7029da5c36
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are still not MPSAFE (or already are but aren’t properly marked). Use it in preparation for a general review of all nodes. This is non-functional change that adds annotations to SYSCTL_NODE and SYSCTL_PROC nodes using one of the soon-to-be-required flags. Mark all obvious cases as MPSAFE. All entries that haven't been marked as MPSAFE before are by default marked as NEEDGIANT Approved by: kib (mentor, blanket) Commented by: kib, gallatin, melifaro Differential Revision: https://reviews.freebsd.org/D23718
589 lines
14 KiB
C
589 lines
14 KiB
C
/*-
|
|
* Copyright (c) 2004 Marcel Moolenaar
|
|
* Copyright (c) 2001 Doug Rabson
|
|
* Copyright (c) 2016, 2018 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by Konstantin Belousov
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/efi.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/clock.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <machine/fpu.h>
|
|
#include <machine/efi.h>
|
|
#include <machine/metadata.h>
|
|
#include <machine/vmparam.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
static struct efi_systbl *efi_systbl;
|
|
static eventhandler_tag efi_shutdown_tag;
|
|
/*
|
|
* The following pointers point to tables in the EFI runtime service data pages.
|
|
* Care should be taken to make sure that we've properly entered the EFI runtime
|
|
* environment (efi_enter()) before dereferencing them.
|
|
*/
|
|
static struct efi_cfgtbl *efi_cfgtbl;
|
|
static struct efi_rt *efi_runtime;
|
|
|
|
static int efi_status2err[25] = {
|
|
0, /* EFI_SUCCESS */
|
|
ENOEXEC, /* EFI_LOAD_ERROR */
|
|
EINVAL, /* EFI_INVALID_PARAMETER */
|
|
ENOSYS, /* EFI_UNSUPPORTED */
|
|
EMSGSIZE, /* EFI_BAD_BUFFER_SIZE */
|
|
EOVERFLOW, /* EFI_BUFFER_TOO_SMALL */
|
|
EBUSY, /* EFI_NOT_READY */
|
|
EIO, /* EFI_DEVICE_ERROR */
|
|
EROFS, /* EFI_WRITE_PROTECTED */
|
|
EAGAIN, /* EFI_OUT_OF_RESOURCES */
|
|
EIO, /* EFI_VOLUME_CORRUPTED */
|
|
ENOSPC, /* EFI_VOLUME_FULL */
|
|
ENXIO, /* EFI_NO_MEDIA */
|
|
ESTALE, /* EFI_MEDIA_CHANGED */
|
|
ENOENT, /* EFI_NOT_FOUND */
|
|
EACCES, /* EFI_ACCESS_DENIED */
|
|
ETIMEDOUT, /* EFI_NO_RESPONSE */
|
|
EADDRNOTAVAIL, /* EFI_NO_MAPPING */
|
|
ETIMEDOUT, /* EFI_TIMEOUT */
|
|
EDOOFUS, /* EFI_NOT_STARTED */
|
|
EALREADY, /* EFI_ALREADY_STARTED */
|
|
ECANCELED, /* EFI_ABORTED */
|
|
EPROTO, /* EFI_ICMP_ERROR */
|
|
EPROTO, /* EFI_TFTP_ERROR */
|
|
EPROTO /* EFI_PROTOCOL_ERROR */
|
|
};
|
|
|
|
static int efi_enter(void);
|
|
static void efi_leave(void);
|
|
|
|
static int
|
|
efi_status_to_errno(efi_status status)
|
|
{
|
|
u_long code;
|
|
|
|
code = status & 0x3ffffffffffffffful;
|
|
return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
|
|
}
|
|
|
|
static struct mtx efi_lock;
|
|
static SYSCTL_NODE(_hw, OID_AUTO, efi, CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL,
|
|
"EFI");
|
|
static bool efi_poweroff = true;
|
|
SYSCTL_BOOL(_hw_efi, OID_AUTO, poweroff, CTLFLAG_RWTUN, &efi_poweroff, 0,
|
|
"If true, use EFI runtime services to power off in preference to ACPI");
|
|
|
|
static bool
|
|
efi_is_in_map(struct efi_md *map, int ndesc, int descsz, vm_offset_t addr)
|
|
{
|
|
struct efi_md *p;
|
|
int i;
|
|
|
|
for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
|
|
descsz)) {
|
|
if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
|
|
continue;
|
|
|
|
if (addr >= (uintptr_t)p->md_virt &&
|
|
addr < (uintptr_t)p->md_virt + p->md_pages * PAGE_SIZE)
|
|
return (true);
|
|
}
|
|
|
|
return (false);
|
|
}
|
|
|
|
static void
|
|
efi_shutdown_final(void *dummy __unused, int howto)
|
|
{
|
|
|
|
/*
|
|
* On some systems, ACPI S5 is missing or does not function properly.
|
|
* When present, shutdown via EFI Runtime Services instead, unless
|
|
* disabled.
|
|
*/
|
|
if ((howto & RB_POWEROFF) != 0 && efi_poweroff)
|
|
(void)efi_reset_system(EFI_RESET_SHUTDOWN);
|
|
}
|
|
|
|
static int
|
|
efi_init(void)
|
|
{
|
|
struct efi_map_header *efihdr;
|
|
struct efi_md *map;
|
|
struct efi_rt *rtdm;
|
|
caddr_t kmdp;
|
|
size_t efisz;
|
|
int ndesc, rt_disabled;
|
|
|
|
rt_disabled = 0;
|
|
TUNABLE_INT_FETCH("efi.rt.disabled", &rt_disabled);
|
|
if (rt_disabled == 1)
|
|
return (0);
|
|
mtx_init(&efi_lock, "efi", NULL, MTX_DEF);
|
|
|
|
if (efi_systbl_phys == 0) {
|
|
if (bootverbose)
|
|
printf("EFI systbl not available\n");
|
|
return (0);
|
|
}
|
|
|
|
efi_systbl = (struct efi_systbl *)efi_phys_to_kva(efi_systbl_phys);
|
|
if (efi_systbl == NULL || efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
|
|
efi_systbl = NULL;
|
|
if (bootverbose)
|
|
printf("EFI systbl signature invalid\n");
|
|
return (0);
|
|
}
|
|
efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
|
|
(struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
|
|
if (efi_cfgtbl == NULL) {
|
|
if (bootverbose)
|
|
printf("EFI config table is not present\n");
|
|
}
|
|
|
|
kmdp = preload_search_by_type("elf kernel");
|
|
if (kmdp == NULL)
|
|
kmdp = preload_search_by_type("elf64 kernel");
|
|
efihdr = (struct efi_map_header *)preload_search_info(kmdp,
|
|
MODINFO_METADATA | MODINFOMD_EFI_MAP);
|
|
if (efihdr == NULL) {
|
|
if (bootverbose)
|
|
printf("EFI map is not present\n");
|
|
return (0);
|
|
}
|
|
efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
|
|
map = (struct efi_md *)((uint8_t *)efihdr + efisz);
|
|
if (efihdr->descriptor_size == 0)
|
|
return (ENOMEM);
|
|
|
|
ndesc = efihdr->memory_size / efihdr->descriptor_size;
|
|
if (!efi_create_1t1_map(map, ndesc, efihdr->descriptor_size)) {
|
|
if (bootverbose)
|
|
printf("EFI cannot create runtime map\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
|
|
(struct efi_rt *)efi_systbl->st_rt;
|
|
if (efi_runtime == NULL) {
|
|
if (bootverbose)
|
|
printf("EFI runtime services table is not present\n");
|
|
efi_destroy_1t1_map();
|
|
return (ENXIO);
|
|
}
|
|
|
|
#if defined(__aarch64__) || defined(__amd64__)
|
|
/*
|
|
* Some UEFI implementations have multiple implementations of the
|
|
* RS->GetTime function. They switch from one we can only use early
|
|
* in the boot process to one valid as a RunTime service only when we
|
|
* call RS->SetVirtualAddressMap. As this is not always the case, e.g.
|
|
* with an old loader.efi, check if the RS->GetTime function is within
|
|
* the EFI map, and fail to attach if not.
|
|
*/
|
|
rtdm = (struct efi_rt *)efi_phys_to_kva((uintptr_t)efi_runtime);
|
|
if (rtdm == NULL || !efi_is_in_map(map, ndesc, efihdr->descriptor_size,
|
|
(vm_offset_t)rtdm->rt_gettime)) {
|
|
if (bootverbose)
|
|
printf(
|
|
"EFI runtime services table has an invalid pointer\n");
|
|
efi_runtime = NULL;
|
|
efi_destroy_1t1_map();
|
|
return (ENXIO);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We use SHUTDOWN_PRI_LAST - 1 to trigger after IPMI, but before ACPI.
|
|
*/
|
|
efi_shutdown_tag = EVENTHANDLER_REGISTER(shutdown_final,
|
|
efi_shutdown_final, NULL, SHUTDOWN_PRI_LAST - 1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
efi_uninit(void)
|
|
{
|
|
|
|
/* Most likely disabled by tunable */
|
|
if (efi_runtime == NULL)
|
|
return;
|
|
if (efi_shutdown_tag != NULL)
|
|
EVENTHANDLER_DEREGISTER(shutdown_final, efi_shutdown_tag);
|
|
efi_destroy_1t1_map();
|
|
|
|
efi_systbl = NULL;
|
|
efi_cfgtbl = NULL;
|
|
efi_runtime = NULL;
|
|
|
|
mtx_destroy(&efi_lock);
|
|
}
|
|
|
|
int
|
|
efi_rt_ok(void)
|
|
{
|
|
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
efi_enter(void)
|
|
{
|
|
struct thread *td;
|
|
pmap_t curpmap;
|
|
int error;
|
|
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
td = curthread;
|
|
curpmap = &td->td_proc->p_vmspace->vm_pmap;
|
|
PMAP_LOCK(curpmap);
|
|
mtx_lock(&efi_lock);
|
|
fpu_kern_enter(td, NULL, FPU_KERN_NOCTX);
|
|
error = efi_arch_enter();
|
|
if (error != 0) {
|
|
fpu_kern_leave(td, NULL);
|
|
mtx_unlock(&efi_lock);
|
|
PMAP_UNLOCK(curpmap);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
efi_leave(void)
|
|
{
|
|
struct thread *td;
|
|
pmap_t curpmap;
|
|
|
|
efi_arch_leave();
|
|
|
|
curpmap = &curproc->p_vmspace->vm_pmap;
|
|
td = curthread;
|
|
fpu_kern_leave(td, NULL);
|
|
mtx_unlock(&efi_lock);
|
|
PMAP_UNLOCK(curpmap);
|
|
}
|
|
|
|
int
|
|
efi_get_table(struct uuid *uuid, void **ptr)
|
|
{
|
|
struct efi_cfgtbl *ct;
|
|
u_long count;
|
|
|
|
if (efi_cfgtbl == NULL || efi_systbl == NULL)
|
|
return (ENXIO);
|
|
count = efi_systbl->st_entries;
|
|
ct = efi_cfgtbl;
|
|
while (count--) {
|
|
if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
|
|
*ptr = (void *)efi_phys_to_kva(ct->ct_data);
|
|
return (0);
|
|
}
|
|
ct++;
|
|
}
|
|
return (ENOENT);
|
|
}
|
|
|
|
static int efi_rt_handle_faults = EFI_RT_HANDLE_FAULTS_DEFAULT;
|
|
SYSCTL_INT(_machdep, OID_AUTO, efi_rt_handle_faults, CTLFLAG_RWTUN,
|
|
&efi_rt_handle_faults, 0,
|
|
"Call EFI RT methods with fault handler wrapper around");
|
|
|
|
static int
|
|
efi_rt_arch_call_nofault(struct efirt_callinfo *ec)
|
|
{
|
|
|
|
switch (ec->ec_argcnt) {
|
|
case 0:
|
|
ec->ec_efi_status = ((register_t (*)(void))ec->ec_fptr)();
|
|
break;
|
|
case 1:
|
|
ec->ec_efi_status = ((register_t (*)(register_t))ec->ec_fptr)
|
|
(ec->ec_arg1);
|
|
break;
|
|
case 2:
|
|
ec->ec_efi_status = ((register_t (*)(register_t, register_t))
|
|
ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2);
|
|
break;
|
|
case 3:
|
|
ec->ec_efi_status = ((register_t (*)(register_t, register_t,
|
|
register_t))ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2,
|
|
ec->ec_arg3);
|
|
break;
|
|
case 4:
|
|
ec->ec_efi_status = ((register_t (*)(register_t, register_t,
|
|
register_t, register_t))ec->ec_fptr)(ec->ec_arg1,
|
|
ec->ec_arg2, ec->ec_arg3, ec->ec_arg4);
|
|
break;
|
|
case 5:
|
|
ec->ec_efi_status = ((register_t (*)(register_t, register_t,
|
|
register_t, register_t, register_t))ec->ec_fptr)(
|
|
ec->ec_arg1, ec->ec_arg2, ec->ec_arg3, ec->ec_arg4,
|
|
ec->ec_arg5);
|
|
break;
|
|
default:
|
|
panic("efi_rt_arch_call: %d args", (int)ec->ec_argcnt);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
efi_call(struct efirt_callinfo *ecp)
|
|
{
|
|
int error;
|
|
|
|
error = efi_enter();
|
|
if (error != 0)
|
|
return (error);
|
|
error = efi_rt_handle_faults ? efi_rt_arch_call(ecp) :
|
|
efi_rt_arch_call_nofault(ecp);
|
|
efi_leave();
|
|
if (error == 0)
|
|
error = efi_status_to_errno(ecp->ec_efi_status);
|
|
else if (bootverbose)
|
|
printf("EFI %s call faulted, error %d\n", ecp->ec_name, error);
|
|
return (error);
|
|
}
|
|
|
|
#define EFI_RT_METHOD_PA(method) \
|
|
((uintptr_t)((struct efi_rt *)efi_phys_to_kva((uintptr_t) \
|
|
efi_runtime))->method)
|
|
|
|
static int
|
|
efi_get_time_locked(struct efi_tm *tm, struct efi_tmcap *tmcap)
|
|
{
|
|
struct efirt_callinfo ec;
|
|
|
|
EFI_TIME_OWNED();
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
bzero(&ec, sizeof(ec));
|
|
ec.ec_name = "rt_gettime";
|
|
ec.ec_argcnt = 2;
|
|
ec.ec_arg1 = (uintptr_t)tm;
|
|
ec.ec_arg2 = (uintptr_t)tmcap;
|
|
ec.ec_fptr = EFI_RT_METHOD_PA(rt_gettime);
|
|
return (efi_call(&ec));
|
|
}
|
|
|
|
int
|
|
efi_get_time(struct efi_tm *tm)
|
|
{
|
|
struct efi_tmcap dummy;
|
|
int error;
|
|
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
EFI_TIME_LOCK();
|
|
/*
|
|
* UEFI spec states that the Capabilities argument to GetTime is
|
|
* optional, but some UEFI implementations choke when passed a NULL
|
|
* pointer. Pass a dummy efi_tmcap, even though we won't use it,
|
|
* to workaround such implementations.
|
|
*/
|
|
error = efi_get_time_locked(tm, &dummy);
|
|
EFI_TIME_UNLOCK();
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
efi_get_time_capabilities(struct efi_tmcap *tmcap)
|
|
{
|
|
struct efi_tm dummy;
|
|
int error;
|
|
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
EFI_TIME_LOCK();
|
|
error = efi_get_time_locked(&dummy, tmcap);
|
|
EFI_TIME_UNLOCK();
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
efi_reset_system(enum efi_reset type)
|
|
{
|
|
struct efirt_callinfo ec;
|
|
|
|
switch (type) {
|
|
case EFI_RESET_COLD:
|
|
case EFI_RESET_WARM:
|
|
case EFI_RESET_SHUTDOWN:
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
bzero(&ec, sizeof(ec));
|
|
ec.ec_name = "rt_reset";
|
|
ec.ec_argcnt = 4;
|
|
ec.ec_arg1 = (uintptr_t)type;
|
|
ec.ec_arg2 = (uintptr_t)0;
|
|
ec.ec_arg3 = (uintptr_t)0;
|
|
ec.ec_arg4 = (uintptr_t)NULL;
|
|
ec.ec_fptr = EFI_RT_METHOD_PA(rt_reset);
|
|
return (efi_call(&ec));
|
|
}
|
|
|
|
static int
|
|
efi_set_time_locked(struct efi_tm *tm)
|
|
{
|
|
struct efirt_callinfo ec;
|
|
|
|
EFI_TIME_OWNED();
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
bzero(&ec, sizeof(ec));
|
|
ec.ec_name = "rt_settime";
|
|
ec.ec_argcnt = 1;
|
|
ec.ec_arg1 = (uintptr_t)tm;
|
|
ec.ec_fptr = EFI_RT_METHOD_PA(rt_settime);
|
|
return (efi_call(&ec));
|
|
}
|
|
|
|
int
|
|
efi_set_time(struct efi_tm *tm)
|
|
{
|
|
int error;
|
|
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
EFI_TIME_LOCK();
|
|
error = efi_set_time_locked(tm);
|
|
EFI_TIME_UNLOCK();
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
efi_var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
|
|
size_t *datasize, void *data)
|
|
{
|
|
struct efirt_callinfo ec;
|
|
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
bzero(&ec, sizeof(ec));
|
|
ec.ec_argcnt = 5;
|
|
ec.ec_name = "rt_getvar";
|
|
ec.ec_arg1 = (uintptr_t)name;
|
|
ec.ec_arg2 = (uintptr_t)vendor;
|
|
ec.ec_arg3 = (uintptr_t)attrib;
|
|
ec.ec_arg4 = (uintptr_t)datasize;
|
|
ec.ec_arg5 = (uintptr_t)data;
|
|
ec.ec_fptr = EFI_RT_METHOD_PA(rt_getvar);
|
|
return (efi_call(&ec));
|
|
}
|
|
|
|
int
|
|
efi_var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
|
|
{
|
|
struct efirt_callinfo ec;
|
|
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
bzero(&ec, sizeof(ec));
|
|
ec.ec_argcnt = 3;
|
|
ec.ec_name = "rt_scanvar";
|
|
ec.ec_arg1 = (uintptr_t)namesize;
|
|
ec.ec_arg2 = (uintptr_t)name;
|
|
ec.ec_arg3 = (uintptr_t)vendor;
|
|
ec.ec_fptr = EFI_RT_METHOD_PA(rt_scanvar);
|
|
return (efi_call(&ec));
|
|
}
|
|
|
|
int
|
|
efi_var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
|
|
size_t datasize, void *data)
|
|
{
|
|
struct efirt_callinfo ec;
|
|
|
|
if (efi_runtime == NULL)
|
|
return (ENXIO);
|
|
bzero(&ec, sizeof(ec));
|
|
ec.ec_argcnt = 5;
|
|
ec.ec_name = "rt_setvar";
|
|
ec.ec_arg1 = (uintptr_t)name;
|
|
ec.ec_arg2 = (uintptr_t)vendor;
|
|
ec.ec_arg3 = (uintptr_t)attrib;
|
|
ec.ec_arg4 = (uintptr_t)datasize;
|
|
ec.ec_arg5 = (uintptr_t)data;
|
|
ec.ec_fptr = EFI_RT_METHOD_PA(rt_setvar);
|
|
return (efi_call(&ec));
|
|
}
|
|
|
|
static int
|
|
efirt_modevents(module_t m, int event, void *arg __unused)
|
|
{
|
|
|
|
switch (event) {
|
|
case MOD_LOAD:
|
|
return (efi_init());
|
|
|
|
case MOD_UNLOAD:
|
|
efi_uninit();
|
|
return (0);
|
|
|
|
case MOD_SHUTDOWN:
|
|
return (0);
|
|
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
}
|
|
|
|
static moduledata_t efirt_moddata = {
|
|
.name = "efirt",
|
|
.evhand = efirt_modevents,
|
|
.priv = NULL,
|
|
};
|
|
/* After fpuinitstate, before efidev */
|
|
DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_DRIVERS, SI_ORDER_SECOND);
|
|
MODULE_VERSION(efirt, 1);
|