Hans Petter Selasky d6b92ffa99 OFED user-space import and update for use with Linux-4.9 compatible RDMA
kernel APIs.

List of sources used:

1) rdma-core was cloned from "https://github.com/linux-rdma/rdma-core.git"
Top commit d65138ef93af30b3ea249f3a84aa6a24ba7f8a75

2) OpenSM was cloned from git://git.openfabrics.org/~halr/opensm.git
Top commit 85f841cf209f791c89a075048a907020e924528d

3) libibmad was cloned from "git://git.openfabrics.org/~iraweiny/libibmad.git"
Tag 1.3.13 with some additional patches from Mellanox.

4) infiniband-diags was cloned from "git://git.openfabrics.org/~iraweiny/infiniband-diags.git"
Tag 1.6.7 with some additional patches from Mellanox.

Added the required Makefiles for building and installing.

Sponsored by:	Mellanox Technologies
2017-08-02 16:00:30 +00:00

705 lines
14 KiB
C

/*
* Copyright (c) 2004, 2005 Topspin Communications. All rights reserved.
* Copyright (c) 2006 Cisco Systems, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <config.h>
#include <errno.h>
#include <sys/mman.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <dirent.h>
#include <limits.h>
#include <inttypes.h>
#include "ibverbs.h"
struct ibv_mem_node {
enum {
IBV_RED,
IBV_BLACK
} color;
struct ibv_mem_node *parent;
struct ibv_mem_node *left, *right;
uintptr_t start, end;
int refcnt;
};
static struct ibv_mem_node *mm_root;
static pthread_mutex_t mm_mutex = PTHREAD_MUTEX_INITIALIZER;
static int page_size;
static int huge_page_enabled;
static int too_late;
static unsigned long smaps_page_size(FILE *file)
{
int n;
unsigned long size = page_size;
char buf[1024];
while (fgets(buf, sizeof(buf), file) != NULL) {
if (!strstr(buf, "KernelPageSize:"))
continue;
n = sscanf(buf, "%*s %lu", &size);
if (n < 1)
continue;
/* page size is printed in Kb */
size = size * 1024;
break;
}
return size;
}
static unsigned long get_page_size(void *base)
{
unsigned long ret = page_size;
pid_t pid;
FILE *file;
char buf[1024];
pid = getpid();
snprintf(buf, sizeof(buf), "/proc/%d/smaps", pid);
file = fopen(buf, "r" STREAM_CLOEXEC);
if (!file)
goto out;
while (fgets(buf, sizeof(buf), file) != NULL) {
int n;
uintptr_t range_start, range_end;
n = sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, &range_start, &range_end);
if (n < 2)
continue;
if ((uintptr_t) base >= range_start && (uintptr_t) base < range_end) {
ret = smaps_page_size(file);
break;
}
}
fclose(file);
out:
return ret;
}
int ibv_fork_init(void)
{
void *tmp, *tmp_aligned;
int ret;
unsigned long size;
if (getenv("RDMAV_HUGEPAGES_SAFE"))
huge_page_enabled = 1;
if (mm_root)
return 0;
if (too_late)
return EINVAL;
page_size = sysconf(_SC_PAGESIZE);
if (page_size < 0)
return errno;
if (posix_memalign(&tmp, page_size, page_size))
return ENOMEM;
if (huge_page_enabled) {
size = get_page_size(tmp);
tmp_aligned = (void *) ((uintptr_t) tmp & ~(size - 1));
} else {
size = page_size;
tmp_aligned = tmp;
}
ret = madvise(tmp_aligned, size, MADV_DONTFORK) ||
madvise(tmp_aligned, size, MADV_DOFORK);
free(tmp);
if (ret)
return ENOSYS;
mm_root = malloc(sizeof *mm_root);
if (!mm_root)
return ENOMEM;
mm_root->parent = NULL;
mm_root->left = NULL;
mm_root->right = NULL;
mm_root->color = IBV_BLACK;
mm_root->start = 0;
mm_root->end = UINTPTR_MAX;
mm_root->refcnt = 0;
return 0;
}
static struct ibv_mem_node *__mm_prev(struct ibv_mem_node *node)
{
if (node->left) {
node = node->left;
while (node->right)
node = node->right;
} else {
while (node->parent && node == node->parent->left)
node = node->parent;
node = node->parent;
}
return node;
}
static struct ibv_mem_node *__mm_next(struct ibv_mem_node *node)
{
if (node->right) {
node = node->right;
while (node->left)
node = node->left;
} else {
while (node->parent && node == node->parent->right)
node = node->parent;
node = node->parent;
}
return node;
}
static void __mm_rotate_right(struct ibv_mem_node *node)
{
struct ibv_mem_node *tmp;
tmp = node->left;
node->left = tmp->right;
if (node->left)
node->left->parent = node;
if (node->parent) {
if (node->parent->right == node)
node->parent->right = tmp;
else
node->parent->left = tmp;
} else
mm_root = tmp;
tmp->parent = node->parent;
tmp->right = node;
node->parent = tmp;
}
static void __mm_rotate_left(struct ibv_mem_node *node)
{
struct ibv_mem_node *tmp;
tmp = node->right;
node->right = tmp->left;
if (node->right)
node->right->parent = node;
if (node->parent) {
if (node->parent->right == node)
node->parent->right = tmp;
else
node->parent->left = tmp;
} else
mm_root = tmp;
tmp->parent = node->parent;
tmp->left = node;
node->parent = tmp;
}
#if 0
static int verify(struct ibv_mem_node *node)
{
int hl, hr;
if (!node)
return 1;
hl = verify(node->left);
hr = verify(node->left);
if (!hl || !hr)
return 0;
if (hl != hr)
return 0;
if (node->color == IBV_RED) {
if (node->left && node->left->color != IBV_BLACK)
return 0;
if (node->right && node->right->color != IBV_BLACK)
return 0;
return hl;
}
return hl + 1;
}
#endif
static void __mm_add_rebalance(struct ibv_mem_node *node)
{
struct ibv_mem_node *parent, *gp, *uncle;
while (node->parent && node->parent->color == IBV_RED) {
parent = node->parent;
gp = node->parent->parent;
if (parent == gp->left) {
uncle = gp->right;
if (uncle && uncle->color == IBV_RED) {
parent->color = IBV_BLACK;
uncle->color = IBV_BLACK;
gp->color = IBV_RED;
node = gp;
} else {
if (node == parent->right) {
__mm_rotate_left(parent);
node = parent;
parent = node->parent;
}
parent->color = IBV_BLACK;
gp->color = IBV_RED;
__mm_rotate_right(gp);
}
} else {
uncle = gp->left;
if (uncle && uncle->color == IBV_RED) {
parent->color = IBV_BLACK;
uncle->color = IBV_BLACK;
gp->color = IBV_RED;
node = gp;
} else {
if (node == parent->left) {
__mm_rotate_right(parent);
node = parent;
parent = node->parent;
}
parent->color = IBV_BLACK;
gp->color = IBV_RED;
__mm_rotate_left(gp);
}
}
}
mm_root->color = IBV_BLACK;
}
static void __mm_add(struct ibv_mem_node *new)
{
struct ibv_mem_node *node, *parent = NULL;
node = mm_root;
while (node) {
parent = node;
if (node->start < new->start)
node = node->right;
else
node = node->left;
}
if (parent->start < new->start)
parent->right = new;
else
parent->left = new;
new->parent = parent;
new->left = NULL;
new->right = NULL;
new->color = IBV_RED;
__mm_add_rebalance(new);
}
static void __mm_remove(struct ibv_mem_node *node)
{
struct ibv_mem_node *child, *parent, *sib, *tmp;
int nodecol;
if (node->left && node->right) {
tmp = node->left;
while (tmp->right)
tmp = tmp->right;
nodecol = tmp->color;
child = tmp->left;
tmp->color = node->color;
if (tmp->parent != node) {
parent = tmp->parent;
parent->right = tmp->left;
if (tmp->left)
tmp->left->parent = parent;
tmp->left = node->left;
node->left->parent = tmp;
} else
parent = tmp;
tmp->right = node->right;
node->right->parent = tmp;
tmp->parent = node->parent;
if (node->parent) {
if (node->parent->left == node)
node->parent->left = tmp;
else
node->parent->right = tmp;
} else
mm_root = tmp;
} else {
nodecol = node->color;
child = node->left ? node->left : node->right;
parent = node->parent;
if (child)
child->parent = parent;
if (parent) {
if (parent->left == node)
parent->left = child;
else
parent->right = child;
} else
mm_root = child;
}
free(node);
if (nodecol == IBV_RED)
return;
while ((!child || child->color == IBV_BLACK) && child != mm_root) {
if (parent->left == child) {
sib = parent->right;
if (sib->color == IBV_RED) {
parent->color = IBV_RED;
sib->color = IBV_BLACK;
__mm_rotate_left(parent);
sib = parent->right;
}
if ((!sib->left || sib->left->color == IBV_BLACK) &&
(!sib->right || sib->right->color == IBV_BLACK)) {
sib->color = IBV_RED;
child = parent;
parent = child->parent;
} else {
if (!sib->right || sib->right->color == IBV_BLACK) {
if (sib->left)
sib->left->color = IBV_BLACK;
sib->color = IBV_RED;
__mm_rotate_right(sib);
sib = parent->right;
}
sib->color = parent->color;
parent->color = IBV_BLACK;
if (sib->right)
sib->right->color = IBV_BLACK;
__mm_rotate_left(parent);
child = mm_root;
break;
}
} else {
sib = parent->left;
if (sib->color == IBV_RED) {
parent->color = IBV_RED;
sib->color = IBV_BLACK;
__mm_rotate_right(parent);
sib = parent->left;
}
if ((!sib->left || sib->left->color == IBV_BLACK) &&
(!sib->right || sib->right->color == IBV_BLACK)) {
sib->color = IBV_RED;
child = parent;
parent = child->parent;
} else {
if (!sib->left || sib->left->color == IBV_BLACK) {
if (sib->right)
sib->right->color = IBV_BLACK;
sib->color = IBV_RED;
__mm_rotate_left(sib);
sib = parent->left;
}
sib->color = parent->color;
parent->color = IBV_BLACK;
if (sib->left)
sib->left->color = IBV_BLACK;
__mm_rotate_right(parent);
child = mm_root;
break;
}
}
}
if (child)
child->color = IBV_BLACK;
}
static struct ibv_mem_node *__mm_find_start(uintptr_t start, uintptr_t end)
{
struct ibv_mem_node *node = mm_root;
while (node) {
if (node->start <= start && node->end >= start)
break;
if (node->start < start)
node = node->right;
else
node = node->left;
}
return node;
}
static struct ibv_mem_node *merge_ranges(struct ibv_mem_node *node,
struct ibv_mem_node *prev)
{
prev->end = node->end;
prev->refcnt = node->refcnt;
__mm_remove(node);
return prev;
}
static struct ibv_mem_node *split_range(struct ibv_mem_node *node,
uintptr_t cut_line)
{
struct ibv_mem_node *new_node = NULL;
new_node = malloc(sizeof *new_node);
if (!new_node)
return NULL;
new_node->start = cut_line;
new_node->end = node->end;
new_node->refcnt = node->refcnt;
node->end = cut_line - 1;
__mm_add(new_node);
return new_node;
}
static struct ibv_mem_node *get_start_node(uintptr_t start, uintptr_t end,
int inc)
{
struct ibv_mem_node *node, *tmp = NULL;
node = __mm_find_start(start, end);
if (node->start < start)
node = split_range(node, start);
else {
tmp = __mm_prev(node);
if (tmp && tmp->refcnt == node->refcnt + inc)
node = merge_ranges(node, tmp);
}
return node;
}
/*
* This function is called if madvise() fails to undo merging/splitting
* operations performed on the node.
*/
static struct ibv_mem_node *undo_node(struct ibv_mem_node *node,
uintptr_t start, int inc)
{
struct ibv_mem_node *tmp = NULL;
/*
* This condition can be true only if we merged this
* node with the previous one, so we need to split them.
*/
if (start > node->start) {
tmp = split_range(node, start);
if (tmp) {
node->refcnt += inc;
node = tmp;
} else
return NULL;
}
tmp = __mm_prev(node);
if (tmp && tmp->refcnt == node->refcnt)
node = merge_ranges(node, tmp);
tmp = __mm_next(node);
if (tmp && tmp->refcnt == node->refcnt)
node = merge_ranges(tmp, node);
return node;
}
static int ibv_madvise_range(void *base, size_t size, int advice)
{
uintptr_t start, end;
struct ibv_mem_node *node, *tmp;
int inc;
int rolling_back = 0;
int ret = 0;
unsigned long range_page_size;
if (!size)
return 0;
if (huge_page_enabled)
range_page_size = get_page_size(base);
else
range_page_size = page_size;
start = (uintptr_t) base & ~(range_page_size - 1);
end = ((uintptr_t) (base + size + range_page_size - 1) &
~(range_page_size - 1)) - 1;
pthread_mutex_lock(&mm_mutex);
again:
inc = advice == MADV_DONTFORK ? 1 : -1;
node = get_start_node(start, end, inc);
if (!node) {
ret = -1;
goto out;
}
while (node && node->start <= end) {
if (node->end > end) {
if (!split_range(node, end + 1)) {
ret = -1;
goto out;
}
}
if ((inc == -1 && node->refcnt == 1) ||
(inc == 1 && node->refcnt == 0)) {
/*
* If this is the first time through the loop,
* and we merged this node with the previous
* one, then we only want to do the madvise()
* on start ... node->end (rather than
* starting at node->start).
*
* Otherwise we end up doing madvise() on
* bigger region than we're being asked to,
* and that may lead to a spurious failure.
*/
if (start > node->start)
ret = madvise((void *) start, node->end - start + 1,
advice);
else
ret = madvise((void *) node->start,
node->end - node->start + 1,
advice);
if (ret) {
node = undo_node(node, start, inc);
if (rolling_back || !node)
goto out;
/* madvise failed, roll back previous changes */
rolling_back = 1;
advice = advice == MADV_DONTFORK ?
MADV_DOFORK : MADV_DONTFORK;
tmp = __mm_prev(node);
if (!tmp || start > tmp->end)
goto out;
end = tmp->end;
goto again;
}
}
node->refcnt += inc;
node = __mm_next(node);
}
if (node) {
tmp = __mm_prev(node);
if (tmp && node->refcnt == tmp->refcnt)
node = merge_ranges(node, tmp);
}
out:
if (rolling_back)
ret = -1;
pthread_mutex_unlock(&mm_mutex);
return ret;
}
int ibv_dontfork_range(void *base, size_t size)
{
if (mm_root)
return ibv_madvise_range(base, size, MADV_DONTFORK);
else {
too_late = 1;
return 0;
}
}
int ibv_dofork_range(void *base, size_t size)
{
if (mm_root)
return ibv_madvise_range(base, size, MADV_DOFORK);
else {
too_late = 1;
return 0;
}
}