3808032489
If a `zfs_space_check_t` other than `ZFS_SPACE_CHECK_NONE` is used with `dsl_sync_task_nowait()`, the sync task may fail due to ENOSPC. However, there is no way to notice or communicate this failure, so it's extremely difficult to use this functionality correctly, and in fact almost all callers use `ZFS_SPACE_CHECK_NONE`. This commit removes the `zfs_space_check_t` argument from `dsl_sync_task_nowait()`, and always uses `ZFS_SPACE_CHECK_NONE`. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #10855
1105 lines
33 KiB
C
1105 lines
33 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
*
|
|
* Copyright (c) 2018, Intel Corporation.
|
|
* Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
|
|
*/
|
|
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/vdev_rebuild.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/zap.h>
|
|
|
|
/*
|
|
* This file contains the sequential reconstruction implementation for
|
|
* resilvering. This form of resilvering is internally referred to as device
|
|
* rebuild to avoid conflating it with the traditional healing reconstruction
|
|
* performed by the dsl scan code.
|
|
*
|
|
* When replacing a device, or scrubbing the pool, ZFS has historically used
|
|
* a process called resilvering which is a form of healing reconstruction.
|
|
* This approach has the advantage that as blocks are read from disk their
|
|
* checksums can be immediately verified and the data repaired. Unfortunately,
|
|
* it also results in a random IO pattern to the disk even when extra care
|
|
* is taken to sequentialize the IO as much as possible. This substantially
|
|
* increases the time required to resilver the pool and restore redundancy.
|
|
*
|
|
* For mirrored devices it's possible to implement an alternate sequential
|
|
* reconstruction strategy when resilvering. Sequential reconstruction
|
|
* behaves like a traditional RAID rebuild and reconstructs a device in LBA
|
|
* order without verifying the checksum. After this phase completes a second
|
|
* scrub phase is started to verify all of the checksums. This two phase
|
|
* process will take longer than the healing reconstruction described above.
|
|
* However, it has that advantage that after the reconstruction first phase
|
|
* completes redundancy has been restored. At this point the pool can incur
|
|
* another device failure without risking data loss.
|
|
*
|
|
* There are a few noteworthy limitations and other advantages of resilvering
|
|
* using sequential reconstruction vs healing reconstruction.
|
|
*
|
|
* Limitations:
|
|
*
|
|
* - Only supported for mirror vdev types. Due to the variable stripe
|
|
* width used by raidz sequential reconstruction is not possible.
|
|
*
|
|
* - Block checksums are not verified during sequential reconstuction.
|
|
* Similar to traditional RAID the parity/mirror data is reconstructed
|
|
* but cannot be immediately double checked. For this reason when the
|
|
* last active resilver completes the pool is automatically scrubbed.
|
|
*
|
|
* - Deferred resilvers using sequential reconstruction are not currently
|
|
* supported. When adding another vdev to an active top-level resilver
|
|
* it must be restarted.
|
|
*
|
|
* Advantages:
|
|
*
|
|
* - Sequential reconstuction is performed in LBA order which may be faster
|
|
* than healing reconstuction particularly when using using HDDs (or
|
|
* especially with SMR devices). Only allocated capacity is resilvered.
|
|
*
|
|
* - Sequential reconstruction is not constrained by ZFS block boundaries.
|
|
* This allows it to issue larger IOs to disk which span multiple blocks
|
|
* allowing all of these logical blocks to be repaired with a single IO.
|
|
*
|
|
* - Unlike a healing resilver or scrub which are pool wide operations,
|
|
* sequential reconstruction is handled by the top-level mirror vdevs.
|
|
* This allows for it to be started or canceled on a top-level vdev
|
|
* without impacting any other top-level vdevs in the pool.
|
|
*
|
|
* - Data only referenced by a pool checkpoint will be repaired because
|
|
* that space is reflected in the space maps. This differs for a
|
|
* healing resilver or scrub which will not repair that data.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Maximum number of queued rebuild I/Os top-level vdev. The number of
|
|
* concurrent rebuild I/Os issued to the device is controlled by the
|
|
* zfs_vdev_rebuild_min_active and zfs_vdev_rebuild_max_active module
|
|
* options.
|
|
*/
|
|
unsigned int zfs_rebuild_queue_limit = 20;
|
|
|
|
/*
|
|
* Size of rebuild reads; defaults to 1MiB and is capped at SPA_MAXBLOCKSIZE.
|
|
*/
|
|
unsigned long zfs_rebuild_max_segment = 1024 * 1024;
|
|
|
|
/*
|
|
* For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
|
|
*/
|
|
static void vdev_rebuild_thread(void *arg);
|
|
|
|
/*
|
|
* Clear the per-vdev rebuild bytes value for a vdev tree.
|
|
*/
|
|
static void
|
|
clear_rebuild_bytes(vdev_t *vd)
|
|
{
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++)
|
|
clear_rebuild_bytes(vd->vdev_child[i]);
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
vs->vs_rebuild_processed = 0;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
}
|
|
|
|
/*
|
|
* Determines whether a vdev_rebuild_thread() should be stopped.
|
|
*/
|
|
static boolean_t
|
|
vdev_rebuild_should_stop(vdev_t *vd)
|
|
{
|
|
return (!vdev_writeable(vd) || vd->vdev_removing ||
|
|
vd->vdev_rebuild_exit_wanted ||
|
|
vd->vdev_rebuild_cancel_wanted ||
|
|
vd->vdev_rebuild_reset_wanted);
|
|
}
|
|
|
|
/*
|
|
* Determine if the rebuild should be canceled. This may happen when all
|
|
* vdevs with MISSING DTLs are detached.
|
|
*/
|
|
static boolean_t
|
|
vdev_rebuild_should_cancel(vdev_t *vd)
|
|
{
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
|
|
if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* The sync task for updating the on-disk state of a rebuild. This is
|
|
* scheduled by vdev_rebuild_range().
|
|
*/
|
|
static void
|
|
vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
int vdev_id = (uintptr_t)arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
|
|
if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
|
|
vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
|
|
vr->vr_scan_offset[txg & TXG_MASK] = 0;
|
|
}
|
|
|
|
vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
|
|
NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
|
|
|
|
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
|
|
REBUILD_PHYS_ENTRIES, vrp, tx));
|
|
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
}
|
|
|
|
/*
|
|
* Initialize the on-disk state for a new rebuild, start the rebuild thread.
|
|
*/
|
|
static void
|
|
vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
int vdev_id = (uintptr_t)arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
|
|
ASSERT(vd->vdev_rebuilding);
|
|
|
|
spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
|
|
vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
|
|
vrp->vrp_min_txg = 0;
|
|
vrp->vrp_max_txg = dmu_tx_get_txg(tx);
|
|
vrp->vrp_start_time = gethrestime_sec();
|
|
vrp->vrp_scan_time_ms = 0;
|
|
vr->vr_prev_scan_time_ms = 0;
|
|
|
|
/*
|
|
* Rebuilds are currently only used when replacing a device, in which
|
|
* case there must be DTL_MISSING entries. In the future, we could
|
|
* allow rebuilds to be used in a way similar to a scrub. This would
|
|
* be useful because it would allow us to rebuild the space used by
|
|
* pool checkpoints.
|
|
*/
|
|
VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
|
|
|
|
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
|
|
REBUILD_PHYS_ENTRIES, vrp, tx));
|
|
|
|
spa_history_log_internal(spa, "rebuild", tx,
|
|
"vdev_id=%llu vdev_guid=%llu started",
|
|
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
|
|
|
|
ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
|
|
vd->vdev_rebuild_thread = thread_create(NULL, 0,
|
|
vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
|
|
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
}
|
|
|
|
static void
|
|
vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, char *name)
|
|
{
|
|
nvlist_t *aux = fnvlist_alloc();
|
|
|
|
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
|
|
spa_event_notify(spa, vd, aux, name);
|
|
nvlist_free(aux);
|
|
}
|
|
|
|
/*
|
|
* Called to request that a new rebuild be started. The feature will remain
|
|
* active for the duration of the rebuild, then revert to the enabled state.
|
|
*/
|
|
static void
|
|
vdev_rebuild_initiate(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(vd->vdev_top == vd);
|
|
ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
|
|
ASSERT(!vd->vdev_rebuilding);
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
|
|
vd->vdev_rebuilding = B_TRUE;
|
|
|
|
dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
|
|
(void *)(uintptr_t)vd->vdev_id, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
|
|
}
|
|
|
|
/*
|
|
* Update the on-disk state to completed when a rebuild finishes.
|
|
*/
|
|
static void
|
|
vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
int vdev_id = (uintptr_t)arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
|
|
vrp->vrp_end_time = gethrestime_sec();
|
|
|
|
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
|
|
REBUILD_PHYS_ENTRIES, vrp, tx));
|
|
|
|
vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
|
|
spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
|
|
|
|
spa_history_log_internal(spa, "rebuild", tx,
|
|
"vdev_id=%llu vdev_guid=%llu complete",
|
|
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
|
|
vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
|
|
|
|
/* Handles detaching of spares */
|
|
spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
|
|
vd->vdev_rebuilding = B_FALSE;
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
|
|
spa_notify_waiters(spa);
|
|
cv_broadcast(&vd->vdev_rebuild_cv);
|
|
}
|
|
|
|
/*
|
|
* Update the on-disk state to canceled when a rebuild finishes.
|
|
*/
|
|
static void
|
|
vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
int vdev_id = (uintptr_t)arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
|
|
vrp->vrp_end_time = gethrestime_sec();
|
|
|
|
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
|
|
REBUILD_PHYS_ENTRIES, vrp, tx));
|
|
|
|
spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
|
|
|
|
spa_history_log_internal(spa, "rebuild", tx,
|
|
"vdev_id=%llu vdev_guid=%llu canceled",
|
|
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
|
|
vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
|
|
|
|
vd->vdev_rebuild_cancel_wanted = B_FALSE;
|
|
vd->vdev_rebuilding = B_FALSE;
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
|
|
spa_notify_waiters(spa);
|
|
cv_broadcast(&vd->vdev_rebuild_cv);
|
|
}
|
|
|
|
/*
|
|
* Resets the progress of a running rebuild. This will occur when a new
|
|
* vdev is added to rebuild.
|
|
*/
|
|
static void
|
|
vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
int vdev_id = (uintptr_t)arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
|
|
ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
|
|
ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
|
|
|
|
vrp->vrp_last_offset = 0;
|
|
vrp->vrp_min_txg = 0;
|
|
vrp->vrp_max_txg = dmu_tx_get_txg(tx);
|
|
vrp->vrp_bytes_scanned = 0;
|
|
vrp->vrp_bytes_issued = 0;
|
|
vrp->vrp_bytes_rebuilt = 0;
|
|
vrp->vrp_bytes_est = 0;
|
|
vrp->vrp_scan_time_ms = 0;
|
|
vr->vr_prev_scan_time_ms = 0;
|
|
|
|
/* See vdev_rebuild_initiate_sync comment */
|
|
VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
|
|
|
|
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
|
|
REBUILD_PHYS_ENTRIES, vrp, tx));
|
|
|
|
spa_history_log_internal(spa, "rebuild", tx,
|
|
"vdev_id=%llu vdev_guid=%llu reset",
|
|
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
|
|
|
|
vd->vdev_rebuild_reset_wanted = B_FALSE;
|
|
ASSERT(vd->vdev_rebuilding);
|
|
|
|
vd->vdev_rebuild_thread = thread_create(NULL, 0,
|
|
vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
|
|
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
}
|
|
|
|
/*
|
|
* Clear the last rebuild status.
|
|
*/
|
|
void
|
|
vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
int vdev_id = (uintptr_t)arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
objset_t *mos = spa_meta_objset(spa);
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
|
|
vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
return;
|
|
}
|
|
|
|
clear_rebuild_bytes(vd);
|
|
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
|
|
|
|
if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
|
|
VERIFY0(zap_update(mos, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
|
|
REBUILD_PHYS_ENTRIES, vrp, tx));
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
}
|
|
|
|
/*
|
|
* The zio_done_func_t callback for each rebuild I/O issued. It's responsible
|
|
* for updating the rebuild stats and limiting the number of in flight I/Os.
|
|
*/
|
|
static void
|
|
vdev_rebuild_cb(zio_t *zio)
|
|
{
|
|
vdev_rebuild_t *vr = zio->io_private;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
vdev_t *vd = vr->vr_top_vdev;
|
|
|
|
mutex_enter(&vd->vdev_rebuild_io_lock);
|
|
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
|
|
/*
|
|
* The I/O failed because the top-level vdev was unavailable.
|
|
* Attempt to roll back to the last completed offset, in order
|
|
* resume from the correct location if the pool is resumed.
|
|
* (This works because spa_sync waits on spa_txg_zio before
|
|
* it runs sync tasks.)
|
|
*/
|
|
uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
|
|
*off = MIN(*off, zio->io_offset);
|
|
} else if (zio->io_error) {
|
|
vrp->vrp_errors++;
|
|
}
|
|
|
|
abd_free(zio->io_abd);
|
|
|
|
ASSERT3U(vd->vdev_rebuild_inflight, >, 0);
|
|
vd->vdev_rebuild_inflight--;
|
|
cv_broadcast(&vd->vdev_rebuild_io_cv);
|
|
mutex_exit(&vd->vdev_rebuild_io_lock);
|
|
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
}
|
|
|
|
/*
|
|
* Rebuild the data in this range by constructing a special dummy block
|
|
* pointer for the given range. It has no relation to any existing blocks
|
|
* in the pool. But by disabling checksum verification and issuing a scrub
|
|
* I/O mirrored vdevs will replicate the block using any available mirror
|
|
* leaf vdevs.
|
|
*/
|
|
static void
|
|
vdev_rebuild_rebuild_block(vdev_rebuild_t *vr, uint64_t start, uint64_t asize,
|
|
uint64_t txg)
|
|
{
|
|
vdev_t *vd = vr->vr_top_vdev;
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t psize = asize;
|
|
|
|
ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
|
|
vd->vdev_ops == &vdev_replacing_ops ||
|
|
vd->vdev_ops == &vdev_spare_ops);
|
|
|
|
blkptr_t blk, *bp = &blk;
|
|
BP_ZERO(bp);
|
|
|
|
DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
|
|
DVA_SET_OFFSET(&bp->blk_dva[0], start);
|
|
DVA_SET_GANG(&bp->blk_dva[0], 0);
|
|
DVA_SET_ASIZE(&bp->blk_dva[0], asize);
|
|
|
|
BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
|
|
BP_SET_LSIZE(bp, psize);
|
|
BP_SET_PSIZE(bp, psize);
|
|
BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
|
|
BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
|
|
BP_SET_TYPE(bp, DMU_OT_NONE);
|
|
BP_SET_LEVEL(bp, 0);
|
|
BP_SET_DEDUP(bp, 0);
|
|
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
|
|
|
|
/*
|
|
* We increment the issued bytes by the asize rather than the psize
|
|
* so the scanned and issued bytes may be directly compared. This
|
|
* is consistent with the scrub/resilver issued reporting.
|
|
*/
|
|
vr->vr_pass_bytes_issued += asize;
|
|
vr->vr_rebuild_phys.vrp_bytes_issued += asize;
|
|
|
|
zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, bp,
|
|
abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
|
|
ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
|
|
ZIO_FLAG_RESILVER, NULL));
|
|
}
|
|
|
|
/*
|
|
* Issues a rebuild I/O and takes care of rate limiting the number of queued
|
|
* rebuild I/Os. The provided start and size must be properly aligned for the
|
|
* top-level vdev type being rebuilt.
|
|
*/
|
|
static int
|
|
vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
|
|
{
|
|
uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
|
|
vdev_t *vd = vr->vr_top_vdev;
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
|
|
ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
|
|
|
|
vr->vr_pass_bytes_scanned += size;
|
|
vr->vr_rebuild_phys.vrp_bytes_scanned += size;
|
|
|
|
mutex_enter(&vd->vdev_rebuild_io_lock);
|
|
|
|
/* Limit in flight rebuild I/Os */
|
|
while (vd->vdev_rebuild_inflight >= zfs_rebuild_queue_limit)
|
|
cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);
|
|
|
|
vd->vdev_rebuild_inflight++;
|
|
mutex_exit(&vd->vdev_rebuild_io_lock);
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
|
|
spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
|
|
/* This is the first I/O for this txg. */
|
|
if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
|
|
vr->vr_scan_offset[txg & TXG_MASK] = start;
|
|
dsl_sync_task_nowait(spa_get_dsl(spa),
|
|
vdev_rebuild_update_sync,
|
|
(void *)(uintptr_t)vd->vdev_id, tx);
|
|
}
|
|
|
|
/* When exiting write out our progress. */
|
|
if (vdev_rebuild_should_stop(vd)) {
|
|
mutex_enter(&vd->vdev_rebuild_io_lock);
|
|
vd->vdev_rebuild_inflight--;
|
|
mutex_exit(&vd->vdev_rebuild_io_lock);
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
dmu_tx_commit(tx);
|
|
return (SET_ERROR(EINTR));
|
|
}
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
|
|
vr->vr_scan_offset[txg & TXG_MASK] = start + size;
|
|
vdev_rebuild_rebuild_block(vr, start, size, txg);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Split range into legally-sized logical chunks given the constraints of the
|
|
* top-level mirror vdev type.
|
|
*/
|
|
static uint64_t
|
|
vdev_rebuild_chunk_size(vdev_t *vd, uint64_t start, uint64_t size)
|
|
{
|
|
uint64_t chunk_size, max_asize, max_segment;
|
|
|
|
ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
|
|
vd->vdev_ops == &vdev_replacing_ops ||
|
|
vd->vdev_ops == &vdev_spare_ops);
|
|
|
|
max_segment = MIN(P2ROUNDUP(zfs_rebuild_max_segment,
|
|
1 << vd->vdev_ashift), SPA_MAXBLOCKSIZE);
|
|
max_asize = vdev_psize_to_asize(vd, max_segment);
|
|
chunk_size = MIN(size, max_asize);
|
|
|
|
return (chunk_size);
|
|
}
|
|
|
|
/*
|
|
* Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
|
|
*/
|
|
static int
|
|
vdev_rebuild_ranges(vdev_rebuild_t *vr)
|
|
{
|
|
vdev_t *vd = vr->vr_top_vdev;
|
|
zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
|
|
zfs_btree_index_t idx;
|
|
int error;
|
|
|
|
for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
|
|
rs = zfs_btree_next(t, &idx, &idx)) {
|
|
uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
|
|
uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
|
|
|
|
/*
|
|
* zfs_scan_suspend_progress can be set to disable rebuild
|
|
* progress for testing. See comment in dsl_scan_sync().
|
|
*/
|
|
while (zfs_scan_suspend_progress &&
|
|
!vdev_rebuild_should_stop(vd)) {
|
|
delay(hz);
|
|
}
|
|
|
|
while (size > 0) {
|
|
uint64_t chunk_size;
|
|
|
|
chunk_size = vdev_rebuild_chunk_size(vd, start, size);
|
|
|
|
error = vdev_rebuild_range(vr, start, chunk_size);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
size -= chunk_size;
|
|
start += chunk_size;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Calculates the estimated capacity which remains to be scanned. Since
|
|
* we traverse the pool in metaslab order only allocated capacity beyond
|
|
* the vrp_last_offset need be considered. All lower offsets must have
|
|
* already been rebuilt and are thus already included in vrp_bytes_scanned.
|
|
*/
|
|
static void
|
|
vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
|
|
{
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
uint64_t bytes_est = vrp->vrp_bytes_scanned;
|
|
|
|
if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
|
|
return;
|
|
|
|
for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
|
|
metaslab_t *msp = vd->vdev_ms[i];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
bytes_est += metaslab_allocated_space(msp);
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
vrp->vrp_bytes_est = bytes_est;
|
|
}
|
|
|
|
/*
|
|
* Load from disk the top-level vdev's rebuild information.
|
|
*/
|
|
int
|
|
vdev_rebuild_load(vdev_t *vd)
|
|
{
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
spa_t *spa = vd->vdev_spa;
|
|
int err = 0;
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
vd->vdev_rebuilding = B_FALSE;
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
|
|
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
ASSERT(vd->vdev_top == vd);
|
|
|
|
err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
|
|
REBUILD_PHYS_ENTRIES, vrp);
|
|
|
|
/*
|
|
* A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
|
|
* not prevent a pool from being imported. Clear the rebuild
|
|
* status allowing a new resilver/rebuild to be started.
|
|
*/
|
|
if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
|
|
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
|
|
} else if (err) {
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
return (err);
|
|
}
|
|
|
|
vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
|
|
vr->vr_top_vdev = vd;
|
|
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Each scan thread is responsible for rebuilding a top-level vdev. The
|
|
* rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
|
|
*/
|
|
static void
|
|
vdev_rebuild_thread(void *arg)
|
|
{
|
|
vdev_t *vd = arg;
|
|
spa_t *spa = vd->vdev_spa;
|
|
int error = 0;
|
|
|
|
/*
|
|
* If there's a scrub in process request that it be stopped. This
|
|
* is not required for a correct rebuild, but we do want rebuilds to
|
|
* emulate the resilver behavior as much as possible.
|
|
*/
|
|
dsl_pool_t *dsl = spa_get_dsl(spa);
|
|
if (dsl_scan_scrubbing(dsl))
|
|
dsl_scan_cancel(dsl);
|
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
|
|
ASSERT3P(vd->vdev_top, ==, vd);
|
|
ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
|
|
ASSERT(vd->vdev_rebuilding);
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
|
|
ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
|
|
ASSERT3B(vd->vdev_rebuild_reset_wanted, ==, B_FALSE);
|
|
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
vr->vr_top_vdev = vd;
|
|
vr->vr_scan_msp = NULL;
|
|
vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
|
|
vr->vr_pass_start_time = gethrtime();
|
|
vr->vr_pass_bytes_scanned = 0;
|
|
vr->vr_pass_bytes_issued = 0;
|
|
|
|
uint64_t update_est_time = gethrtime();
|
|
vdev_rebuild_update_bytes_est(vd, 0);
|
|
|
|
clear_rebuild_bytes(vr->vr_top_vdev);
|
|
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
|
|
/*
|
|
* Systematically walk the metaslabs and issue rebuild I/Os for
|
|
* all ranges in the allocated space map.
|
|
*/
|
|
for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
|
|
metaslab_t *msp = vd->vdev_ms[i];
|
|
vr->vr_scan_msp = msp;
|
|
|
|
/*
|
|
* Removal of vdevs from the vdev tree may eliminate the need
|
|
* for the rebuild, in which case it should be canceled. The
|
|
* vdev_rebuild_cancel_wanted flag is set until the sync task
|
|
* completes. This may be after the rebuild thread exits.
|
|
*/
|
|
if (vdev_rebuild_should_cancel(vd)) {
|
|
vd->vdev_rebuild_cancel_wanted = B_TRUE;
|
|
error = EINTR;
|
|
break;
|
|
}
|
|
|
|
ASSERT0(range_tree_space(vr->vr_scan_tree));
|
|
|
|
/*
|
|
* Disable any new allocations to this metaslab and wait
|
|
* for any writes inflight to complete. This is needed to
|
|
* ensure all allocated ranges are rebuilt.
|
|
*/
|
|
metaslab_disable(msp);
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
txg_wait_synced(dsl, 0);
|
|
|
|
mutex_enter(&msp->ms_sync_lock);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* When a metaslab has been allocated from read its allocated
|
|
* ranges from the space map object in to the vr_scan_tree.
|
|
* Then add inflight / unflushed ranges and remove inflight /
|
|
* unflushed frees. This is the minimum range to be rebuilt.
|
|
*/
|
|
if (msp->ms_sm != NULL) {
|
|
VERIFY0(space_map_load(msp->ms_sm,
|
|
vr->vr_scan_tree, SM_ALLOC));
|
|
|
|
for (int i = 0; i < TXG_SIZE; i++) {
|
|
ASSERT0(range_tree_space(
|
|
msp->ms_allocating[i]));
|
|
}
|
|
|
|
range_tree_walk(msp->ms_unflushed_allocs,
|
|
range_tree_add, vr->vr_scan_tree);
|
|
range_tree_walk(msp->ms_unflushed_frees,
|
|
range_tree_remove, vr->vr_scan_tree);
|
|
|
|
/*
|
|
* Remove ranges which have already been rebuilt based
|
|
* on the last offset. This can happen when restarting
|
|
* a scan after exporting and re-importing the pool.
|
|
*/
|
|
range_tree_clear(vr->vr_scan_tree, 0,
|
|
vrp->vrp_last_offset);
|
|
}
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
mutex_exit(&msp->ms_sync_lock);
|
|
|
|
/*
|
|
* To provide an accurate estimate re-calculate the estimated
|
|
* size every 5 minutes to account for recent allocations and
|
|
* frees made space maps which have not yet been rebuilt.
|
|
*/
|
|
if (gethrtime() > update_est_time + SEC2NSEC(300)) {
|
|
update_est_time = gethrtime();
|
|
vdev_rebuild_update_bytes_est(vd, i);
|
|
}
|
|
|
|
/*
|
|
* Walk the allocated space map and issue the rebuild I/O.
|
|
*/
|
|
error = vdev_rebuild_ranges(vr);
|
|
range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
|
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
metaslab_enable(msp, B_FALSE, B_FALSE);
|
|
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
range_tree_destroy(vr->vr_scan_tree);
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
|
|
/* Wait for any remaining rebuild I/O to complete */
|
|
mutex_enter(&vd->vdev_rebuild_io_lock);
|
|
while (vd->vdev_rebuild_inflight > 0)
|
|
cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);
|
|
|
|
mutex_exit(&vd->vdev_rebuild_io_lock);
|
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
if (error == 0) {
|
|
/*
|
|
* After a successful rebuild clear the DTLs of all ranges
|
|
* which were missing when the rebuild was started. These
|
|
* ranges must have been rebuilt as a consequence of rebuilding
|
|
* all allocated space. Note that unlike a scrub or resilver
|
|
* the rebuild operation will reconstruct data only referenced
|
|
* by a pool checkpoint. See the dsl_scan_done() comments.
|
|
*/
|
|
dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
|
|
(void *)(uintptr_t)vd->vdev_id, tx);
|
|
} else if (vd->vdev_rebuild_cancel_wanted) {
|
|
/*
|
|
* The rebuild operation was canceled. This will occur when
|
|
* a device participating in the rebuild is detached.
|
|
*/
|
|
dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
|
|
(void *)(uintptr_t)vd->vdev_id, tx);
|
|
} else if (vd->vdev_rebuild_reset_wanted) {
|
|
/*
|
|
* Reset the running rebuild without canceling and restarting
|
|
* it. This will occur when a new device is attached and must
|
|
* participate in the rebuild.
|
|
*/
|
|
dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
|
|
(void *)(uintptr_t)vd->vdev_id, tx);
|
|
} else {
|
|
/*
|
|
* The rebuild operation should be suspended. This may occur
|
|
* when detaching a child vdev or when exporting the pool. The
|
|
* rebuild is left in the active state so it will be resumed.
|
|
*/
|
|
ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
|
|
vd->vdev_rebuilding = B_FALSE;
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
vd->vdev_rebuild_thread = NULL;
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
|
|
cv_broadcast(&vd->vdev_rebuild_cv);
|
|
|
|
thread_exit();
|
|
}
|
|
|
|
/*
|
|
* Returns B_TRUE if any top-level vdev are rebuilding.
|
|
*/
|
|
boolean_t
|
|
vdev_rebuild_active(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
boolean_t ret = B_FALSE;
|
|
|
|
if (vd == spa->spa_root_vdev) {
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
ret = vdev_rebuild_active(vd->vdev_child[i]);
|
|
if (ret)
|
|
return (ret);
|
|
}
|
|
} else if (vd->vdev_top_zap != 0) {
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Start a rebuild operation. The rebuild may be restarted when the
|
|
* top-level vdev is currently actively rebuilding.
|
|
*/
|
|
void
|
|
vdev_rebuild(vdev_t *vd)
|
|
{
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
|
|
|
|
ASSERT(vd->vdev_top == vd);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT(!vd->vdev_removing);
|
|
ASSERT(spa_feature_is_enabled(vd->vdev_spa,
|
|
SPA_FEATURE_DEVICE_REBUILD));
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
if (vd->vdev_rebuilding) {
|
|
ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
|
|
|
|
/*
|
|
* Signal a running rebuild operation that it should restart
|
|
* from the beginning because a new device was attached. The
|
|
* vdev_rebuild_reset_wanted flag is set until the sync task
|
|
* completes. This may be after the rebuild thread exits.
|
|
*/
|
|
if (!vd->vdev_rebuild_reset_wanted)
|
|
vd->vdev_rebuild_reset_wanted = B_TRUE;
|
|
} else {
|
|
vdev_rebuild_initiate(vd);
|
|
}
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
}
|
|
|
|
static void
|
|
vdev_rebuild_restart_impl(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
if (vd == spa->spa_root_vdev) {
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++)
|
|
vdev_rebuild_restart_impl(vd->vdev_child[i]);
|
|
|
|
} else if (vd->vdev_top_zap != 0) {
|
|
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
|
|
vdev_writeable(vd) && !vd->vdev_rebuilding) {
|
|
ASSERT(spa_feature_is_active(spa,
|
|
SPA_FEATURE_DEVICE_REBUILD));
|
|
vd->vdev_rebuilding = B_TRUE;
|
|
vd->vdev_rebuild_thread = thread_create(NULL, 0,
|
|
vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
|
|
maxclsyspri);
|
|
}
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Conditionally restart all of the vdev_rebuild_thread's for a pool. The
|
|
* feature flag must be active and the rebuild in the active state. This
|
|
* cannot be used to start a new rebuild.
|
|
*/
|
|
void
|
|
vdev_rebuild_restart(spa_t *spa)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
vdev_rebuild_restart_impl(spa->spa_root_vdev);
|
|
}
|
|
|
|
/*
|
|
* Stop and wait for all of the vdev_rebuild_thread's associated with the
|
|
* vdev tree provide to be terminated (canceled or stopped).
|
|
*/
|
|
void
|
|
vdev_rebuild_stop_wait(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
if (vd == spa->spa_root_vdev) {
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++)
|
|
vdev_rebuild_stop_wait(vd->vdev_child[i]);
|
|
|
|
} else if (vd->vdev_top_zap != 0) {
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
mutex_enter(&vd->vdev_rebuild_lock);
|
|
if (vd->vdev_rebuild_thread != NULL) {
|
|
vd->vdev_rebuild_exit_wanted = B_TRUE;
|
|
while (vd->vdev_rebuilding) {
|
|
cv_wait(&vd->vdev_rebuild_cv,
|
|
&vd->vdev_rebuild_lock);
|
|
}
|
|
vd->vdev_rebuild_exit_wanted = B_FALSE;
|
|
}
|
|
mutex_exit(&vd->vdev_rebuild_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop all rebuild operations but leave them in the active state so they
|
|
* will be resumed when importing the pool.
|
|
*/
|
|
void
|
|
vdev_rebuild_stop_all(spa_t *spa)
|
|
{
|
|
vdev_rebuild_stop_wait(spa->spa_root_vdev);
|
|
}
|
|
|
|
/*
|
|
* Rebuild statistics reported per top-level vdev.
|
|
*/
|
|
int
|
|
vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
|
|
{
|
|
spa_t *spa = tvd->vdev_spa;
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
int error = zap_contains(spa_meta_objset(spa),
|
|
tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
|
|
|
|
if (error == ENOENT) {
|
|
bzero(vrs, sizeof (vdev_rebuild_stat_t));
|
|
vrs->vrs_state = VDEV_REBUILD_NONE;
|
|
error = 0;
|
|
} else if (error == 0) {
|
|
vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
|
|
mutex_enter(&tvd->vdev_rebuild_lock);
|
|
vrs->vrs_state = vrp->vrp_rebuild_state;
|
|
vrs->vrs_start_time = vrp->vrp_start_time;
|
|
vrs->vrs_end_time = vrp->vrp_end_time;
|
|
vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
|
|
vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
|
|
vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
|
|
vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
|
|
vrs->vrs_bytes_est = vrp->vrp_bytes_est;
|
|
vrs->vrs_errors = vrp->vrp_errors;
|
|
vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
|
|
vr->vr_pass_start_time);
|
|
vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
|
|
vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
|
|
mutex_exit(&tvd->vdev_rebuild_lock);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, ULONG, ZMOD_RW,
|
|
"Max segment size in bytes of rebuild reads");
|
|
/* END CSTYLED */
|