freebsd-nq/module/zcommon/zfs_fletcher.c
Tyler J. Stachecki 35a76a0366 Implementation of SSE optimized Fletcher-4
Builds off of 1eeb4562 (Implementation of AVX2 optimized Fletcher-4)
This commit adds another implementation of the Fletcher-4 algorithm.
It is automatically selected at module load if it benchmarks higher
than all other available implementations.

The module benchmark was also amended to analyze the performance of
the byteswap-ed version of Fletcher-4, as well as the non-byteswaped
version. The average performance of the two is used to select the
the fastest implementation available on the host system.

Adds a pair of fields to an existing zcommon module parameter:
-  zfs_fletcher_4_impl (str)
    "sse2"    - new SSE2 implementation if available
    "ssse3"   - new SSSE3 implementation if available

Signed-off-by: Tyler J. Stachecki <stachecki.tyler@gmail.com>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4789
2016-07-15 10:42:35 -07:00

524 lines
14 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Fletcher Checksums
* ------------------
*
* ZFS's 2nd and 4th order Fletcher checksums are defined by the following
* recurrence relations:
*
* a = a + f
* i i-1 i-1
*
* b = b + a
* i i-1 i
*
* c = c + b (fletcher-4 only)
* i i-1 i
*
* d = d + c (fletcher-4 only)
* i i-1 i
*
* Where
* a_0 = b_0 = c_0 = d_0 = 0
* and
* f_0 .. f_(n-1) are the input data.
*
* Using standard techniques, these translate into the following series:
*
* __n_ __n_
* \ | \ |
* a = > f b = > i * f
* n /___| n - i n /___| n - i
* i = 1 i = 1
*
*
* __n_ __n_
* \ | i*(i+1) \ | i*(i+1)*(i+2)
* c = > ------- f d = > ------------- f
* n /___| 2 n - i n /___| 6 n - i
* i = 1 i = 1
*
* For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
* Since the additions are done mod (2^64), errors in the high bits may not
* be noticed. For this reason, fletcher-2 is deprecated.
*
* For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
* A conservative estimate of how big the buffer can get before we overflow
* can be estimated using f_i = 0xffffffff for all i:
*
* % bc
* f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
* 2264
* quit
* %
*
* So blocks of up to 2k will not overflow. Our largest block size is
* 128k, which has 32k 4-byte words, so we can compute the largest possible
* accumulators, then divide by 2^64 to figure the max amount of overflow:
*
* % bc
* a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
* a/2^64;b/2^64;c/2^64;d/2^64
* 0
* 0
* 1365
* 11186858
* quit
* %
*
* So a and b cannot overflow. To make sure each bit of input has some
* effect on the contents of c and d, we can look at what the factors of
* the coefficients in the equations for c_n and d_n are. The number of 2s
* in the factors determines the lowest set bit in the multiplier. Running
* through the cases for n*(n+1)/2 reveals that the highest power of 2 is
* 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
* the 64-bit accumulators, every bit of every f_i effects every accumulator,
* even for 128k blocks.
*
* If we wanted to make a stronger version of fletcher4 (fletcher4c?),
* we could do our calculations mod (2^32 - 1) by adding in the carries
* periodically, and store the number of carries in the top 32-bits.
*
* --------------------
* Checksum Performance
* --------------------
*
* There are two interesting components to checksum performance: cached and
* uncached performance. With cached data, fletcher-2 is about four times
* faster than fletcher-4. With uncached data, the performance difference is
* negligible, since the cost of a cache fill dominates the processing time.
* Even though fletcher-4 is slower than fletcher-2, it is still a pretty
* efficient pass over the data.
*
* In normal operation, the data which is being checksummed is in a buffer
* which has been filled either by:
*
* 1. a compression step, which will be mostly cached, or
* 2. a bcopy() or copyin(), which will be uncached (because the
* copy is cache-bypassing).
*
* For both cached and uncached data, both fletcher checksums are much faster
* than sha-256, and slower than 'off', which doesn't touch the data at all.
*/
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/byteorder.h>
#include <sys/spa.h>
#include <sys/zfs_context.h>
#include <zfs_fletcher.h>
static void fletcher_4_scalar_init(zio_cksum_t *zcp);
static void fletcher_4_scalar(const void *buf, uint64_t size,
zio_cksum_t *zcp);
static void fletcher_4_scalar_byteswap(const void *buf, uint64_t size,
zio_cksum_t *zcp);
static boolean_t fletcher_4_scalar_valid(void);
static const fletcher_4_ops_t fletcher_4_scalar_ops = {
.init = fletcher_4_scalar_init,
.compute = fletcher_4_scalar,
.compute_byteswap = fletcher_4_scalar_byteswap,
.valid = fletcher_4_scalar_valid,
.name = "scalar"
};
static const fletcher_4_ops_t *fletcher_4_algos[] = {
&fletcher_4_scalar_ops,
#if defined(HAVE_SSE2)
&fletcher_4_sse2_ops,
#endif
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
&fletcher_4_ssse3_ops,
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
&fletcher_4_avx2_ops,
#endif
};
static enum fletcher_selector {
FLETCHER_FASTEST = 0,
FLETCHER_SCALAR,
#if defined(HAVE_SSE2)
FLETCHER_SSE2,
#endif
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
FLETCHER_SSSE3,
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
FLETCHER_AVX2,
#endif
FLETCHER_CYCLE
} fletcher_4_impl_chosen = FLETCHER_SCALAR;
static struct fletcher_4_impl_selector {
const char *fis_name;
const fletcher_4_ops_t *fis_ops;
} fletcher_4_impl_selectors[] = {
[ FLETCHER_FASTEST ] = { "fastest", NULL },
[ FLETCHER_SCALAR ] = { "scalar", &fletcher_4_scalar_ops },
#if defined(HAVE_SSE2)
[ FLETCHER_SSE2 ] = { "sse2", &fletcher_4_sse2_ops },
#endif
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
[ FLETCHER_SSSE3 ] = { "ssse3", &fletcher_4_ssse3_ops },
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
[ FLETCHER_AVX2 ] = { "avx2", &fletcher_4_avx2_ops },
#endif
#if !defined(_KERNEL)
[ FLETCHER_CYCLE ] = { "cycle", &fletcher_4_scalar_ops }
#endif
};
static kmutex_t fletcher_4_impl_lock;
static kstat_t *fletcher_4_kstat;
static kstat_named_t fletcher_4_kstat_data[ARRAY_SIZE(fletcher_4_algos)];
void
fletcher_2_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
const uint64_t *ip = buf;
const uint64_t *ipend = ip + (size / sizeof (uint64_t));
uint64_t a0, b0, a1, b1;
for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
a0 += ip[0];
a1 += ip[1];
b0 += a0;
b1 += a1;
}
ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
}
void
fletcher_2_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
const uint64_t *ip = buf;
const uint64_t *ipend = ip + (size / sizeof (uint64_t));
uint64_t a0, b0, a1, b1;
for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
a0 += BSWAP_64(ip[0]);
a1 += BSWAP_64(ip[1]);
b0 += a0;
b1 += a1;
}
ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
}
static void fletcher_4_scalar_init(zio_cksum_t *zcp)
{
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
}
static void
fletcher_4_scalar(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
a = zcp->zc_word[0];
b = zcp->zc_word[1];
c = zcp->zc_word[2];
d = zcp->zc_word[3];
for (; ip < ipend; ip++) {
a += ip[0];
b += a;
c += b;
d += c;
}
ZIO_SET_CHECKSUM(zcp, a, b, c, d);
}
static void
fletcher_4_scalar_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
a = zcp->zc_word[0];
b = zcp->zc_word[1];
c = zcp->zc_word[2];
d = zcp->zc_word[3];
for (; ip < ipend; ip++) {
a += BSWAP_32(ip[0]);
b += a;
c += b;
d += c;
}
ZIO_SET_CHECKSUM(zcp, a, b, c, d);
}
static boolean_t
fletcher_4_scalar_valid(void)
{
return (B_TRUE);
}
int
fletcher_4_impl_set(const char *val)
{
const fletcher_4_ops_t *ops;
enum fletcher_selector idx;
size_t val_len;
unsigned i;
val_len = strlen(val);
while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
val_len--;
for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
const char *name = fletcher_4_impl_selectors[i].fis_name;
if (val_len == strlen(name) &&
strncmp(val, name, val_len) == 0) {
idx = i;
break;
}
}
if (i >= ARRAY_SIZE(fletcher_4_impl_selectors))
return (-EINVAL);
ops = fletcher_4_impl_selectors[idx].fis_ops;
if (ops == NULL || !ops->valid())
return (-ENOTSUP);
mutex_enter(&fletcher_4_impl_lock);
if (fletcher_4_impl_chosen != idx)
fletcher_4_impl_chosen = idx;
mutex_exit(&fletcher_4_impl_lock);
return (0);
}
static inline const fletcher_4_ops_t *
fletcher_4_impl_get(void)
{
#if !defined(_KERNEL)
if (fletcher_4_impl_chosen == FLETCHER_CYCLE) {
static volatile unsigned int cycle_count = 0;
const fletcher_4_ops_t *ops = NULL;
unsigned int index;
while (1) {
index = atomic_inc_uint_nv(&cycle_count);
ops = fletcher_4_algos[
index % ARRAY_SIZE(fletcher_4_algos)];
if (ops->valid())
break;
}
return (ops);
}
#endif
membar_producer();
return (fletcher_4_impl_selectors[fletcher_4_impl_chosen].fis_ops);
}
void
fletcher_4_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
const fletcher_4_ops_t *ops;
if (IS_P2ALIGNED(size, 4 * sizeof (uint32_t)))
ops = fletcher_4_impl_get();
else
ops = &fletcher_4_scalar_ops;
ops->init(zcp);
ops->compute(buf, size, zcp);
if (ops->fini != NULL)
ops->fini(zcp);
}
void
fletcher_4_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
const fletcher_4_ops_t *ops;
if (IS_P2ALIGNED(size, 4 * sizeof (uint32_t)))
ops = fletcher_4_impl_get();
else
ops = &fletcher_4_scalar_ops;
ops->init(zcp);
ops->compute_byteswap(buf, size, zcp);
if (ops->fini != NULL)
ops->fini(zcp);
}
void
fletcher_4_incremental_native(const void *buf, uint64_t size,
zio_cksum_t *zcp)
{
fletcher_4_scalar(buf, size, zcp);
}
void
fletcher_4_incremental_byteswap(const void *buf, uint64_t size,
zio_cksum_t *zcp)
{
fletcher_4_scalar_byteswap(buf, size, zcp);
}
void
fletcher_4_init(void)
{
const uint64_t const bench_ns = (50 * MICROSEC); /* 50ms */
unsigned long best_run_count = 0;
unsigned long best_run_index = 0;
const unsigned data_size = 4096;
char *databuf;
int i;
databuf = kmem_alloc(data_size, KM_SLEEP);
for (i = 0; i < ARRAY_SIZE(fletcher_4_algos); i++) {
const fletcher_4_ops_t *ops = fletcher_4_algos[i];
kstat_named_t *stat = &fletcher_4_kstat_data[i];
unsigned long run_count = 0;
hrtime_t start;
zio_cksum_t zc;
strncpy(stat->name, ops->name, sizeof (stat->name) - 1);
stat->data_type = KSTAT_DATA_UINT64;
stat->value.ui64 = 0;
if (!ops->valid())
continue;
kpreempt_disable();
start = gethrtime();
ops->init(&zc);
do {
ops->compute(databuf, data_size, &zc);
ops->compute_byteswap(databuf, data_size, &zc);
run_count++;
} while (gethrtime() < start + bench_ns);
if (ops->fini != NULL)
ops->fini(&zc);
kpreempt_enable();
if (run_count > best_run_count) {
best_run_count = run_count;
best_run_index = i;
}
/*
* Due to high overhead of gethrtime(), the performance data
* here is inaccurate and much slower than it could be.
* It's fine for our use though because only relative speed
* is important.
*/
stat->value.ui64 = data_size * run_count *
(NANOSEC / bench_ns) >> 20; /* by MB/s */
}
kmem_free(databuf, data_size);
fletcher_4_impl_selectors[FLETCHER_FASTEST].fis_ops =
fletcher_4_algos[best_run_index];
mutex_init(&fletcher_4_impl_lock, NULL, MUTEX_DEFAULT, NULL);
fletcher_4_impl_set("fastest");
fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench",
"misc", KSTAT_TYPE_NAMED, ARRAY_SIZE(fletcher_4_algos),
KSTAT_FLAG_VIRTUAL);
if (fletcher_4_kstat != NULL) {
fletcher_4_kstat->ks_data = fletcher_4_kstat_data;
kstat_install(fletcher_4_kstat);
}
}
void
fletcher_4_fini(void)
{
mutex_destroy(&fletcher_4_impl_lock);
if (fletcher_4_kstat != NULL) {
kstat_delete(fletcher_4_kstat);
fletcher_4_kstat = NULL;
}
}
#if defined(_KERNEL) && defined(HAVE_SPL)
static int
fletcher_4_param_get(char *buffer, struct kernel_param *unused)
{
int i, cnt = 0;
for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
const fletcher_4_ops_t *ops;
ops = fletcher_4_impl_selectors[i].fis_ops;
if (!ops->valid())
continue;
cnt += sprintf(buffer + cnt,
fletcher_4_impl_chosen == i ? "[%s] " : "%s ",
fletcher_4_impl_selectors[i].fis_name);
}
return (cnt);
}
static int
fletcher_4_param_set(const char *val, struct kernel_param *unused)
{
return (fletcher_4_impl_set(val));
}
/*
* Choose a fletcher 4 implementation in ZFS.
* Users can choose the "fastest" algorithm, or "scalar" and "avx2" which means
* to compute fletcher 4 by CPU or vector instructions respectively.
* Users can also choose "cycle" to exercise all implementions, but this is
* for testing purpose therefore it can only be set in user space.
*/
module_param_call(zfs_fletcher_4_impl,
fletcher_4_param_set, fletcher_4_param_get, NULL, 0644);
MODULE_PARM_DESC(zfs_fletcher_4_impl, "Select fletcher 4 algorithm");
EXPORT_SYMBOL(fletcher_4_init);
EXPORT_SYMBOL(fletcher_4_fini);
EXPORT_SYMBOL(fletcher_2_native);
EXPORT_SYMBOL(fletcher_2_byteswap);
EXPORT_SYMBOL(fletcher_4_native);
EXPORT_SYMBOL(fletcher_4_byteswap);
EXPORT_SYMBOL(fletcher_4_incremental_native);
EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
#endif