvd_props ?
ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED),
origprops, NULL) != 0) {
/*
* We stashed the original properties but failed to
* restore them.
*/
zc->zc_obj |= ZPROP_ERR_NORESTORE;
}
}
out:
nvlist_free(props);
nvlist_free(origprops);
nvlist_free(errors);
releasef(fd);
if (error == 0)
error = props_error;
return (error);
}
/*
* inputs:
* zc_name name of snapshot to send
* zc_cookie file descriptor to send stream to
* zc_obj fromorigin flag (mutually exclusive with zc_fromobj)
* zc_sendobj objsetid of snapshot to send
* zc_fromobj objsetid of incremental fromsnap (may be zero)
*
* outputs: none
*/
static int
zfs_ioc_send(zfs_cmd_t *zc)
{
objset_t *fromsnap = NULL;
objset_t *tosnap;
file_t *fp;
int error;
offset_t off;
dsl_dataset_t *ds;
dsl_dataset_t *dsfrom = NULL;
spa_t *spa;
dsl_pool_t *dp;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error)
return (error);
dp = spa_get_dsl(spa);
rw_enter(&dp->dp_config_rwlock, RW_READER);
error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
rw_exit(&dp->dp_config_rwlock);
if (error) {
spa_close(spa, FTAG);
return (error);
}
error = dmu_objset_from_ds(ds, &tosnap);
if (error) {
dsl_dataset_rele(ds, FTAG);
spa_close(spa, FTAG);
return (error);
}
if (zc->zc_fromobj != 0) {
rw_enter(&dp->dp_config_rwlock, RW_READER);
error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, FTAG, &dsfrom);
rw_exit(&dp->dp_config_rwlock);
spa_close(spa, FTAG);
if (error) {
dsl_dataset_rele(ds, FTAG);
return (error);
}
error = dmu_objset_from_ds(dsfrom, &fromsnap);
if (error) {
dsl_dataset_rele(dsfrom, FTAG);
dsl_dataset_rele(ds, FTAG);
return (error);
}
} else {
spa_close(spa, FTAG);
}
fp = getf(zc->zc_cookie);
if (fp == NULL) {
dsl_dataset_rele(ds, FTAG);
if (dsfrom)
dsl_dataset_rele(dsfrom, FTAG);
return (EBADF);
}
off = fp->f_offset;
error = dmu_sendbackup(tosnap, fromsnap, zc->zc_obj, fp->f_vnode, &off);
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
fp->f_offset = off;
releasef(zc->zc_cookie);
if (dsfrom)
dsl_dataset_rele(dsfrom, FTAG);
dsl_dataset_rele(ds, FTAG);
return (error);
}
static int
zfs_ioc_inject_fault(zfs_cmd_t *zc)
{
int id, error;
error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id,
&zc->zc_inject_record);
if (error == 0)
zc->zc_guid = (uint64_t)id;
return (error);
}
static int
zfs_ioc_clear_fault(zfs_cmd_t *zc)
{
return (zio_clear_fault((int)zc->zc_guid));
}
static int
zfs_ioc_inject_list_next(zfs_cmd_t *zc)
{
int id = (int)zc->zc_guid;
int error;
error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name),
&zc->zc_inject_record);
zc->zc_guid = id;
return (error);
}
static int
zfs_ioc_error_log(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
size_t count = (size_t)zc->zc_nvlist_dst_size;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
&count);
if (error == 0)
zc->zc_nvlist_dst_size = count;
else
zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_clear(zfs_cmd_t *zc)
{
spa_t *spa;
vdev_t *vd;
int error;
/*
* On zpool clear we also fix up missing slogs
*/
mutex_enter(&spa_namespace_lock);
spa = spa_lookup(zc->zc_name);
if (spa == NULL) {
mutex_exit(&spa_namespace_lock);
return (EIO);
}
if (spa_get_log_state(spa) == SPA_LOG_MISSING) {
/* we need to let spa_open/spa_load clear the chains */
spa_set_log_state(spa, SPA_LOG_CLEAR);
}
spa->spa_last_open_failed = 0;
mutex_exit(&spa_namespace_lock);
if (zc->zc_cookie & ZPOOL_NO_REWIND) {
error = spa_open(zc->zc_name, &spa, FTAG);
} else {
nvlist_t *policy;
nvlist_t *config = NULL;
if (zc->zc_nvlist_src == 0)
return (EINVAL);
if ((error = get_nvlist(zc->zc_nvlist_src,
zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) {
error = spa_open_rewind(zc->zc_name, &spa, FTAG,
policy, &config);
if (config != NULL) {
int err;
if ((err = put_nvlist(zc, config)) != 0)
error = err;
nvlist_free(config);
}
nvlist_free(policy);
}
}
if (error)
return (error);
spa_vdev_state_enter(spa, SCL_NONE);
if (zc->zc_guid == 0) {
vd = NULL;
} else {
vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE);
if (vd == NULL) {
(void) spa_vdev_state_exit(spa, NULL, ENODEV);
spa_close(spa, FTAG);
return (ENODEV);
}
}
vdev_clear(spa, vd);
(void) spa_vdev_state_exit(spa, NULL, 0);
/*
* Resume any suspended I/Os.
*/
if (zio_resume(spa) != 0)
error = EIO;
spa_close(spa, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of origin snapshot
*
* outputs:
* zc_string name of conflicting snapshot, if there is one
*/
static int
zfs_ioc_promote(zfs_cmd_t *zc)
{
char *cp;
/*
* We don't need to unmount *all* the origin fs's snapshots, but
* it's easier.
*/
cp = strchr(zc->zc_value, '@');
if (cp)
*cp = '\0';
(void) dmu_objset_find(zc->zc_value,
zfs_unmount_snap, NULL, DS_FIND_SNAPSHOTS);
return (dsl_dataset_promote(zc->zc_name, zc->zc_string));
}
/*
* Retrieve a single {user|group}{used|quota}@... property.
*
* inputs:
* zc_name name of filesystem
* zc_objset_type zfs_userquota_prop_t
* zc_value domain name (eg. "S-1-234-567-89")
* zc_guid RID/UID/GID
*
* outputs:
* zc_cookie property value
*/
static int
zfs_ioc_userspace_one(zfs_cmd_t *zc)
{
#ifdef HAVE_ZPL
zfsvfs_t *zfsvfs;
int error;
if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
return (EINVAL);
error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
if (error)
return (error);
error = zfs_userspace_one(zfsvfs,
zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie);
zfsvfs_rele(zfsvfs, FTAG);
return (error);
#else
return (ENOTSUP);
#endif /* HAVE_ZPL */
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_objset_type zfs_userquota_prop_t
* zc_nvlist_dst[_size] buffer to fill (not really an nvlist)
*
* outputs:
* zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t)
* zc_cookie zap cursor
*/
static int
zfs_ioc_userspace_many(zfs_cmd_t *zc)
{
#ifdef HAVE_ZPL
zfsvfs_t *zfsvfs;
int bufsize = zc->zc_nvlist_dst_size;
if (bufsize <= 0)
return (ENOMEM);
int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
if (error)
return (error);
void *buf = kmem_alloc(bufsize, KM_SLEEP);
error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie,
buf, &zc->zc_nvlist_dst_size);
if (error == 0) {
error = xcopyout(buf,
(void *)(uintptr_t)zc->zc_nvlist_dst,
zc->zc_nvlist_dst_size);
}
kmem_free(buf, bufsize);
zfsvfs_rele(zfsvfs, FTAG);
return (error);
#else
return (ENOTSUP);
#endif /* HAVE_ZPL */
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* none
*/
static int
zfs_ioc_userspace_upgrade(zfs_cmd_t *zc)
{
#ifdef HAVE_ZPL
objset_t *os;
int error = 0;
zfsvfs_t *zfsvfs;
if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) {
if (!dmu_objset_userused_enabled(zfsvfs->z_os)) {
/*
* If userused is not enabled, it may be because the
* objset needs to be closed & reopened (to grow the
* objset_phys_t). Suspend/resume the fs will do that.
*/
error = zfs_suspend_fs(zfsvfs);
if (error == 0)
error = zfs_resume_fs(zfsvfs, zc->zc_name);
}
if (error == 0)
error = dmu_objset_userspace_upgrade(zfsvfs->z_os);
VFS_RELE(zfsvfs->z_vfs);
} else {
/* XXX kind of reading contents without owning */
error = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (error)
return (error);
error = dmu_objset_userspace_upgrade(os);
dmu_objset_rele(os, FTAG);
}
return (error);
#else
return (ENOTSUP);
#endif /* HAVE_ZPL */
}
/*
* We don't want to have a hard dependency
* against some special symbols in sharefs
* nfs, and smbsrv. Determine them if needed when
* the first file system is shared.
* Neither sharefs, nfs or smbsrv are unloadable modules.
*/
#ifdef HAVE_ZPL
int (*znfsexport_fs)(void *arg);
int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t);
int (*zsmbexport_fs)(void *arg, boolean_t add_share);
int zfs_nfsshare_inited;
int zfs_smbshare_inited;
ddi_modhandle_t nfs_mod;
ddi_modhandle_t sharefs_mod;
ddi_modhandle_t smbsrv_mod;
kmutex_t zfs_share_lock;
static int
zfs_init_sharefs()
{
int error;
ASSERT(MUTEX_HELD(&zfs_share_lock));
/* Both NFS and SMB shares also require sharetab support. */
if (sharefs_mod == NULL && ((sharefs_mod =
ddi_modopen("fs/sharefs",
KRTLD_MODE_FIRST, &error)) == NULL)) {
return (ENOSYS);
}
if (zshare_fs == NULL && ((zshare_fs =
(int (*)(enum sharefs_sys_op, share_t *, uint32_t))
ddi_modsym(sharefs_mod, "sharefs_impl", &error)) == NULL)) {
return (ENOSYS);
}
return (0);
}
#endif /* HAVE_ZPL */
static int
zfs_ioc_share(zfs_cmd_t *zc)
{
#ifdef HAVE_ZPL
int error;
int opcode;
switch (zc->zc_share.z_sharetype) {
case ZFS_SHARE_NFS:
case ZFS_UNSHARE_NFS:
if (zfs_nfsshare_inited == 0) {
mutex_enter(&zfs_share_lock);
if (nfs_mod == NULL && ((nfs_mod = ddi_modopen("fs/nfs",
KRTLD_MODE_FIRST, &error)) == NULL)) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
if (znfsexport_fs == NULL &&
((znfsexport_fs = (int (*)(void *))
ddi_modsym(nfs_mod,
"nfs_export", &error)) == NULL)) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
error = zfs_init_sharefs();
if (error) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
zfs_nfsshare_inited = 1;
mutex_exit(&zfs_share_lock);
}
break;
case ZFS_SHARE_SMB:
case ZFS_UNSHARE_SMB:
if (zfs_smbshare_inited == 0) {
mutex_enter(&zfs_share_lock);
if (smbsrv_mod == NULL && ((smbsrv_mod =
ddi_modopen("drv/smbsrv",
KRTLD_MODE_FIRST, &error)) == NULL)) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
if (zsmbexport_fs == NULL && ((zsmbexport_fs =
(int (*)(void *, boolean_t))ddi_modsym(smbsrv_mod,
"smb_server_share", &error)) == NULL)) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
error = zfs_init_sharefs();
if (error) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
zfs_smbshare_inited = 1;
mutex_exit(&zfs_share_lock);
}
break;
default:
return (EINVAL);
}
switch (zc->zc_share.z_sharetype) {
case ZFS_SHARE_NFS:
case ZFS_UNSHARE_NFS:
if (error =
znfsexport_fs((void *)
(uintptr_t)zc->zc_share.z_exportdata))
return (error);
break;
case ZFS_SHARE_SMB:
case ZFS_UNSHARE_SMB:
if (error = zsmbexport_fs((void *)
(uintptr_t)zc->zc_share.z_exportdata,
zc->zc_share.z_sharetype == ZFS_SHARE_SMB ?
B_TRUE: B_FALSE)) {
return (error);
}
break;
}
opcode = (zc->zc_share.z_sharetype == ZFS_SHARE_NFS ||
zc->zc_share.z_sharetype == ZFS_SHARE_SMB) ?
SHAREFS_ADD : SHAREFS_REMOVE;
/*
* Add or remove share from sharetab
*/
error = zshare_fs(opcode,
(void *)(uintptr_t)zc->zc_share.z_sharedata,
zc->zc_share.z_sharemax);
return (error);
#else
return (ENOTSUP);
#endif /* HAVE_ZPL */
}
ace_t full_access[] = {
{(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0}
};
/*
* inputs:
* zc_name name of containing filesystem
* zc_obj object # beyond which we want next in-use object #
*
* outputs:
* zc_obj next in-use object #
*/
static int
zfs_ioc_next_obj(zfs_cmd_t *zc)
{
objset_t *os = NULL;
int error;
error = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (error)
return (error);
error = dmu_object_next(os, &zc->zc_obj, B_FALSE,
os->os_dsl_dataset->ds_phys->ds_prev_snap_txg);
dmu_objset_rele(os, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value prefix name for snapshot
* zc_cleanup_fd cleanup-on-exit file descriptor for calling process
*
* outputs:
*/
static int
zfs_ioc_tmp_snapshot(zfs_cmd_t *zc)
{
char *snap_name;
int error;
snap_name = kmem_asprintf("%s-%016llx", zc->zc_value,
(u_longlong_t)ddi_get_lbolt64());
if (strlen(snap_name) >= MAXNAMELEN) {
strfree(snap_name);
return (E2BIG);
}
error = dmu_objset_snapshot(zc->zc_name, snap_name, snap_name,
NULL, B_FALSE, B_TRUE, zc->zc_cleanup_fd);
if (error != 0) {
strfree(snap_name);
return (error);
}
(void) strcpy(zc->zc_value, snap_name);
strfree(snap_name);
return (0);
}
/*
* inputs:
* zc_name name of "to" snapshot
* zc_value name of "from" snapshot
* zc_cookie file descriptor to write diff data on
*
* outputs:
* dmu_diff_record_t's to the file descriptor
*/
static int
zfs_ioc_diff(zfs_cmd_t *zc)
{
objset_t *fromsnap;
objset_t *tosnap;
file_t *fp;
offset_t off;
int error;
error = dmu_objset_hold(zc->zc_name, FTAG, &tosnap);
if (error)
return (error);
error = dmu_objset_hold(zc->zc_value, FTAG, &fromsnap);
if (error) {
dmu_objset_rele(tosnap, FTAG);
return (error);
}
fp = getf(zc->zc_cookie);
if (fp == NULL) {
dmu_objset_rele(fromsnap, FTAG);
dmu_objset_rele(tosnap, FTAG);
return (EBADF);
}
off = fp->f_offset;
error = dmu_diff(tosnap, fromsnap, fp->f_vnode, &off);
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
fp->f_offset = off;
releasef(zc->zc_cookie);
dmu_objset_rele(fromsnap, FTAG);
dmu_objset_rele(tosnap, FTAG);
return (error);
}
/*
* Remove all ACL files in shares dir
*/
#ifdef HAVE_ZPL
static int
zfs_smb_acl_purge(znode_t *dzp)
{
zap_cursor_t zc;
zap_attribute_t zap;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
int error;
for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
(error = zap_cursor_retrieve(&zc, &zap)) == 0;
zap_cursor_advance(&zc)) {
if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_name, kcred,
NULL, 0)) != 0)
break;
}
zap_cursor_fini(&zc);
return (error);
}
#endif /* HAVE ZPL */
static int
zfs_ioc_smb_acl(zfs_cmd_t *zc)
{
#ifdef HAVE_ZPL
vnode_t *vp;
znode_t *dzp;
vnode_t *resourcevp = NULL;
znode_t *sharedir;
zfsvfs_t *zfsvfs;
nvlist_t *nvlist;
char *src, *target;
vattr_t vattr;
vsecattr_t vsec;
int error = 0;
if ((error = lookupname(zc->zc_value, UIO_SYSSPACE,
NO_FOLLOW, NULL, &vp)) != 0)
return (error);
/* Now make sure mntpnt and dataset are ZFS */
if (vp->v_vfsp->vfs_fstype != zfsfstype ||
(strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource),
zc->zc_name) != 0)) {
VN_RELE(vp);
return (EINVAL);
}
dzp = VTOZ(vp);
zfsvfs = dzp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
/*
* Create share dir if its missing.
*/
mutex_enter(&zfsvfs->z_lock);
if (zfsvfs->z_shares_dir == 0) {
dmu_tx_t *tx;
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, TRUE,
ZFS_SHARES_DIR);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
} else {
error = zfs_create_share_dir(zfsvfs, tx);
dmu_tx_commit(tx);
}
if (error) {
mutex_exit(&zfsvfs->z_lock);
VN_RELE(vp);
ZFS_EXIT(zfsvfs);
return (error);
}
}
mutex_exit(&zfsvfs->z_lock);
ASSERT(zfsvfs->z_shares_dir);
if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) != 0) {
VN_RELE(vp);
ZFS_EXIT(zfsvfs);
return (error);
}
switch (zc->zc_cookie) {
case ZFS_SMB_ACL_ADD:
vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
vattr.va_type = VREG;
vattr.va_mode = S_IFREG|0777;
vattr.va_uid = 0;
vattr.va_gid = 0;
vsec.vsa_mask = VSA_ACE;
vsec.vsa_aclentp = &full_access;
vsec.vsa_aclentsz = sizeof (full_access);
vsec.vsa_aclcnt = 1;
error = VOP_CREATE(ZTOV(sharedir), zc->zc_string,
&vattr, EXCL, 0, &resourcevp, kcred, 0, NULL, &vsec);
if (resourcevp)
VN_RELE(resourcevp);
break;
case ZFS_SMB_ACL_REMOVE:
error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred,
NULL, 0);
break;
case ZFS_SMB_ACL_RENAME:
if ((error = get_nvlist(zc->zc_nvlist_src,
zc->zc_nvlist_src_size, zc->zc_iflags, &nvlist)) != 0) {
VN_RELE(vp);
ZFS_EXIT(zfsvfs);
return (error);
}
if (nvlist_lookup_string(nvlist, ZFS_SMB_ACL_SRC, &src) ||
nvlist_lookup_string(nvlist, ZFS_SMB_ACL_TARGET,
&target)) {
VN_RELE(vp);
VN_RELE(ZTOV(sharedir));
ZFS_EXIT(zfsvfs);
nvlist_free(nvlist);
return (error);
}
error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target,
kcred, NULL, 0);
nvlist_free(nvlist);
break;
case ZFS_SMB_ACL_PURGE:
error = zfs_smb_acl_purge(sharedir);
break;
default:
error = EINVAL;
break;
}
VN_RELE(vp);
VN_RELE(ZTOV(sharedir));
ZFS_EXIT(zfsvfs);
return (error);
#else
return (ENOTSUP);
#endif /* HAVE_ZPL */
}
/*
* inputs:
* zc_name name of filesystem
* zc_value short name of snap
* zc_string user-supplied tag for this hold
* zc_cookie recursive flag
* zc_temphold set if hold is temporary
* zc_cleanup_fd cleanup-on-exit file descriptor for calling process
* zc_sendobj if non-zero, the objid for zc_name@zc_value
* zc_createtxg if zc_sendobj is non-zero, snap must have zc_createtxg
*
* outputs: none
*/
static int
zfs_ioc_hold(zfs_cmd_t *zc)
{
boolean_t recursive = zc->zc_cookie;
spa_t *spa;
dsl_pool_t *dp;
dsl_dataset_t *ds;
int error;
minor_t minor = 0;
if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
return (EINVAL);
if (zc->zc_sendobj == 0) {
return (dsl_dataset_user_hold(zc->zc_name, zc->zc_value,
zc->zc_string, recursive, zc->zc_temphold,
zc->zc_cleanup_fd));
}
if (recursive)
return (EINVAL);
error = spa_open(zc->zc_name, &spa, FTAG);
if (error)
return (error);
dp = spa_get_dsl(spa);
rw_enter(&dp->dp_config_rwlock, RW_READER);
error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
rw_exit(&dp->dp_config_rwlock);
spa_close(spa, FTAG);
if (error)
return (error);
/*
* Until we have a hold on this snapshot, it's possible that
* zc_sendobj could've been destroyed and reused as part
* of a later txg. Make sure we're looking at the right object.
*/
if (zc->zc_createtxg != ds->ds_phys->ds_creation_txg) {
dsl_dataset_rele(ds, FTAG);
return (ENOENT);
}
if (zc->zc_cleanup_fd != -1 && zc->zc_temphold) {
error = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor);
if (error) {
dsl_dataset_rele(ds, FTAG);
return (error);
}
}
error = dsl_dataset_user_hold_for_send(ds, zc->zc_string,
zc->zc_temphold);
if (minor != 0) {
if (error == 0) {
dsl_register_onexit_hold_cleanup(ds, zc->zc_string,
minor);
}
zfs_onexit_fd_rele(zc->zc_cleanup_fd);
}
dsl_dataset_rele(ds, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of dataset from which we're releasing a user hold
* zc_value short name of snap
* zc_string user-supplied tag for this hold
* zc_cookie recursive flag
*
* outputs: none
*/
static int
zfs_ioc_release(zfs_cmd_t *zc)
{
boolean_t recursive = zc->zc_cookie;
if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
return (EINVAL);
return (dsl_dataset_user_release(zc->zc_name, zc->zc_value,
zc->zc_string, recursive));
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* zc_nvlist_src{_size} nvlist of snapshot holds
*/
static int
zfs_ioc_get_holds(zfs_cmd_t *zc)
{
nvlist_t *nvp;
int error;
if ((error = dsl_dataset_get_holds(zc->zc_name, &nvp)) == 0) {
error = put_nvlist(zc, nvp);
nvlist_free(nvp);
}
return (error);
}
/*
* inputs:
* zc_guid flags (ZEVENT_NONBLOCK)
*
* outputs:
* zc_nvlist_dst next nvlist event
* zc_cookie dropped events since last get
* zc_cleanup_fd cleanup-on-exit file descriptor
*/
static int
zfs_ioc_events_next(zfs_cmd_t *zc)
{
zfs_zevent_t *ze;
nvlist_t *event = NULL;
minor_t minor;
uint64_t dropped = 0;
int error;
error = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze);
if (error != 0)
return (error);
do {
error = zfs_zevent_next(ze, &event, &dropped);
if (event != NULL) {
zc->zc_cookie = dropped;
error = put_nvlist(zc, event);
nvlist_free(event);
}
if (zc->zc_guid & ZEVENT_NONBLOCK)
break;
if ((error == 0) || (error != ENOENT))
break;
error = zfs_zevent_wait(ze);
if (error)
break;
} while (1);
zfs_zevent_fd_rele(zc->zc_cleanup_fd);
return (error);
}
/*
* outputs:
* zc_cookie cleared events count
*/
static int
zfs_ioc_events_clear(zfs_cmd_t *zc)
{
int count;
zfs_zevent_drain_all(&count);
zc->zc_cookie = count;
return 0;
}
/*
* pool create, destroy, and export don't log the history as part of
* zfsdev_ioctl, but rather zfs_ioc_pool_create, and zfs_ioc_pool_export
* do the logging of those commands.
*/
static zfs_ioc_vec_t zfs_ioc_vec[] = {
{ zfs_ioc_pool_create, zfs_secpolicy_config, POOL_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_pool_destroy, zfs_secpolicy_config, POOL_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_pool_import, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_NONE },
{ zfs_ioc_pool_export, zfs_secpolicy_config, POOL_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_pool_configs, zfs_secpolicy_none, NO_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_pool_stats, zfs_secpolicy_read, POOL_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_pool_tryimport, zfs_secpolicy_config, NO_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_pool_scan, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE,
POOL_CHECK_READONLY },
{ zfs_ioc_pool_upgrade, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_pool_get_history, zfs_secpolicy_config, POOL_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_vdev_add, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_vdev_remove, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_vdev_set_state, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_vdev_attach, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_vdev_detach, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_vdev_setpath, zfs_secpolicy_config, POOL_NAME, B_FALSE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_vdev_setfru, zfs_secpolicy_config, POOL_NAME, B_FALSE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_objset_stats, zfs_secpolicy_read, DATASET_NAME, B_FALSE,
POOL_CHECK_SUSPENDED },
{ zfs_ioc_objset_zplprops, zfs_secpolicy_read, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_dataset_list_next, zfs_secpolicy_read, DATASET_NAME, B_FALSE,
POOL_CHECK_SUSPENDED },
{ zfs_ioc_snapshot_list_next, zfs_secpolicy_read, DATASET_NAME, B_FALSE,
POOL_CHECK_SUSPENDED },
{ zfs_ioc_set_prop, zfs_secpolicy_none, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_create_minor, zfs_secpolicy_config, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_remove_minor, zfs_secpolicy_config, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_create, zfs_secpolicy_create, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_destroy, zfs_secpolicy_destroy, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_rename, zfs_secpolicy_rename, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_recv, zfs_secpolicy_receive, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_send, zfs_secpolicy_send, DATASET_NAME, B_TRUE,
POOL_CHECK_NONE },
{ zfs_ioc_inject_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_clear_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_inject_list_next, zfs_secpolicy_inject, NO_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_error_log, zfs_secpolicy_inject, POOL_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_clear, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_NONE },
{ zfs_ioc_promote, zfs_secpolicy_promote, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, DATASET_NAME,
B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_snapshot, zfs_secpolicy_snapshot, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_dsobj_to_dsname, zfs_secpolicy_diff, POOL_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_obj_to_path, zfs_secpolicy_diff, DATASET_NAME, B_FALSE,
POOL_CHECK_SUSPENDED },
{ zfs_ioc_pool_set_props, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_pool_get_props, zfs_secpolicy_read, POOL_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_set_fsacl, zfs_secpolicy_fsacl, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_get_fsacl, zfs_secpolicy_read, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_share, zfs_secpolicy_share, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_inherit_prop, zfs_secpolicy_inherit, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_smb_acl, zfs_secpolicy_smb_acl, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_userspace_one, zfs_secpolicy_userspace_one, DATASET_NAME,
B_FALSE, POOL_CHECK_NONE },
{ zfs_ioc_userspace_many, zfs_secpolicy_userspace_many, DATASET_NAME,
B_FALSE, POOL_CHECK_NONE },
{ zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade,
DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_hold, zfs_secpolicy_hold, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_release, zfs_secpolicy_release, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, B_FALSE,
POOL_CHECK_SUSPENDED },
{ zfs_ioc_objset_recvd_props, zfs_secpolicy_read, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_vdev_split, zfs_secpolicy_config, POOL_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_next_obj, zfs_secpolicy_read, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_diff, zfs_secpolicy_diff, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot, DATASET_NAME,
B_FALSE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_obj_to_stats, zfs_secpolicy_diff, DATASET_NAME, B_FALSE,
POOL_CHECK_SUSPENDED },
{ zfs_ioc_events_next, zfs_secpolicy_config, NO_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_events_clear, zfs_secpolicy_config, NO_NAME, B_FALSE,
POOL_CHECK_NONE },
};
int
pool_status_check(const char *name, zfs_ioc_namecheck_t type,
zfs_ioc_poolcheck_t check)
{
spa_t *spa;
int error;
ASSERT(type == POOL_NAME || type == DATASET_NAME);
if (check & POOL_CHECK_NONE)
return (0);
error = spa_open(name, &spa, FTAG);
if (error == 0) {
if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa))
error = EAGAIN;
else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa))
error = EROFS;
spa_close(spa, FTAG);
}
return (error);
}
static void *
zfsdev_get_state_impl(minor_t minor, enum zfsdev_state_type which)
{
zfsdev_state_t *zs;
ASSERT(MUTEX_HELD(&zfsdev_state_lock));
for (zs = list_head(&zfsdev_state_list); zs != NULL;
zs = list_next(&zfsdev_state_list, zs)) {
if (zs->zs_minor == minor) {
switch (which) {
case ZST_ONEXIT: return (zs->zs_onexit);
case ZST_ZEVENT: return (zs->zs_zevent);
case ZST_ALL: return (zs);
}
}
}
return NULL;
}
void *
zfsdev_get_state(minor_t minor, enum zfsdev_state_type which)
{
void *ptr;
mutex_enter(&zfsdev_state_lock);
ptr = zfsdev_get_state_impl(minor, which);
mutex_exit(&zfsdev_state_lock);
return ptr;
}
minor_t
zfsdev_getminor(struct file *filp)
{
ASSERT(filp != NULL);
ASSERT(filp->private_data != NULL);
return (((zfsdev_state_t *)filp->private_data)->zs_minor);
}
/*
* Find a free minor number. The zfsdev_state_list is expected to
* be short since it is only a list of currently open file handles.
*/
minor_t
zfsdev_minor_alloc(void)
{
static minor_t last_minor = 0;
minor_t m;
ASSERT(MUTEX_HELD(&zfsdev_state_lock));
for (m = last_minor + 1; m != last_minor; m++) {
if (m > ZFSDEV_MAX_MINOR)
m = 1;
if (zfsdev_get_state_impl(m, ZST_ALL) == NULL) {
last_minor = m;
return (m);
}
}
return (0);
}
static int
zfsdev_state_init(struct file *filp)
{
zfsdev_state_t *zs;
minor_t minor;
ASSERT(MUTEX_HELD(&zfsdev_state_lock));
minor = zfsdev_minor_alloc();
if (minor == 0)
return (ENXIO);
zs = kmem_zalloc( sizeof(zfsdev_state_t), KM_SLEEP);
if (zs == NULL)
return (ENOMEM);
zs->zs_file = filp;
zs->zs_minor = minor;
filp->private_data = zs;
zfs_onexit_init((zfs_onexit_t **)&zs->zs_onexit);
zfs_zevent_init((zfs_zevent_t **)&zs->zs_zevent);
list_insert_tail(&zfsdev_state_list, zs);
return (0);
}
static int
zfsdev_state_destroy(struct file *filp)
{
zfsdev_state_t *zs;
ASSERT(MUTEX_HELD(&zfsdev_state_lock));
ASSERT(filp->private_data != NULL);
zs = filp->private_data;
zfs_onexit_destroy(zs->zs_onexit);
zfs_zevent_destroy(zs->zs_zevent);
list_remove(&zfsdev_state_list, zs);
kmem_free(zs, sizeof(zfsdev_state_t));
return 0;
}
static int
zfsdev_open(struct inode *ino, struct file *filp)
{
int error;
mutex_enter(&zfsdev_state_lock);
error = zfsdev_state_init(filp);
mutex_exit(&zfsdev_state_lock);
return (-error);
}
static int
zfsdev_release(struct inode *ino, struct file *filp)
{
int error;
mutex_enter(&zfsdev_state_lock);
error = zfsdev_state_destroy(filp);
mutex_exit(&zfsdev_state_lock);
return (-error);
}
static long
zfsdev_ioctl(struct file *filp, unsigned cmd, unsigned long arg)
{
zfs_cmd_t *zc;
uint_t vec;
int error, rc, flag = 0;
vec = cmd - ZFS_IOC;
if (vec >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0]))
return (-EINVAL);
zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);
error = ddi_copyin((void *)arg, zc, sizeof (zfs_cmd_t), flag);
if (error != 0)
error = EFAULT;
if ((error == 0) && !(flag & FKIOCTL))
error = zfs_ioc_vec[vec].zvec_secpolicy(zc, NULL);
/*
* Ensure that all pool/dataset names are valid before we pass down to
* the lower layers.
*/
if (error == 0) {
zc->zc_name[sizeof (zc->zc_name) - 1] = '\0';
zc->zc_iflags = flag & FKIOCTL;
switch (zfs_ioc_vec[vec].zvec_namecheck) {
case POOL_NAME:
if (pool_namecheck(zc->zc_name, NULL, NULL) != 0)
error = EINVAL;
error = pool_status_check(zc->zc_name,
zfs_ioc_vec[vec].zvec_namecheck,
zfs_ioc_vec[vec].zvec_pool_check);
break;
case DATASET_NAME:
if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0)
error = EINVAL;
error = pool_status_check(zc->zc_name,
zfs_ioc_vec[vec].zvec_namecheck,
zfs_ioc_vec[vec].zvec_pool_check);
break;
case NO_NAME:
break;
}
}
if (error == 0)
error = zfs_ioc_vec[vec].zvec_func(zc);
rc = ddi_copyout(zc, (void *)arg, sizeof (zfs_cmd_t), flag);
if (error == 0) {
if (rc != 0)
error = EFAULT;
if (zfs_ioc_vec[vec].zvec_his_log)
zfs_log_history(zc);
}
kmem_free(zc, sizeof (zfs_cmd_t));
return (-error);
}
#ifdef CONFIG_COMPAT
static long
zfsdev_compat_ioctl(struct file *filp, unsigned cmd, unsigned long arg)
{
return zfsdev_ioctl(filp, cmd, arg);
}
#else
#define zfs_compat_ioctl NULL
#endif
static const struct file_operations zfsdev_fops = {
.open = zfsdev_open,
.release = zfsdev_release,
.unlocked_ioctl = zfsdev_ioctl,
.compat_ioctl = zfsdev_compat_ioctl,
.owner = THIS_MODULE,
};
static struct miscdevice zfs_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = ZFS_DRIVER,
.fops = &zfsdev_fops,
};
static int
zfs_attach(void)
{
int error;
mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zfsdev_state_list, sizeof (zfsdev_state_t),
offsetof(zfsdev_state_t, zs_next));
error = misc_register(&zfs_misc);
if (error) {
printk(KERN_INFO "ZFS: misc_register() failed %d\n", error);
return (error);
}
return (0);
}
static void
zfs_detach(void)
{
int error;
error = misc_deregister(&zfs_misc);
if (error)
printk(KERN_INFO "ZFS: misc_deregister() failed %d\n", error);
mutex_destroy(&zfsdev_state_lock);
list_destroy(&zfsdev_state_list);
}
#ifdef HAVE_ZPL
uint_t zfs_fsyncer_key;
extern uint_t rrw_tsd_key;
#endif
#ifdef DEBUG
#define ZFS_DEBUG_STR " (DEBUG mode)"
#else
#define ZFS_DEBUG_STR ""
#endif
int
_init(void)
{
int error;
spa_init(FREAD | FWRITE);
zfs_init();
if ((error = zvol_init()) != 0)
goto out1;
if ((error = zfs_attach()) != 0)
goto out2;
#ifdef HAVE_ZPL
tsd_create(&zfs_fsyncer_key, NULL);
tsd_create(&rrw_tsd_key, NULL);
mutex_init(&zfs_share_lock, NULL, MUTEX_DEFAULT, NULL);
#endif /* HAVE_ZPL */
printk(KERN_NOTICE "ZFS: Loaded ZFS Filesystem v%s%s\n",
ZFS_META_VERSION, ZFS_DEBUG_STR);
return (0);
out2:
(void) zvol_fini();
out1:
zfs_fini();
spa_fini();
printk(KERN_NOTICE "ZFS: Failed to Load ZFS Filesystem v%s%s"
", rc = %d\n", ZFS_META_VERSION, ZFS_DEBUG_STR, error);
return (error);
}
int
_fini(void)
{
zfs_detach();
zvol_fini();
zfs_fini();
spa_fini();
#ifdef HAVE_ZPL
if (zfs_nfsshare_inited)
(void) ddi_modclose(nfs_mod);
if (zfs_smbshare_inited)
(void) ddi_modclose(smbsrv_mod);
if (zfs_nfsshare_inited || zfs_smbshare_inited)
(void) ddi_modclose(sharefs_mod);
mutex_destroy(&zfs_share_lock);
tsd_destroy(&zfs_fsyncer_key);
#endif /* HAVE_ZPL */
printk(KERN_NOTICE "ZFS: Unloaded ZFS Filesystem v%s%s\n",
ZFS_META_VERSION, ZFS_DEBUG_STR);
return (0);
}
#ifdef HAVE_SPL
spl_module_init(_init);
spl_module_exit(_fini);
MODULE_DESCRIPTION("ZFS");
MODULE_AUTHOR(ZFS_META_AUTHOR);
MODULE_LICENSE(ZFS_META_LICENSE);
#endif /* HAVE_SPL */