freebsd-nq/sys/contrib/octeon-sdk/cvmx-pemx-defs.h
Juli Mallett dc4ee6ca91 Merge the Cavium Octeon SDK 2.3.0 Simple Executive code and update FreeBSD to
make use of it where possible.

This primarily brings in support for newer hardware, and FreeBSD is not yet
able to support the abundance of IRQs on new hardware and many features in the
Ethernet driver.

Because of the changes to IRQs in the Simple Executive, we have to maintain our
own list of Octeon IRQs now, which probably can be pared-down and be specific
to the CIU interrupt unit soon, and when other interrupt mechanisms are added
they can maintain their own definitions.

Remove unmasking of interrupts from within the UART device now that the
function used is no longer present in the Simple Executive.  The unmasking
seems to have been gratuitous as this is more properly handled by the buses
above the UART device, and seems to work on that basis.
2012-03-11 06:17:49 +00:00

1439 lines
69 KiB
C

/***********************license start***************
* Copyright (c) 2003-2012 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* cvmx-pemx-defs.h
*
* Configuration and status register (CSR) type definitions for
* Octeon pemx.
*
* This file is auto generated. Do not edit.
*
* <hr>$Revision$<hr>
*
*/
#ifndef __CVMX_PEMX_DEFS_H__
#define __CVMX_PEMX_DEFS_H__
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_BAR1_INDEXX(unsigned long offset, unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && (((offset <= 15)) && ((block_id <= 1)))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && (((offset <= 15)) && ((block_id <= 1)))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && (((offset <= 15)) && ((block_id <= 1)))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && (((offset <= 15)) && ((block_id <= 1)))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && (((offset <= 15)) && ((block_id <= 1))))))
cvmx_warn("CVMX_PEMX_BAR1_INDEXX(%lu,%lu) is invalid on this chip\n", offset, block_id);
return CVMX_ADD_IO_SEG(0x00011800C00000A8ull) + (((offset) & 15) + ((block_id) & 1) * 0x200000ull) * 8;
}
#else
#define CVMX_PEMX_BAR1_INDEXX(offset, block_id) (CVMX_ADD_IO_SEG(0x00011800C00000A8ull) + (((offset) & 15) + ((block_id) & 1) * 0x200000ull) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_BAR2_MASK(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_BAR2_MASK(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000130ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_BAR2_MASK(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000130ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_BAR_CTL(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_BAR_CTL(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000128ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_BAR_CTL(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000128ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_BIST_STATUS(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_BIST_STATUS(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000018ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_BIST_STATUS(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000018ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_BIST_STATUS2(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_BIST_STATUS2(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000420ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_BIST_STATUS2(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000420ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_CFG_RD(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_CFG_RD(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000030ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_CFG_RD(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000030ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_CFG_WR(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_CFG_WR(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000028ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_CFG_WR(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000028ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_CPL_LUT_VALID(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_CPL_LUT_VALID(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000098ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_CPL_LUT_VALID(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000098ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_CTL_STATUS(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_CTL_STATUS(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000000ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_CTL_STATUS(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000000ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_DBG_INFO(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_DBG_INFO(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000008ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_DBG_INFO(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000008ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_DBG_INFO_EN(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_DBG_INFO_EN(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C00000A0ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_DBG_INFO_EN(block_id) (CVMX_ADD_IO_SEG(0x00011800C00000A0ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_DIAG_STATUS(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_DIAG_STATUS(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000020ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_DIAG_STATUS(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000020ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_INB_READ_CREDITS(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_INB_READ_CREDITS(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000138ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_INB_READ_CREDITS(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000138ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_INT_ENB(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_INT_ENB(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000410ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_INT_ENB(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000410ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_INT_ENB_INT(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_INT_ENB_INT(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000418ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_INT_ENB_INT(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000418ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_INT_SUM(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_INT_SUM(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000408ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_INT_SUM(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000408ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_P2N_BAR0_START(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_P2N_BAR0_START(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000080ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_P2N_BAR0_START(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000080ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_P2N_BAR1_START(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_P2N_BAR1_START(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000088ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_P2N_BAR1_START(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000088ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_P2N_BAR2_START(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_P2N_BAR2_START(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000090ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_P2N_BAR2_START(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000090ull) + ((block_id) & 1) * 0x1000000ull)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_P2P_BARX_END(unsigned long offset, unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN63XX) && (((offset <= 3)) && ((block_id <= 1)))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && (((offset <= 3)) && ((block_id <= 1)))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && (((offset <= 3)) && ((block_id <= 1))))))
cvmx_warn("CVMX_PEMX_P2P_BARX_END(%lu,%lu) is invalid on this chip\n", offset, block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000048ull) + (((offset) & 3) + ((block_id) & 1) * 0x100000ull) * 16;
}
#else
#define CVMX_PEMX_P2P_BARX_END(offset, block_id) (CVMX_ADD_IO_SEG(0x00011800C0000048ull) + (((offset) & 3) + ((block_id) & 1) * 0x100000ull) * 16)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_P2P_BARX_START(unsigned long offset, unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN63XX) && (((offset <= 3)) && ((block_id <= 1)))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && (((offset <= 3)) && ((block_id <= 1)))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && (((offset <= 3)) && ((block_id <= 1))))))
cvmx_warn("CVMX_PEMX_P2P_BARX_START(%lu,%lu) is invalid on this chip\n", offset, block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000040ull) + (((offset) & 3) + ((block_id) & 1) * 0x100000ull) * 16;
}
#else
#define CVMX_PEMX_P2P_BARX_START(offset, block_id) (CVMX_ADD_IO_SEG(0x00011800C0000040ull) + (((offset) & 3) + ((block_id) & 1) * 0x100000ull) * 16)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_PEMX_TLP_CREDITS(unsigned long block_id)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id <= 1)))))
cvmx_warn("CVMX_PEMX_TLP_CREDITS(%lu) is invalid on this chip\n", block_id);
return CVMX_ADD_IO_SEG(0x00011800C0000038ull) + ((block_id) & 1) * 0x1000000ull;
}
#else
#define CVMX_PEMX_TLP_CREDITS(block_id) (CVMX_ADD_IO_SEG(0x00011800C0000038ull) + ((block_id) & 1) * 0x1000000ull)
#endif
/**
* cvmx_pem#_bar1_index#
*
* PEM_BAR1_INDEXX = PEM BAR1 IndexX Register
*
* Contains address index and control bits for access to memory ranges of BAR-1. Index is build from supplied address [25:22].
*/
union cvmx_pemx_bar1_indexx {
uint64_t u64;
struct cvmx_pemx_bar1_indexx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_20_63 : 44;
uint64_t addr_idx : 16; /**< Address bits [37:22] sent to L2C */
uint64_t ca : 1; /**< Set '1' when access is not to be cached in L2. */
uint64_t end_swp : 2; /**< Endian Swap Mode */
uint64_t addr_v : 1; /**< Set '1' when the selected address range is valid. */
#else
uint64_t addr_v : 1;
uint64_t end_swp : 2;
uint64_t ca : 1;
uint64_t addr_idx : 16;
uint64_t reserved_20_63 : 44;
#endif
} s;
struct cvmx_pemx_bar1_indexx_s cn61xx;
struct cvmx_pemx_bar1_indexx_s cn63xx;
struct cvmx_pemx_bar1_indexx_s cn63xxp1;
struct cvmx_pemx_bar1_indexx_s cn66xx;
struct cvmx_pemx_bar1_indexx_s cn68xx;
struct cvmx_pemx_bar1_indexx_s cn68xxp1;
struct cvmx_pemx_bar1_indexx_s cnf71xx;
};
typedef union cvmx_pemx_bar1_indexx cvmx_pemx_bar1_indexx_t;
/**
* cvmx_pem#_bar2_mask
*
* PEM_BAR2_MASK = PEM BAR2 MASK
*
* The mask pattern that is ANDED with the address from PCIe core for BAR2 hits.
*/
union cvmx_pemx_bar2_mask {
uint64_t u64;
struct cvmx_pemx_bar2_mask_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_38_63 : 26;
uint64_t mask : 35; /**< The value to be ANDED with the address sent to
the Octeon memory. */
uint64_t reserved_0_2 : 3;
#else
uint64_t reserved_0_2 : 3;
uint64_t mask : 35;
uint64_t reserved_38_63 : 26;
#endif
} s;
struct cvmx_pemx_bar2_mask_s cn61xx;
struct cvmx_pemx_bar2_mask_s cn66xx;
struct cvmx_pemx_bar2_mask_s cn68xx;
struct cvmx_pemx_bar2_mask_s cn68xxp1;
struct cvmx_pemx_bar2_mask_s cnf71xx;
};
typedef union cvmx_pemx_bar2_mask cvmx_pemx_bar2_mask_t;
/**
* cvmx_pem#_bar_ctl
*
* PEM_BAR_CTL = PEM BAR Control
*
* Contains control for BAR accesses.
*/
union cvmx_pemx_bar_ctl {
uint64_t u64;
struct cvmx_pemx_bar_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t bar1_siz : 3; /**< Pcie-Port0, Bar1 Size. 1 == 64MB, 2 == 128MB,
3 == 256MB, 4 == 512MB, 5 == 1024MB, 6 == 2048MB,
0 and 7 are reserved. */
uint64_t bar2_enb : 1; /**< When set '1' BAR2 is enable and will respond when
clear '0' BAR2 access will cause UR responses. */
uint64_t bar2_esx : 2; /**< Value will be XORed with pci-address[39:38] to
determine the endian swap mode. */
uint64_t bar2_cax : 1; /**< Value will be XORed with pcie-address[40] to
determine the L2 cache attribute.
Not cached in L2 if XOR result is 1 */
#else
uint64_t bar2_cax : 1;
uint64_t bar2_esx : 2;
uint64_t bar2_enb : 1;
uint64_t bar1_siz : 3;
uint64_t reserved_7_63 : 57;
#endif
} s;
struct cvmx_pemx_bar_ctl_s cn61xx;
struct cvmx_pemx_bar_ctl_s cn63xx;
struct cvmx_pemx_bar_ctl_s cn63xxp1;
struct cvmx_pemx_bar_ctl_s cn66xx;
struct cvmx_pemx_bar_ctl_s cn68xx;
struct cvmx_pemx_bar_ctl_s cn68xxp1;
struct cvmx_pemx_bar_ctl_s cnf71xx;
};
typedef union cvmx_pemx_bar_ctl cvmx_pemx_bar_ctl_t;
/**
* cvmx_pem#_bist_status
*
* PEM_BIST_STATUS = PEM Bist Status
*
* Contains the diffrent interrupt summary bits of the PEM.
*/
union cvmx_pemx_bist_status {
uint64_t u64;
struct cvmx_pemx_bist_status_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t retry : 1; /**< Retry Buffer. */
uint64_t rqdata0 : 1; /**< Rx Queue Data Memory0. */
uint64_t rqdata1 : 1; /**< Rx Queue Data Memory1. */
uint64_t rqdata2 : 1; /**< Rx Queue Data Memory2. */
uint64_t rqdata3 : 1; /**< Rx Queue Data Memory3. */
uint64_t rqhdr1 : 1; /**< Rx Queue Header1. */
uint64_t rqhdr0 : 1; /**< Rx Queue Header0. */
uint64_t sot : 1; /**< SOT Buffer. */
#else
uint64_t sot : 1;
uint64_t rqhdr0 : 1;
uint64_t rqhdr1 : 1;
uint64_t rqdata3 : 1;
uint64_t rqdata2 : 1;
uint64_t rqdata1 : 1;
uint64_t rqdata0 : 1;
uint64_t retry : 1;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_pemx_bist_status_s cn61xx;
struct cvmx_pemx_bist_status_s cn63xx;
struct cvmx_pemx_bist_status_s cn63xxp1;
struct cvmx_pemx_bist_status_s cn66xx;
struct cvmx_pemx_bist_status_s cn68xx;
struct cvmx_pemx_bist_status_s cn68xxp1;
struct cvmx_pemx_bist_status_s cnf71xx;
};
typedef union cvmx_pemx_bist_status cvmx_pemx_bist_status_t;
/**
* cvmx_pem#_bist_status2
*
* PEM(0..1)_BIST_STATUS2 = PEM BIST Status Register
*
* Results from BIST runs of PEM's memories.
*/
union cvmx_pemx_bist_status2 {
uint64_t u64;
struct cvmx_pemx_bist_status2_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t e2p_cpl : 1; /**< BIST Status for the e2p_cpl_fifo */
uint64_t e2p_n : 1; /**< BIST Status for the e2p_n_fifo */
uint64_t e2p_p : 1; /**< BIST Status for the e2p_p_fifo */
uint64_t peai_p2e : 1; /**< BIST Status for the peai__pesc_fifo */
uint64_t pef_tpf1 : 1; /**< BIST Status for the pef_tlp_p_fifo1 */
uint64_t pef_tpf0 : 1; /**< BIST Status for the pef_tlp_p_fifo0 */
uint64_t pef_tnf : 1; /**< BIST Status for the pef_tlp_n_fifo */
uint64_t pef_tcf1 : 1; /**< BIST Status for the pef_tlp_cpl_fifo1 */
uint64_t pef_tc0 : 1; /**< BIST Status for the pef_tlp_cpl_fifo0 */
uint64_t ppf : 1; /**< BIST Status for the ppf_fifo */
#else
uint64_t ppf : 1;
uint64_t pef_tc0 : 1;
uint64_t pef_tcf1 : 1;
uint64_t pef_tnf : 1;
uint64_t pef_tpf0 : 1;
uint64_t pef_tpf1 : 1;
uint64_t peai_p2e : 1;
uint64_t e2p_p : 1;
uint64_t e2p_n : 1;
uint64_t e2p_cpl : 1;
uint64_t reserved_10_63 : 54;
#endif
} s;
struct cvmx_pemx_bist_status2_s cn61xx;
struct cvmx_pemx_bist_status2_s cn63xx;
struct cvmx_pemx_bist_status2_s cn63xxp1;
struct cvmx_pemx_bist_status2_s cn66xx;
struct cvmx_pemx_bist_status2_s cn68xx;
struct cvmx_pemx_bist_status2_s cn68xxp1;
struct cvmx_pemx_bist_status2_s cnf71xx;
};
typedef union cvmx_pemx_bist_status2 cvmx_pemx_bist_status2_t;
/**
* cvmx_pem#_cfg_rd
*
* PEM_CFG_RD = PEM Configuration Read
*
* Allows read access to the configuration in the PCIe Core.
*/
union cvmx_pemx_cfg_rd {
uint64_t u64;
struct cvmx_pemx_cfg_rd_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t data : 32; /**< Data. */
uint64_t addr : 32; /**< Address to read. A write to this register
starts a read operation. */
#else
uint64_t addr : 32;
uint64_t data : 32;
#endif
} s;
struct cvmx_pemx_cfg_rd_s cn61xx;
struct cvmx_pemx_cfg_rd_s cn63xx;
struct cvmx_pemx_cfg_rd_s cn63xxp1;
struct cvmx_pemx_cfg_rd_s cn66xx;
struct cvmx_pemx_cfg_rd_s cn68xx;
struct cvmx_pemx_cfg_rd_s cn68xxp1;
struct cvmx_pemx_cfg_rd_s cnf71xx;
};
typedef union cvmx_pemx_cfg_rd cvmx_pemx_cfg_rd_t;
/**
* cvmx_pem#_cfg_wr
*
* PEM_CFG_WR = PEM Configuration Write
*
* Allows write access to the configuration in the PCIe Core.
*/
union cvmx_pemx_cfg_wr {
uint64_t u64;
struct cvmx_pemx_cfg_wr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t data : 32; /**< Data to write. A write to this register starts
a write operation. */
uint64_t addr : 32; /**< Address to write. A write to this register starts
a write operation. */
#else
uint64_t addr : 32;
uint64_t data : 32;
#endif
} s;
struct cvmx_pemx_cfg_wr_s cn61xx;
struct cvmx_pemx_cfg_wr_s cn63xx;
struct cvmx_pemx_cfg_wr_s cn63xxp1;
struct cvmx_pemx_cfg_wr_s cn66xx;
struct cvmx_pemx_cfg_wr_s cn68xx;
struct cvmx_pemx_cfg_wr_s cn68xxp1;
struct cvmx_pemx_cfg_wr_s cnf71xx;
};
typedef union cvmx_pemx_cfg_wr cvmx_pemx_cfg_wr_t;
/**
* cvmx_pem#_cpl_lut_valid
*
* PEM_CPL_LUT_VALID = PEM Cmpletion Lookup Table Valid
*
* Bit set for outstanding tag read.
*/
union cvmx_pemx_cpl_lut_valid {
uint64_t u64;
struct cvmx_pemx_cpl_lut_valid_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t tag : 32; /**< Bit vector set cooresponds to an outstanding tag
expecting a completion. */
#else
uint64_t tag : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pemx_cpl_lut_valid_s cn61xx;
struct cvmx_pemx_cpl_lut_valid_s cn63xx;
struct cvmx_pemx_cpl_lut_valid_s cn63xxp1;
struct cvmx_pemx_cpl_lut_valid_s cn66xx;
struct cvmx_pemx_cpl_lut_valid_s cn68xx;
struct cvmx_pemx_cpl_lut_valid_s cn68xxp1;
struct cvmx_pemx_cpl_lut_valid_s cnf71xx;
};
typedef union cvmx_pemx_cpl_lut_valid cvmx_pemx_cpl_lut_valid_t;
/**
* cvmx_pem#_ctl_status
*
* NOTE: Logic Analyzer is enabled with LA_EN for the specified PCS lane only. PKT_SZ is effective only when LA_EN=1
* For normal operation(sgmii or 1000Base-X), this bit must be 0.
* See pcsx.csr for xaui logic analyzer mode.
* For full description see document at .../rtl/pcs/readme_logic_analyzer.txt
*
*
* PEM_CTL_STATUS = PEM Control Status
*
* General control and status of the PEM.
*/
union cvmx_pemx_ctl_status {
uint64_t u64;
struct cvmx_pemx_ctl_status_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_48_63 : 16;
uint64_t auto_sd : 1; /**< Link Hardware Autonomous Speed Disable. */
uint64_t dnum : 5; /**< Primary bus device number. */
uint64_t pbus : 8; /**< Primary bus number. */
uint64_t reserved_32_33 : 2;
uint64_t cfg_rtry : 16; /**< The time x 0x10000 in core clocks to wait for a
CPL to a CFG RD that does not carry a Retry Status.
Until such time that the timeout occurs and Retry
Status is received for a CFG RD, the Read CFG Read
will be resent. A value of 0 disables retries and
treats a CPL Retry as a CPL UR.
When enabled only one CFG RD may be issued until
either successful completion or CPL UR. */
uint64_t reserved_12_15 : 4;
uint64_t pm_xtoff : 1; /**< When WRITTEN with a '1' a single cycle pulse is
to the PCIe core pm_xmt_turnoff port. RC mode. */
uint64_t pm_xpme : 1; /**< When WRITTEN with a '1' a single cycle pulse is
to the PCIe core pm_xmt_pme port. EP mode. */
uint64_t ob_p_cmd : 1; /**< When WRITTEN with a '1' a single cycle pulse is
to the PCIe core outband_pwrup_cmd port. EP mode. */
uint64_t reserved_7_8 : 2;
uint64_t nf_ecrc : 1; /**< Do not forward peer-to-peer ECRC TLPs. */
uint64_t dly_one : 1; /**< When set the output client state machines will
wait one cycle before starting a new TLP out. */
uint64_t lnk_enb : 1; /**< When set '1' the link is enabled when '0' the
link is disabled. This bit only is active when in
RC mode. */
uint64_t ro_ctlp : 1; /**< When set '1' C-TLPs that have the RO bit set will
not wait for P-TLPs that normaly would be sent
first. */
uint64_t fast_lm : 1; /**< When '1' forces fast link mode. */
uint64_t inv_ecrc : 1; /**< When '1' causes the LSB of the ECRC to be inverted. */
uint64_t inv_lcrc : 1; /**< When '1' causes the LSB of the LCRC to be inverted. */
#else
uint64_t inv_lcrc : 1;
uint64_t inv_ecrc : 1;
uint64_t fast_lm : 1;
uint64_t ro_ctlp : 1;
uint64_t lnk_enb : 1;
uint64_t dly_one : 1;
uint64_t nf_ecrc : 1;
uint64_t reserved_7_8 : 2;
uint64_t ob_p_cmd : 1;
uint64_t pm_xpme : 1;
uint64_t pm_xtoff : 1;
uint64_t reserved_12_15 : 4;
uint64_t cfg_rtry : 16;
uint64_t reserved_32_33 : 2;
uint64_t pbus : 8;
uint64_t dnum : 5;
uint64_t auto_sd : 1;
uint64_t reserved_48_63 : 16;
#endif
} s;
struct cvmx_pemx_ctl_status_s cn61xx;
struct cvmx_pemx_ctl_status_s cn63xx;
struct cvmx_pemx_ctl_status_s cn63xxp1;
struct cvmx_pemx_ctl_status_s cn66xx;
struct cvmx_pemx_ctl_status_s cn68xx;
struct cvmx_pemx_ctl_status_s cn68xxp1;
struct cvmx_pemx_ctl_status_s cnf71xx;
};
typedef union cvmx_pemx_ctl_status cvmx_pemx_ctl_status_t;
/**
* cvmx_pem#_dbg_info
*
* PEM(0..1)_DBG_INFO = PEM Debug Information
*
* General debug info.
*/
union cvmx_pemx_dbg_info {
uint64_t u64;
struct cvmx_pemx_dbg_info_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_31_63 : 33;
uint64_t ecrc_e : 1; /**< Received a ECRC error.
radm_ecrc_err */
uint64_t rawwpp : 1; /**< Received a write with poisoned payload
radm_rcvd_wreq_poisoned */
uint64_t racpp : 1; /**< Received a completion with poisoned payload
radm_rcvd_cpl_poisoned */
uint64_t ramtlp : 1; /**< Received a malformed TLP
radm_mlf_tlp_err */
uint64_t rarwdns : 1; /**< Recieved a request which device does not support
radm_rcvd_ur_req */
uint64_t caar : 1; /**< Completer aborted a request
radm_rcvd_ca_req
This bit will never be set because Octeon does
not generate Completer Aborts. */
uint64_t racca : 1; /**< Received a completion with CA status
radm_rcvd_cpl_ca */
uint64_t racur : 1; /**< Received a completion with UR status
radm_rcvd_cpl_ur */
uint64_t rauc : 1; /**< Received an unexpected completion
radm_unexp_cpl_err */
uint64_t rqo : 1; /**< Receive queue overflow. Normally happens only when
flow control advertisements are ignored
radm_qoverflow */
uint64_t fcuv : 1; /**< Flow Control Update Violation (opt. checks)
int_xadm_fc_prot_err */
uint64_t rpe : 1; /**< When the PHY reports 8B/10B decode error
(RxStatus = 3b100) or disparity error
(RxStatus = 3b111), the signal rmlh_rcvd_err will
be asserted.
rmlh_rcvd_err */
uint64_t fcpvwt : 1; /**< Flow Control Protocol Violation (Watchdog Timer)
rtlh_fc_prot_err */
uint64_t dpeoosd : 1; /**< DLLP protocol error (out of sequence DLLP)
rdlh_prot_err */
uint64_t rtwdle : 1; /**< Received TLP with DataLink Layer Error
rdlh_bad_tlp_err */
uint64_t rdwdle : 1; /**< Received DLLP with DataLink Layer Error
rdlh_bad_dllp_err */
uint64_t mre : 1; /**< Max Retries Exceeded
xdlh_replay_num_rlover_err */
uint64_t rte : 1; /**< Replay Timer Expired
xdlh_replay_timeout_err
This bit is set when the REPLAY_TIMER expires in
the PCIE core. The probability of this bit being
set will increase with the traffic load. */
uint64_t acto : 1; /**< A Completion Timeout Occured
pedc_radm_cpl_timeout */
uint64_t rvdm : 1; /**< Received Vendor-Defined Message
pedc_radm_vendor_msg */
uint64_t rumep : 1; /**< Received Unlock Message (EP Mode Only)
pedc_radm_msg_unlock */
uint64_t rptamrc : 1; /**< Received PME Turnoff Acknowledge Message
(RC Mode only)
pedc_radm_pm_to_ack */
uint64_t rpmerc : 1; /**< Received PME Message (RC Mode only)
pedc_radm_pm_pme */
uint64_t rfemrc : 1; /**< Received Fatal Error Message (RC Mode only)
pedc_radm_fatal_err
Bit set when a message with ERR_FATAL is set. */
uint64_t rnfemrc : 1; /**< Received Non-Fatal Error Message (RC Mode only)
pedc_radm_nonfatal_err */
uint64_t rcemrc : 1; /**< Received Correctable Error Message (RC Mode only)
pedc_radm_correctable_err */
uint64_t rpoison : 1; /**< Received Poisoned TLP
pedc__radm_trgt1_poisoned & pedc__radm_trgt1_hv */
uint64_t recrce : 1; /**< Received ECRC Error
pedc_radm_trgt1_ecrc_err & pedc__radm_trgt1_eot */
uint64_t rtlplle : 1; /**< Received TLP has link layer error
pedc_radm_trgt1_dllp_abort & pedc__radm_trgt1_eot */
uint64_t rtlpmal : 1; /**< Received TLP is malformed or a message.
pedc_radm_trgt1_tlp_abort & pedc__radm_trgt1_eot
If the core receives a MSG (or Vendor Message)
this bit will be set. */
uint64_t spoison : 1; /**< Poisoned TLP sent
peai__client0_tlp_ep & peai__client0_tlp_hv */
#else
uint64_t spoison : 1;
uint64_t rtlpmal : 1;
uint64_t rtlplle : 1;
uint64_t recrce : 1;
uint64_t rpoison : 1;
uint64_t rcemrc : 1;
uint64_t rnfemrc : 1;
uint64_t rfemrc : 1;
uint64_t rpmerc : 1;
uint64_t rptamrc : 1;
uint64_t rumep : 1;
uint64_t rvdm : 1;
uint64_t acto : 1;
uint64_t rte : 1;
uint64_t mre : 1;
uint64_t rdwdle : 1;
uint64_t rtwdle : 1;
uint64_t dpeoosd : 1;
uint64_t fcpvwt : 1;
uint64_t rpe : 1;
uint64_t fcuv : 1;
uint64_t rqo : 1;
uint64_t rauc : 1;
uint64_t racur : 1;
uint64_t racca : 1;
uint64_t caar : 1;
uint64_t rarwdns : 1;
uint64_t ramtlp : 1;
uint64_t racpp : 1;
uint64_t rawwpp : 1;
uint64_t ecrc_e : 1;
uint64_t reserved_31_63 : 33;
#endif
} s;
struct cvmx_pemx_dbg_info_s cn61xx;
struct cvmx_pemx_dbg_info_s cn63xx;
struct cvmx_pemx_dbg_info_s cn63xxp1;
struct cvmx_pemx_dbg_info_s cn66xx;
struct cvmx_pemx_dbg_info_s cn68xx;
struct cvmx_pemx_dbg_info_s cn68xxp1;
struct cvmx_pemx_dbg_info_s cnf71xx;
};
typedef union cvmx_pemx_dbg_info cvmx_pemx_dbg_info_t;
/**
* cvmx_pem#_dbg_info_en
*
* PEM(0..1)_DBG_INFO_EN = PEM Debug Information Enable
*
* Allows PEM_DBG_INFO to generate interrupts when cooresponding enable bit is set.
*/
union cvmx_pemx_dbg_info_en {
uint64_t u64;
struct cvmx_pemx_dbg_info_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_31_63 : 33;
uint64_t ecrc_e : 1; /**< Allows PEM_DBG_INFO[30] to generate an interrupt. */
uint64_t rawwpp : 1; /**< Allows PEM_DBG_INFO[29] to generate an interrupt. */
uint64_t racpp : 1; /**< Allows PEM_DBG_INFO[28] to generate an interrupt. */
uint64_t ramtlp : 1; /**< Allows PEM_DBG_INFO[27] to generate an interrupt. */
uint64_t rarwdns : 1; /**< Allows PEM_DBG_INFO[26] to generate an interrupt. */
uint64_t caar : 1; /**< Allows PEM_DBG_INFO[25] to generate an interrupt. */
uint64_t racca : 1; /**< Allows PEM_DBG_INFO[24] to generate an interrupt. */
uint64_t racur : 1; /**< Allows PEM_DBG_INFO[23] to generate an interrupt. */
uint64_t rauc : 1; /**< Allows PEM_DBG_INFO[22] to generate an interrupt. */
uint64_t rqo : 1; /**< Allows PEM_DBG_INFO[21] to generate an interrupt. */
uint64_t fcuv : 1; /**< Allows PEM_DBG_INFO[20] to generate an interrupt. */
uint64_t rpe : 1; /**< Allows PEM_DBG_INFO[19] to generate an interrupt. */
uint64_t fcpvwt : 1; /**< Allows PEM_DBG_INFO[18] to generate an interrupt. */
uint64_t dpeoosd : 1; /**< Allows PEM_DBG_INFO[17] to generate an interrupt. */
uint64_t rtwdle : 1; /**< Allows PEM_DBG_INFO[16] to generate an interrupt. */
uint64_t rdwdle : 1; /**< Allows PEM_DBG_INFO[15] to generate an interrupt. */
uint64_t mre : 1; /**< Allows PEM_DBG_INFO[14] to generate an interrupt. */
uint64_t rte : 1; /**< Allows PEM_DBG_INFO[13] to generate an interrupt. */
uint64_t acto : 1; /**< Allows PEM_DBG_INFO[12] to generate an interrupt. */
uint64_t rvdm : 1; /**< Allows PEM_DBG_INFO[11] to generate an interrupt. */
uint64_t rumep : 1; /**< Allows PEM_DBG_INFO[10] to generate an interrupt. */
uint64_t rptamrc : 1; /**< Allows PEM_DBG_INFO[9] to generate an interrupt. */
uint64_t rpmerc : 1; /**< Allows PEM_DBG_INFO[8] to generate an interrupt. */
uint64_t rfemrc : 1; /**< Allows PEM_DBG_INFO[7] to generate an interrupt. */
uint64_t rnfemrc : 1; /**< Allows PEM_DBG_INFO[6] to generate an interrupt. */
uint64_t rcemrc : 1; /**< Allows PEM_DBG_INFO[5] to generate an interrupt. */
uint64_t rpoison : 1; /**< Allows PEM_DBG_INFO[4] to generate an interrupt. */
uint64_t recrce : 1; /**< Allows PEM_DBG_INFO[3] to generate an interrupt. */
uint64_t rtlplle : 1; /**< Allows PEM_DBG_INFO[2] to generate an interrupt. */
uint64_t rtlpmal : 1; /**< Allows PEM_DBG_INFO[1] to generate an interrupt. */
uint64_t spoison : 1; /**< Allows PEM_DBG_INFO[0] to generate an interrupt. */
#else
uint64_t spoison : 1;
uint64_t rtlpmal : 1;
uint64_t rtlplle : 1;
uint64_t recrce : 1;
uint64_t rpoison : 1;
uint64_t rcemrc : 1;
uint64_t rnfemrc : 1;
uint64_t rfemrc : 1;
uint64_t rpmerc : 1;
uint64_t rptamrc : 1;
uint64_t rumep : 1;
uint64_t rvdm : 1;
uint64_t acto : 1;
uint64_t rte : 1;
uint64_t mre : 1;
uint64_t rdwdle : 1;
uint64_t rtwdle : 1;
uint64_t dpeoosd : 1;
uint64_t fcpvwt : 1;
uint64_t rpe : 1;
uint64_t fcuv : 1;
uint64_t rqo : 1;
uint64_t rauc : 1;
uint64_t racur : 1;
uint64_t racca : 1;
uint64_t caar : 1;
uint64_t rarwdns : 1;
uint64_t ramtlp : 1;
uint64_t racpp : 1;
uint64_t rawwpp : 1;
uint64_t ecrc_e : 1;
uint64_t reserved_31_63 : 33;
#endif
} s;
struct cvmx_pemx_dbg_info_en_s cn61xx;
struct cvmx_pemx_dbg_info_en_s cn63xx;
struct cvmx_pemx_dbg_info_en_s cn63xxp1;
struct cvmx_pemx_dbg_info_en_s cn66xx;
struct cvmx_pemx_dbg_info_en_s cn68xx;
struct cvmx_pemx_dbg_info_en_s cn68xxp1;
struct cvmx_pemx_dbg_info_en_s cnf71xx;
};
typedef union cvmx_pemx_dbg_info_en cvmx_pemx_dbg_info_en_t;
/**
* cvmx_pem#_diag_status
*
* PEM_DIAG_STATUS = PEM Diagnostic Status
*
* Selection control for the cores diagnostic bus.
*/
union cvmx_pemx_diag_status {
uint64_t u64;
struct cvmx_pemx_diag_status_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_4_63 : 60;
uint64_t pm_dst : 1; /**< Current power management DSTATE. */
uint64_t pm_stat : 1; /**< Power Management Status. */
uint64_t pm_en : 1; /**< Power Management Event Enable. */
uint64_t aux_en : 1; /**< Auxilary Power Enable. */
#else
uint64_t aux_en : 1;
uint64_t pm_en : 1;
uint64_t pm_stat : 1;
uint64_t pm_dst : 1;
uint64_t reserved_4_63 : 60;
#endif
} s;
struct cvmx_pemx_diag_status_s cn61xx;
struct cvmx_pemx_diag_status_s cn63xx;
struct cvmx_pemx_diag_status_s cn63xxp1;
struct cvmx_pemx_diag_status_s cn66xx;
struct cvmx_pemx_diag_status_s cn68xx;
struct cvmx_pemx_diag_status_s cn68xxp1;
struct cvmx_pemx_diag_status_s cnf71xx;
};
typedef union cvmx_pemx_diag_status cvmx_pemx_diag_status_t;
/**
* cvmx_pem#_inb_read_credits
*
* PEM_INB_READ_CREDITS
*
* The number of in flight reads from PCIe core to SLI
*/
union cvmx_pemx_inb_read_credits {
uint64_t u64;
struct cvmx_pemx_inb_read_credits_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_6_63 : 58;
uint64_t num : 6; /**< The number of reads that may be in flight from
the PCIe core to the SLI. Min number is 2 max
number is 32. */
#else
uint64_t num : 6;
uint64_t reserved_6_63 : 58;
#endif
} s;
struct cvmx_pemx_inb_read_credits_s cn61xx;
struct cvmx_pemx_inb_read_credits_s cn66xx;
struct cvmx_pemx_inb_read_credits_s cn68xx;
struct cvmx_pemx_inb_read_credits_s cnf71xx;
};
typedef union cvmx_pemx_inb_read_credits cvmx_pemx_inb_read_credits_t;
/**
* cvmx_pem#_int_enb
*
* PEM(0..1)_INT_ENB = PEM Interrupt Enable
*
* Enables interrupt conditions for the PEM to generate an RSL interrupt.
*/
union cvmx_pemx_int_enb {
uint64_t u64;
struct cvmx_pemx_int_enb_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_14_63 : 50;
uint64_t crs_dr : 1; /**< Enables PEM_INT_SUM[13] to generate an
interrupt to the MIO. */
uint64_t crs_er : 1; /**< Enables PEM_INT_SUM[12] to generate an
interrupt to the MIO. */
uint64_t rdlk : 1; /**< Enables PEM_INT_SUM[11] to generate an
interrupt to the MIO. */
uint64_t exc : 1; /**< Enables PEM_INT_SUM[10] to generate an
interrupt to the MIO. */
uint64_t un_bx : 1; /**< Enables PEM_INT_SUM[9] to generate an
interrupt to the MIO. */
uint64_t un_b2 : 1; /**< Enables PEM_INT_SUM[8] to generate an
interrupt to the MIO. */
uint64_t un_b1 : 1; /**< Enables PEM_INT_SUM[7] to generate an
interrupt to the MIO. */
uint64_t up_bx : 1; /**< Enables PEM_INT_SUM[6] to generate an
interrupt to the MIO. */
uint64_t up_b2 : 1; /**< Enables PEM_INT_SUM[5] to generate an
interrupt to the MIO. */
uint64_t up_b1 : 1; /**< Enables PEM_INT_SUM[4] to generate an
interrupt to the MIO. */
uint64_t pmem : 1; /**< Enables PEM_INT_SUM[3] to generate an
interrupt to the MIO. */
uint64_t pmei : 1; /**< Enables PEM_INT_SUM[2] to generate an
interrupt to the MIO. */
uint64_t se : 1; /**< Enables PEM_INT_SUM[1] to generate an
interrupt to the MIO. */
uint64_t aeri : 1; /**< Enables PEM_INT_SUM[0] to generate an
interrupt to the MIO. */
#else
uint64_t aeri : 1;
uint64_t se : 1;
uint64_t pmei : 1;
uint64_t pmem : 1;
uint64_t up_b1 : 1;
uint64_t up_b2 : 1;
uint64_t up_bx : 1;
uint64_t un_b1 : 1;
uint64_t un_b2 : 1;
uint64_t un_bx : 1;
uint64_t exc : 1;
uint64_t rdlk : 1;
uint64_t crs_er : 1;
uint64_t crs_dr : 1;
uint64_t reserved_14_63 : 50;
#endif
} s;
struct cvmx_pemx_int_enb_s cn61xx;
struct cvmx_pemx_int_enb_s cn63xx;
struct cvmx_pemx_int_enb_s cn63xxp1;
struct cvmx_pemx_int_enb_s cn66xx;
struct cvmx_pemx_int_enb_s cn68xx;
struct cvmx_pemx_int_enb_s cn68xxp1;
struct cvmx_pemx_int_enb_s cnf71xx;
};
typedef union cvmx_pemx_int_enb cvmx_pemx_int_enb_t;
/**
* cvmx_pem#_int_enb_int
*
* PEM(0..1)_INT_ENB_INT = PEM Interrupt Enable
*
* Enables interrupt conditions for the PEM to generate an RSL interrupt.
*/
union cvmx_pemx_int_enb_int {
uint64_t u64;
struct cvmx_pemx_int_enb_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_14_63 : 50;
uint64_t crs_dr : 1; /**< Enables PEM_INT_SUM[13] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t crs_er : 1; /**< Enables PEM_INT_SUM[12] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t rdlk : 1; /**< Enables PEM_INT_SUM[11] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t exc : 1; /**< Enables PEM_INT_SUM[10] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t un_bx : 1; /**< Enables PEM_INT_SUM[9] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t un_b2 : 1; /**< Enables PEM_INT_SUM[8] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t un_b1 : 1; /**< Enables PEM_INT_SUM[7] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t up_bx : 1; /**< Enables PEM_INT_SUM[6] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t up_b2 : 1; /**< Enables PEM_INT_SUM[5] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t up_b1 : 1; /**< Enables PEM_INT_SUM[4] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t pmem : 1; /**< Enables PEM_INT_SUM[3] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t pmei : 1; /**< Enables PEM_INT_SUM[2] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t se : 1; /**< Enables PEM_INT_SUM[1] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
uint64_t aeri : 1; /**< Enables PEM_INT_SUM[0] to generate an
interrupt to the SLI as SLI_INT_SUM[MAC#_INT]. */
#else
uint64_t aeri : 1;
uint64_t se : 1;
uint64_t pmei : 1;
uint64_t pmem : 1;
uint64_t up_b1 : 1;
uint64_t up_b2 : 1;
uint64_t up_bx : 1;
uint64_t un_b1 : 1;
uint64_t un_b2 : 1;
uint64_t un_bx : 1;
uint64_t exc : 1;
uint64_t rdlk : 1;
uint64_t crs_er : 1;
uint64_t crs_dr : 1;
uint64_t reserved_14_63 : 50;
#endif
} s;
struct cvmx_pemx_int_enb_int_s cn61xx;
struct cvmx_pemx_int_enb_int_s cn63xx;
struct cvmx_pemx_int_enb_int_s cn63xxp1;
struct cvmx_pemx_int_enb_int_s cn66xx;
struct cvmx_pemx_int_enb_int_s cn68xx;
struct cvmx_pemx_int_enb_int_s cn68xxp1;
struct cvmx_pemx_int_enb_int_s cnf71xx;
};
typedef union cvmx_pemx_int_enb_int cvmx_pemx_int_enb_int_t;
/**
* cvmx_pem#_int_sum
*
* Below are in pesc_csr
*
* PEM(0..1)_INT_SUM = PEM Interrupt Summary
*
* Interrupt conditions for the PEM.
*/
union cvmx_pemx_int_sum {
uint64_t u64;
struct cvmx_pemx_int_sum_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_14_63 : 50;
uint64_t crs_dr : 1; /**< Had a CRS Timeout when Retries were disabled. */
uint64_t crs_er : 1; /**< Had a CRS Timeout when Retries were enabled. */
uint64_t rdlk : 1; /**< Received Read Lock TLP. */
uint64_t exc : 1; /**< Set when the PEM_DBG_INFO register has a bit
set and its cooresponding PEM_DBG_INFO_EN bit
is set. */
uint64_t un_bx : 1; /**< Received N-TLP for an unknown Bar. */
uint64_t un_b2 : 1; /**< Received N-TLP for Bar2 when bar2 is disabled. */
uint64_t un_b1 : 1; /**< Received N-TLP for Bar1 when bar1 index valid
is not set. */
uint64_t up_bx : 1; /**< Received P-TLP for an unknown Bar. */
uint64_t up_b2 : 1; /**< Received P-TLP for Bar2 when bar2 is disabeld. */
uint64_t up_b1 : 1; /**< Received P-TLP for Bar1 when bar1 index valid
is not set. */
uint64_t pmem : 1; /**< Recived PME MSG.
(radm_pm_pme) */
uint64_t pmei : 1; /**< PME Interrupt.
(cfg_pme_int) */
uint64_t se : 1; /**< System Error, RC Mode Only.
(cfg_sys_err_rc) */
uint64_t aeri : 1; /**< Advanced Error Reporting Interrupt, RC Mode Only.
(cfg_aer_rc_err_int). */
#else
uint64_t aeri : 1;
uint64_t se : 1;
uint64_t pmei : 1;
uint64_t pmem : 1;
uint64_t up_b1 : 1;
uint64_t up_b2 : 1;
uint64_t up_bx : 1;
uint64_t un_b1 : 1;
uint64_t un_b2 : 1;
uint64_t un_bx : 1;
uint64_t exc : 1;
uint64_t rdlk : 1;
uint64_t crs_er : 1;
uint64_t crs_dr : 1;
uint64_t reserved_14_63 : 50;
#endif
} s;
struct cvmx_pemx_int_sum_s cn61xx;
struct cvmx_pemx_int_sum_s cn63xx;
struct cvmx_pemx_int_sum_s cn63xxp1;
struct cvmx_pemx_int_sum_s cn66xx;
struct cvmx_pemx_int_sum_s cn68xx;
struct cvmx_pemx_int_sum_s cn68xxp1;
struct cvmx_pemx_int_sum_s cnf71xx;
};
typedef union cvmx_pemx_int_sum cvmx_pemx_int_sum_t;
/**
* cvmx_pem#_p2n_bar0_start
*
* PEM_P2N_BAR0_START = PEM PCIe to Npei BAR0 Start
*
* The starting address for addresses to forwarded to the SLI in RC Mode.
*/
union cvmx_pemx_p2n_bar0_start {
uint64_t u64;
struct cvmx_pemx_p2n_bar0_start_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t addr : 50; /**< The starting address of the 16KB address space that
is the BAR0 address space. */
uint64_t reserved_0_13 : 14;
#else
uint64_t reserved_0_13 : 14;
uint64_t addr : 50;
#endif
} s;
struct cvmx_pemx_p2n_bar0_start_s cn61xx;
struct cvmx_pemx_p2n_bar0_start_s cn63xx;
struct cvmx_pemx_p2n_bar0_start_s cn63xxp1;
struct cvmx_pemx_p2n_bar0_start_s cn66xx;
struct cvmx_pemx_p2n_bar0_start_s cn68xx;
struct cvmx_pemx_p2n_bar0_start_s cn68xxp1;
struct cvmx_pemx_p2n_bar0_start_s cnf71xx;
};
typedef union cvmx_pemx_p2n_bar0_start cvmx_pemx_p2n_bar0_start_t;
/**
* cvmx_pem#_p2n_bar1_start
*
* PEM_P2N_BAR1_START = PEM PCIe to Npei BAR1 Start
*
* The starting address for addresses to forwarded to the SLI in RC Mode.
*/
union cvmx_pemx_p2n_bar1_start {
uint64_t u64;
struct cvmx_pemx_p2n_bar1_start_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t addr : 38; /**< The starting address of the 64KB address space
that is the BAR1 address space. */
uint64_t reserved_0_25 : 26;
#else
uint64_t reserved_0_25 : 26;
uint64_t addr : 38;
#endif
} s;
struct cvmx_pemx_p2n_bar1_start_s cn61xx;
struct cvmx_pemx_p2n_bar1_start_s cn63xx;
struct cvmx_pemx_p2n_bar1_start_s cn63xxp1;
struct cvmx_pemx_p2n_bar1_start_s cn66xx;
struct cvmx_pemx_p2n_bar1_start_s cn68xx;
struct cvmx_pemx_p2n_bar1_start_s cn68xxp1;
struct cvmx_pemx_p2n_bar1_start_s cnf71xx;
};
typedef union cvmx_pemx_p2n_bar1_start cvmx_pemx_p2n_bar1_start_t;
/**
* cvmx_pem#_p2n_bar2_start
*
* PEM_P2N_BAR2_START = PEM PCIe to Npei BAR2 Start
*
* The starting address for addresses to forwarded to the SLI in RC Mode.
*/
union cvmx_pemx_p2n_bar2_start {
uint64_t u64;
struct cvmx_pemx_p2n_bar2_start_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t addr : 23; /**< The starting address of the 2^41 address space
that is the BAR2 address space. */
uint64_t reserved_0_40 : 41;
#else
uint64_t reserved_0_40 : 41;
uint64_t addr : 23;
#endif
} s;
struct cvmx_pemx_p2n_bar2_start_s cn61xx;
struct cvmx_pemx_p2n_bar2_start_s cn63xx;
struct cvmx_pemx_p2n_bar2_start_s cn63xxp1;
struct cvmx_pemx_p2n_bar2_start_s cn66xx;
struct cvmx_pemx_p2n_bar2_start_s cn68xx;
struct cvmx_pemx_p2n_bar2_start_s cn68xxp1;
struct cvmx_pemx_p2n_bar2_start_s cnf71xx;
};
typedef union cvmx_pemx_p2n_bar2_start cvmx_pemx_p2n_bar2_start_t;
/**
* cvmx_pem#_p2p_bar#_end
*
* PEM_P2P_BAR#_END = PEM Peer-To-Peer BAR0 End
*
* The ending address for addresses to forwarded to the PCIe peer port.
*/
union cvmx_pemx_p2p_barx_end {
uint64_t u64;
struct cvmx_pemx_p2p_barx_end_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t addr : 52; /**< The ending address of the address window created
this field and the PEM_P2P_BAR0_START[63:12]
field. The full 64-bits of address are created by:
[ADDR[63:12], 12'b0]. */
uint64_t reserved_0_11 : 12;
#else
uint64_t reserved_0_11 : 12;
uint64_t addr : 52;
#endif
} s;
struct cvmx_pemx_p2p_barx_end_s cn63xx;
struct cvmx_pemx_p2p_barx_end_s cn63xxp1;
struct cvmx_pemx_p2p_barx_end_s cn66xx;
struct cvmx_pemx_p2p_barx_end_s cn68xx;
struct cvmx_pemx_p2p_barx_end_s cn68xxp1;
};
typedef union cvmx_pemx_p2p_barx_end cvmx_pemx_p2p_barx_end_t;
/**
* cvmx_pem#_p2p_bar#_start
*
* PEM_P2P_BAR#_START = PEM Peer-To-Peer BAR0 Start
*
* The starting address and enable for addresses to forwarded to the PCIe peer port.
*/
union cvmx_pemx_p2p_barx_start {
uint64_t u64;
struct cvmx_pemx_p2p_barx_start_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t addr : 52; /**< The starting address of the address window created
by this field and the PEM_P2P_BAR0_END[63:12]
field. The full 64-bits of address are created by:
[ADDR[63:12], 12'b0]. */
uint64_t reserved_0_11 : 12;
#else
uint64_t reserved_0_11 : 12;
uint64_t addr : 52;
#endif
} s;
struct cvmx_pemx_p2p_barx_start_s cn63xx;
struct cvmx_pemx_p2p_barx_start_s cn63xxp1;
struct cvmx_pemx_p2p_barx_start_s cn66xx;
struct cvmx_pemx_p2p_barx_start_s cn68xx;
struct cvmx_pemx_p2p_barx_start_s cn68xxp1;
};
typedef union cvmx_pemx_p2p_barx_start cvmx_pemx_p2p_barx_start_t;
/**
* cvmx_pem#_tlp_credits
*
* PEM_TLP_CREDITS = PEM TLP Credits
*
* Specifies the number of credits the PEM for use in moving TLPs. When this register is written the credit values are
* reset to the register value. A write to this register should take place BEFORE traffic flow starts.
*/
union cvmx_pemx_tlp_credits {
uint64_t u64;
struct cvmx_pemx_tlp_credits_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_56_63 : 8;
uint64_t peai_ppf : 8; /**< TLP credits for Completion TLPs in the Peer.
The value in this register should not be changed.
Values other than 0x80 can lead to unpredictable
behavior */
uint64_t pem_cpl : 8; /**< TLP credits for Completion TLPs in the Peer.
Legal values are 0x24 to 0x80. */
uint64_t pem_np : 8; /**< TLP credits for Non-Posted TLPs in the Peer.
Legal values are 0x4 to 0x10. */
uint64_t pem_p : 8; /**< TLP credits for Posted TLPs in the Peer.
Legal values are 0x24 to 0x80. */
uint64_t sli_cpl : 8; /**< TLP credits for Completion TLPs in the SLI.
Legal values are 0x24 to 0x80. */
uint64_t sli_np : 8; /**< TLP credits for Non-Posted TLPs in the SLI.
Legal values are 0x4 to 0x10. */
uint64_t sli_p : 8; /**< TLP credits for Posted TLPs in the SLI.
Legal values are 0x24 to 0x80. */
#else
uint64_t sli_p : 8;
uint64_t sli_np : 8;
uint64_t sli_cpl : 8;
uint64_t pem_p : 8;
uint64_t pem_np : 8;
uint64_t pem_cpl : 8;
uint64_t peai_ppf : 8;
uint64_t reserved_56_63 : 8;
#endif
} s;
struct cvmx_pemx_tlp_credits_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_56_63 : 8;
uint64_t peai_ppf : 8; /**< TLP credits for Completion TLPs in the Peer.
The value in this register should not be changed.
Values other than 0x80 can lead to unpredictable
behavior */
uint64_t reserved_24_47 : 24;
uint64_t sli_cpl : 8; /**< TLP credits for Completion TLPs in the SLI.
Legal values are 0x24 to 0x80. */
uint64_t sli_np : 8; /**< TLP credits for Non-Posted TLPs in the SLI.
Legal values are 0x4 to 0x10. */
uint64_t sli_p : 8; /**< TLP credits for Posted TLPs in the SLI.
Legal values are 0x24 to 0x80. */
#else
uint64_t sli_p : 8;
uint64_t sli_np : 8;
uint64_t sli_cpl : 8;
uint64_t reserved_24_47 : 24;
uint64_t peai_ppf : 8;
uint64_t reserved_56_63 : 8;
#endif
} cn61xx;
struct cvmx_pemx_tlp_credits_s cn63xx;
struct cvmx_pemx_tlp_credits_s cn63xxp1;
struct cvmx_pemx_tlp_credits_s cn66xx;
struct cvmx_pemx_tlp_credits_s cn68xx;
struct cvmx_pemx_tlp_credits_s cn68xxp1;
struct cvmx_pemx_tlp_credits_cn61xx cnf71xx;
};
typedef union cvmx_pemx_tlp_credits cvmx_pemx_tlp_credits_t;
#endif