Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
FreeBSD Source:
This is the top level of the FreeBSD source directory.
FreeBSD is an operating system used to power modern servers, desktops, and embedded platforms. A large community has continually developed it for more than thirty years. Its advanced networking, security, and storage features have made FreeBSD the platform of choice for many of the busiest web sites and most pervasive embedded networking and storage devices.
For copyright information, please see the file COPYRIGHT in this directory. Additional copyright information also exists for some sources in this tree - please see the specific source directories for more information.
The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree. See build(7), config(8), FreeBSD handbook on building userland, and Handbook for kernels for more information, including setting make(1) variables.
Source Roadmap:
Directory | Description |
---|---|
bin | System/user commands. |
cddl | Various commands and libraries under the Common Development and Distribution License. |
contrib | Packages contributed by 3rd parties. |
crypto | Cryptography stuff (see crypto/README). |
etc | Template files for /etc. |
gnu | Various commands and libraries under the GNU Public License. Please see gnu/COPYING and gnu/COPYING.LIB for more information. |
include | System include files. |
kerberos5 | Kerberos5 (Heimdal) package. |
lib | System libraries. |
libexec | System daemons. |
release | Release building Makefile & associated tools. |
rescue | Build system for statically linked /rescue utilities. |
sbin | System commands. |
secure | Cryptographic libraries and commands. |
share | Shared resources. |
stand | Boot loader sources. |
sys | Kernel sources. |
sys/arch /conf |
Kernel configuration files. GENERIC is the configuration used in release builds. NOTES contains documentation of all possible entries. |
tests | Regression tests which can be run by Kyua. See tests/README for additional information. |
tools | Utilities for regression testing and miscellaneous tasks. |
usr.bin | User commands. |
usr.sbin | System administration commands. |
For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see FreeBSD Handbook.