freebsd-nq/sys/vm/vm_init.c
Gleb Smirnoff f7d3578564 Fix boot_pages exhaustion on machines with many domains and cores, where
size of UMA zone allocation is greater than page size. In this case zone
of zones can not use UMA_MD_SMALL_ALLOC, and we  need to postpone switch
off of this zone from startup_alloc() until full launch of VM.

o Always supply number of VM zones to uma_startup_count(). On machines
  with UMA_MD_SMALL_ALLOC ignore it completely, unless zsize goes over
  a page. In the latter case account VM zones for number of allocations
  from the zone of zones.
o Rewrite startup_alloc() so that it will immediately switch off from
  itself any zone that is already capable of running real alloc.
  In worst case scenario we may leak a single page here. See comment
  in uma_startup_count().
o Hardcode call to uma_startup2() into vm_mem_init(). Otherwise some
  extra SYSINITs, e.g. vm_page_init() may sneak in before.
o While here, remove uma_boot_pages_mtx. With recent changes to boot
  pages calculation, we are guaranteed to use all of the boot_pages
  in the early single threaded stage.

Reported & tested by:	mav
2018-02-09 04:45:39 +00:00

317 lines
9.2 KiB
C

/*-
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_init.c 8.1 (Berkeley) 6/11/93
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Initialize the Virtual Memory subsystem.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/selinfo.h>
#include <sys/smp.h>
#include <sys/pipe.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/vmem.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
extern void uma_startup1(void);
extern void uma_startup2(void);
extern void vm_radix_reserve_kva(void);
#if VM_NRESERVLEVEL > 0
#define KVA_QUANTUM (1 << (VM_LEVEL_0_ORDER + PAGE_SHIFT))
#else
/* On non-superpage architectures want large import sizes. */
#define KVA_QUANTUM (PAGE_SIZE * 1024)
#endif
long physmem;
/*
* System initialization
*/
static void vm_mem_init(void *);
SYSINIT(vm_mem, SI_SUB_VM, SI_ORDER_FIRST, vm_mem_init, NULL);
/*
* Import kva into the kernel arena.
*/
static int
kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
{
vm_offset_t addr;
int result;
KASSERT((size % KVA_QUANTUM) == 0,
("kva_import: Size %jd is not a multiple of %d",
(intmax_t)size, (int)KVA_QUANTUM));
addr = vm_map_min(kernel_map);
result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
if (result != KERN_SUCCESS)
return (ENOMEM);
*addrp = addr;
return (0);
}
/*
* vm_init initializes the virtual memory system.
* This is done only by the first cpu up.
*
* The start and end address of physical memory is passed in.
*/
/* ARGSUSED*/
static void
vm_mem_init(dummy)
void *dummy;
{
int domain;
/*
* Initializes resident memory structures. From here on, all physical
* memory is accounted for, and we use only virtual addresses.
*/
vm_set_page_size();
virtual_avail = vm_page_startup(virtual_avail);
#ifdef UMA_MD_SMALL_ALLOC
/* Announce page availability to UMA. */
uma_startup1();
#endif
/*
* Initialize other VM packages
*/
vmem_startup();
vm_object_init();
vm_map_startup();
kmem_init(virtual_avail, virtual_end);
/*
* Initialize the kernel_arena. This can grow on demand.
*/
vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
vmem_set_import(kernel_arena, kva_import, NULL, NULL, KVA_QUANTUM);
for (domain = 0; domain < vm_ndomains; domain++) {
vm_dom[domain].vmd_kernel_arena = vmem_create(
"kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
vmem_set_import(vm_dom[domain].vmd_kernel_arena,
(vmem_import_t *)vmem_alloc, NULL, kernel_arena,
KVA_QUANTUM);
}
#ifndef UMA_MD_SMALL_ALLOC
/* Set up radix zone to use noobj_alloc. */
vm_radix_reserve_kva();
#endif
/* Announce full page availability to UMA. */
uma_startup2();
kmem_init_zero_region();
pmap_init();
vm_pager_init();
}
void
vm_ksubmap_init(struct kva_md_info *kmi)
{
vm_offset_t firstaddr;
caddr_t v;
vm_size_t size = 0;
long physmem_est;
vm_offset_t minaddr;
vm_offset_t maxaddr;
/*
* Allocate space for system data structures.
* The first available kernel virtual address is in "v".
* As pages of kernel virtual memory are allocated, "v" is incremented.
* As pages of memory are allocated and cleared,
* "firstaddr" is incremented.
*/
/*
* Make two passes. The first pass calculates how much memory is
* needed and allocates it. The second pass assigns virtual
* addresses to the various data structures.
*/
firstaddr = 0;
again:
v = (caddr_t)firstaddr;
/*
* Discount the physical memory larger than the size of kernel_map
* to avoid eating up all of KVA space.
*/
physmem_est = lmin(physmem, btoc(kernel_map->max_offset -
kernel_map->min_offset));
v = kern_vfs_bio_buffer_alloc(v, physmem_est);
/*
* End of first pass, size has been calculated so allocate memory
*/
if (firstaddr == 0) {
size = (vm_size_t)v;
#ifdef VM_FREELIST_DMA32
/*
* Try to protect 32-bit DMAable memory from the largest
* early alloc of wired mem.
*/
firstaddr = kmem_alloc_attr(kernel_arena, size,
M_ZERO | M_NOWAIT, (vm_paddr_t)1 << 32,
~(vm_paddr_t)0, VM_MEMATTR_DEFAULT);
if (firstaddr == 0)
#endif
firstaddr = kmem_malloc(kernel_arena, size,
M_ZERO | M_WAITOK);
if (firstaddr == 0)
panic("startup: no room for tables");
goto again;
}
/*
* End of second pass, addresses have been assigned
*/
if ((vm_size_t)((char *)v - firstaddr) != size)
panic("startup: table size inconsistency");
/*
* Allocate the clean map to hold all of the paging and I/O virtual
* memory.
*/
size = (long)nbuf * BKVASIZE + (long)nswbuf * MAXPHYS +
(long)bio_transient_maxcnt * MAXPHYS;
kmi->clean_sva = firstaddr = kva_alloc(size);
kmi->clean_eva = firstaddr + size;
/*
* Allocate the buffer arena.
*
* Enable the quantum cache if we have more than 4 cpus. This
* avoids lock contention at the expense of some fragmentation.
*/
size = (long)nbuf * BKVASIZE;
kmi->buffer_sva = firstaddr;
kmi->buffer_eva = kmi->buffer_sva + size;
vmem_init(buffer_arena, "buffer arena", kmi->buffer_sva, size,
PAGE_SIZE, (mp_ncpus > 4) ? BKVASIZE * 8 : 0, 0);
firstaddr += size;
/*
* Now swap kva.
*/
swapbkva = firstaddr;
size = (long)nswbuf * MAXPHYS;
firstaddr += size;
/*
* And optionally transient bio space.
*/
if (bio_transient_maxcnt != 0) {
size = (long)bio_transient_maxcnt * MAXPHYS;
vmem_init(transient_arena, "transient arena",
firstaddr, size, PAGE_SIZE, 0, 0);
firstaddr += size;
}
if (firstaddr != kmi->clean_eva)
panic("Clean map calculation incorrect");
/*
* Allocate the pageable submaps. We may cache an exec map entry per
* CPU, so we therefore need to reserve space for at least ncpu+1
* entries to avoid deadlock. The exec map is also used by some image
* activators, so we leave a fixed number of pages for their use.
*/
#ifdef __LP64__
exec_map_entries = 8 * mp_ncpus;
#else
exec_map_entries = 2 * mp_ncpus + 4;
#endif
exec_map_entry_size = round_page(PATH_MAX + ARG_MAX);
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
exec_map_entries * exec_map_entry_size + 64 * PAGE_SIZE, FALSE);
pipe_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr, maxpipekva,
FALSE);
}