freebsd-nq/module/zfs/dmu.c
Daniil Lunev 62bdd5eb7a Illumos 4924 - LZ4 Compression for metadata
Reviewed by Matthew Ahrens <mahrens@delphix.com>
Reviewed by Saso Kiselkov <skiselkov.ml@gmail.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>

References:
  https://github.com/illumos/illumos-gate/commit/b8289d2
  https://www.illumos.org/issues/3756

Porting notes:

The static function zfs_prop_activate_feature() was removed because
this change removes the only caller.  The function was not removed
from Illumos but instead left as dead code.  However, to keep gcc
happy it was removed from Linux and may be easily restored if needed.

Ported by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1540
2014-10-20 16:17:49 -07:00

2078 lines
50 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2014 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/zfs_context.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_synctask.h>
#include <sys/dsl_prop.h>
#include <sys/dmu_zfetch.h>
#include <sys/zfs_ioctl.h>
#include <sys/zap.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/sa.h>
#include <sys/zfeature.h>
#ifdef _KERNEL
#include <sys/vmsystm.h>
#include <sys/zfs_znode.h>
#endif
/*
* Enable/disable nopwrite feature.
*/
int zfs_nopwrite_enabled = 1;
const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
{ DMU_BSWAP_UINT8, TRUE, "unallocated" },
{ DMU_BSWAP_ZAP, TRUE, "object directory" },
{ DMU_BSWAP_UINT64, TRUE, "object array" },
{ DMU_BSWAP_UINT8, TRUE, "packed nvlist" },
{ DMU_BSWAP_UINT64, TRUE, "packed nvlist size" },
{ DMU_BSWAP_UINT64, TRUE, "bpobj" },
{ DMU_BSWAP_UINT64, TRUE, "bpobj header" },
{ DMU_BSWAP_UINT64, TRUE, "SPA space map header" },
{ DMU_BSWAP_UINT64, TRUE, "SPA space map" },
{ DMU_BSWAP_UINT64, TRUE, "ZIL intent log" },
{ DMU_BSWAP_DNODE, TRUE, "DMU dnode" },
{ DMU_BSWAP_OBJSET, TRUE, "DMU objset" },
{ DMU_BSWAP_UINT64, TRUE, "DSL directory" },
{ DMU_BSWAP_ZAP, TRUE, "DSL directory child map"},
{ DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" },
{ DMU_BSWAP_ZAP, TRUE, "DSL props" },
{ DMU_BSWAP_UINT64, TRUE, "DSL dataset" },
{ DMU_BSWAP_ZNODE, TRUE, "ZFS znode" },
{ DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" },
{ DMU_BSWAP_UINT8, FALSE, "ZFS plain file" },
{ DMU_BSWAP_ZAP, TRUE, "ZFS directory" },
{ DMU_BSWAP_ZAP, TRUE, "ZFS master node" },
{ DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" },
{ DMU_BSWAP_UINT8, FALSE, "zvol object" },
{ DMU_BSWAP_ZAP, TRUE, "zvol prop" },
{ DMU_BSWAP_UINT8, FALSE, "other uint8[]" },
{ DMU_BSWAP_UINT64, FALSE, "other uint64[]" },
{ DMU_BSWAP_ZAP, TRUE, "other ZAP" },
{ DMU_BSWAP_ZAP, TRUE, "persistent error log" },
{ DMU_BSWAP_UINT8, TRUE, "SPA history" },
{ DMU_BSWAP_UINT64, TRUE, "SPA history offsets" },
{ DMU_BSWAP_ZAP, TRUE, "Pool properties" },
{ DMU_BSWAP_ZAP, TRUE, "DSL permissions" },
{ DMU_BSWAP_ACL, TRUE, "ZFS ACL" },
{ DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" },
{ DMU_BSWAP_UINT8, TRUE, "FUID table" },
{ DMU_BSWAP_UINT64, TRUE, "FUID table size" },
{ DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"},
{ DMU_BSWAP_ZAP, TRUE, "scan work queue" },
{ DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" },
{ DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" },
{ DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"},
{ DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" },
{ DMU_BSWAP_ZAP, TRUE, "DDT statistics" },
{ DMU_BSWAP_UINT8, TRUE, "System attributes" },
{ DMU_BSWAP_ZAP, TRUE, "SA master node" },
{ DMU_BSWAP_ZAP, TRUE, "SA attr registration" },
{ DMU_BSWAP_ZAP, TRUE, "SA attr layouts" },
{ DMU_BSWAP_ZAP, TRUE, "scan translations" },
{ DMU_BSWAP_UINT8, FALSE, "deduplicated block" },
{ DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" },
{ DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" },
{ DMU_BSWAP_ZAP, TRUE, "DSL dir clones" },
{ DMU_BSWAP_UINT64, TRUE, "bpobj subobj" }
};
const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
{ byteswap_uint8_array, "uint8" },
{ byteswap_uint16_array, "uint16" },
{ byteswap_uint32_array, "uint32" },
{ byteswap_uint64_array, "uint64" },
{ zap_byteswap, "zap" },
{ dnode_buf_byteswap, "dnode" },
{ dmu_objset_byteswap, "objset" },
{ zfs_znode_byteswap, "znode" },
{ zfs_oldacl_byteswap, "oldacl" },
{ zfs_acl_byteswap, "acl" }
};
int
dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
void *tag, dmu_buf_t **dbp)
{
dnode_t *dn;
uint64_t blkid;
dmu_buf_impl_t *db;
int err;
err = dnode_hold(os, object, FTAG, &dn);
if (err)
return (err);
blkid = dbuf_whichblock(dn, offset);
rw_enter(&dn->dn_struct_rwlock, RW_READER);
db = dbuf_hold(dn, blkid, tag);
rw_exit(&dn->dn_struct_rwlock);
dnode_rele(dn, FTAG);
if (db == NULL) {
*dbp = NULL;
return (SET_ERROR(EIO));
}
*dbp = &db->db;
return (err);
}
int
dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
void *tag, dmu_buf_t **dbp, int flags)
{
int err;
int db_flags = DB_RF_CANFAIL;
if (flags & DMU_READ_NO_PREFETCH)
db_flags |= DB_RF_NOPREFETCH;
err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
if (err == 0) {
dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
err = dbuf_read(db, NULL, db_flags);
if (err != 0) {
dbuf_rele(db, tag);
*dbp = NULL;
}
}
return (err);
}
int
dmu_bonus_max(void)
{
return (DN_MAX_BONUSLEN);
}
int
dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dnode_t *dn;
int error;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
if (dn->dn_bonus != db) {
error = SET_ERROR(EINVAL);
} else if (newsize < 0 || newsize > db_fake->db_size) {
error = SET_ERROR(EINVAL);
} else {
dnode_setbonuslen(dn, newsize, tx);
error = 0;
}
DB_DNODE_EXIT(db);
return (error);
}
int
dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dnode_t *dn;
int error;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
if (!DMU_OT_IS_VALID(type)) {
error = SET_ERROR(EINVAL);
} else if (dn->dn_bonus != db) {
error = SET_ERROR(EINVAL);
} else {
dnode_setbonus_type(dn, type, tx);
error = 0;
}
DB_DNODE_EXIT(db);
return (error);
}
dmu_object_type_t
dmu_get_bonustype(dmu_buf_t *db_fake)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dnode_t *dn;
dmu_object_type_t type;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
type = dn->dn_bonustype;
DB_DNODE_EXIT(db);
return (type);
}
int
dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
{
dnode_t *dn;
int error;
error = dnode_hold(os, object, FTAG, &dn);
dbuf_rm_spill(dn, tx);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
dnode_rm_spill(dn, tx);
rw_exit(&dn->dn_struct_rwlock);
dnode_rele(dn, FTAG);
return (error);
}
/*
* returns ENOENT, EIO, or 0.
*/
int
dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
{
dnode_t *dn;
dmu_buf_impl_t *db;
int error;
error = dnode_hold(os, object, FTAG, &dn);
if (error)
return (error);
rw_enter(&dn->dn_struct_rwlock, RW_READER);
if (dn->dn_bonus == NULL) {
rw_exit(&dn->dn_struct_rwlock);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
if (dn->dn_bonus == NULL)
dbuf_create_bonus(dn);
}
db = dn->dn_bonus;
/* as long as the bonus buf is held, the dnode will be held */
if (refcount_add(&db->db_holds, tag) == 1) {
VERIFY(dnode_add_ref(dn, db));
(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
}
/*
* Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
* hold and incrementing the dbuf count to ensure that dnode_move() sees
* a dnode hold for every dbuf.
*/
rw_exit(&dn->dn_struct_rwlock);
dnode_rele(dn, FTAG);
VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
*dbp = &db->db;
return (0);
}
/*
* returns ENOENT, EIO, or 0.
*
* This interface will allocate a blank spill dbuf when a spill blk
* doesn't already exist on the dnode.
*
* if you only want to find an already existing spill db, then
* dmu_spill_hold_existing() should be used.
*/
int
dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
{
dmu_buf_impl_t *db = NULL;
int err;
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_enter(&dn->dn_struct_rwlock, RW_READER);
db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&dn->dn_struct_rwlock);
ASSERT(db != NULL);
err = dbuf_read(db, NULL, flags);
if (err == 0)
*dbp = &db->db;
else
dbuf_rele(db, tag);
return (err);
}
int
dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
dnode_t *dn;
int err;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
err = SET_ERROR(EINVAL);
} else {
rw_enter(&dn->dn_struct_rwlock, RW_READER);
if (!dn->dn_have_spill) {
err = SET_ERROR(ENOENT);
} else {
err = dmu_spill_hold_by_dnode(dn,
DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
}
rw_exit(&dn->dn_struct_rwlock);
}
DB_DNODE_EXIT(db);
return (err);
}
int
dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
dnode_t *dn;
int err;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
DB_DNODE_EXIT(db);
return (err);
}
/*
* Note: longer-term, we should modify all of the dmu_buf_*() interfaces
* to take a held dnode rather than <os, object> -- the lookup is wasteful,
* and can induce severe lock contention when writing to several files
* whose dnodes are in the same block.
*/
static int
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
{
dmu_buf_t **dbp;
uint64_t blkid, nblks, i;
uint32_t dbuf_flags;
int err;
zio_t *zio;
ASSERT(length <= DMU_MAX_ACCESS);
dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
dbuf_flags |= DB_RF_NOPREFETCH;
rw_enter(&dn->dn_struct_rwlock, RW_READER);
if (dn->dn_datablkshift) {
int blkshift = dn->dn_datablkshift;
nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
} else {
if (offset + length > dn->dn_datablksz) {
zfs_panic_recover("zfs: accessing past end of object "
"%llx/%llx (size=%u access=%llu+%llu)",
(longlong_t)dn->dn_objset->
os_dsl_dataset->ds_object,
(longlong_t)dn->dn_object, dn->dn_datablksz,
(longlong_t)offset, (longlong_t)length);
rw_exit(&dn->dn_struct_rwlock);
return (SET_ERROR(EIO));
}
nblks = 1;
}
dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks,
KM_PUSHPAGE | KM_NODEBUG);
zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
blkid = dbuf_whichblock(dn, offset);
for (i = 0; i < nblks; i++) {
dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
if (db == NULL) {
rw_exit(&dn->dn_struct_rwlock);
dmu_buf_rele_array(dbp, nblks, tag);
zio_nowait(zio);
return (SET_ERROR(EIO));
}
/* initiate async i/o */
if (read) {
(void) dbuf_read(db, zio, dbuf_flags);
}
dbp[i] = &db->db;
}
rw_exit(&dn->dn_struct_rwlock);
/* wait for async i/o */
err = zio_wait(zio);
if (err) {
dmu_buf_rele_array(dbp, nblks, tag);
return (err);
}
/* wait for other io to complete */
if (read) {
for (i = 0; i < nblks; i++) {
dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
mutex_enter(&db->db_mtx);
while (db->db_state == DB_READ ||
db->db_state == DB_FILL)
cv_wait(&db->db_changed, &db->db_mtx);
if (db->db_state == DB_UNCACHED)
err = SET_ERROR(EIO);
mutex_exit(&db->db_mtx);
if (err) {
dmu_buf_rele_array(dbp, nblks, tag);
return (err);
}
}
}
*numbufsp = nblks;
*dbpp = dbp;
return (0);
}
static int
dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
{
dnode_t *dn;
int err;
err = dnode_hold(os, object, FTAG, &dn);
if (err)
return (err);
err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
numbufsp, dbpp, DMU_READ_PREFETCH);
dnode_rele(dn, FTAG);
return (err);
}
int
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dnode_t *dn;
int err;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
numbufsp, dbpp, DMU_READ_PREFETCH);
DB_DNODE_EXIT(db);
return (err);
}
void
dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
{
int i;
dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
if (numbufs == 0)
return;
for (i = 0; i < numbufs; i++) {
if (dbp[i])
dbuf_rele(dbp[i], tag);
}
kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
}
/*
* Issue prefetch i/os for the given blocks.
*
* Note: The assumption is that we *know* these blocks will be needed
* almost immediately. Therefore, the prefetch i/os will be issued at
* ZIO_PRIORITY_SYNC_READ
*
* Note: indirect blocks and other metadata will be read synchronously,
* causing this function to block if they are not already cached.
*/
void
dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
{
dnode_t *dn;
uint64_t blkid;
int nblks, err;
if (zfs_prefetch_disable)
return;
if (len == 0) { /* they're interested in the bonus buffer */
dn = DMU_META_DNODE(os);
if (object == 0 || object >= DN_MAX_OBJECT)
return;
rw_enter(&dn->dn_struct_rwlock, RW_READER);
blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
rw_exit(&dn->dn_struct_rwlock);
return;
}
/*
* XXX - Note, if the dnode for the requested object is not
* already cached, we will do a *synchronous* read in the
* dnode_hold() call. The same is true for any indirects.
*/
err = dnode_hold(os, object, FTAG, &dn);
if (err != 0)
return;
rw_enter(&dn->dn_struct_rwlock, RW_READER);
if (dn->dn_datablkshift) {
int blkshift = dn->dn_datablkshift;
nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
P2ALIGN(offset, 1 << blkshift)) >> blkshift;
} else {
nblks = (offset < dn->dn_datablksz);
}
if (nblks != 0) {
int i;
blkid = dbuf_whichblock(dn, offset);
for (i = 0; i < nblks; i++)
dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
}
rw_exit(&dn->dn_struct_rwlock);
dnode_rele(dn, FTAG);
}
/*
* Get the next "chunk" of file data to free. We traverse the file from
* the end so that the file gets shorter over time (if we crashes in the
* middle, this will leave us in a better state). We find allocated file
* data by simply searching the allocated level 1 indirects.
*
* On input, *start should be the first offset that does not need to be
* freed (e.g. "offset + length"). On return, *start will be the first
* offset that should be freed.
*/
static int
get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
{
uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
/* bytes of data covered by a level-1 indirect block */
uint64_t iblkrange =
dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
uint64_t blks;
ASSERT3U(minimum, <=, *start);
if (*start - minimum <= iblkrange * maxblks) {
*start = minimum;
return (0);
}
ASSERT(ISP2(iblkrange));
for (blks = 0; *start > minimum && blks < maxblks; blks++) {
int err;
/*
* dnode_next_offset(BACKWARDS) will find an allocated L1
* indirect block at or before the input offset. We must
* decrement *start so that it is at the end of the region
* to search.
*/
(*start)--;
err = dnode_next_offset(dn,
DNODE_FIND_BACKWARDS, start, 2, 1, 0);
/* if there are no indirect blocks before start, we are done */
if (err == ESRCH) {
*start = minimum;
break;
} else if (err != 0) {
return (err);
}
/* set start to the beginning of this L1 indirect */
*start = P2ALIGN(*start, iblkrange);
}
if (*start < minimum)
*start = minimum;
return (0);
}
static int
dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
uint64_t length)
{
uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
int err;
if (offset >= object_size)
return (0);
if (length == DMU_OBJECT_END || offset + length > object_size)
length = object_size - offset;
while (length != 0) {
uint64_t chunk_end, chunk_begin;
dmu_tx_t *tx;
chunk_end = chunk_begin = offset + length;
/* move chunk_begin backwards to the beginning of this chunk */
err = get_next_chunk(dn, &chunk_begin, offset);
if (err)
return (err);
ASSERT3U(chunk_begin, >=, offset);
ASSERT3U(chunk_begin, <=, chunk_end);
tx = dmu_tx_create(os);
dmu_tx_hold_free(tx, dn->dn_object,
chunk_begin, chunk_end - chunk_begin);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err) {
dmu_tx_abort(tx);
return (err);
}
dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
dmu_tx_commit(tx);
length -= chunk_end - chunk_begin;
}
return (0);
}
int
dmu_free_long_range(objset_t *os, uint64_t object,
uint64_t offset, uint64_t length)
{
dnode_t *dn;
int err;
err = dnode_hold(os, object, FTAG, &dn);
if (err != 0)
return (err);
err = dmu_free_long_range_impl(os, dn, offset, length);
/*
* It is important to zero out the maxblkid when freeing the entire
* file, so that (a) subsequent calls to dmu_free_long_range_impl()
* will take the fast path, and (b) dnode_reallocate() can verify
* that the entire file has been freed.
*/
if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
dn->dn_maxblkid = 0;
dnode_rele(dn, FTAG);
return (err);
}
int
dmu_free_long_object(objset_t *os, uint64_t object)
{
dmu_tx_t *tx;
int err;
err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
if (err != 0)
return (err);
tx = dmu_tx_create(os);
dmu_tx_hold_bonus(tx, object);
dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err == 0) {
err = dmu_object_free(os, object, tx);
dmu_tx_commit(tx);
} else {
dmu_tx_abort(tx);
}
return (err);
}
int
dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
uint64_t size, dmu_tx_t *tx)
{
dnode_t *dn;
int err = dnode_hold(os, object, FTAG, &dn);
if (err)
return (err);
ASSERT(offset < UINT64_MAX);
ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
dnode_free_range(dn, offset, size, tx);
dnode_rele(dn, FTAG);
return (0);
}
int
dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
void *buf, uint32_t flags)
{
dnode_t *dn;
dmu_buf_t **dbp;
int numbufs, err;
err = dnode_hold(os, object, FTAG, &dn);
if (err)
return (err);
/*
* Deal with odd block sizes, where there can't be data past the first
* block. If we ever do the tail block optimization, we will need to
* handle that here as well.
*/
if (dn->dn_maxblkid == 0) {
int newsz = offset > dn->dn_datablksz ? 0 :
MIN(size, dn->dn_datablksz - offset);
bzero((char *)buf + newsz, size - newsz);
size = newsz;
}
while (size > 0) {
uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
int i;
/*
* NB: we could do this block-at-a-time, but it's nice
* to be reading in parallel.
*/
err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
TRUE, FTAG, &numbufs, &dbp, flags);
if (err)
break;
for (i = 0; i < numbufs; i++) {
int tocpy;
int bufoff;
dmu_buf_t *db = dbp[i];
ASSERT(size > 0);
bufoff = offset - db->db_offset;
tocpy = (int)MIN(db->db_size - bufoff, size);
bcopy((char *)db->db_data + bufoff, buf, tocpy);
offset += tocpy;
size -= tocpy;
buf = (char *)buf + tocpy;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
}
dnode_rele(dn, FTAG);
return (err);
}
void
dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
const void *buf, dmu_tx_t *tx)
{
dmu_buf_t **dbp;
int numbufs, i;
if (size == 0)
return;
VERIFY0(dmu_buf_hold_array(os, object, offset, size,
FALSE, FTAG, &numbufs, &dbp));
for (i = 0; i < numbufs; i++) {
int tocpy;
int bufoff;
dmu_buf_t *db = dbp[i];
ASSERT(size > 0);
bufoff = offset - db->db_offset;
tocpy = (int)MIN(db->db_size - bufoff, size);
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
if (tocpy == db->db_size)
dmu_buf_will_fill(db, tx);
else
dmu_buf_will_dirty(db, tx);
(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
if (tocpy == db->db_size)
dmu_buf_fill_done(db, tx);
offset += tocpy;
size -= tocpy;
buf = (char *)buf + tocpy;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
}
void
dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
dmu_tx_t *tx)
{
dmu_buf_t **dbp;
int numbufs, i;
if (size == 0)
return;
VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
FALSE, FTAG, &numbufs, &dbp));
for (i = 0; i < numbufs; i++) {
dmu_buf_t *db = dbp[i];
dmu_buf_will_not_fill(db, tx);
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
}
void
dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
int compressed_size, int byteorder, dmu_tx_t *tx)
{
dmu_buf_t *db;
ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
VERIFY0(dmu_buf_hold_noread(os, object, offset,
FTAG, &db));
dmu_buf_write_embedded(db,
data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
uncompressed_size, compressed_size, byteorder, tx);
dmu_buf_rele(db, FTAG);
}
/*
* DMU support for xuio
*/
kstat_t *xuio_ksp = NULL;
typedef struct xuio_stats {
/* loaned yet not returned arc_buf */
kstat_named_t xuiostat_onloan_rbuf;
kstat_named_t xuiostat_onloan_wbuf;
/* whether a copy is made when loaning out a read buffer */
kstat_named_t xuiostat_rbuf_copied;
kstat_named_t xuiostat_rbuf_nocopy;
/* whether a copy is made when assigning a write buffer */
kstat_named_t xuiostat_wbuf_copied;
kstat_named_t xuiostat_wbuf_nocopy;
} xuio_stats_t;
static xuio_stats_t xuio_stats = {
{ "onloan_read_buf", KSTAT_DATA_UINT64 },
{ "onloan_write_buf", KSTAT_DATA_UINT64 },
{ "read_buf_copied", KSTAT_DATA_UINT64 },
{ "read_buf_nocopy", KSTAT_DATA_UINT64 },
{ "write_buf_copied", KSTAT_DATA_UINT64 },
{ "write_buf_nocopy", KSTAT_DATA_UINT64 }
};
#define XUIOSTAT_INCR(stat, val) \
atomic_add_64(&xuio_stats.stat.value.ui64, (val))
#define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
int
dmu_xuio_init(xuio_t *xuio, int nblk)
{
dmu_xuio_t *priv;
uio_t *uio = &xuio->xu_uio;
uio->uio_iovcnt = nblk;
uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_PUSHPAGE);
priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_PUSHPAGE);
priv->cnt = nblk;
priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_PUSHPAGE);
priv->iovp = uio->uio_iov;
XUIO_XUZC_PRIV(xuio) = priv;
if (XUIO_XUZC_RW(xuio) == UIO_READ)
XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
else
XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
return (0);
}
void
dmu_xuio_fini(xuio_t *xuio)
{
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
int nblk = priv->cnt;
kmem_free(priv->iovp, nblk * sizeof (iovec_t));
kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
kmem_free(priv, sizeof (dmu_xuio_t));
if (XUIO_XUZC_RW(xuio) == UIO_READ)
XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
else
XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
}
/*
* Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
* and increase priv->next by 1.
*/
int
dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
{
struct iovec *iov;
uio_t *uio = &xuio->xu_uio;
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
int i = priv->next++;
ASSERT(i < priv->cnt);
ASSERT(off + n <= arc_buf_size(abuf));
iov = uio->uio_iov + i;
iov->iov_base = (char *)abuf->b_data + off;
iov->iov_len = n;
priv->bufs[i] = abuf;
return (0);
}
int
dmu_xuio_cnt(xuio_t *xuio)
{
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
return (priv->cnt);
}
arc_buf_t *
dmu_xuio_arcbuf(xuio_t *xuio, int i)
{
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
ASSERT(i < priv->cnt);
return (priv->bufs[i]);
}
void
dmu_xuio_clear(xuio_t *xuio, int i)
{
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
ASSERT(i < priv->cnt);
priv->bufs[i] = NULL;
}
static void
xuio_stat_init(void)
{
xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (xuio_ksp != NULL) {
xuio_ksp->ks_data = &xuio_stats;
kstat_install(xuio_ksp);
}
}
static void
xuio_stat_fini(void)
{
if (xuio_ksp != NULL) {
kstat_delete(xuio_ksp);
xuio_ksp = NULL;
}
}
void
xuio_stat_wbuf_copied()
{
XUIOSTAT_BUMP(xuiostat_wbuf_copied);
}
void
xuio_stat_wbuf_nocopy()
{
XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
}
#ifdef _KERNEL
/*
* Copy up to size bytes between arg_buf and req based on the data direction
* described by the req. If an entire req's data cannot be transfered in one
* pass, you should pass in @req_offset to indicate where to continue. The
* return value is the number of bytes successfully copied to arg_buf.
*/
static int
dmu_req_copy(void *arg_buf, int size, struct request *req, size_t req_offset)
{
struct bio_vec bv, *bvp;
struct req_iterator iter;
char *bv_buf;
int tocpy, bv_len, bv_offset;
int offset = 0;
rq_for_each_segment4(bv, bvp, req, iter) {
/*
* Fully consumed the passed arg_buf. We use goto here because
* rq_for_each_segment is a double loop
*/
ASSERT3S(offset, <=, size);
if (size == offset)
goto out;
/* Skip already copied bv */
if (req_offset >= bv.bv_len) {
req_offset -= bv.bv_len;
continue;
}
bv_len = bv.bv_len - req_offset;
bv_offset = bv.bv_offset + req_offset;
req_offset = 0;
tocpy = MIN(bv_len, size - offset);
ASSERT3S(tocpy, >=, 0);
bv_buf = page_address(bv.bv_page) + bv_offset;
ASSERT3P(bv_buf, !=, NULL);
if (rq_data_dir(req) == WRITE)
memcpy(arg_buf + offset, bv_buf, tocpy);
else
memcpy(bv_buf, arg_buf + offset, tocpy);
offset += tocpy;
}
out:
return (offset);
}
int
dmu_read_req(objset_t *os, uint64_t object, struct request *req)
{
uint64_t size = blk_rq_bytes(req);
uint64_t offset = blk_rq_pos(req) << 9;
dmu_buf_t **dbp;
int numbufs, i, err;
size_t req_offset;
/*
* NB: we could do this block-at-a-time, but it's nice
* to be reading in parallel.
*/
err = dmu_buf_hold_array(os, object, offset, size, TRUE, FTAG,
&numbufs, &dbp);
if (err)
return (err);
req_offset = 0;
for (i = 0; i < numbufs; i++) {
int tocpy, didcpy, bufoff;
dmu_buf_t *db = dbp[i];
bufoff = offset - db->db_offset;
ASSERT3S(bufoff, >=, 0);
tocpy = (int)MIN(db->db_size - bufoff, size);
if (tocpy == 0)
break;
didcpy = dmu_req_copy(db->db_data + bufoff, tocpy, req,
req_offset);
if (didcpy < tocpy)
err = EIO;
if (err)
break;
size -= tocpy;
offset += didcpy;
req_offset += didcpy;
err = 0;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
return (err);
}
int
dmu_write_req(objset_t *os, uint64_t object, struct request *req, dmu_tx_t *tx)
{
uint64_t size = blk_rq_bytes(req);
uint64_t offset = blk_rq_pos(req) << 9;
dmu_buf_t **dbp;
int numbufs, i, err;
size_t req_offset;
if (size == 0)
return (0);
err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
&numbufs, &dbp);
if (err)
return (err);
req_offset = 0;
for (i = 0; i < numbufs; i++) {
int tocpy, didcpy, bufoff;
dmu_buf_t *db = dbp[i];
bufoff = offset - db->db_offset;
ASSERT3S(bufoff, >=, 0);
tocpy = (int)MIN(db->db_size - bufoff, size);
if (tocpy == 0)
break;
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
if (tocpy == db->db_size)
dmu_buf_will_fill(db, tx);
else
dmu_buf_will_dirty(db, tx);
didcpy = dmu_req_copy(db->db_data + bufoff, tocpy, req,
req_offset);
if (tocpy == db->db_size)
dmu_buf_fill_done(db, tx);
if (didcpy < tocpy)
err = EIO;
if (err)
break;
size -= tocpy;
offset += didcpy;
req_offset += didcpy;
err = 0;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
return (err);
}
int
dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
{
dmu_buf_t **dbp;
int numbufs, i, err;
xuio_t *xuio = NULL;
/*
* NB: we could do this block-at-a-time, but it's nice
* to be reading in parallel.
*/
err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
&numbufs, &dbp);
if (err)
return (err);
for (i = 0; i < numbufs; i++) {
int tocpy;
int bufoff;
dmu_buf_t *db = dbp[i];
ASSERT(size > 0);
bufoff = uio->uio_loffset - db->db_offset;
tocpy = (int)MIN(db->db_size - bufoff, size);
if (xuio) {
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
arc_buf_t *dbuf_abuf = dbi->db_buf;
arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
if (!err) {
uio->uio_resid -= tocpy;
uio->uio_loffset += tocpy;
}
if (abuf == dbuf_abuf)
XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
else
XUIOSTAT_BUMP(xuiostat_rbuf_copied);
} else {
err = uiomove((char *)db->db_data + bufoff, tocpy,
UIO_READ, uio);
}
if (err)
break;
size -= tocpy;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
return (err);
}
static int
dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
{
dmu_buf_t **dbp;
int numbufs;
int err = 0;
int i;
err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
if (err)
return (err);
for (i = 0; i < numbufs; i++) {
int tocpy;
int bufoff;
dmu_buf_t *db = dbp[i];
ASSERT(size > 0);
bufoff = uio->uio_loffset - db->db_offset;
tocpy = (int)MIN(db->db_size - bufoff, size);
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
if (tocpy == db->db_size)
dmu_buf_will_fill(db, tx);
else
dmu_buf_will_dirty(db, tx);
/*
* XXX uiomove could block forever (eg.nfs-backed
* pages). There needs to be a uiolockdown() function
* to lock the pages in memory, so that uiomove won't
* block.
*/
err = uiomove((char *)db->db_data + bufoff, tocpy,
UIO_WRITE, uio);
if (tocpy == db->db_size)
dmu_buf_fill_done(db, tx);
if (err)
break;
size -= tocpy;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
return (err);
}
int
dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
dnode_t *dn;
int err;
if (size == 0)
return (0);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
err = dmu_write_uio_dnode(dn, uio, size, tx);
DB_DNODE_EXIT(db);
return (err);
}
int
dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
dmu_tx_t *tx)
{
dnode_t *dn;
int err;
if (size == 0)
return (0);
err = dnode_hold(os, object, FTAG, &dn);
if (err)
return (err);
err = dmu_write_uio_dnode(dn, uio, size, tx);
dnode_rele(dn, FTAG);
return (err);
}
#endif /* _KERNEL */
/*
* Allocate a loaned anonymous arc buffer.
*/
arc_buf_t *
dmu_request_arcbuf(dmu_buf_t *handle, int size)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
return (arc_loan_buf(db->db_objset->os_spa, size));
}
/*
* Free a loaned arc buffer.
*/
void
dmu_return_arcbuf(arc_buf_t *buf)
{
arc_return_buf(buf, FTAG);
VERIFY(arc_buf_remove_ref(buf, FTAG));
}
/*
* When possible directly assign passed loaned arc buffer to a dbuf.
* If this is not possible copy the contents of passed arc buf via
* dmu_write().
*/
void
dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
dmu_tx_t *tx)
{
dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
dnode_t *dn;
dmu_buf_impl_t *db;
uint32_t blksz = (uint32_t)arc_buf_size(buf);
uint64_t blkid;
DB_DNODE_ENTER(dbuf);
dn = DB_DNODE(dbuf);
rw_enter(&dn->dn_struct_rwlock, RW_READER);
blkid = dbuf_whichblock(dn, offset);
VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
rw_exit(&dn->dn_struct_rwlock);
DB_DNODE_EXIT(dbuf);
if (offset == db->db.db_offset && blksz == db->db.db_size) {
dbuf_assign_arcbuf(db, buf, tx);
dbuf_rele(db, FTAG);
} else {
objset_t *os;
uint64_t object;
DB_DNODE_ENTER(dbuf);
dn = DB_DNODE(dbuf);
os = dn->dn_objset;
object = dn->dn_object;
DB_DNODE_EXIT(dbuf);
dbuf_rele(db, FTAG);
dmu_write(os, object, offset, blksz, buf->b_data, tx);
dmu_return_arcbuf(buf);
XUIOSTAT_BUMP(xuiostat_wbuf_copied);
}
}
typedef struct {
dbuf_dirty_record_t *dsa_dr;
dmu_sync_cb_t *dsa_done;
zgd_t *dsa_zgd;
dmu_tx_t *dsa_tx;
} dmu_sync_arg_t;
/* ARGSUSED */
static void
dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
{
dmu_sync_arg_t *dsa = varg;
dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
blkptr_t *bp = zio->io_bp;
if (zio->io_error == 0) {
if (BP_IS_HOLE(bp)) {
/*
* A block of zeros may compress to a hole, but the
* block size still needs to be known for replay.
*/
BP_SET_LSIZE(bp, db->db_size);
} else if (!BP_IS_EMBEDDED(bp)) {
ASSERT(BP_GET_LEVEL(bp) == 0);
bp->blk_fill = 1;
}
}
}
static void
dmu_sync_late_arrival_ready(zio_t *zio)
{
dmu_sync_ready(zio, NULL, zio->io_private);
}
/* ARGSUSED */
static void
dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
{
dmu_sync_arg_t *dsa = varg;
dbuf_dirty_record_t *dr = dsa->dsa_dr;
dmu_buf_impl_t *db = dr->dr_dbuf;
mutex_enter(&db->db_mtx);
ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
if (zio->io_error == 0) {
dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
if (dr->dt.dl.dr_nopwrite) {
ASSERTV(blkptr_t *bp = zio->io_bp);
ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
ASSERTV(uint8_t chksum = BP_GET_CHECKSUM(bp_orig));
ASSERT(BP_EQUAL(bp, bp_orig));
ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
ASSERT(zio_checksum_table[chksum].ci_dedup);
}
dr->dt.dl.dr_overridden_by = *zio->io_bp;
dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
BP_ZERO(&dr->dt.dl.dr_overridden_by);
} else {
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
}
cv_broadcast(&db->db_changed);
mutex_exit(&db->db_mtx);
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
kmem_free(dsa, sizeof (*dsa));
}
static void
dmu_sync_late_arrival_done(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
dmu_sync_arg_t *dsa = zio->io_private;
ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
/*
* If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
* then there is nothing to do here. Otherwise, free the
* newly allocated block in this txg.
*/
if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
ASSERT(BP_EQUAL(bp, bp_orig));
} else {
ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
ASSERT(zio->io_bp->blk_birth == zio->io_txg);
ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
}
}
dmu_tx_commit(dsa->dsa_tx);
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
kmem_free(dsa, sizeof (*dsa));
}
static int
dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
zio_prop_t *zp, zbookmark_phys_t *zb)
{
dmu_sync_arg_t *dsa;
dmu_tx_t *tx;
tx = dmu_tx_create(os);
dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
dmu_tx_abort(tx);
/* Make zl_get_data do txg_waited_synced() */
return (SET_ERROR(EIO));
}
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_PUSHPAGE);
dsa->dsa_dr = NULL;
dsa->dsa_done = done;
dsa->dsa_zgd = zgd;
dsa->dsa_tx = tx;
zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL|ZIO_FLAG_FASTWRITE, zb));
return (0);
}
/*
* Intent log support: sync the block associated with db to disk.
* N.B. and XXX: the caller is responsible for making sure that the
* data isn't changing while dmu_sync() is writing it.
*
* Return values:
*
* EEXIST: this txg has already been synced, so there's nothing to do.
* The caller should not log the write.
*
* ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
* The caller should not log the write.
*
* EALREADY: this block is already in the process of being synced.
* The caller should track its progress (somehow).
*
* EIO: could not do the I/O.
* The caller should do a txg_wait_synced().
*
* 0: the I/O has been initiated.
* The caller should log this blkptr in the done callback.
* It is possible that the I/O will fail, in which case
* the error will be reported to the done callback and
* propagated to pio from zio_done().
*/
int
dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
{
blkptr_t *bp = zgd->zgd_bp;
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
objset_t *os = db->db_objset;
dsl_dataset_t *ds = os->os_dsl_dataset;
dbuf_dirty_record_t *dr;
dmu_sync_arg_t *dsa;
zbookmark_phys_t zb;
zio_prop_t zp;
dnode_t *dn;
ASSERT(pio != NULL);
ASSERT(txg != 0);
SET_BOOKMARK(&zb, ds->ds_object,
db->db.db_object, db->db_level, db->db_blkid);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
DB_DNODE_EXIT(db);
/*
* If we're frozen (running ziltest), we always need to generate a bp.
*/
if (txg > spa_freeze_txg(os->os_spa))
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
/*
* Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
* and us. If we determine that this txg is not yet syncing,
* but it begins to sync a moment later, that's OK because the
* sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
*/
mutex_enter(&db->db_mtx);
if (txg <= spa_last_synced_txg(os->os_spa)) {
/*
* This txg has already synced. There's nothing to do.
*/
mutex_exit(&db->db_mtx);
return (SET_ERROR(EEXIST));
}
if (txg <= spa_syncing_txg(os->os_spa)) {
/*
* This txg is currently syncing, so we can't mess with
* the dirty record anymore; just write a new log block.
*/
mutex_exit(&db->db_mtx);
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
}
dr = db->db_last_dirty;
while (dr && dr->dr_txg != txg)
dr = dr->dr_next;
if (dr == NULL) {
/*
* There's no dr for this dbuf, so it must have been freed.
* There's no need to log writes to freed blocks, so we're done.
*/
mutex_exit(&db->db_mtx);
return (SET_ERROR(ENOENT));
}
ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
/*
* Assume the on-disk data is X, the current syncing data is Y,
* and the current in-memory data is Z (currently in dmu_sync).
* X and Z are identical but Y is has been modified. Normally,
* when X and Z are the same we will perform a nopwrite but if Y
* is different we must disable nopwrite since the resulting write
* of Y to disk can free the block containing X. If we allowed a
* nopwrite to occur the block pointing to Z would reference a freed
* block. Since this is a rare case we simplify this by disabling
* nopwrite if the current dmu_sync-ing dbuf has been modified in
* a previous transaction.
*/
if (dr->dr_next)
zp.zp_nopwrite = B_FALSE;
ASSERT(dr->dr_txg == txg);
if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
/*
* We have already issued a sync write for this buffer,
* or this buffer has already been synced. It could not
* have been dirtied since, or we would have cleared the state.
*/
mutex_exit(&db->db_mtx);
return (SET_ERROR(EALREADY));
}
ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
mutex_exit(&db->db_mtx);
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_PUSHPAGE);
dsa->dsa_dr = dr;
dsa->dsa_done = done;
dsa->dsa_zgd = zgd;
dsa->dsa_tx = NULL;
zio_nowait(arc_write(pio, os->os_spa, txg,
bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
ZIO_FLAG_CANFAIL, &zb));
return (0);
}
int
dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
dmu_tx_t *tx)
{
dnode_t *dn;
int err;
err = dnode_hold(os, object, FTAG, &dn);
if (err)
return (err);
err = dnode_set_blksz(dn, size, ibs, tx);
dnode_rele(dn, FTAG);
return (err);
}
void
dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
dmu_tx_t *tx)
{
dnode_t *dn;
/*
* Send streams include each object's checksum function. This
* check ensures that the receiving system can understand the
* checksum function transmitted.
*/
ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
VERIFY0(dnode_hold(os, object, FTAG, &dn));
ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
dn->dn_checksum = checksum;
dnode_setdirty(dn, tx);
dnode_rele(dn, FTAG);
}
void
dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
dmu_tx_t *tx)
{
dnode_t *dn;
/*
* Send streams include each object's compression function. This
* check ensures that the receiving system can understand the
* compression function transmitted.
*/
ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
VERIFY0(dnode_hold(os, object, FTAG, &dn));
dn->dn_compress = compress;
dnode_setdirty(dn, tx);
dnode_rele(dn, FTAG);
}
int zfs_mdcomp_disable = 0;
/*
* When the "redundant_metadata" property is set to "most", only indirect
* blocks of this level and higher will have an additional ditto block.
*/
int zfs_redundant_metadata_most_ditto_level = 2;
void
dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
{
dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
(wp & WP_SPILL));
enum zio_checksum checksum = os->os_checksum;
enum zio_compress compress = os->os_compress;
enum zio_checksum dedup_checksum = os->os_dedup_checksum;
boolean_t dedup = B_FALSE;
boolean_t nopwrite = B_FALSE;
boolean_t dedup_verify = os->os_dedup_verify;
int copies = os->os_copies;
/*
* We maintain different write policies for each of the following
* types of data:
* 1. metadata
* 2. preallocated blocks (i.e. level-0 blocks of a dump device)
* 3. all other level 0 blocks
*/
if (ismd) {
/*
* XXX -- we should design a compression algorithm
* that specializes in arrays of bps.
*/
boolean_t lz4_ac = spa_feature_is_active(os->os_spa,
SPA_FEATURE_LZ4_COMPRESS);
if (zfs_mdcomp_disable) {
compress = ZIO_COMPRESS_EMPTY;
} else if (lz4_ac) {
compress = ZIO_COMPRESS_LZ4;
} else {
compress = ZIO_COMPRESS_LZJB;
}
/*
* Metadata always gets checksummed. If the data
* checksum is multi-bit correctable, and it's not a
* ZBT-style checksum, then it's suitable for metadata
* as well. Otherwise, the metadata checksum defaults
* to fletcher4.
*/
if (zio_checksum_table[checksum].ci_correctable < 1 ||
zio_checksum_table[checksum].ci_eck)
checksum = ZIO_CHECKSUM_FLETCHER_4;
if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
(os->os_redundant_metadata ==
ZFS_REDUNDANT_METADATA_MOST &&
(level >= zfs_redundant_metadata_most_ditto_level ||
DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
copies++;
} else if (wp & WP_NOFILL) {
ASSERT(level == 0);
/*
* If we're writing preallocated blocks, we aren't actually
* writing them so don't set any policy properties. These
* blocks are currently only used by an external subsystem
* outside of zfs (i.e. dump) and not written by the zio
* pipeline.
*/
compress = ZIO_COMPRESS_OFF;
checksum = ZIO_CHECKSUM_OFF;
} else {
compress = zio_compress_select(dn->dn_compress, compress);
checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
zio_checksum_select(dn->dn_checksum, checksum) :
dedup_checksum;
/*
* Determine dedup setting. If we are in dmu_sync(),
* we won't actually dedup now because that's all
* done in syncing context; but we do want to use the
* dedup checkum. If the checksum is not strong
* enough to ensure unique signatures, force
* dedup_verify.
*/
if (dedup_checksum != ZIO_CHECKSUM_OFF) {
dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
if (!zio_checksum_table[checksum].ci_dedup)
dedup_verify = B_TRUE;
}
/*
* Enable nopwrite if we have a cryptographically secure
* checksum that has no known collisions (i.e. SHA-256)
* and compression is enabled. We don't enable nopwrite if
* dedup is enabled as the two features are mutually exclusive.
*/
nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
}
zp->zp_checksum = checksum;
zp->zp_compress = compress;
zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
zp->zp_level = level;
zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
zp->zp_dedup = dedup;
zp->zp_dedup_verify = dedup && dedup_verify;
zp->zp_nopwrite = nopwrite;
}
int
dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
{
dnode_t *dn;
int i, err;
err = dnode_hold(os, object, FTAG, &dn);
if (err)
return (err);
/*
* Sync any current changes before
* we go trundling through the block pointers.
*/
for (i = 0; i < TXG_SIZE; i++) {
if (list_link_active(&dn->dn_dirty_link[i]))
break;
}
if (i != TXG_SIZE) {
dnode_rele(dn, FTAG);
txg_wait_synced(dmu_objset_pool(os), 0);
err = dnode_hold(os, object, FTAG, &dn);
if (err)
return (err);
}
err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
dnode_rele(dn, FTAG);
return (err);
}
void
__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
{
dnode_phys_t *dnp = dn->dn_phys;
int i;
doi->doi_data_block_size = dn->dn_datablksz;
doi->doi_metadata_block_size = dn->dn_indblkshift ?
1ULL << dn->dn_indblkshift : 0;
doi->doi_type = dn->dn_type;
doi->doi_bonus_type = dn->dn_bonustype;
doi->doi_bonus_size = dn->dn_bonuslen;
doi->doi_indirection = dn->dn_nlevels;
doi->doi_checksum = dn->dn_checksum;
doi->doi_compress = dn->dn_compress;
doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
doi->doi_fill_count = 0;
for (i = 0; i < dnp->dn_nblkptr; i++)
doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
}
void
dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
{
rw_enter(&dn->dn_struct_rwlock, RW_READER);
mutex_enter(&dn->dn_mtx);
__dmu_object_info_from_dnode(dn, doi);
mutex_exit(&dn->dn_mtx);
rw_exit(&dn->dn_struct_rwlock);
}
/*
* Get information on a DMU object.
* If doi is NULL, just indicates whether the object exists.
*/
int
dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
{
dnode_t *dn;
int err = dnode_hold(os, object, FTAG, &dn);
if (err)
return (err);
if (doi != NULL)
dmu_object_info_from_dnode(dn, doi);
dnode_rele(dn, FTAG);
return (0);
}
/*
* As above, but faster; can be used when you have a held dbuf in hand.
*/
void
dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
DB_DNODE_ENTER(db);
dmu_object_info_from_dnode(DB_DNODE(db), doi);
DB_DNODE_EXIT(db);
}
/*
* Faster still when you only care about the size.
* This is specifically optimized for zfs_getattr().
*/
void
dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
u_longlong_t *nblk512)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dnode_t *dn;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
*blksize = dn->dn_datablksz;
/* add 1 for dnode space */
*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
SPA_MINBLOCKSHIFT) + 1;
DB_DNODE_EXIT(db);
}
void
byteswap_uint64_array(void *vbuf, size_t size)
{
uint64_t *buf = vbuf;
size_t count = size >> 3;
int i;
ASSERT((size & 7) == 0);
for (i = 0; i < count; i++)
buf[i] = BSWAP_64(buf[i]);
}
void
byteswap_uint32_array(void *vbuf, size_t size)
{
uint32_t *buf = vbuf;
size_t count = size >> 2;
int i;
ASSERT((size & 3) == 0);
for (i = 0; i < count; i++)
buf[i] = BSWAP_32(buf[i]);
}
void
byteswap_uint16_array(void *vbuf, size_t size)
{
uint16_t *buf = vbuf;
size_t count = size >> 1;
int i;
ASSERT((size & 1) == 0);
for (i = 0; i < count; i++)
buf[i] = BSWAP_16(buf[i]);
}
/* ARGSUSED */
void
byteswap_uint8_array(void *vbuf, size_t size)
{
}
void
dmu_init(void)
{
zfs_dbgmsg_init();
sa_cache_init();
xuio_stat_init();
dmu_objset_init();
dnode_init();
dbuf_init();
zfetch_init();
dmu_tx_init();
l2arc_init();
arc_init();
}
void
dmu_fini(void)
{
arc_fini(); /* arc depends on l2arc, so arc must go first */
l2arc_fini();
dmu_tx_fini();
zfetch_fini();
dbuf_fini();
dnode_fini();
dmu_objset_fini();
xuio_stat_fini();
sa_cache_fini();
zfs_dbgmsg_fini();
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(dmu_bonus_hold);
EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
EXPORT_SYMBOL(dmu_buf_rele_array);
EXPORT_SYMBOL(dmu_prefetch);
EXPORT_SYMBOL(dmu_free_range);
EXPORT_SYMBOL(dmu_free_long_range);
EXPORT_SYMBOL(dmu_free_long_object);
EXPORT_SYMBOL(dmu_read);
EXPORT_SYMBOL(dmu_write);
EXPORT_SYMBOL(dmu_prealloc);
EXPORT_SYMBOL(dmu_object_info);
EXPORT_SYMBOL(dmu_object_info_from_dnode);
EXPORT_SYMBOL(dmu_object_info_from_db);
EXPORT_SYMBOL(dmu_object_size_from_db);
EXPORT_SYMBOL(dmu_object_set_blocksize);
EXPORT_SYMBOL(dmu_object_set_checksum);
EXPORT_SYMBOL(dmu_object_set_compress);
EXPORT_SYMBOL(dmu_write_policy);
EXPORT_SYMBOL(dmu_sync);
EXPORT_SYMBOL(dmu_request_arcbuf);
EXPORT_SYMBOL(dmu_return_arcbuf);
EXPORT_SYMBOL(dmu_assign_arcbuf);
EXPORT_SYMBOL(dmu_buf_hold);
EXPORT_SYMBOL(dmu_ot);
module_param(zfs_mdcomp_disable, int, 0644);
MODULE_PARM_DESC(zfs_mdcomp_disable, "Disable meta data compression");
module_param(zfs_nopwrite_enabled, int, 0644);
MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
#endif