3fc10b7363
using vm_radix_node_page() == NULL, the compiler is able to generate one less conditional branch when vm_radix_isleaf() is used. More use cases involving the inner loops of vm_radix_insert(), vm_radix_lookup{,_ge,_le}(), and vm_radix_remove() will follow. Reviewed by: attilio Sponsored by: EMC / Isilon Storage Division
786 lines
21 KiB
C
786 lines
21 KiB
C
/*
|
|
* Copyright (c) 2013 EMC Corp.
|
|
* Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
|
|
* Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Path-compressed radix trie implementation.
|
|
* The following code is not generalized into a general purpose library
|
|
* because there are way too many parameters embedded that should really
|
|
* be decided by the library consumers. At the same time, consumers
|
|
* of this code must achieve highest possible performance.
|
|
*
|
|
* The implementation takes into account the following rationale:
|
|
* - Size of the nodes should be as small as possible but still big enough
|
|
* to avoid a large maximum depth for the trie. This is a balance
|
|
* between the necessity to not wire too much physical memory for the nodes
|
|
* and the necessity to avoid too much cache pollution during the trie
|
|
* operations.
|
|
* - There is not a huge bias toward the number of lookup operations over
|
|
* the number of insert and remove operations. This basically implies
|
|
* that optimizations supposedly helping one operation but hurting the
|
|
* other might be carefully evaluated.
|
|
* - On average not many nodes are expected to be fully populated, hence
|
|
* level compression may just complicate things.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/uma.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_radix.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
/*
|
|
* These widths should allow the pointers to a node's children to fit within
|
|
* a single cache line. The extra levels from a narrow width should not be
|
|
* a problem thanks to path compression.
|
|
*/
|
|
#ifdef __LP64__
|
|
#define VM_RADIX_WIDTH 4
|
|
#else
|
|
#define VM_RADIX_WIDTH 3
|
|
#endif
|
|
|
|
#define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH)
|
|
#define VM_RADIX_MASK (VM_RADIX_COUNT - 1)
|
|
#define VM_RADIX_LIMIT \
|
|
(howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
|
|
|
|
/* Flag bits stored in node pointers. */
|
|
#define VM_RADIX_ISLEAF 0x1
|
|
#define VM_RADIX_FLAGS 0x1
|
|
#define VM_RADIX_PAD VM_RADIX_FLAGS
|
|
|
|
/* Returns one unit associated with specified level. */
|
|
#define VM_RADIX_UNITLEVEL(lev) \
|
|
((vm_pindex_t)1 << ((VM_RADIX_LIMIT - (lev)) * VM_RADIX_WIDTH))
|
|
|
|
struct vm_radix_node {
|
|
void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */
|
|
vm_pindex_t rn_owner; /* Owner of record. */
|
|
uint16_t rn_count; /* Valid children. */
|
|
uint16_t rn_clev; /* Current level. */
|
|
};
|
|
|
|
static uma_zone_t vm_radix_node_zone;
|
|
|
|
/*
|
|
* Allocate a radix node. Pre-allocation should ensure that the request
|
|
* will always be satisfied.
|
|
*/
|
|
static __inline struct vm_radix_node *
|
|
vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
|
|
rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT);
|
|
|
|
/*
|
|
* The required number of nodes should already be pre-allocated
|
|
* by vm_radix_prealloc(). However, UMA can hold a few nodes
|
|
* in per-CPU buckets, which will not be accessible by the
|
|
* current CPU. Thus, the allocation could return NULL when
|
|
* the pre-allocated pool is close to exhaustion. Anyway,
|
|
* in practice this should never occur because a new node
|
|
* is not always required for insert. Thus, the pre-allocated
|
|
* pool should have some extra pages that prevent this from
|
|
* becoming a problem.
|
|
*/
|
|
if (rnode == NULL)
|
|
panic("%s: uma_zalloc() returned NULL for a new node",
|
|
__func__);
|
|
rnode->rn_owner = owner;
|
|
rnode->rn_count = count;
|
|
rnode->rn_clev = clevel;
|
|
return (rnode);
|
|
}
|
|
|
|
/*
|
|
* Free radix node.
|
|
*/
|
|
static __inline void
|
|
vm_radix_node_put(struct vm_radix_node *rnode)
|
|
{
|
|
|
|
uma_zfree(vm_radix_node_zone, rnode);
|
|
}
|
|
|
|
/*
|
|
* Return the position in the array for a given level.
|
|
*/
|
|
static __inline int
|
|
vm_radix_slot(vm_pindex_t index, uint16_t level)
|
|
{
|
|
|
|
return ((index >> ((VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH)) &
|
|
VM_RADIX_MASK);
|
|
}
|
|
|
|
/* Trims the key after the specified level. */
|
|
static __inline vm_pindex_t
|
|
vm_radix_trimkey(vm_pindex_t index, uint16_t level)
|
|
{
|
|
vm_pindex_t ret;
|
|
|
|
ret = index;
|
|
if (level < VM_RADIX_LIMIT) {
|
|
ret >>= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
|
|
ret <<= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Get the root node for a radix tree.
|
|
*/
|
|
static __inline struct vm_radix_node *
|
|
vm_radix_getroot(struct vm_radix *rtree)
|
|
{
|
|
|
|
return ((struct vm_radix_node *)(rtree->rt_root & ~VM_RADIX_FLAGS));
|
|
}
|
|
|
|
/*
|
|
* Set the root node for a radix tree.
|
|
*/
|
|
static __inline void
|
|
vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
|
|
{
|
|
|
|
rtree->rt_root = (uintptr_t)rnode;
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
|
|
*/
|
|
static __inline boolean_t
|
|
vm_radix_isleaf(struct vm_radix_node *rnode)
|
|
{
|
|
|
|
return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
|
|
}
|
|
|
|
/*
|
|
* Returns the associated page extracted from rnode if available,
|
|
* and NULL otherwise.
|
|
*/
|
|
static __inline vm_page_t
|
|
vm_radix_node_page(struct vm_radix_node *rnode)
|
|
{
|
|
|
|
return ((((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0) ?
|
|
(vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS) : NULL);
|
|
}
|
|
|
|
/*
|
|
* Adds the page as a child of the provided node.
|
|
*/
|
|
static __inline void
|
|
vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
|
|
vm_page_t page)
|
|
{
|
|
int slot;
|
|
|
|
slot = vm_radix_slot(index, clev);
|
|
rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
|
|
}
|
|
|
|
/*
|
|
* Returns the slot where two keys differ.
|
|
* It cannot accept 2 equal keys.
|
|
*/
|
|
static __inline uint16_t
|
|
vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
|
|
{
|
|
uint16_t clev;
|
|
|
|
KASSERT(index1 != index2, ("%s: passing the same key value %jx",
|
|
__func__, (uintmax_t)index1));
|
|
|
|
index1 ^= index2;
|
|
for (clev = 0; clev <= VM_RADIX_LIMIT ; clev++)
|
|
if (vm_radix_slot(index1, clev))
|
|
return (clev);
|
|
panic("%s: cannot reach this point", __func__);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if it can be determined that key does not belong to the
|
|
* specified rnode. Otherwise, returns FALSE.
|
|
*/
|
|
static __inline boolean_t
|
|
vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
|
|
{
|
|
|
|
if (rnode->rn_clev > 0) {
|
|
idx = vm_radix_trimkey(idx, rnode->rn_clev - 1);
|
|
idx -= rnode->rn_owner;
|
|
if (idx != 0)
|
|
return (TRUE);
|
|
}
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* Adjusts the idx key to the first upper level available, based on a valid
|
|
* initial level and map of available levels.
|
|
* Returns a value bigger than 0 to signal that there are not valid levels
|
|
* available.
|
|
*/
|
|
static __inline int
|
|
vm_radix_addlev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev)
|
|
{
|
|
vm_pindex_t wrapidx;
|
|
|
|
for (; levels[ilev] == FALSE ||
|
|
vm_radix_slot(*idx, ilev) == (VM_RADIX_COUNT - 1); ilev--)
|
|
if (ilev == 0)
|
|
break;
|
|
KASSERT(ilev > 0 || levels[0],
|
|
("%s: levels back-scanning problem", __func__));
|
|
if (ilev == 0 && vm_radix_slot(*idx, ilev) == (VM_RADIX_COUNT - 1))
|
|
return (1);
|
|
wrapidx = *idx;
|
|
*idx = vm_radix_trimkey(*idx, ilev);
|
|
*idx += VM_RADIX_UNITLEVEL(ilev);
|
|
return (*idx < wrapidx);
|
|
}
|
|
|
|
/*
|
|
* Adjusts the idx key to the first lower level available, based on a valid
|
|
* initial level and map of available levels.
|
|
* Returns a value bigger than 0 to signal that there are not valid levels
|
|
* available.
|
|
*/
|
|
static __inline int
|
|
vm_radix_declev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev)
|
|
{
|
|
vm_pindex_t wrapidx;
|
|
|
|
for (; levels[ilev] == FALSE ||
|
|
vm_radix_slot(*idx, ilev) == 0; ilev--)
|
|
if (ilev == 0)
|
|
break;
|
|
KASSERT(ilev > 0 || levels[0],
|
|
("%s: levels back-scanning problem", __func__));
|
|
if (ilev == 0 && vm_radix_slot(*idx, ilev) == 0)
|
|
return (1);
|
|
wrapidx = *idx;
|
|
*idx = vm_radix_trimkey(*idx, ilev);
|
|
*idx |= VM_RADIX_UNITLEVEL(ilev) - 1;
|
|
*idx -= VM_RADIX_UNITLEVEL(ilev);
|
|
return (*idx > wrapidx);
|
|
}
|
|
|
|
/*
|
|
* Internal helper for vm_radix_reclaim_allnodes().
|
|
* This function is recursive.
|
|
*/
|
|
static void
|
|
vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
|
|
{
|
|
int slot;
|
|
|
|
KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
|
|
("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
|
|
for (slot = 0; rnode->rn_count != 0; slot++) {
|
|
if (rnode->rn_child[slot] == NULL)
|
|
continue;
|
|
if (!vm_radix_isleaf(rnode->rn_child[slot]))
|
|
vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
|
|
rnode->rn_child[slot] = NULL;
|
|
rnode->rn_count--;
|
|
}
|
|
vm_radix_node_put(rnode);
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* Radix node zone destructor.
|
|
*/
|
|
static void
|
|
vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
int slot;
|
|
|
|
rnode = mem;
|
|
KASSERT(rnode->rn_count == 0,
|
|
("vm_radix_node_put: rnode %p has %d children", rnode,
|
|
rnode->rn_count));
|
|
for (slot = 0; slot < VM_RADIX_COUNT; slot++)
|
|
KASSERT(rnode->rn_child[slot] == NULL,
|
|
("vm_radix_node_put: rnode %p has a child", rnode));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Radix node zone initializer.
|
|
*/
|
|
static int
|
|
vm_radix_node_zone_init(void *mem, int size __unused, int flags __unused)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
|
|
rnode = mem;
|
|
memset(rnode->rn_child, 0, sizeof(rnode->rn_child));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Pre-allocate intermediate nodes from the UMA slab zone.
|
|
*/
|
|
static void
|
|
vm_radix_prealloc(void *arg __unused)
|
|
{
|
|
|
|
if (!uma_zone_reserve_kva(vm_radix_node_zone, cnt.v_page_count))
|
|
panic("%s: unable to create new zone", __func__);
|
|
uma_prealloc(vm_radix_node_zone, cnt.v_page_count);
|
|
}
|
|
SYSINIT(vm_radix_prealloc, SI_SUB_KMEM, SI_ORDER_SECOND, vm_radix_prealloc,
|
|
NULL);
|
|
|
|
/*
|
|
* Initialize the UMA slab zone.
|
|
* Until vm_radix_prealloc() is called, the zone will be served by the
|
|
* UMA boot-time pre-allocated pool of pages.
|
|
*/
|
|
void
|
|
vm_radix_init(void)
|
|
{
|
|
|
|
vm_radix_node_zone = uma_zcreate("RADIX NODE",
|
|
sizeof(struct vm_radix_node), NULL,
|
|
#ifdef INVARIANTS
|
|
vm_radix_node_zone_dtor,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
vm_radix_node_zone_init, NULL, VM_RADIX_PAD, UMA_ZONE_VM |
|
|
UMA_ZONE_NOFREE);
|
|
}
|
|
|
|
/*
|
|
* Inserts the key-value pair into the trie.
|
|
* Panics if the key already exists.
|
|
*/
|
|
void
|
|
vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
|
|
{
|
|
vm_pindex_t index, newind;
|
|
struct vm_radix_node *rnode, *tmp, *tmp2;
|
|
vm_page_t m;
|
|
int slot;
|
|
uint16_t clev;
|
|
|
|
index = page->pindex;
|
|
|
|
/*
|
|
* The owner of record for root is not really important because it
|
|
* will never be used.
|
|
*/
|
|
rnode = vm_radix_getroot(rtree);
|
|
if (rnode == NULL) {
|
|
rnode = vm_radix_node_get(0, 1, 0);
|
|
vm_radix_setroot(rtree, rnode);
|
|
vm_radix_addpage(rnode, index, 0, page);
|
|
return;
|
|
}
|
|
do {
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
m = vm_radix_node_page(rnode->rn_child[slot]);
|
|
if (m != NULL) {
|
|
if (m->pindex == index)
|
|
panic("%s: key %jx is already present",
|
|
__func__, (uintmax_t)index);
|
|
clev = vm_radix_keydiff(m->pindex, index);
|
|
tmp = vm_radix_node_get(vm_radix_trimkey(index,
|
|
clev - 1), 2, clev);
|
|
rnode->rn_child[slot] = tmp;
|
|
vm_radix_addpage(tmp, index, clev, page);
|
|
vm_radix_addpage(tmp, m->pindex, clev, m);
|
|
return;
|
|
}
|
|
if (rnode->rn_child[slot] == NULL) {
|
|
rnode->rn_count++;
|
|
vm_radix_addpage(rnode, index, rnode->rn_clev, page);
|
|
return;
|
|
}
|
|
rnode = rnode->rn_child[slot];
|
|
} while (!vm_radix_keybarr(rnode, index));
|
|
|
|
/*
|
|
* Scan the trie from the top and find the parent to insert
|
|
* the new object.
|
|
*/
|
|
newind = rnode->rn_owner;
|
|
clev = vm_radix_keydiff(newind, index);
|
|
slot = VM_RADIX_COUNT;
|
|
for (rnode = vm_radix_getroot(rtree); ; rnode = tmp) {
|
|
KASSERT(rnode != NULL, ("%s: edge cannot be NULL in the scan",
|
|
__func__));
|
|
KASSERT(clev >= rnode->rn_clev,
|
|
("%s: unexpected trie depth: clev: %d, rnode->rn_clev: %d",
|
|
__func__, clev, rnode->rn_clev));
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
tmp = rnode->rn_child[slot];
|
|
KASSERT(tmp != NULL && !vm_radix_isleaf(tmp),
|
|
("%s: unexpected lookup interruption", __func__));
|
|
if (tmp->rn_clev > clev)
|
|
break;
|
|
}
|
|
KASSERT(rnode != NULL && tmp != NULL && slot < VM_RADIX_COUNT,
|
|
("%s: invalid scan parameters rnode: %p, tmp: %p, slot: %d",
|
|
__func__, (void *)rnode, (void *)tmp, slot));
|
|
|
|
/*
|
|
* A new node is needed because the right insertion level is reached.
|
|
* Setup the new intermediate node and add the 2 children: the
|
|
* new object and the older edge.
|
|
*/
|
|
tmp2 = vm_radix_node_get(vm_radix_trimkey(index, clev - 1), 2,
|
|
clev);
|
|
rnode->rn_child[slot] = tmp2;
|
|
vm_radix_addpage(tmp2, index, clev, page);
|
|
slot = vm_radix_slot(newind, clev);
|
|
tmp2->rn_child[slot] = tmp;
|
|
}
|
|
|
|
/*
|
|
* Returns the value stored at the index. If the index is not present,
|
|
* NULL is returned.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
vm_page_t m;
|
|
int slot;
|
|
|
|
rnode = vm_radix_getroot(rtree);
|
|
while (rnode != NULL) {
|
|
if (vm_radix_keybarr(rnode, index))
|
|
return (NULL);
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
rnode = rnode->rn_child[slot];
|
|
m = vm_radix_node_page(rnode);
|
|
if (m != NULL) {
|
|
if (m->pindex == index)
|
|
return (m);
|
|
else
|
|
return (NULL);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Look up the nearest entry at a position bigger than or equal to index.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
vm_pindex_t inc;
|
|
vm_page_t m;
|
|
struct vm_radix_node *rnode;
|
|
int slot;
|
|
uint16_t difflev;
|
|
boolean_t maplevels[VM_RADIX_LIMIT + 1];
|
|
#ifdef INVARIANTS
|
|
int loops = 0;
|
|
#endif
|
|
|
|
restart:
|
|
KASSERT(++loops < 1000, ("%s: too many loops", __func__));
|
|
for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++)
|
|
maplevels[difflev] = FALSE;
|
|
rnode = vm_radix_getroot(rtree);
|
|
while (rnode != NULL) {
|
|
maplevels[rnode->rn_clev] = TRUE;
|
|
|
|
/*
|
|
* If the keys differ before the current bisection node
|
|
* the search key might rollback to the earliest
|
|
* available bisection node, or to the smaller value
|
|
* in the current domain (if the owner is bigger than the
|
|
* search key).
|
|
* The maplevels array records any node has been seen
|
|
* at a given level. This aids the search for a valid
|
|
* bisection node.
|
|
*/
|
|
if (vm_radix_keybarr(rnode, index)) {
|
|
difflev = vm_radix_keydiff(index, rnode->rn_owner);
|
|
if (index > rnode->rn_owner) {
|
|
if (vm_radix_addlev(&index, maplevels,
|
|
difflev) > 0)
|
|
break;
|
|
} else
|
|
index = vm_radix_trimkey(rnode->rn_owner,
|
|
difflev);
|
|
goto restart;
|
|
}
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
m = vm_radix_node_page(rnode->rn_child[slot]);
|
|
if (m != NULL && m->pindex >= index)
|
|
return (m);
|
|
if (rnode->rn_child[slot] != NULL && m == NULL) {
|
|
rnode = rnode->rn_child[slot];
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Look for an available edge or page within the current
|
|
* bisection node.
|
|
*/
|
|
if (slot < (VM_RADIX_COUNT - 1)) {
|
|
inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
|
|
index = vm_radix_trimkey(index, rnode->rn_clev);
|
|
index += inc;
|
|
slot++;
|
|
for (;; index += inc, slot++) {
|
|
m = vm_radix_node_page(rnode->rn_child[slot]);
|
|
if (m != NULL && m->pindex >= index)
|
|
return (m);
|
|
if ((rnode->rn_child[slot] != NULL &&
|
|
m == NULL) || slot == (VM_RADIX_COUNT - 1))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a valid page or edge bigger than the search slot is
|
|
* found in the traversal, skip to the next higher-level key.
|
|
*/
|
|
if (slot == (VM_RADIX_COUNT - 1) &&
|
|
(rnode->rn_child[slot] == NULL || m != NULL)) {
|
|
if (rnode->rn_clev == 0 || vm_radix_addlev(&index,
|
|
maplevels, rnode->rn_clev - 1) > 0)
|
|
break;
|
|
goto restart;
|
|
}
|
|
rnode = rnode->rn_child[slot];
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Look up the nearest entry at a position less than or equal to index.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
vm_pindex_t inc;
|
|
vm_page_t m;
|
|
struct vm_radix_node *rnode;
|
|
int slot;
|
|
uint16_t difflev;
|
|
boolean_t maplevels[VM_RADIX_LIMIT + 1];
|
|
#ifdef INVARIANTS
|
|
int loops = 0;
|
|
#endif
|
|
|
|
restart:
|
|
KASSERT(++loops < 1000, ("%s: too many loops", __func__));
|
|
for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++)
|
|
maplevels[difflev] = FALSE;
|
|
rnode = vm_radix_getroot(rtree);
|
|
while (rnode != NULL) {
|
|
maplevels[rnode->rn_clev] = TRUE;
|
|
|
|
/*
|
|
* If the keys differ before the current bisection node
|
|
* the search key might rollback to the earliest
|
|
* available bisection node, or to the higher value
|
|
* in the current domain (if the owner is smaller than the
|
|
* search key).
|
|
* The maplevels array records any node has been seen
|
|
* at a given level. This aids the search for a valid
|
|
* bisection node.
|
|
*/
|
|
if (vm_radix_keybarr(rnode, index)) {
|
|
difflev = vm_radix_keydiff(index, rnode->rn_owner);
|
|
if (index > rnode->rn_owner) {
|
|
index = vm_radix_trimkey(rnode->rn_owner,
|
|
difflev);
|
|
index |= VM_RADIX_UNITLEVEL(difflev) - 1;
|
|
} else if (vm_radix_declev(&index, maplevels,
|
|
difflev) > 0)
|
|
break;
|
|
goto restart;
|
|
}
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
m = vm_radix_node_page(rnode->rn_child[slot]);
|
|
if (m != NULL && m->pindex <= index)
|
|
return (m);
|
|
if (rnode->rn_child[slot] != NULL && m == NULL) {
|
|
rnode = rnode->rn_child[slot];
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Look for an available edge or page within the current
|
|
* bisection node.
|
|
*/
|
|
if (slot > 0) {
|
|
inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
|
|
index = vm_radix_trimkey(index, rnode->rn_clev);
|
|
index |= inc - 1;
|
|
index -= inc;
|
|
slot--;
|
|
for (;; index -= inc, slot--) {
|
|
m = vm_radix_node_page(rnode->rn_child[slot]);
|
|
if (m != NULL && m->pindex <= index)
|
|
return (m);
|
|
if ((rnode->rn_child[slot] != NULL &&
|
|
m == NULL) || slot == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a valid page or edge smaller than the search slot is
|
|
* found in the traversal, skip to the next higher-level key.
|
|
*/
|
|
if (slot == 0 && (rnode->rn_child[slot] == NULL || m != NULL)) {
|
|
if (rnode->rn_clev == 0 || vm_radix_declev(&index,
|
|
maplevels, rnode->rn_clev - 1) > 0)
|
|
break;
|
|
goto restart;
|
|
}
|
|
rnode = rnode->rn_child[slot];
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Remove the specified index from the tree.
|
|
* Panics if the key is not present.
|
|
*/
|
|
void
|
|
vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
struct vm_radix_node *rnode, *parent;
|
|
vm_page_t m;
|
|
int i, slot;
|
|
|
|
parent = NULL;
|
|
rnode = vm_radix_getroot(rtree);
|
|
for (;;) {
|
|
if (rnode == NULL)
|
|
panic("vm_radix_remove: impossible to locate the key");
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
m = vm_radix_node_page(rnode->rn_child[slot]);
|
|
if (m != NULL && m->pindex == index) {
|
|
rnode->rn_child[slot] = NULL;
|
|
rnode->rn_count--;
|
|
if (rnode->rn_count > 1)
|
|
break;
|
|
if (parent == NULL) {
|
|
if (rnode->rn_count == 0) {
|
|
vm_radix_node_put(rnode);
|
|
vm_radix_setroot(rtree, NULL);
|
|
}
|
|
break;
|
|
}
|
|
for (i = 0; i < VM_RADIX_COUNT; i++)
|
|
if (rnode->rn_child[i] != NULL)
|
|
break;
|
|
KASSERT(i != VM_RADIX_COUNT,
|
|
("%s: invalid node configuration", __func__));
|
|
slot = vm_radix_slot(index, parent->rn_clev);
|
|
KASSERT(parent->rn_child[slot] == rnode,
|
|
("%s: invalid child value", __func__));
|
|
parent->rn_child[slot] = rnode->rn_child[i];
|
|
rnode->rn_count--;
|
|
rnode->rn_child[i] = NULL;
|
|
vm_radix_node_put(rnode);
|
|
break;
|
|
}
|
|
if (m != NULL && m->pindex != index)
|
|
panic("%s: invalid key found", __func__);
|
|
parent = rnode;
|
|
rnode = rnode->rn_child[slot];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove and free all the nodes from the radix tree.
|
|
* This function is recursive but there is a tight control on it as the
|
|
* maximum depth of the tree is fixed.
|
|
*/
|
|
void
|
|
vm_radix_reclaim_allnodes(struct vm_radix *rtree)
|
|
{
|
|
struct vm_radix_node *root;
|
|
|
|
root = vm_radix_getroot(rtree);
|
|
if (root == NULL)
|
|
return;
|
|
vm_radix_setroot(rtree, NULL);
|
|
vm_radix_reclaim_allnodes_int(root);
|
|
}
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* Show details about the given radix node.
|
|
*/
|
|
DB_SHOW_COMMAND(radixnode, db_show_radixnode)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
int i;
|
|
|
|
if (!have_addr)
|
|
return;
|
|
rnode = (struct vm_radix_node *)addr;
|
|
db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
|
|
(void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
|
|
rnode->rn_clev);
|
|
for (i = 0; i < VM_RADIX_COUNT; i++)
|
|
if (rnode->rn_child[i] != NULL)
|
|
db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
|
|
i, (void *)rnode->rn_child[i],
|
|
(void *)vm_radix_node_page(rnode->rn_child[i]),
|
|
rnode->rn_clev);
|
|
}
|
|
#endif /* DDB */
|