freebsd-nq/usr.sbin/bhyve/task_switch.c
Enji Cooper 7e12dfe5ef Fix CTASSERT issue in a more clean way
- Replace all CTASSERT macro instances with static_assert's.
- Remove the WRAPPED_CTASSERT macro; it's now an unnecessary obfuscation.
- Localize all static_assert's to the structures being tested.
- Sort some headers per-style(9).

Approved by: re (hrs)
Differential Revision: https://reviews.freebsd.org/D7130
MFC after: 1 week
X-MFC with: r302364
Reviewed by: ed, grehan (maintainer)
Submitted by: ed
Sponsored by: EMC / Isilon Storage Division
2016-07-06 16:02:15 +00:00

940 lines
26 KiB
C

/*-
* Copyright (c) 2014 Neel Natu <neel@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/_iovec.h>
#include <sys/mman.h>
#include <x86/psl.h>
#include <x86/segments.h>
#include <x86/specialreg.h>
#include <machine/vmm.h>
#include <machine/vmm_instruction_emul.h>
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <vmmapi.h>
#include "bhyverun.h"
/*
* Using 'struct i386tss' is tempting but causes myriad sign extension
* issues because all of its fields are defined as signed integers.
*/
struct tss32 {
uint16_t tss_link;
uint16_t rsvd1;
uint32_t tss_esp0;
uint16_t tss_ss0;
uint16_t rsvd2;
uint32_t tss_esp1;
uint16_t tss_ss1;
uint16_t rsvd3;
uint32_t tss_esp2;
uint16_t tss_ss2;
uint16_t rsvd4;
uint32_t tss_cr3;
uint32_t tss_eip;
uint32_t tss_eflags;
uint32_t tss_eax;
uint32_t tss_ecx;
uint32_t tss_edx;
uint32_t tss_ebx;
uint32_t tss_esp;
uint32_t tss_ebp;
uint32_t tss_esi;
uint32_t tss_edi;
uint16_t tss_es;
uint16_t rsvd5;
uint16_t tss_cs;
uint16_t rsvd6;
uint16_t tss_ss;
uint16_t rsvd7;
uint16_t tss_ds;
uint16_t rsvd8;
uint16_t tss_fs;
uint16_t rsvd9;
uint16_t tss_gs;
uint16_t rsvd10;
uint16_t tss_ldt;
uint16_t rsvd11;
uint16_t tss_trap;
uint16_t tss_iomap;
};
static_assert(sizeof(struct tss32) == 104, "compile-time assertion failed");
#define SEL_START(sel) (((sel) & ~0x7))
#define SEL_LIMIT(sel) (((sel) | 0x7))
#define TSS_BUSY(type) (((type) & 0x2) != 0)
static uint64_t
GETREG(struct vmctx *ctx, int vcpu, int reg)
{
uint64_t val;
int error;
error = vm_get_register(ctx, vcpu, reg, &val);
assert(error == 0);
return (val);
}
static void
SETREG(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
{
int error;
error = vm_set_register(ctx, vcpu, reg, val);
assert(error == 0);
}
static struct seg_desc
usd_to_seg_desc(struct user_segment_descriptor *usd)
{
struct seg_desc seg_desc;
seg_desc.base = (u_int)USD_GETBASE(usd);
if (usd->sd_gran)
seg_desc.limit = (u_int)(USD_GETLIMIT(usd) << 12) | 0xfff;
else
seg_desc.limit = (u_int)USD_GETLIMIT(usd);
seg_desc.access = usd->sd_type | usd->sd_dpl << 5 | usd->sd_p << 7;
seg_desc.access |= usd->sd_xx << 12;
seg_desc.access |= usd->sd_def32 << 14;
seg_desc.access |= usd->sd_gran << 15;
return (seg_desc);
}
/*
* Inject an exception with an error code that is a segment selector.
* The format of the error code is described in section 6.13, "Error Code",
* Intel SDM volume 3.
*
* Bit 0 (EXT) denotes whether the exception occurred during delivery
* of an external event like an interrupt.
*
* Bit 1 (IDT) indicates whether the selector points to a gate descriptor
* in the IDT.
*
* Bit 2(GDT/LDT) has the usual interpretation of Table Indicator (TI).
*/
static void
sel_exception(struct vmctx *ctx, int vcpu, int vector, uint16_t sel, int ext)
{
/*
* Bit 2 from the selector is retained as-is in the error code.
*
* Bit 1 can be safely cleared because none of the selectors
* encountered during task switch emulation refer to a task
* gate in the IDT.
*
* Bit 0 is set depending on the value of 'ext'.
*/
sel &= ~0x3;
if (ext)
sel |= 0x1;
vm_inject_fault(ctx, vcpu, vector, 1, sel);
}
/*
* Return 0 if the selector 'sel' in within the limits of the GDT/LDT
* and non-zero otherwise.
*/
static int
desc_table_limit_check(struct vmctx *ctx, int vcpu, uint16_t sel)
{
uint64_t base;
uint32_t limit, access;
int error, reg;
reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR;
error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access);
assert(error == 0);
if (reg == VM_REG_GUEST_LDTR) {
if (SEG_DESC_UNUSABLE(access) || !SEG_DESC_PRESENT(access))
return (-1);
}
if (limit < SEL_LIMIT(sel))
return (-1);
else
return (0);
}
/*
* Read/write the segment descriptor 'desc' into the GDT/LDT slot referenced
* by the selector 'sel'.
*
* Returns 0 on success.
* Returns 1 if an exception was injected into the guest.
* Returns -1 otherwise.
*/
static int
desc_table_rw(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
uint16_t sel, struct user_segment_descriptor *desc, bool doread,
int *faultptr)
{
struct iovec iov[2];
uint64_t base;
uint32_t limit, access;
int error, reg;
reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR;
error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access);
assert(error == 0);
assert(limit >= SEL_LIMIT(sel));
error = vm_copy_setup(ctx, vcpu, paging, base + SEL_START(sel),
sizeof(*desc), doread ? PROT_READ : PROT_WRITE, iov, nitems(iov),
faultptr);
if (error || *faultptr)
return (error);
if (doread)
vm_copyin(ctx, vcpu, iov, desc, sizeof(*desc));
else
vm_copyout(ctx, vcpu, desc, iov, sizeof(*desc));
return (0);
}
static int
desc_table_read(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
uint16_t sel, struct user_segment_descriptor *desc, int *faultptr)
{
return (desc_table_rw(ctx, vcpu, paging, sel, desc, true, faultptr));
}
static int
desc_table_write(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
uint16_t sel, struct user_segment_descriptor *desc, int *faultptr)
{
return (desc_table_rw(ctx, vcpu, paging, sel, desc, false, faultptr));
}
/*
* Read the TSS descriptor referenced by 'sel' into 'desc'.
*
* Returns 0 on success.
* Returns 1 if an exception was injected into the guest.
* Returns -1 otherwise.
*/
static int
read_tss_descriptor(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
uint16_t sel, struct user_segment_descriptor *desc, int *faultptr)
{
struct vm_guest_paging sup_paging;
int error;
assert(!ISLDT(sel));
assert(IDXSEL(sel) != 0);
/* Fetch the new TSS descriptor */
if (desc_table_limit_check(ctx, vcpu, sel)) {
if (ts->reason == TSR_IRET)
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
else
sel_exception(ctx, vcpu, IDT_GP, sel, ts->ext);
return (1);
}
sup_paging = ts->paging;
sup_paging.cpl = 0; /* implicit supervisor mode */
error = desc_table_read(ctx, vcpu, &sup_paging, sel, desc, faultptr);
return (error);
}
static bool
code_desc(int sd_type)
{
/* code descriptor */
return ((sd_type & 0x18) == 0x18);
}
static bool
stack_desc(int sd_type)
{
/* writable data descriptor */
return ((sd_type & 0x1A) == 0x12);
}
static bool
data_desc(int sd_type)
{
/* data descriptor or a readable code descriptor */
return ((sd_type & 0x18) == 0x10 || (sd_type & 0x1A) == 0x1A);
}
static bool
ldt_desc(int sd_type)
{
return (sd_type == SDT_SYSLDT);
}
/*
* Validate the descriptor 'seg_desc' associated with 'segment'.
*/
static int
validate_seg_desc(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
int segment, struct seg_desc *seg_desc, int *faultptr)
{
struct vm_guest_paging sup_paging;
struct user_segment_descriptor usd;
int error, idtvec;
int cpl, dpl, rpl;
uint16_t sel, cs;
bool ldtseg, codeseg, stackseg, dataseg, conforming;
ldtseg = codeseg = stackseg = dataseg = false;
switch (segment) {
case VM_REG_GUEST_LDTR:
ldtseg = true;
break;
case VM_REG_GUEST_CS:
codeseg = true;
break;
case VM_REG_GUEST_SS:
stackseg = true;
break;
case VM_REG_GUEST_DS:
case VM_REG_GUEST_ES:
case VM_REG_GUEST_FS:
case VM_REG_GUEST_GS:
dataseg = true;
break;
default:
assert(0);
}
/* Get the segment selector */
sel = GETREG(ctx, vcpu, segment);
/* LDT selector must point into the GDT */
if (ldtseg && ISLDT(sel)) {
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
return (1);
}
/* Descriptor table limit check */
if (desc_table_limit_check(ctx, vcpu, sel)) {
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
return (1);
}
/* NULL selector */
if (IDXSEL(sel) == 0) {
/* Code and stack segment selectors cannot be NULL */
if (codeseg || stackseg) {
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
return (1);
}
seg_desc->base = 0;
seg_desc->limit = 0;
seg_desc->access = 0x10000; /* unusable */
return (0);
}
/* Read the descriptor from the GDT/LDT */
sup_paging = ts->paging;
sup_paging.cpl = 0; /* implicit supervisor mode */
error = desc_table_read(ctx, vcpu, &sup_paging, sel, &usd, faultptr);
if (error || *faultptr)
return (error);
/* Verify that the descriptor type is compatible with the segment */
if ((ldtseg && !ldt_desc(usd.sd_type)) ||
(codeseg && !code_desc(usd.sd_type)) ||
(dataseg && !data_desc(usd.sd_type)) ||
(stackseg && !stack_desc(usd.sd_type))) {
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
return (1);
}
/* Segment must be marked present */
if (!usd.sd_p) {
if (ldtseg)
idtvec = IDT_TS;
else if (stackseg)
idtvec = IDT_SS;
else
idtvec = IDT_NP;
sel_exception(ctx, vcpu, idtvec, sel, ts->ext);
return (1);
}
cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS);
cpl = cs & SEL_RPL_MASK;
rpl = sel & SEL_RPL_MASK;
dpl = usd.sd_dpl;
if (stackseg && (rpl != cpl || dpl != cpl)) {
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
return (1);
}
if (codeseg) {
conforming = (usd.sd_type & 0x4) ? true : false;
if ((conforming && (cpl < dpl)) ||
(!conforming && (cpl != dpl))) {
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
return (1);
}
}
if (dataseg) {
/*
* A data segment is always non-conforming except when it's
* descriptor is a readable, conforming code segment.
*/
if (code_desc(usd.sd_type) && (usd.sd_type & 0x4) != 0)
conforming = true;
else
conforming = false;
if (!conforming && (rpl > dpl || cpl > dpl)) {
sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
return (1);
}
}
*seg_desc = usd_to_seg_desc(&usd);
return (0);
}
static void
tss32_save(struct vmctx *ctx, int vcpu, struct vm_task_switch *task_switch,
uint32_t eip, struct tss32 *tss, struct iovec *iov)
{
/* General purpose registers */
tss->tss_eax = GETREG(ctx, vcpu, VM_REG_GUEST_RAX);
tss->tss_ecx = GETREG(ctx, vcpu, VM_REG_GUEST_RCX);
tss->tss_edx = GETREG(ctx, vcpu, VM_REG_GUEST_RDX);
tss->tss_ebx = GETREG(ctx, vcpu, VM_REG_GUEST_RBX);
tss->tss_esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP);
tss->tss_ebp = GETREG(ctx, vcpu, VM_REG_GUEST_RBP);
tss->tss_esi = GETREG(ctx, vcpu, VM_REG_GUEST_RSI);
tss->tss_edi = GETREG(ctx, vcpu, VM_REG_GUEST_RDI);
/* Segment selectors */
tss->tss_es = GETREG(ctx, vcpu, VM_REG_GUEST_ES);
tss->tss_cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS);
tss->tss_ss = GETREG(ctx, vcpu, VM_REG_GUEST_SS);
tss->tss_ds = GETREG(ctx, vcpu, VM_REG_GUEST_DS);
tss->tss_fs = GETREG(ctx, vcpu, VM_REG_GUEST_FS);
tss->tss_gs = GETREG(ctx, vcpu, VM_REG_GUEST_GS);
/* eflags and eip */
tss->tss_eflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS);
if (task_switch->reason == TSR_IRET)
tss->tss_eflags &= ~PSL_NT;
tss->tss_eip = eip;
/* Copy updated old TSS into guest memory */
vm_copyout(ctx, vcpu, tss, iov, sizeof(struct tss32));
}
static void
update_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *sd)
{
int error;
error = vm_set_desc(ctx, vcpu, reg, sd->base, sd->limit, sd->access);
assert(error == 0);
}
/*
* Update the vcpu registers to reflect the state of the new task.
*/
static int
tss32_restore(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
uint16_t ot_sel, struct tss32 *tss, struct iovec *iov, int *faultptr)
{
struct seg_desc seg_desc, seg_desc2;
uint64_t *pdpte, maxphyaddr, reserved;
uint32_t eflags;
int error, i;
bool nested;
nested = false;
if (ts->reason != TSR_IRET && ts->reason != TSR_JMP) {
tss->tss_link = ot_sel;
nested = true;
}
eflags = tss->tss_eflags;
if (nested)
eflags |= PSL_NT;
/* LDTR */
SETREG(ctx, vcpu, VM_REG_GUEST_LDTR, tss->tss_ldt);
/* PBDR */
if (ts->paging.paging_mode != PAGING_MODE_FLAT) {
if (ts->paging.paging_mode == PAGING_MODE_PAE) {
/*
* XXX Assuming 36-bit MAXPHYADDR.
*/
maxphyaddr = (1UL << 36) - 1;
pdpte = paddr_guest2host(ctx, tss->tss_cr3 & ~0x1f, 32);
for (i = 0; i < 4; i++) {
/* Check reserved bits if the PDPTE is valid */
if (!(pdpte[i] & 0x1))
continue;
/*
* Bits 2:1, 8:5 and bits above the processor's
* maximum physical address are reserved.
*/
reserved = ~maxphyaddr | 0x1E6;
if (pdpte[i] & reserved) {
vm_inject_gp(ctx, vcpu);
return (1);
}
}
SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE0, pdpte[0]);
SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE1, pdpte[1]);
SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE2, pdpte[2]);
SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE3, pdpte[3]);
}
SETREG(ctx, vcpu, VM_REG_GUEST_CR3, tss->tss_cr3);
ts->paging.cr3 = tss->tss_cr3;
}
/* eflags and eip */
SETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS, eflags);
SETREG(ctx, vcpu, VM_REG_GUEST_RIP, tss->tss_eip);
/* General purpose registers */
SETREG(ctx, vcpu, VM_REG_GUEST_RAX, tss->tss_eax);
SETREG(ctx, vcpu, VM_REG_GUEST_RCX, tss->tss_ecx);
SETREG(ctx, vcpu, VM_REG_GUEST_RDX, tss->tss_edx);
SETREG(ctx, vcpu, VM_REG_GUEST_RBX, tss->tss_ebx);
SETREG(ctx, vcpu, VM_REG_GUEST_RSP, tss->tss_esp);
SETREG(ctx, vcpu, VM_REG_GUEST_RBP, tss->tss_ebp);
SETREG(ctx, vcpu, VM_REG_GUEST_RSI, tss->tss_esi);
SETREG(ctx, vcpu, VM_REG_GUEST_RDI, tss->tss_edi);
/* Segment selectors */
SETREG(ctx, vcpu, VM_REG_GUEST_ES, tss->tss_es);
SETREG(ctx, vcpu, VM_REG_GUEST_CS, tss->tss_cs);
SETREG(ctx, vcpu, VM_REG_GUEST_SS, tss->tss_ss);
SETREG(ctx, vcpu, VM_REG_GUEST_DS, tss->tss_ds);
SETREG(ctx, vcpu, VM_REG_GUEST_FS, tss->tss_fs);
SETREG(ctx, vcpu, VM_REG_GUEST_GS, tss->tss_gs);
/*
* If this is a nested task then write out the new TSS to update
* the previous link field.
*/
if (nested)
vm_copyout(ctx, vcpu, tss, iov, sizeof(*tss));
/* Validate segment descriptors */
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_LDTR, &seg_desc,
faultptr);
if (error || *faultptr)
return (error);
update_seg_desc(ctx, vcpu, VM_REG_GUEST_LDTR, &seg_desc);
/*
* Section "Checks on Guest Segment Registers", Intel SDM, Vol 3.
*
* The SS and CS attribute checks on VM-entry are inter-dependent so
* we need to make sure that both segments are valid before updating
* either of them. This ensures that the VMCS state can pass the
* VM-entry checks so the guest can handle any exception injected
* during task switch emulation.
*/
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_CS, &seg_desc,
faultptr);
if (error || *faultptr)
return (error);
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_SS, &seg_desc2,
faultptr);
if (error || *faultptr)
return (error);
update_seg_desc(ctx, vcpu, VM_REG_GUEST_CS, &seg_desc);
update_seg_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc2);
ts->paging.cpl = tss->tss_cs & SEL_RPL_MASK;
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_DS, &seg_desc,
faultptr);
if (error || *faultptr)
return (error);
update_seg_desc(ctx, vcpu, VM_REG_GUEST_DS, &seg_desc);
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_ES, &seg_desc,
faultptr);
if (error || *faultptr)
return (error);
update_seg_desc(ctx, vcpu, VM_REG_GUEST_ES, &seg_desc);
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_FS, &seg_desc,
faultptr);
if (error || *faultptr)
return (error);
update_seg_desc(ctx, vcpu, VM_REG_GUEST_FS, &seg_desc);
error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_GS, &seg_desc,
faultptr);
if (error || *faultptr)
return (error);
update_seg_desc(ctx, vcpu, VM_REG_GUEST_GS, &seg_desc);
return (0);
}
/*
* Push an error code on the stack of the new task. This is needed if the
* task switch was triggered by a hardware exception that causes an error
* code to be saved (e.g. #PF).
*/
static int
push_errcode(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
int task_type, uint32_t errcode, int *faultptr)
{
struct iovec iov[2];
struct seg_desc seg_desc;
int stacksize, bytes, error;
uint64_t gla, cr0, rflags;
uint32_t esp;
uint16_t stacksel;
*faultptr = 0;
cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0);
rflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS);
stacksel = GETREG(ctx, vcpu, VM_REG_GUEST_SS);
error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc.base,
&seg_desc.limit, &seg_desc.access);
assert(error == 0);
/*
* Section "Error Code" in the Intel SDM vol 3: the error code is
* pushed on the stack as a doubleword or word (depending on the
* default interrupt, trap or task gate size).
*/
if (task_type == SDT_SYS386BSY || task_type == SDT_SYS386TSS)
bytes = 4;
else
bytes = 2;
/*
* PUSH instruction from Intel SDM vol 2: the 'B' flag in the
* stack-segment descriptor determines the size of the stack
* pointer outside of 64-bit mode.
*/
if (SEG_DESC_DEF32(seg_desc.access))
stacksize = 4;
else
stacksize = 2;
esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP);
esp -= bytes;
if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS,
&seg_desc, esp, bytes, stacksize, PROT_WRITE, &gla)) {
sel_exception(ctx, vcpu, IDT_SS, stacksel, 1);
*faultptr = 1;
return (0);
}
if (vie_alignment_check(paging->cpl, bytes, cr0, rflags, gla)) {
vm_inject_ac(ctx, vcpu, 1);
*faultptr = 1;
return (0);
}
error = vm_copy_setup(ctx, vcpu, paging, gla, bytes, PROT_WRITE,
iov, nitems(iov), faultptr);
if (error || *faultptr)
return (error);
vm_copyout(ctx, vcpu, &errcode, iov, bytes);
SETREG(ctx, vcpu, VM_REG_GUEST_RSP, esp);
return (0);
}
/*
* Evaluate return value from helper functions and potentially return to
* the VM run loop.
*/
#define CHKERR(error,fault) \
do { \
assert((error == 0) || (error == EFAULT)); \
if (error) \
return (VMEXIT_ABORT); \
else if (fault) \
return (VMEXIT_CONTINUE); \
} while (0)
int
vmexit_task_switch(struct vmctx *ctx, struct vm_exit *vmexit, int *pvcpu)
{
struct seg_desc nt;
struct tss32 oldtss, newtss;
struct vm_task_switch *task_switch;
struct vm_guest_paging *paging, sup_paging;
struct user_segment_descriptor nt_desc, ot_desc;
struct iovec nt_iov[2], ot_iov[2];
uint64_t cr0, ot_base;
uint32_t eip, ot_lim, access;
int error, ext, fault, minlimit, nt_type, ot_type, vcpu;
enum task_switch_reason reason;
uint16_t nt_sel, ot_sel;
task_switch = &vmexit->u.task_switch;
nt_sel = task_switch->tsssel;
ext = vmexit->u.task_switch.ext;
reason = vmexit->u.task_switch.reason;
paging = &vmexit->u.task_switch.paging;
vcpu = *pvcpu;
assert(paging->cpu_mode == CPU_MODE_PROTECTED);
/*
* Calculate the instruction pointer to store in the old TSS.
*/
eip = vmexit->rip + vmexit->inst_length;
/*
* Section 4.6, "Access Rights" in Intel SDM Vol 3.
* The following page table accesses are implicitly supervisor mode:
* - accesses to GDT or LDT to load segment descriptors
* - accesses to the task state segment during task switch
*/
sup_paging = *paging;
sup_paging.cpl = 0; /* implicit supervisor mode */
/* Fetch the new TSS descriptor */
error = read_tss_descriptor(ctx, vcpu, task_switch, nt_sel, &nt_desc,
&fault);
CHKERR(error, fault);
nt = usd_to_seg_desc(&nt_desc);
/* Verify the type of the new TSS */
nt_type = SEG_DESC_TYPE(nt.access);
if (nt_type != SDT_SYS386BSY && nt_type != SDT_SYS386TSS &&
nt_type != SDT_SYS286BSY && nt_type != SDT_SYS286TSS) {
sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
goto done;
}
/* TSS descriptor must have present bit set */
if (!SEG_DESC_PRESENT(nt.access)) {
sel_exception(ctx, vcpu, IDT_NP, nt_sel, ext);
goto done;
}
/*
* TSS must have a minimum length of 104 bytes for a 32-bit TSS and
* 44 bytes for a 16-bit TSS.
*/
if (nt_type == SDT_SYS386BSY || nt_type == SDT_SYS386TSS)
minlimit = 104 - 1;
else if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS)
minlimit = 44 - 1;
else
minlimit = 0;
assert(minlimit > 0);
if (nt.limit < minlimit) {
sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
goto done;
}
/* TSS must be busy if task switch is due to IRET */
if (reason == TSR_IRET && !TSS_BUSY(nt_type)) {
sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
goto done;
}
/*
* TSS must be available (not busy) if task switch reason is
* CALL, JMP, exception or interrupt.
*/
if (reason != TSR_IRET && TSS_BUSY(nt_type)) {
sel_exception(ctx, vcpu, IDT_GP, nt_sel, ext);
goto done;
}
/* Fetch the new TSS */
error = vm_copy_setup(ctx, vcpu, &sup_paging, nt.base, minlimit + 1,
PROT_READ | PROT_WRITE, nt_iov, nitems(nt_iov), &fault);
CHKERR(error, fault);
vm_copyin(ctx, vcpu, nt_iov, &newtss, minlimit + 1);
/* Get the old TSS selector from the guest's task register */
ot_sel = GETREG(ctx, vcpu, VM_REG_GUEST_TR);
if (ISLDT(ot_sel) || IDXSEL(ot_sel) == 0) {
/*
* This might happen if a task switch was attempted without
* ever loading the task register with LTR. In this case the
* TR would contain the values from power-on:
* (sel = 0, base = 0, limit = 0xffff).
*/
sel_exception(ctx, vcpu, IDT_TS, ot_sel, task_switch->ext);
goto done;
}
/* Get the old TSS base and limit from the guest's task register */
error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_TR, &ot_base, &ot_lim,
&access);
assert(error == 0);
assert(!SEG_DESC_UNUSABLE(access) && SEG_DESC_PRESENT(access));
ot_type = SEG_DESC_TYPE(access);
assert(ot_type == SDT_SYS386BSY || ot_type == SDT_SYS286BSY);
/* Fetch the old TSS descriptor */
error = read_tss_descriptor(ctx, vcpu, task_switch, ot_sel, &ot_desc,
&fault);
CHKERR(error, fault);
/* Get the old TSS */
error = vm_copy_setup(ctx, vcpu, &sup_paging, ot_base, minlimit + 1,
PROT_READ | PROT_WRITE, ot_iov, nitems(ot_iov), &fault);
CHKERR(error, fault);
vm_copyin(ctx, vcpu, ot_iov, &oldtss, minlimit + 1);
/*
* Clear the busy bit in the old TSS descriptor if the task switch
* due to an IRET or JMP instruction.
*/
if (reason == TSR_IRET || reason == TSR_JMP) {
ot_desc.sd_type &= ~0x2;
error = desc_table_write(ctx, vcpu, &sup_paging, ot_sel,
&ot_desc, &fault);
CHKERR(error, fault);
}
if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS) {
fprintf(stderr, "Task switch to 16-bit TSS not supported\n");
return (VMEXIT_ABORT);
}
/* Save processor state in old TSS */
tss32_save(ctx, vcpu, task_switch, eip, &oldtss, ot_iov);
/*
* If the task switch was triggered for any reason other than IRET
* then set the busy bit in the new TSS descriptor.
*/
if (reason != TSR_IRET) {
nt_desc.sd_type |= 0x2;
error = desc_table_write(ctx, vcpu, &sup_paging, nt_sel,
&nt_desc, &fault);
CHKERR(error, fault);
}
/* Update task register to point at the new TSS */
SETREG(ctx, vcpu, VM_REG_GUEST_TR, nt_sel);
/* Update the hidden descriptor state of the task register */
nt = usd_to_seg_desc(&nt_desc);
update_seg_desc(ctx, vcpu, VM_REG_GUEST_TR, &nt);
/* Set CR0.TS */
cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0);
SETREG(ctx, vcpu, VM_REG_GUEST_CR0, cr0 | CR0_TS);
/*
* We are now committed to the task switch. Any exceptions encountered
* after this point will be handled in the context of the new task and
* the saved instruction pointer will belong to the new task.
*/
error = vm_set_register(ctx, vcpu, VM_REG_GUEST_RIP, newtss.tss_eip);
assert(error == 0);
/* Load processor state from new TSS */
error = tss32_restore(ctx, vcpu, task_switch, ot_sel, &newtss, nt_iov,
&fault);
CHKERR(error, fault);
/*
* Section "Interrupt Tasks" in Intel SDM, Vol 3: if an exception
* caused an error code to be generated, this error code is copied
* to the stack of the new task.
*/
if (task_switch->errcode_valid) {
assert(task_switch->ext);
assert(task_switch->reason == TSR_IDT_GATE);
error = push_errcode(ctx, vcpu, &task_switch->paging, nt_type,
task_switch->errcode, &fault);
CHKERR(error, fault);
}
/*
* Treatment of virtual-NMI blocking if NMI is delivered through
* a task gate.
*
* Section "Architectural State Before A VM Exit", Intel SDM, Vol3:
* If the virtual NMIs VM-execution control is 1, VM entry injects
* an NMI, and delivery of the NMI causes a task switch that causes
* a VM exit, virtual-NMI blocking is in effect before the VM exit
* commences.
*
* Thus, virtual-NMI blocking is in effect at the time of the task
* switch VM exit.
*/
/*
* Treatment of virtual-NMI unblocking on IRET from NMI handler task.
*
* Section "Changes to Instruction Behavior in VMX Non-Root Operation"
* If "virtual NMIs" control is 1 IRET removes any virtual-NMI blocking.
* This unblocking of virtual-NMI occurs even if IRET causes a fault.
*
* Thus, virtual-NMI blocking is cleared at the time of the task switch
* VM exit.
*/
/*
* If the task switch was triggered by an event delivered through
* the IDT then extinguish the pending event from the vcpu's
* exitintinfo.
*/
if (task_switch->reason == TSR_IDT_GATE) {
error = vm_set_intinfo(ctx, vcpu, 0);
assert(error == 0);
}
/*
* XXX should inject debug exception if 'T' bit is 1
*/
done:
return (VMEXIT_CONTINUE);
}