3fba40d9f2
left around by emacs (thanks emacs).
15200 lines
454 KiB
C
15200 lines
454 KiB
C
/*-
|
|
* Copyright (c) 2016-9
|
|
* Netflix Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
/**
|
|
* Author: Randall Stewart <rrs@netflix.com>
|
|
* This work is based on the ACM Queue paper
|
|
* BBR - Congestion Based Congestion Control
|
|
* and also numerous discussions with Neal, Yuchung and Van.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_tcpdebug.h"
|
|
#include "opt_ratelimit.h"
|
|
#include "opt_kern_tls.h"
|
|
#include <sys/param.h>
|
|
#include <sys/arb.h>
|
|
#include <sys/module.h>
|
|
#include <sys/kernel.h>
|
|
#ifdef TCP_HHOOK
|
|
#include <sys/hhook.h>
|
|
#endif
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#ifdef KERN_TLS
|
|
#include <sys/ktls.h>
|
|
#endif
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#ifdef STATS
|
|
#include <sys/qmath.h>
|
|
#include <sys/tree.h>
|
|
#include <sys/stats.h> /* Must come after qmath.h and tree.h */
|
|
#endif
|
|
#include <sys/refcount.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/tim_filter.h>
|
|
#include <sys/time.h>
|
|
#include <vm/uma.h>
|
|
#include <sys/kern_prefetch.h>
|
|
|
|
#include <net/route.h>
|
|
#include <net/vnet.h>
|
|
|
|
#define TCPSTATES /* for logging */
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_kdtrace.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_icmp.h> /* required for icmp_var.h */
|
|
#include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#define TCPOUTFLAGS
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcpip.h>
|
|
#include <netinet/tcp_hpts.h>
|
|
#include <netinet/cc/cc.h>
|
|
#include <netinet/tcp_log_buf.h>
|
|
#include <netinet/tcp_ratelimit.h>
|
|
#include <netinet/tcp_lro.h>
|
|
#ifdef TCPDEBUG
|
|
#include <netinet/tcp_debug.h>
|
|
#endif /* TCPDEBUG */
|
|
#ifdef TCP_OFFLOAD
|
|
#include <netinet/tcp_offload.h>
|
|
#endif
|
|
#ifdef INET6
|
|
#include <netinet6/tcp6_var.h>
|
|
#endif
|
|
#include <netinet/tcp_fastopen.h>
|
|
|
|
#include <netipsec/ipsec_support.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/ethernet.h>
|
|
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/ipsec6.h>
|
|
#endif /* IPSEC */
|
|
|
|
#include <netinet/udp.h>
|
|
#include <netinet/udp_var.h>
|
|
#include <machine/in_cksum.h>
|
|
|
|
#ifdef MAC
|
|
#include <security/mac/mac_framework.h>
|
|
#endif
|
|
|
|
#include "sack_filter.h"
|
|
#include "tcp_bbr.h"
|
|
#include "rack_bbr_common.h"
|
|
uma_zone_t bbr_zone;
|
|
uma_zone_t bbr_pcb_zone;
|
|
|
|
struct sysctl_ctx_list bbr_sysctl_ctx;
|
|
struct sysctl_oid *bbr_sysctl_root;
|
|
|
|
#define TCPT_RANGESET_NOSLOP(tv, value, tvmin, tvmax) do { \
|
|
(tv) = (value); \
|
|
if ((u_long)(tv) < (u_long)(tvmin)) \
|
|
(tv) = (tvmin); \
|
|
if ((u_long)(tv) > (u_long)(tvmax)) \
|
|
(tv) = (tvmax); \
|
|
} while(0)
|
|
|
|
/*#define BBR_INVARIANT 1*/
|
|
|
|
/*
|
|
* initial window
|
|
*/
|
|
static uint32_t bbr_def_init_win = 10;
|
|
static int32_t bbr_persist_min = 250000; /* 250ms */
|
|
static int32_t bbr_persist_max = 1000000; /* 1 Second */
|
|
static int32_t bbr_cwnd_may_shrink = 0;
|
|
static int32_t bbr_cwndtarget_rtt_touse = BBR_RTT_PROP;
|
|
static int32_t bbr_num_pktepo_for_del_limit = BBR_NUM_RTTS_FOR_DEL_LIMIT;
|
|
static int32_t bbr_hardware_pacing_limit = 8000;
|
|
static int32_t bbr_quanta = 3; /* How much extra quanta do we get? */
|
|
static int32_t bbr_no_retran = 0;
|
|
|
|
|
|
static int32_t bbr_error_base_paceout = 10000; /* usec to pace */
|
|
static int32_t bbr_max_net_error_cnt = 10;
|
|
/* Should the following be dynamic too -- loss wise */
|
|
static int32_t bbr_rtt_gain_thresh = 0;
|
|
/* Measurement controls */
|
|
static int32_t bbr_use_google_algo = 1;
|
|
static int32_t bbr_ts_limiting = 1;
|
|
static int32_t bbr_ts_can_raise = 0;
|
|
static int32_t bbr_do_red = 600;
|
|
static int32_t bbr_red_scale = 20000;
|
|
static int32_t bbr_red_mul = 1;
|
|
static int32_t bbr_red_div = 2;
|
|
static int32_t bbr_red_growth_restrict = 1;
|
|
static int32_t bbr_target_is_bbunit = 0;
|
|
static int32_t bbr_drop_limit = 0;
|
|
/*
|
|
* How much gain do we need to see to
|
|
* stay in startup?
|
|
*/
|
|
static int32_t bbr_marks_rxt_sack_passed = 0;
|
|
static int32_t bbr_start_exit = 25;
|
|
static int32_t bbr_low_start_exit = 25; /* When we are in reduced gain */
|
|
static int32_t bbr_startup_loss_thresh = 2000; /* 20.00% loss */
|
|
static int32_t bbr_hptsi_max_mul = 1; /* These two mul/div assure a min pacing */
|
|
static int32_t bbr_hptsi_max_div = 2; /* time, 0 means turned off. We need this
|
|
* if we go back ever to where the pacer
|
|
* has priority over timers.
|
|
*/
|
|
static int32_t bbr_policer_call_from_rack_to = 0;
|
|
static int32_t bbr_policer_detection_enabled = 1;
|
|
static int32_t bbr_min_measurements_req = 1; /* We need at least 2
|
|
* measurments before we are
|
|
* "good" note that 2 == 1.
|
|
* This is because we use a >
|
|
* comparison. This means if
|
|
* min_measure was 0, it takes
|
|
* num-measures > min(0) and
|
|
* you get 1 measurement and
|
|
* you are good. Set to 1, you
|
|
* have to have two
|
|
* measurements (this is done
|
|
* to prevent it from being ok
|
|
* to have no measurements). */
|
|
static int32_t bbr_no_pacing_until = 4;
|
|
|
|
static int32_t bbr_min_usec_delta = 20000; /* 20,000 usecs */
|
|
static int32_t bbr_min_peer_delta = 20; /* 20 units */
|
|
static int32_t bbr_delta_percent = 150; /* 15.0 % */
|
|
|
|
static int32_t bbr_target_cwnd_mult_limit = 8;
|
|
/*
|
|
* bbr_cwnd_min_val is the number of
|
|
* segments we hold to in the RTT probe
|
|
* state typically 4.
|
|
*/
|
|
static int32_t bbr_cwnd_min_val = BBR_PROBERTT_NUM_MSS;
|
|
|
|
|
|
static int32_t bbr_cwnd_min_val_hs = BBR_HIGHSPEED_NUM_MSS;
|
|
|
|
static int32_t bbr_gain_to_target = 1;
|
|
static int32_t bbr_gain_gets_extra_too = 1;
|
|
/*
|
|
* bbr_high_gain is the 2/ln(2) value we need
|
|
* to double the sending rate in startup. This
|
|
* is used for both cwnd and hptsi gain's.
|
|
*/
|
|
static int32_t bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
|
|
static int32_t bbr_startup_lower = BBR_UNIT * 1500 / 1000 + 1;
|
|
static int32_t bbr_use_lower_gain_in_startup = 1;
|
|
|
|
/* thresholds for reduction on drain in sub-states/drain */
|
|
static int32_t bbr_drain_rtt = BBR_SRTT;
|
|
static int32_t bbr_drain_floor = 88;
|
|
static int32_t google_allow_early_out = 1;
|
|
static int32_t google_consider_lost = 1;
|
|
static int32_t bbr_drain_drop_mul = 4;
|
|
static int32_t bbr_drain_drop_div = 5;
|
|
static int32_t bbr_rand_ot = 50;
|
|
static int32_t bbr_can_force_probertt = 0;
|
|
static int32_t bbr_can_adjust_probertt = 1;
|
|
static int32_t bbr_probertt_sets_rtt = 0;
|
|
static int32_t bbr_can_use_ts_for_rtt = 1;
|
|
static int32_t bbr_is_ratio = 0;
|
|
static int32_t bbr_sub_drain_app_limit = 1;
|
|
static int32_t bbr_prtt_slam_cwnd = 1;
|
|
static int32_t bbr_sub_drain_slam_cwnd = 1;
|
|
static int32_t bbr_slam_cwnd_in_main_drain = 1;
|
|
static int32_t bbr_filter_len_sec = 6; /* How long does the rttProp filter
|
|
* hold */
|
|
static uint32_t bbr_rtt_probe_limit = (USECS_IN_SECOND * 4);
|
|
/*
|
|
* bbr_drain_gain is the reverse of the high_gain
|
|
* designed to drain back out the standing queue
|
|
* that is formed in startup by causing a larger
|
|
* hptsi gain and thus drainging the packets
|
|
* in flight.
|
|
*/
|
|
static int32_t bbr_drain_gain = BBR_UNIT * 1000 / 2885;
|
|
static int32_t bbr_rttprobe_gain = 192;
|
|
|
|
/*
|
|
* The cwnd_gain is the default cwnd gain applied when
|
|
* calculating a target cwnd. Note that the cwnd is
|
|
* a secondary factor in the way BBR works (see the
|
|
* paper and think about it, it will take some time).
|
|
* Basically the hptsi_gain spreads the packets out
|
|
* so you never get more than BDP to the peer even
|
|
* if the cwnd is high. In our implemenation that
|
|
* means in non-recovery/retransmission scenarios
|
|
* cwnd will never be reached by the flight-size.
|
|
*/
|
|
static int32_t bbr_cwnd_gain = BBR_UNIT * 2;
|
|
static int32_t bbr_tlp_type_to_use = BBR_SRTT;
|
|
static int32_t bbr_delack_time = 100000; /* 100ms in useconds */
|
|
static int32_t bbr_sack_not_required = 0; /* set to one to allow non-sack to use bbr */
|
|
static int32_t bbr_initial_bw_bps = 62500; /* 500kbps in bytes ps */
|
|
static int32_t bbr_ignore_data_after_close = 1;
|
|
static int16_t bbr_hptsi_gain[] = {
|
|
(BBR_UNIT *5 / 4),
|
|
(BBR_UNIT * 3 / 4),
|
|
BBR_UNIT,
|
|
BBR_UNIT,
|
|
BBR_UNIT,
|
|
BBR_UNIT,
|
|
BBR_UNIT,
|
|
BBR_UNIT
|
|
};
|
|
int32_t bbr_use_rack_resend_cheat = 1;
|
|
int32_t bbr_sends_full_iwnd = 1;
|
|
|
|
#define BBR_HPTSI_GAIN_MAX 8
|
|
/*
|
|
* The BBR module incorporates a number of
|
|
* TCP ideas that have been put out into the IETF
|
|
* over the last few years:
|
|
* - Yuchung Cheng's RACK TCP (for which its named) that
|
|
* will stop us using the number of dup acks and instead
|
|
* use time as the gage of when we retransmit.
|
|
* - Reorder Detection of RFC4737 and the Tail-Loss probe draft
|
|
* of Dukkipati et.al.
|
|
* - Van Jacobson's et.al BBR.
|
|
*
|
|
* RACK depends on SACK, so if an endpoint arrives that
|
|
* cannot do SACK the state machine below will shuttle the
|
|
* connection back to using the "default" TCP stack that is
|
|
* in FreeBSD.
|
|
*
|
|
* To implement BBR and RACK the original TCP stack was first decomposed
|
|
* into a functional state machine with individual states
|
|
* for each of the possible TCP connection states. The do_segement
|
|
* functions role in life is to mandate the connection supports SACK
|
|
* initially and then assure that the RACK state matches the conenction
|
|
* state before calling the states do_segment function. Data processing
|
|
* of inbound segments also now happens in the hpts_do_segment in general
|
|
* with only one exception. This is so we can keep the connection on
|
|
* a single CPU.
|
|
*
|
|
* Each state is simplified due to the fact that the original do_segment
|
|
* has been decomposed and we *know* what state we are in (no
|
|
* switches on the state) and all tests for SACK are gone. This
|
|
* greatly simplifies what each state does.
|
|
*
|
|
* TCP output is also over-written with a new version since it
|
|
* must maintain the new rack scoreboard and has had hptsi
|
|
* integrated as a requirment. Still todo is to eliminate the
|
|
* use of the callout_() system and use the hpts for all
|
|
* timers as well.
|
|
*/
|
|
static uint32_t bbr_rtt_probe_time = 200000; /* 200ms in micro seconds */
|
|
static uint32_t bbr_rtt_probe_cwndtarg = 4; /* How many mss's outstanding */
|
|
static const int32_t bbr_min_req_free = 2; /* The min we must have on the
|
|
* free list */
|
|
static int32_t bbr_tlp_thresh = 1;
|
|
static int32_t bbr_reorder_thresh = 2;
|
|
static int32_t bbr_reorder_fade = 60000000; /* 0 - never fade, def
|
|
* 60,000,000 - 60 seconds */
|
|
static int32_t bbr_pkt_delay = 1000;
|
|
static int32_t bbr_min_to = 1000; /* Number of usec's minimum timeout */
|
|
static int32_t bbr_incr_timers = 1;
|
|
|
|
static int32_t bbr_tlp_min = 10000; /* 10ms in usecs */
|
|
static int32_t bbr_delayed_ack_time = 200000; /* 200ms in usecs */
|
|
static int32_t bbr_exit_startup_at_loss = 1;
|
|
|
|
/*
|
|
* bbr_lt_bw_ratio is 1/8th
|
|
* bbr_lt_bw_diff is < 4 Kbit/sec
|
|
*/
|
|
static uint64_t bbr_lt_bw_diff = 4000 / 8; /* In bytes per second */
|
|
static uint64_t bbr_lt_bw_ratio = 8; /* For 1/8th */
|
|
static uint32_t bbr_lt_bw_max_rtts = 48; /* How many rtt's do we use
|
|
* the lt_bw for */
|
|
static uint32_t bbr_lt_intvl_min_rtts = 4; /* Min num of RTT's to measure
|
|
* lt_bw */
|
|
static int32_t bbr_lt_intvl_fp = 0; /* False positive epoch diff */
|
|
static int32_t bbr_lt_loss_thresh = 196; /* Lost vs delivered % */
|
|
static int32_t bbr_lt_fd_thresh = 100; /* false detection % */
|
|
|
|
static int32_t bbr_verbose_logging = 0;
|
|
/*
|
|
* Currently regular tcp has a rto_min of 30ms
|
|
* the backoff goes 12 times so that ends up
|
|
* being a total of 122.850 seconds before a
|
|
* connection is killed.
|
|
*/
|
|
static int32_t bbr_rto_min_ms = 30; /* 30ms same as main freebsd */
|
|
static int32_t bbr_rto_max_sec = 4; /* 4 seconds */
|
|
|
|
/****************************************************/
|
|
/* DEFAULT TSO SIZING (cpu performance impacting) */
|
|
/****************************************************/
|
|
/* What amount is our formula using to get TSO size */
|
|
static int32_t bbr_hptsi_per_second = 1000;
|
|
|
|
/*
|
|
* For hptsi under bbr_cross_over connections what is delay
|
|
* target 7ms (in usec) combined with a seg_max of 2
|
|
* gets us close to identical google behavior in
|
|
* TSO size selection (possibly more 1MSS sends).
|
|
*/
|
|
static int32_t bbr_hptsi_segments_delay_tar = 7000;
|
|
|
|
/* Does pacing delay include overhead's in its time calculations? */
|
|
static int32_t bbr_include_enet_oh = 0;
|
|
static int32_t bbr_include_ip_oh = 1;
|
|
static int32_t bbr_include_tcp_oh = 1;
|
|
static int32_t bbr_google_discount = 10;
|
|
|
|
/* Do we use (nf mode) pkt-epoch to drive us or rttProp? */
|
|
static int32_t bbr_state_is_pkt_epoch = 0;
|
|
static int32_t bbr_state_drain_2_tar = 1;
|
|
/* What is the max the 0 - bbr_cross_over MBPS TSO target
|
|
* can reach using our delay target. Note that this
|
|
* value becomes the floor for the cross over
|
|
* algorithm.
|
|
*/
|
|
static int32_t bbr_hptsi_segments_max = 2;
|
|
static int32_t bbr_hptsi_segments_floor = 1;
|
|
static int32_t bbr_hptsi_utter_max = 0;
|
|
|
|
/* What is the min the 0 - bbr_cross-over MBPS TSO target can be */
|
|
static int32_t bbr_hptsi_bytes_min = 1460;
|
|
static int32_t bbr_all_get_min = 0;
|
|
|
|
/* Cross over point from algo-a to algo-b */
|
|
static uint32_t bbr_cross_over = TWENTY_THREE_MBPS;
|
|
|
|
/* Do we deal with our restart state? */
|
|
static int32_t bbr_uses_idle_restart = 0;
|
|
static int32_t bbr_idle_restart_threshold = 100000; /* 100ms in useconds */
|
|
|
|
/* Do we allow hardware pacing? */
|
|
static int32_t bbr_allow_hdwr_pacing = 0;
|
|
static int32_t bbr_hdwr_pace_adjust = 2; /* multipler when we calc the tso size */
|
|
static int32_t bbr_hdwr_pace_floor = 1;
|
|
static int32_t bbr_hdwr_pacing_delay_cnt = 10;
|
|
|
|
/****************************************************/
|
|
static int32_t bbr_resends_use_tso = 0;
|
|
static int32_t bbr_tlp_max_resend = 2;
|
|
static int32_t bbr_sack_block_limit = 128;
|
|
|
|
#define BBR_MAX_STAT 19
|
|
counter_u64_t bbr_state_time[BBR_MAX_STAT];
|
|
counter_u64_t bbr_state_lost[BBR_MAX_STAT];
|
|
counter_u64_t bbr_state_resend[BBR_MAX_STAT];
|
|
counter_u64_t bbr_stat_arry[BBR_STAT_SIZE];
|
|
counter_u64_t bbr_opts_arry[BBR_OPTS_SIZE];
|
|
counter_u64_t bbr_out_size[TCP_MSS_ACCT_SIZE];
|
|
counter_u64_t bbr_flows_whdwr_pacing;
|
|
counter_u64_t bbr_flows_nohdwr_pacing;
|
|
|
|
counter_u64_t bbr_nohdwr_pacing_enobuf;
|
|
counter_u64_t bbr_hdwr_pacing_enobuf;
|
|
|
|
static inline uint64_t bbr_get_bw(struct tcp_bbr *bbr);
|
|
|
|
/*
|
|
* Static defintions we need for forward declarations.
|
|
*/
|
|
static uint32_t
|
|
bbr_get_pacing_length(struct tcp_bbr *bbr, uint16_t gain,
|
|
uint32_t useconds_time, uint64_t bw);
|
|
static uint32_t
|
|
bbr_get_a_state_target(struct tcp_bbr *bbr, uint32_t gain);
|
|
static void
|
|
bbr_set_state(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t win);
|
|
static void
|
|
bbr_set_probebw_gains(struct tcp_bbr *bbr, uint32_t cts, uint32_t losses);
|
|
static void
|
|
bbr_substate_change(struct tcp_bbr *bbr, uint32_t cts, int line,
|
|
int dolog);
|
|
static uint32_t
|
|
bbr_get_target_cwnd(struct tcp_bbr *bbr, uint64_t bw, uint32_t gain);
|
|
static void
|
|
bbr_state_change(struct tcp_bbr *bbr, uint32_t cts, int32_t epoch,
|
|
int32_t pkt_epoch, uint32_t losses);
|
|
static uint32_t
|
|
bbr_calc_thresh_rack(struct tcp_bbr *bbr, uint32_t srtt, uint32_t cts, struct bbr_sendmap *rsm);
|
|
static uint32_t bbr_initial_cwnd(struct tcp_bbr *bbr, struct tcpcb *tp);
|
|
static uint32_t
|
|
bbr_calc_thresh_tlp(struct tcpcb *tp, struct tcp_bbr *bbr,
|
|
struct bbr_sendmap *rsm, uint32_t srtt,
|
|
uint32_t cts);
|
|
static void
|
|
bbr_exit_persist(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts,
|
|
int32_t line);
|
|
static void
|
|
bbr_set_state_target(struct tcp_bbr *bbr, int line);
|
|
static void
|
|
bbr_enter_probe_rtt(struct tcp_bbr *bbr, uint32_t cts, int32_t line);
|
|
|
|
static void
|
|
bbr_log_progress_event(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t tick, int event, int line);
|
|
|
|
static void
|
|
tcp_bbr_tso_size_check(struct tcp_bbr *bbr, uint32_t cts);
|
|
|
|
static void
|
|
bbr_setup_red_bw(struct tcp_bbr *bbr, uint32_t cts);
|
|
|
|
static void
|
|
bbr_log_rtt_shrinks(struct tcp_bbr *bbr, uint32_t cts, uint32_t applied, uint32_t rtt,
|
|
uint32_t line, uint8_t is_start, uint16_t set);
|
|
|
|
static struct bbr_sendmap *
|
|
bbr_find_lowest_rsm(struct tcp_bbr *bbr);
|
|
static __inline uint32_t
|
|
bbr_get_rtt(struct tcp_bbr *bbr, int32_t rtt_type);
|
|
static void
|
|
bbr_log_to_start(struct tcp_bbr *bbr, uint32_t cts, uint32_t to, int32_t slot, uint8_t which);
|
|
|
|
static void
|
|
bbr_log_timer_var(struct tcp_bbr *bbr, int mode, uint32_t cts, uint32_t time_since_sent, uint32_t srtt,
|
|
uint32_t thresh, uint32_t to);
|
|
static void
|
|
bbr_log_hpts_diag(struct tcp_bbr *bbr, uint32_t cts, struct hpts_diag *diag);
|
|
|
|
static void
|
|
bbr_log_type_bbrsnd(struct tcp_bbr *bbr, uint32_t len, uint32_t slot,
|
|
uint32_t del_by, uint32_t cts, uint32_t sloton, uint32_t prev_delay);
|
|
|
|
static void
|
|
bbr_enter_persist(struct tcpcb *tp, struct tcp_bbr *bbr,
|
|
uint32_t cts, int32_t line);
|
|
static void
|
|
bbr_stop_all_timers(struct tcpcb *tp);
|
|
static void
|
|
bbr_exit_probe_rtt(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts);
|
|
static void
|
|
bbr_check_probe_rtt_limits(struct tcp_bbr *bbr, uint32_t cts);
|
|
static void
|
|
bbr_timer_cancel(struct tcp_bbr *bbr, int32_t line, uint32_t cts);
|
|
|
|
|
|
static void
|
|
bbr_log_pacing_delay_calc(struct tcp_bbr *bbr, uint16_t gain, uint32_t len,
|
|
uint32_t cts, uint32_t usecs, uint64_t bw, uint32_t override, int mod);
|
|
|
|
static inline uint8_t
|
|
bbr_state_val(struct tcp_bbr *bbr)
|
|
{
|
|
return(bbr->rc_bbr_substate);
|
|
}
|
|
|
|
static inline uint32_t
|
|
get_min_cwnd(struct tcp_bbr *bbr)
|
|
{
|
|
int mss;
|
|
|
|
mss = min((bbr->rc_tp->t_maxseg - bbr->rc_last_options), bbr->r_ctl.rc_pace_max_segs);
|
|
if (bbr_get_rtt(bbr, BBR_RTT_PROP) < BBR_HIGH_SPEED)
|
|
return (bbr_cwnd_min_val_hs * mss);
|
|
else
|
|
return (bbr_cwnd_min_val * mss);
|
|
}
|
|
|
|
static uint32_t
|
|
bbr_get_persists_timer_val(struct tcpcb *tp, struct tcp_bbr *bbr)
|
|
{
|
|
uint64_t srtt, var;
|
|
uint64_t ret_val;
|
|
|
|
bbr->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
|
|
if (tp->t_srtt == 0) {
|
|
srtt = (uint64_t)BBR_INITIAL_RTO;
|
|
var = 0;
|
|
} else {
|
|
srtt = ((uint64_t)TICKS_2_USEC(tp->t_srtt) >> TCP_RTT_SHIFT);
|
|
var = ((uint64_t)TICKS_2_USEC(tp->t_rttvar) >> TCP_RTT_SHIFT);
|
|
}
|
|
TCPT_RANGESET_NOSLOP(ret_val, ((srtt + var) * tcp_backoff[tp->t_rxtshift]),
|
|
bbr_persist_min, bbr_persist_max);
|
|
return ((uint32_t)ret_val);
|
|
}
|
|
|
|
static uint32_t
|
|
bbr_timer_start(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
/*
|
|
* Start the FR timer, we do this based on getting the first one in
|
|
* the rc_tmap. Note that if its NULL we must stop the timer. in all
|
|
* events we need to stop the running timer (if its running) before
|
|
* starting the new one.
|
|
*/
|
|
uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
|
|
int32_t idx;
|
|
int32_t is_tlp_timer = 0;
|
|
struct bbr_sendmap *rsm;
|
|
|
|
if (bbr->rc_all_timers_stopped) {
|
|
/* All timers have been stopped none are to run */
|
|
return (0);
|
|
}
|
|
if (bbr->rc_in_persist) {
|
|
/* We can't start any timer in persists */
|
|
return (bbr_get_persists_timer_val(tp, bbr));
|
|
}
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap);
|
|
if ((rsm == NULL) ||
|
|
((tp->t_flags & TF_SACK_PERMIT) == 0) ||
|
|
(tp->t_state < TCPS_ESTABLISHED)) {
|
|
/* Nothing on the send map */
|
|
activate_rxt:
|
|
if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
|
|
uint64_t tov;
|
|
|
|
time_since_sent = 0;
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap);
|
|
if (rsm) {
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], bbr->r_ctl.rc_tlp_rxt_last_time))
|
|
tstmp_touse = rsm->r_tim_lastsent[idx];
|
|
else
|
|
tstmp_touse = bbr->r_ctl.rc_tlp_rxt_last_time;
|
|
if (TSTMP_GT(tstmp_touse, cts))
|
|
time_since_sent = cts - tstmp_touse;
|
|
}
|
|
bbr->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
|
|
if (tp->t_srtt == 0)
|
|
tov = BBR_INITIAL_RTO;
|
|
else
|
|
tov = ((uint64_t)(TICKS_2_USEC(tp->t_srtt) +
|
|
((uint64_t)TICKS_2_USEC(tp->t_rttvar) * (uint64_t)4)) >> TCP_RTT_SHIFT);
|
|
if (tp->t_rxtshift)
|
|
tov *= tcp_backoff[tp->t_rxtshift];
|
|
if (tov > time_since_sent)
|
|
tov -= time_since_sent;
|
|
else
|
|
tov = bbr->r_ctl.rc_min_to;
|
|
TCPT_RANGESET_NOSLOP(to, tov,
|
|
(bbr->r_ctl.rc_min_rto_ms * MS_IN_USEC),
|
|
(bbr->rc_max_rto_sec * USECS_IN_SECOND));
|
|
bbr_log_timer_var(bbr, 2, cts, 0, srtt, 0, to);
|
|
return (to);
|
|
}
|
|
return (0);
|
|
}
|
|
if (rsm->r_flags & BBR_ACKED) {
|
|
rsm = bbr_find_lowest_rsm(bbr);
|
|
if (rsm == NULL) {
|
|
/* No lowest? */
|
|
goto activate_rxt;
|
|
}
|
|
}
|
|
/* Convert from ms to usecs */
|
|
if (rsm->r_flags & BBR_SACK_PASSED) {
|
|
if ((tp->t_flags & TF_SENTFIN) &&
|
|
((tp->snd_max - tp->snd_una) == 1) &&
|
|
(rsm->r_flags & BBR_HAS_FIN)) {
|
|
/*
|
|
* We don't start a bbr rack timer if all we have is
|
|
* a FIN outstanding.
|
|
*/
|
|
goto activate_rxt;
|
|
}
|
|
srtt = bbr_get_rtt(bbr, BBR_RTT_RACK);
|
|
thresh = bbr_calc_thresh_rack(bbr, srtt, cts, rsm);
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
exp = rsm->r_tim_lastsent[idx] + thresh;
|
|
if (SEQ_GEQ(exp, cts)) {
|
|
to = exp - cts;
|
|
if (to < bbr->r_ctl.rc_min_to) {
|
|
to = bbr->r_ctl.rc_min_to;
|
|
}
|
|
} else {
|
|
to = bbr->r_ctl.rc_min_to;
|
|
}
|
|
} else {
|
|
/* Ok we need to do a TLP not RACK */
|
|
if (bbr->rc_tlp_in_progress != 0) {
|
|
/*
|
|
* The previous send was a TLP.
|
|
*/
|
|
goto activate_rxt;
|
|
}
|
|
rsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_tmap, bbr_sendmap, r_tnext);
|
|
if (rsm == NULL) {
|
|
/* We found no rsm to TLP with. */
|
|
goto activate_rxt;
|
|
}
|
|
if (rsm->r_flags & BBR_HAS_FIN) {
|
|
/* If its a FIN we don't do TLP */
|
|
rsm = NULL;
|
|
goto activate_rxt;
|
|
}
|
|
time_since_sent = 0;
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], bbr->r_ctl.rc_tlp_rxt_last_time))
|
|
tstmp_touse = rsm->r_tim_lastsent[idx];
|
|
else
|
|
tstmp_touse = bbr->r_ctl.rc_tlp_rxt_last_time;
|
|
if (TSTMP_GT(tstmp_touse, cts))
|
|
time_since_sent = cts - tstmp_touse;
|
|
is_tlp_timer = 1;
|
|
srtt = bbr_get_rtt(bbr, bbr_tlp_type_to_use);
|
|
thresh = bbr_calc_thresh_tlp(tp, bbr, rsm, srtt, cts);
|
|
if (thresh > time_since_sent)
|
|
to = thresh - time_since_sent;
|
|
else
|
|
to = bbr->r_ctl.rc_min_to;
|
|
if (to > (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND)) {
|
|
/*
|
|
* If the TLP time works out to larger than the max
|
|
* RTO lets not do TLP.. just RTO.
|
|
*/
|
|
goto activate_rxt;
|
|
}
|
|
if ((bbr->rc_tlp_rtx_out == 1) &&
|
|
(rsm->r_start == bbr->r_ctl.rc_last_tlp_seq)) {
|
|
/*
|
|
* Second retransmit of the same TLP
|
|
* lets not.
|
|
*/
|
|
bbr->rc_tlp_rtx_out = 0;
|
|
goto activate_rxt;
|
|
}
|
|
if (rsm->r_start != bbr->r_ctl.rc_last_tlp_seq) {
|
|
/*
|
|
* The tail is no longer the last one I did a probe
|
|
* on
|
|
*/
|
|
bbr->r_ctl.rc_tlp_seg_send_cnt = 0;
|
|
bbr->r_ctl.rc_last_tlp_seq = rsm->r_start;
|
|
}
|
|
}
|
|
if (is_tlp_timer == 0) {
|
|
BBR_STAT_INC(bbr_to_arm_rack);
|
|
bbr->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
|
|
} else {
|
|
bbr_log_timer_var(bbr, 1, cts, time_since_sent, srtt, thresh, to);
|
|
if (bbr->r_ctl.rc_tlp_seg_send_cnt > bbr_tlp_max_resend) {
|
|
/*
|
|
* We have exceeded how many times we can retran the
|
|
* current TLP timer, switch to the RTO timer.
|
|
*/
|
|
goto activate_rxt;
|
|
} else {
|
|
BBR_STAT_INC(bbr_to_arm_tlp);
|
|
bbr->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
|
|
}
|
|
}
|
|
return (to);
|
|
}
|
|
|
|
static inline int32_t
|
|
bbr_minseg(struct tcp_bbr *bbr)
|
|
{
|
|
return (bbr->r_ctl.rc_pace_min_segs - bbr->rc_last_options);
|
|
}
|
|
|
|
static void
|
|
bbr_start_hpts_timer(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t cts, int32_t frm, int32_t slot, uint32_t tot_len)
|
|
{
|
|
struct inpcb *inp;
|
|
struct hpts_diag diag;
|
|
uint32_t delayed_ack = 0;
|
|
uint32_t left = 0;
|
|
uint32_t hpts_timeout;
|
|
uint8_t stopped;
|
|
int32_t delay_calc = 0;
|
|
uint32_t prev_delay = 0;
|
|
|
|
inp = tp->t_inpcb;
|
|
if (inp->inp_in_hpts) {
|
|
/* A previous call is already set up */
|
|
return;
|
|
}
|
|
if ((tp->t_state == TCPS_CLOSED) ||
|
|
(tp->t_state == TCPS_LISTEN)) {
|
|
return;
|
|
}
|
|
stopped = bbr->rc_tmr_stopped;
|
|
if (stopped && TSTMP_GT(bbr->r_ctl.rc_timer_exp, cts)) {
|
|
left = bbr->r_ctl.rc_timer_exp - cts;
|
|
}
|
|
bbr->r_ctl.rc_hpts_flags = 0;
|
|
bbr->r_ctl.rc_timer_exp = 0;
|
|
prev_delay = bbr->r_ctl.rc_last_delay_val;
|
|
if (bbr->r_ctl.rc_last_delay_val &&
|
|
(slot == 0)) {
|
|
/*
|
|
* If a previous pacer delay was in place we
|
|
* are not coming from the output side (where
|
|
* we calculate a delay, more likely a timer).
|
|
*/
|
|
slot = bbr->r_ctl.rc_last_delay_val;
|
|
if (TSTMP_GT(cts, bbr->rc_pacer_started)) {
|
|
/* Compensate for time passed */
|
|
delay_calc = cts - bbr->rc_pacer_started;
|
|
if (delay_calc <= slot)
|
|
slot -= delay_calc;
|
|
}
|
|
}
|
|
/* Do we have early to make up for by pushing out the pacing time? */
|
|
if (bbr->r_agg_early_set) {
|
|
bbr_log_pacing_delay_calc(bbr, 0, bbr->r_ctl.rc_agg_early, cts, slot, 0, bbr->r_agg_early_set, 2);
|
|
slot += bbr->r_ctl.rc_agg_early;
|
|
bbr->r_ctl.rc_agg_early = 0;
|
|
bbr->r_agg_early_set = 0;
|
|
}
|
|
/* Are we running a total debt that needs to be compensated for? */
|
|
if (bbr->r_ctl.rc_hptsi_agg_delay) {
|
|
if (slot > bbr->r_ctl.rc_hptsi_agg_delay) {
|
|
/* We nuke the delay */
|
|
slot -= bbr->r_ctl.rc_hptsi_agg_delay;
|
|
bbr->r_ctl.rc_hptsi_agg_delay = 0;
|
|
} else {
|
|
/* We nuke some of the delay, put in a minimal 100usecs */
|
|
bbr->r_ctl.rc_hptsi_agg_delay -= slot;
|
|
bbr->r_ctl.rc_last_delay_val = slot = 100;
|
|
}
|
|
}
|
|
bbr->r_ctl.rc_last_delay_val = slot;
|
|
hpts_timeout = bbr_timer_start(tp, bbr, cts);
|
|
if (tp->t_flags & TF_DELACK) {
|
|
if (bbr->rc_in_persist == 0) {
|
|
delayed_ack = bbr_delack_time;
|
|
} else {
|
|
/*
|
|
* We are in persists and have
|
|
* gotten a new data element.
|
|
*/
|
|
if (hpts_timeout > bbr_delack_time) {
|
|
/*
|
|
* Lets make the persists timer (which acks)
|
|
* be the smaller of hpts_timeout and bbr_delack_time.
|
|
*/
|
|
hpts_timeout = bbr_delack_time;
|
|
}
|
|
}
|
|
}
|
|
if (delayed_ack &&
|
|
((hpts_timeout == 0) ||
|
|
(delayed_ack < hpts_timeout))) {
|
|
/* We need a Delayed ack timer */
|
|
bbr->r_ctl.rc_hpts_flags = PACE_TMR_DELACK;
|
|
hpts_timeout = delayed_ack;
|
|
}
|
|
if (slot) {
|
|
/* Mark that we have a pacing timer up */
|
|
BBR_STAT_INC(bbr_paced_segments);
|
|
bbr->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
|
|
}
|
|
/*
|
|
* If no timers are going to run and we will fall off thfe hptsi
|
|
* wheel, we resort to a keep-alive timer if its configured.
|
|
*/
|
|
if ((hpts_timeout == 0) &&
|
|
(slot == 0)) {
|
|
if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
|
|
(tp->t_state <= TCPS_CLOSING)) {
|
|
/*
|
|
* Ok we have no timer (persists, rack, tlp, rxt or
|
|
* del-ack), we don't have segments being paced. So
|
|
* all that is left is the keepalive timer.
|
|
*/
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state)) {
|
|
hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp));
|
|
} else {
|
|
hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp));
|
|
}
|
|
bbr->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
|
|
}
|
|
}
|
|
if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
|
|
(bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
|
|
/*
|
|
* RACK, TLP, persists and RXT timers all are restartable
|
|
* based on actions input .. i.e we received a packet (ack
|
|
* or sack) and that changes things (rw, or snd_una etc).
|
|
* Thus we can restart them with a new value. For
|
|
* keep-alive, delayed_ack we keep track of what was left
|
|
* and restart the timer with a smaller value.
|
|
*/
|
|
if (left < hpts_timeout)
|
|
hpts_timeout = left;
|
|
}
|
|
if (bbr->r_ctl.rc_incr_tmrs && slot &&
|
|
(bbr->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) {
|
|
/*
|
|
* If configured to do so, and the timer is either
|
|
* the TLP or RXT timer, we need to increase the timeout
|
|
* by the pacing time. Consider the bottleneck at my
|
|
* machine as an example, we are sending something
|
|
* to start a TLP on. The last packet won't be emitted
|
|
* fully until the pacing time (the bottleneck will hold
|
|
* the data in place). Once the packet is emitted that
|
|
* is when we want to start waiting for the TLP. This
|
|
* is most evident with hardware pacing (where the nic
|
|
* is holding the packet(s) before emitting). But it
|
|
* can also show up in the network so we do it for all
|
|
* cases. Technically we would take off one packet from
|
|
* this extra delay but this is easier and being more
|
|
* conservative is probably better.
|
|
*/
|
|
hpts_timeout += slot;
|
|
}
|
|
if (hpts_timeout) {
|
|
/*
|
|
* Hack alert for now we can't time-out over 2147 seconds (a
|
|
* bit more than 35min)
|
|
*/
|
|
if (hpts_timeout > 0x7ffffffe)
|
|
hpts_timeout = 0x7ffffffe;
|
|
bbr->r_ctl.rc_timer_exp = cts + hpts_timeout;
|
|
} else
|
|
bbr->r_ctl.rc_timer_exp = 0;
|
|
if ((slot) &&
|
|
(bbr->rc_use_google ||
|
|
bbr->output_error_seen ||
|
|
(slot <= hpts_timeout)) ) {
|
|
/*
|
|
* Tell LRO that it can queue packets while
|
|
* we pace.
|
|
*/
|
|
bbr->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
|
|
if ((bbr->r_ctl.rc_hpts_flags & PACE_TMR_RACK) &&
|
|
(bbr->rc_cwnd_limited == 0)) {
|
|
/*
|
|
* If we are not cwnd limited and we
|
|
* are running a rack timer we put on
|
|
* the do not disturbe even for sack.
|
|
*/
|
|
inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
|
|
} else
|
|
inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
|
|
bbr->rc_pacer_started = cts;
|
|
|
|
(void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot),
|
|
__LINE__, &diag);
|
|
bbr->rc_timer_first = 0;
|
|
bbr->bbr_timer_src = frm;
|
|
bbr_log_to_start(bbr, cts, hpts_timeout, slot, 1);
|
|
bbr_log_hpts_diag(bbr, cts, &diag);
|
|
} else if (hpts_timeout) {
|
|
(void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout),
|
|
__LINE__, &diag);
|
|
/*
|
|
* We add the flag here as well if the slot is set,
|
|
* since hpts will call in to clear the queue first before
|
|
* calling the output routine (which does our timers).
|
|
* We don't want to set the flag if its just a timer
|
|
* else the arrival of data might (that causes us
|
|
* to send more) might get delayed. Imagine being
|
|
* on a keep-alive timer and a request comes in for
|
|
* more data.
|
|
*/
|
|
if (slot)
|
|
bbr->rc_pacer_started = cts;
|
|
if ((bbr->r_ctl.rc_hpts_flags & PACE_TMR_RACK) &&
|
|
(bbr->rc_cwnd_limited == 0)) {
|
|
/*
|
|
* For a rack timer, don't wake us even
|
|
* if a sack arrives as long as we are
|
|
* not cwnd limited.
|
|
*/
|
|
bbr->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
|
|
inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
|
|
} else {
|
|
/* All other timers wake us up */
|
|
bbr->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
|
|
inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
|
|
}
|
|
bbr->bbr_timer_src = frm;
|
|
bbr_log_to_start(bbr, cts, hpts_timeout, slot, 0);
|
|
bbr_log_hpts_diag(bbr, cts, &diag);
|
|
bbr->rc_timer_first = 1;
|
|
}
|
|
bbr->rc_tmr_stopped = 0;
|
|
bbr_log_type_bbrsnd(bbr, tot_len, slot, delay_calc, cts, frm, prev_delay);
|
|
}
|
|
|
|
static void
|
|
bbr_timer_audit(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, struct sockbuf *sb)
|
|
{
|
|
/*
|
|
* We received an ack, and then did not call send or were bounced
|
|
* out due to the hpts was running. Now a timer is up as well, is it
|
|
* the right timer?
|
|
*/
|
|
struct inpcb *inp;
|
|
struct bbr_sendmap *rsm;
|
|
uint32_t hpts_timeout;
|
|
int tmr_up;
|
|
|
|
tmr_up = bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
|
|
if (bbr->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
|
|
return;
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap);
|
|
if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
|
|
(tmr_up == PACE_TMR_RXT)) {
|
|
/* Should be an RXT */
|
|
return;
|
|
}
|
|
inp = bbr->rc_inp;
|
|
if (rsm == NULL) {
|
|
/* Nothing outstanding? */
|
|
if (tp->t_flags & TF_DELACK) {
|
|
if (tmr_up == PACE_TMR_DELACK)
|
|
/*
|
|
* We are supposed to have delayed ack up
|
|
* and we do
|
|
*/
|
|
return;
|
|
} else if (sbavail(&inp->inp_socket->so_snd) &&
|
|
(tmr_up == PACE_TMR_RXT)) {
|
|
/*
|
|
* if we hit enobufs then we would expect the
|
|
* possiblity of nothing outstanding and the RXT up
|
|
* (and the hptsi timer).
|
|
*/
|
|
return;
|
|
} else if (((V_tcp_always_keepalive ||
|
|
inp->inp_socket->so_options & SO_KEEPALIVE) &&
|
|
(tp->t_state <= TCPS_CLOSING)) &&
|
|
(tmr_up == PACE_TMR_KEEP) &&
|
|
(tp->snd_max == tp->snd_una)) {
|
|
/* We should have keep alive up and we do */
|
|
return;
|
|
}
|
|
}
|
|
if (rsm && (rsm->r_flags & BBR_SACK_PASSED)) {
|
|
if ((tp->t_flags & TF_SENTFIN) &&
|
|
((tp->snd_max - tp->snd_una) == 1) &&
|
|
(rsm->r_flags & BBR_HAS_FIN)) {
|
|
/* needs to be a RXT */
|
|
if (tmr_up == PACE_TMR_RXT)
|
|
return;
|
|
else
|
|
goto wrong_timer;
|
|
} else if (tmr_up == PACE_TMR_RACK)
|
|
return;
|
|
else
|
|
goto wrong_timer;
|
|
} else if (rsm && (tmr_up == PACE_TMR_RACK)) {
|
|
/* Rack timer has priority if we have data out */
|
|
return;
|
|
} else if (SEQ_GT(tp->snd_max, tp->snd_una) &&
|
|
((tmr_up == PACE_TMR_TLP) ||
|
|
(tmr_up == PACE_TMR_RXT))) {
|
|
/*
|
|
* Either a TLP or RXT is fine if no sack-passed is in place
|
|
* and data is outstanding.
|
|
*/
|
|
return;
|
|
} else if (tmr_up == PACE_TMR_DELACK) {
|
|
/*
|
|
* If the delayed ack was going to go off before the
|
|
* rtx/tlp/rack timer were going to expire, then that would
|
|
* be the timer in control. Note we don't check the time
|
|
* here trusting the code is correct.
|
|
*/
|
|
return;
|
|
}
|
|
if (SEQ_GT(tp->snd_max, tp->snd_una) &&
|
|
((tmr_up == PACE_TMR_RXT) ||
|
|
(tmr_up == PACE_TMR_TLP) ||
|
|
(tmr_up == PACE_TMR_RACK))) {
|
|
/*
|
|
* We have outstanding data and
|
|
* we *do* have a RACK, TLP or RXT
|
|
* timer running. We won't restart
|
|
* anything here since thats probably ok we
|
|
* will get called with some timer here shortly.
|
|
*/
|
|
return;
|
|
}
|
|
/*
|
|
* Ok the timer originally started is not what we want now. We will
|
|
* force the hpts to be stopped if any, and restart with the slot
|
|
* set to what was in the saved slot.
|
|
*/
|
|
wrong_timer:
|
|
if ((bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) {
|
|
if (inp->inp_in_hpts)
|
|
tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT);
|
|
bbr_timer_cancel(bbr, __LINE__, cts);
|
|
bbr_start_hpts_timer(bbr, tp, cts, 1, bbr->r_ctl.rc_last_delay_val,
|
|
0);
|
|
} else {
|
|
/*
|
|
* Output is hptsi so we just need to switch the type of
|
|
* timer. We don't bother with keep-alive, since when we
|
|
* jump through the output, it will start the keep-alive if
|
|
* nothing is sent.
|
|
*
|
|
* We only need a delayed-ack added and or the hpts_timeout.
|
|
*/
|
|
hpts_timeout = bbr_timer_start(tp, bbr, cts);
|
|
if (tp->t_flags & TF_DELACK) {
|
|
if (hpts_timeout == 0) {
|
|
hpts_timeout = bbr_delack_time;
|
|
bbr->r_ctl.rc_hpts_flags = PACE_TMR_DELACK;
|
|
}
|
|
else if (hpts_timeout > bbr_delack_time) {
|
|
hpts_timeout = bbr_delack_time;
|
|
bbr->r_ctl.rc_hpts_flags = PACE_TMR_DELACK;
|
|
}
|
|
}
|
|
if (hpts_timeout) {
|
|
if (hpts_timeout > 0x7ffffffe)
|
|
hpts_timeout = 0x7ffffffe;
|
|
bbr->r_ctl.rc_timer_exp = cts + hpts_timeout;
|
|
}
|
|
}
|
|
}
|
|
|
|
int32_t bbr_clear_lost = 0;
|
|
|
|
/*
|
|
* Considers the two time values now (cts) and earlier.
|
|
* If cts is smaller than earlier, we could have
|
|
* had a sequence wrap (our counter wraps every
|
|
* 70 min or so) or it could be just clock skew
|
|
* getting us two differnt time values. Clock skew
|
|
* will show up within 10ms or so. So in such
|
|
* a case (where cts is behind earlier time by
|
|
* less than 10ms) we return 0. Otherwise we
|
|
* return the true difference between them.
|
|
*/
|
|
static inline uint32_t
|
|
bbr_calc_time(uint32_t cts, uint32_t earlier_time) {
|
|
/*
|
|
* Given two timestamps, the current time stamp cts, and some other
|
|
* time-stamp taken in theory earlier return the difference. The
|
|
* trick is here sometimes locking will get the other timestamp
|
|
* after the cts. If this occurs we need to return 0.
|
|
*/
|
|
if (TSTMP_GEQ(cts, earlier_time))
|
|
return (cts - earlier_time);
|
|
/*
|
|
* cts is behind earlier_time if its less than 10ms consider it 0.
|
|
* If its more than 10ms difference then we had a time wrap. Else
|
|
* its just the normal locking foo. I wonder if we should not go to
|
|
* 64bit TS and get rid of this issue.
|
|
*/
|
|
if (TSTMP_GEQ((cts + 10000), earlier_time))
|
|
return (0);
|
|
/*
|
|
* Ok the time must have wrapped. So we need to answer a large
|
|
* amount of time, which the normal subtraction should do.
|
|
*/
|
|
return (cts - earlier_time);
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
sysctl_bbr_clear_lost(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
uint32_t stat;
|
|
int32_t error;
|
|
|
|
error = SYSCTL_OUT(req, &bbr_clear_lost, sizeof(uint32_t));
|
|
if (error || req->newptr == NULL)
|
|
return error;
|
|
|
|
error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
|
|
if (error)
|
|
return (error);
|
|
if (stat == 1) {
|
|
#ifdef BBR_INVARIANTS
|
|
printf("Clearing BBR lost counters\n");
|
|
#endif
|
|
COUNTER_ARRAY_ZERO(bbr_state_lost, BBR_MAX_STAT);
|
|
COUNTER_ARRAY_ZERO(bbr_state_time, BBR_MAX_STAT);
|
|
COUNTER_ARRAY_ZERO(bbr_state_resend, BBR_MAX_STAT);
|
|
} else if (stat == 2) {
|
|
#ifdef BBR_INVARIANTS
|
|
printf("Clearing BBR option counters\n");
|
|
#endif
|
|
COUNTER_ARRAY_ZERO(bbr_opts_arry, BBR_OPTS_SIZE);
|
|
} else if (stat == 3) {
|
|
#ifdef BBR_INVARIANTS
|
|
printf("Clearing BBR stats counters\n");
|
|
#endif
|
|
COUNTER_ARRAY_ZERO(bbr_stat_arry, BBR_STAT_SIZE);
|
|
} else if (stat == 4) {
|
|
#ifdef BBR_INVARIANTS
|
|
printf("Clearing BBR out-size counters\n");
|
|
#endif
|
|
COUNTER_ARRAY_ZERO(bbr_out_size, TCP_MSS_ACCT_SIZE);
|
|
}
|
|
bbr_clear_lost = 0;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bbr_init_sysctls(void)
|
|
{
|
|
struct sysctl_oid *bbr_probertt;
|
|
struct sysctl_oid *bbr_hptsi;
|
|
struct sysctl_oid *bbr_measure;
|
|
struct sysctl_oid *bbr_cwnd;
|
|
struct sysctl_oid *bbr_timeout;
|
|
struct sysctl_oid *bbr_states;
|
|
struct sysctl_oid *bbr_startup;
|
|
struct sysctl_oid *bbr_policer;
|
|
|
|
/* Probe rtt controls */
|
|
bbr_probertt = SYSCTL_ADD_NODE(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO,
|
|
"probertt",
|
|
CTLFLAG_RW, 0,
|
|
"");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "gain", CTLFLAG_RW,
|
|
&bbr_rttprobe_gain, 192,
|
|
"What is the filter gain drop in probe_rtt (0=disable)?");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "cwnd", CTLFLAG_RW,
|
|
&bbr_rtt_probe_cwndtarg, 4,
|
|
"How many mss's are outstanding during probe-rtt");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "int", CTLFLAG_RW,
|
|
&bbr_rtt_probe_limit, 4000000,
|
|
"If RTT has not shrank in this many micro-seconds enter probe-rtt");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "mintime", CTLFLAG_RW,
|
|
&bbr_rtt_probe_time, 200000,
|
|
"How many microseconds in probe-rtt");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "filter_len_sec", CTLFLAG_RW,
|
|
&bbr_filter_len_sec, 6,
|
|
"How long in seconds does the rttProp filter run?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "drain_rtt", CTLFLAG_RW,
|
|
&bbr_drain_rtt, BBR_SRTT,
|
|
"What is the drain rtt to use in probeRTT (rtt_prop=0, rtt_rack=1, rtt_pkt=2, rtt_srtt=3?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "can_force", CTLFLAG_RW,
|
|
&bbr_can_force_probertt, 0,
|
|
"If we keep setting new low rtt's but delay going in probe-rtt can we force in??");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "enter_sets_force", CTLFLAG_RW,
|
|
&bbr_probertt_sets_rtt, 0,
|
|
"In NF mode, do we imitate google_mode and set the rttProp on entry to probe-rtt?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "can_adjust", CTLFLAG_RW,
|
|
&bbr_can_adjust_probertt, 1,
|
|
"Can we dynamically adjust the probe-rtt limits and times?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "is_ratio", CTLFLAG_RW,
|
|
&bbr_is_ratio, 0,
|
|
"is the limit to filter a ratio?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "use_cwnd", CTLFLAG_RW,
|
|
&bbr_prtt_slam_cwnd, 0,
|
|
"Should we set/recover cwnd?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_probertt),
|
|
OID_AUTO, "can_use_ts", CTLFLAG_RW,
|
|
&bbr_can_use_ts_for_rtt, 1,
|
|
"Can we use the ms timestamp if available for retransmistted rtt calculations?");
|
|
|
|
/* Pacing controls */
|
|
bbr_hptsi = SYSCTL_ADD_NODE(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO,
|
|
"pacing",
|
|
CTLFLAG_RW, 0,
|
|
"");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "hw_pacing", CTLFLAG_RW,
|
|
&bbr_allow_hdwr_pacing, 1,
|
|
"Do we allow hardware pacing?");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "hw_pacing_limit", CTLFLAG_RW,
|
|
&bbr_hardware_pacing_limit, 4000,
|
|
"Do we have a limited number of connections for pacing chelsio (0=no limit)?");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "hw_pacing_adj", CTLFLAG_RW,
|
|
&bbr_hdwr_pace_adjust, 2,
|
|
"Multiplier to calculated tso size?");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "hw_pacing_floor", CTLFLAG_RW,
|
|
&bbr_hdwr_pace_floor, 1,
|
|
"Do we invoke the hardware pacing floor?");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "hw_pacing_delay_cnt", CTLFLAG_RW,
|
|
&bbr_hdwr_pacing_delay_cnt, 10,
|
|
"How many packets must be sent after hdwr pacing is enabled");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "bw_cross", CTLFLAG_RW,
|
|
&bbr_cross_over, 3000000,
|
|
"What is the point where we cross over to linux like TSO size set");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "seg_deltarg", CTLFLAG_RW,
|
|
&bbr_hptsi_segments_delay_tar, 7000,
|
|
"What is the worse case delay target for hptsi < 48Mbp connections");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "enet_oh", CTLFLAG_RW,
|
|
&bbr_include_enet_oh, 0,
|
|
"Do we include the ethernet overhead in calculating pacing delay?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "ip_oh", CTLFLAG_RW,
|
|
&bbr_include_ip_oh, 1,
|
|
"Do we include the IP overhead in calculating pacing delay?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "tcp_oh", CTLFLAG_RW,
|
|
&bbr_include_tcp_oh, 0,
|
|
"Do we include the TCP overhead in calculating pacing delay?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "google_discount", CTLFLAG_RW,
|
|
&bbr_google_discount, 10,
|
|
"What is the default google discount percentage wise for pacing (11 = 1.1%%)?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "all_get_min", CTLFLAG_RW,
|
|
&bbr_all_get_min, 0,
|
|
"If you are less than a MSS do you just get the min?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "tso_min", CTLFLAG_RW,
|
|
&bbr_hptsi_bytes_min, 1460,
|
|
"For 0 -> 24Mbps what is floor number of segments for TSO");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "seg_tso_max", CTLFLAG_RW,
|
|
&bbr_hptsi_segments_max, 6,
|
|
"For 0 -> 24Mbps what is top number of segments for TSO");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "seg_floor", CTLFLAG_RW,
|
|
&bbr_hptsi_segments_floor, 1,
|
|
"Minimum TSO size we will fall too in segments");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "utter_max", CTLFLAG_RW,
|
|
&bbr_hptsi_utter_max, 0,
|
|
"The absolute maximum that any pacing (outside of hardware) can be");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "seg_divisor", CTLFLAG_RW,
|
|
&bbr_hptsi_per_second, 100,
|
|
"What is the divisor in our hptsi TSO calculation 512Mbps < X > 24Mbps ");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "srtt_mul", CTLFLAG_RW,
|
|
&bbr_hptsi_max_mul, 1,
|
|
"The multiplier for pace len max");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_hptsi),
|
|
OID_AUTO, "srtt_div", CTLFLAG_RW,
|
|
&bbr_hptsi_max_div, 2,
|
|
"The divisor for pace len max");
|
|
/* Measurement controls */
|
|
bbr_measure = SYSCTL_ADD_NODE(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO,
|
|
"measure",
|
|
CTLFLAG_RW, 0,
|
|
"Measurement controls");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "min_i_bw", CTLFLAG_RW,
|
|
&bbr_initial_bw_bps, 62500,
|
|
"Minimum initial b/w in bytes per second");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "no_sack_needed", CTLFLAG_RW,
|
|
&bbr_sack_not_required, 0,
|
|
"Do we allow bbr to run on connections not supporting SACK?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "use_google", CTLFLAG_RW,
|
|
&bbr_use_google_algo, 0,
|
|
"Use has close to google V1.0 has possible?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "ts_limiting", CTLFLAG_RW,
|
|
&bbr_ts_limiting, 1,
|
|
"Do we attempt to use the peers timestamp to limit b/w caculations?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "ts_can_raise", CTLFLAG_RW,
|
|
&bbr_ts_can_raise, 0,
|
|
"Can we raise the b/w via timestamp b/w calculation?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "ts_delta", CTLFLAG_RW,
|
|
&bbr_min_usec_delta, 20000,
|
|
"How long in usec between ts of our sends in ts validation code?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "ts_peer_delta", CTLFLAG_RW,
|
|
&bbr_min_peer_delta, 20,
|
|
"What min numerical value should be between the peer deltas?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "ts_delta_percent", CTLFLAG_RW,
|
|
&bbr_delta_percent, 150,
|
|
"What percentage (150 = 15.0) do we allow variance for?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "min_measure_good_bw", CTLFLAG_RW,
|
|
&bbr_min_measurements_req, 1,
|
|
"What is the minimum measurment count we need before we switch to our b/w estimate");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "min_measure_before_pace", CTLFLAG_RW,
|
|
&bbr_no_pacing_until, 4,
|
|
"How many pkt-epoch's (0 is off) do we need before pacing is on?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "quanta", CTLFLAG_RW,
|
|
&bbr_quanta, 2,
|
|
"Extra quanta to add when calculating the target (ID section 4.2.3.2).");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_measure),
|
|
OID_AUTO, "noretran", CTLFLAG_RW,
|
|
&bbr_no_retran, 0,
|
|
"Should google mode not use retransmission measurements for the b/w estimation?");
|
|
/* State controls */
|
|
bbr_states = SYSCTL_ADD_NODE(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO,
|
|
"states",
|
|
CTLFLAG_RW, 0,
|
|
"State controls");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "idle_restart", CTLFLAG_RW,
|
|
&bbr_uses_idle_restart, 0,
|
|
"Do we use a new special idle_restart state to ramp back up quickly?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "idle_restart_threshold", CTLFLAG_RW,
|
|
&bbr_idle_restart_threshold, 100000,
|
|
"How long must we be idle before we restart??");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "use_pkt_epoch", CTLFLAG_RW,
|
|
&bbr_state_is_pkt_epoch, 0,
|
|
"Do we use a pkt-epoch for substate if 0 rttProp?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "startup_rtt_gain", CTLFLAG_RW,
|
|
&bbr_rtt_gain_thresh, 0,
|
|
"What increase in RTT triggers us to stop ignoring no-loss and possibly exit startup?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "drain_floor", CTLFLAG_RW,
|
|
&bbr_drain_floor, 88,
|
|
"What is the lowest we can drain (pg) too?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "drain_2_target", CTLFLAG_RW,
|
|
&bbr_state_drain_2_tar, 1,
|
|
"Do we drain to target in drain substate?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "gain_2_target", CTLFLAG_RW,
|
|
&bbr_gain_to_target, 1,
|
|
"Does probe bw gain to target??");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "gain_extra_time", CTLFLAG_RW,
|
|
&bbr_gain_gets_extra_too, 1,
|
|
"Does probe bw gain get the extra time too?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "ld_div", CTLFLAG_RW,
|
|
&bbr_drain_drop_div, 5,
|
|
"Long drain drop divider?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "ld_mul", CTLFLAG_RW,
|
|
&bbr_drain_drop_mul, 4,
|
|
"Long drain drop multiplier?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "rand_ot_disc", CTLFLAG_RW,
|
|
&bbr_rand_ot, 50,
|
|
"Random discount of the ot?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "dr_filter_life", CTLFLAG_RW,
|
|
&bbr_num_pktepo_for_del_limit, BBR_NUM_RTTS_FOR_DEL_LIMIT,
|
|
"How many packet-epochs does the b/w delivery rate last?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "subdrain_applimited", CTLFLAG_RW,
|
|
&bbr_sub_drain_app_limit, 0,
|
|
"Does our sub-state drain invoke app limited if its long?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "use_cwnd_subdrain", CTLFLAG_RW,
|
|
&bbr_sub_drain_slam_cwnd, 0,
|
|
"Should we set/recover cwnd for sub-state drain?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "use_cwnd_maindrain", CTLFLAG_RW,
|
|
&bbr_slam_cwnd_in_main_drain, 0,
|
|
"Should we set/recover cwnd for main-state drain?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "google_gets_earlyout", CTLFLAG_RW,
|
|
&google_allow_early_out, 1,
|
|
"Should we allow google probe-bw/drain to exit early at flight target?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_states),
|
|
OID_AUTO, "google_exit_loss", CTLFLAG_RW,
|
|
&google_consider_lost, 1,
|
|
"Should we have losses exit gain of probebw in google mode??");
|
|
/* Startup controls */
|
|
bbr_startup = SYSCTL_ADD_NODE(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO,
|
|
"startup",
|
|
CTLFLAG_RW, 0,
|
|
"Startup controls");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_startup),
|
|
OID_AUTO, "cheat_iwnd", CTLFLAG_RW,
|
|
&bbr_sends_full_iwnd, 1,
|
|
"Do we not pace but burst out initial windows has our TSO size?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_startup),
|
|
OID_AUTO, "loss_threshold", CTLFLAG_RW,
|
|
&bbr_startup_loss_thresh, 2000,
|
|
"In startup what is the loss threshold in a pe that will exit us from startup?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_startup),
|
|
OID_AUTO, "use_lowerpg", CTLFLAG_RW,
|
|
&bbr_use_lower_gain_in_startup, 1,
|
|
"Should we use a lower hptsi gain if we see loss in startup?");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_startup),
|
|
OID_AUTO, "gain", CTLFLAG_RW,
|
|
&bbr_start_exit, 25,
|
|
"What gain percent do we need to see to stay in startup??");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_startup),
|
|
OID_AUTO, "low_gain", CTLFLAG_RW,
|
|
&bbr_low_start_exit, 15,
|
|
"What gain percent do we need to see to stay in the lower gain startup??");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_startup),
|
|
OID_AUTO, "loss_exit", CTLFLAG_RW,
|
|
&bbr_exit_startup_at_loss, 1,
|
|
"Should we exit startup at loss in an epoch if we are not gaining?");
|
|
/* CWND controls */
|
|
bbr_cwnd = SYSCTL_ADD_NODE(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO,
|
|
"cwnd",
|
|
CTLFLAG_RW, 0,
|
|
"Cwnd controls");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "tar_rtt", CTLFLAG_RW,
|
|
&bbr_cwndtarget_rtt_touse, 0,
|
|
"Target cwnd rtt measurment to use (0=rtt_prop, 1=rtt_rack, 2=pkt_rtt, 3=srtt)?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "may_shrink", CTLFLAG_RW,
|
|
&bbr_cwnd_may_shrink, 0,
|
|
"Can the cwnd shrink if it would grow to more than the target?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "max_target_limit", CTLFLAG_RW,
|
|
&bbr_target_cwnd_mult_limit, 8,
|
|
"Do we limit the cwnd to some multiple of the cwnd target if cwnd can't shrink 0=no?");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "highspeed_min", CTLFLAG_RW,
|
|
&bbr_cwnd_min_val_hs, BBR_HIGHSPEED_NUM_MSS,
|
|
"What is the high-speed min cwnd (rttProp under 1ms)");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "lowspeed_min", CTLFLAG_RW,
|
|
&bbr_cwnd_min_val, BBR_PROBERTT_NUM_MSS,
|
|
"What is the min cwnd (rttProp > 1ms)");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "initwin", CTLFLAG_RW,
|
|
&bbr_def_init_win, 10,
|
|
"What is the BBR initial window, if 0 use tcp version");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "do_loss_red", CTLFLAG_RW,
|
|
&bbr_do_red, 600,
|
|
"Do we reduce the b/w at exit from recovery based on ratio of prop/srtt (800=80.0, 0=off)?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "red_scale", CTLFLAG_RW,
|
|
&bbr_red_scale, 20000,
|
|
"What RTT do we scale with?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "red_growslow", CTLFLAG_RW,
|
|
&bbr_red_growth_restrict, 1,
|
|
"Do we restrict cwnd growth for whats in flight?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "red_div", CTLFLAG_RW,
|
|
&bbr_red_div, 2,
|
|
"If we reduce whats the divisor?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "red_mul", CTLFLAG_RW,
|
|
&bbr_red_mul, 1,
|
|
"If we reduce whats the mulitiplier?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "target_is_unit", CTLFLAG_RW,
|
|
&bbr_target_is_bbunit, 0,
|
|
"Is the state target the pacing_gain or BBR_UNIT?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_cwnd),
|
|
OID_AUTO, "drop_limit", CTLFLAG_RW,
|
|
&bbr_drop_limit, 0,
|
|
"Number of segments limit for drop (0=use min_cwnd w/flight)?");
|
|
|
|
/* Timeout controls */
|
|
bbr_timeout = SYSCTL_ADD_NODE(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO,
|
|
"timeout",
|
|
CTLFLAG_RW, 0,
|
|
"Time out controls");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "delack", CTLFLAG_RW,
|
|
&bbr_delack_time, 100000,
|
|
"BBR's delayed ack time");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "tlp_uses", CTLFLAG_RW,
|
|
&bbr_tlp_type_to_use, 3,
|
|
"RTT that TLP uses in its calculations, 0=rttProp, 1=Rack_rtt, 2=pkt_rtt and 3=srtt");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "persmin", CTLFLAG_RW,
|
|
&bbr_persist_min, 250000,
|
|
"What is the minimum time in microseconds between persists");
|
|
SYSCTL_ADD_U32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "persmax", CTLFLAG_RW,
|
|
&bbr_persist_max, 1000000,
|
|
"What is the largest delay in microseconds between persists");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "tlp_minto", CTLFLAG_RW,
|
|
&bbr_tlp_min, 10000,
|
|
"TLP Min timeout in usecs");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "tlp_dack_time", CTLFLAG_RW,
|
|
&bbr_delayed_ack_time, 200000,
|
|
"TLP delayed ack compensation value");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "minrto", CTLFLAG_RW,
|
|
&bbr_rto_min_ms, 30,
|
|
"Minimum RTO in ms");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "maxrto", CTLFLAG_RW,
|
|
&bbr_rto_max_sec, 4,
|
|
"Maxiumum RTO in seconds -- should be at least as large as min_rto");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "tlp_retry", CTLFLAG_RW,
|
|
&bbr_tlp_max_resend, 2,
|
|
"How many times does TLP retry a single segment or multiple with no ACK");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "minto", CTLFLAG_RW,
|
|
&bbr_min_to, 1000,
|
|
"Minimum rack timeout in useconds");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "pktdelay", CTLFLAG_RW,
|
|
&bbr_pkt_delay, 1000,
|
|
"Extra RACK time (in useconds) besides reordering thresh");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "incr_tmrs", CTLFLAG_RW,
|
|
&bbr_incr_timers, 1,
|
|
"Increase the RXT/TLP timer by the pacing time used?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_timeout),
|
|
OID_AUTO, "rxtmark_sackpassed", CTLFLAG_RW,
|
|
&bbr_marks_rxt_sack_passed, 0,
|
|
"Mark sack passed on all those not ack'd when a RXT hits?");
|
|
/* Policer controls */
|
|
bbr_policer = SYSCTL_ADD_NODE(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO,
|
|
"policer",
|
|
CTLFLAG_RW, 0,
|
|
"Policer controls");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_policer),
|
|
OID_AUTO, "detect_enable", CTLFLAG_RW,
|
|
&bbr_policer_detection_enabled, 1,
|
|
"Is policer detection enabled??");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_policer),
|
|
OID_AUTO, "min_pes", CTLFLAG_RW,
|
|
&bbr_lt_intvl_min_rtts, 4,
|
|
"Minimum number of PE's?");
|
|
SYSCTL_ADD_U64(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_policer),
|
|
OID_AUTO, "bwdiff", CTLFLAG_RW,
|
|
&bbr_lt_bw_diff, (4000/8),
|
|
"Minimal bw diff?");
|
|
SYSCTL_ADD_U64(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_policer),
|
|
OID_AUTO, "bwratio", CTLFLAG_RW,
|
|
&bbr_lt_bw_ratio, 8,
|
|
"Minimal bw diff?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_policer),
|
|
OID_AUTO, "from_rack_rxt", CTLFLAG_RW,
|
|
&bbr_policer_call_from_rack_to, 0,
|
|
"Do we call the policer detection code from a rack-timeout?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_policer),
|
|
OID_AUTO, "false_postive", CTLFLAG_RW,
|
|
&bbr_lt_intvl_fp, 0,
|
|
"What packet epoch do we do false-postive detection at (0=no)?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_policer),
|
|
OID_AUTO, "loss_thresh", CTLFLAG_RW,
|
|
&bbr_lt_loss_thresh, 196,
|
|
"Loss threshold 196 = 19.6%?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_policer),
|
|
OID_AUTO, "false_postive_thresh", CTLFLAG_RW,
|
|
&bbr_lt_fd_thresh, 100,
|
|
"What percentage is the false detection threshold (150=15.0)?");
|
|
/* All the rest */
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "cheat_rxt", CTLFLAG_RW,
|
|
&bbr_use_rack_resend_cheat, 0,
|
|
"Do we burst 1ms between sends on retransmissions (like rack)?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "error_paceout", CTLFLAG_RW,
|
|
&bbr_error_base_paceout, 10000,
|
|
"When we hit an error what is the min to pace out in usec's?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "kill_paceout", CTLFLAG_RW,
|
|
&bbr_max_net_error_cnt, 10,
|
|
"When we hit this many errors in a row, kill the session?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "data_after_close", CTLFLAG_RW,
|
|
&bbr_ignore_data_after_close, 1,
|
|
"Do we hold off sending a RST until all pending data is ack'd");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "resend_use_tso", CTLFLAG_RW,
|
|
&bbr_resends_use_tso, 0,
|
|
"Can resends use TSO?");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "sblklimit", CTLFLAG_RW,
|
|
&bbr_sack_block_limit, 128,
|
|
"When do we start ignoring small sack blocks");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "bb_verbose", CTLFLAG_RW,
|
|
&bbr_verbose_logging, 0,
|
|
"Should BBR black box logging be verbose");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "reorder_thresh", CTLFLAG_RW,
|
|
&bbr_reorder_thresh, 2,
|
|
"What factor for rack will be added when seeing reordering (shift right)");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "reorder_fade", CTLFLAG_RW,
|
|
&bbr_reorder_fade, 0,
|
|
"Does reorder detection fade, if so how many ms (0 means never)");
|
|
SYSCTL_ADD_S32(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
|
|
&bbr_tlp_thresh, 1,
|
|
"what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
|
|
/* Stats and counters */
|
|
/* The pacing counters for hdwr/software can't be in the array */
|
|
bbr_nohdwr_pacing_enobuf = counter_u64_alloc(M_WAITOK);
|
|
bbr_hdwr_pacing_enobuf = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "enob_hdwr_pacing", CTLFLAG_RD,
|
|
&bbr_hdwr_pacing_enobuf,
|
|
"Total number of enobufs for hardware paced flows");
|
|
SYSCTL_ADD_COUNTER_U64(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "enob_no_hdwr_pacing", CTLFLAG_RD,
|
|
&bbr_nohdwr_pacing_enobuf,
|
|
"Total number of enobufs for non-hardware paced flows");
|
|
|
|
|
|
bbr_flows_whdwr_pacing = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "hdwr_pacing", CTLFLAG_RD,
|
|
&bbr_flows_whdwr_pacing,
|
|
"Total number of hardware paced flows");
|
|
bbr_flows_nohdwr_pacing = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "software_pacing", CTLFLAG_RD,
|
|
&bbr_flows_nohdwr_pacing,
|
|
"Total number of software paced flows");
|
|
COUNTER_ARRAY_ALLOC(bbr_stat_arry, BBR_STAT_SIZE, M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "stats", CTLFLAG_RD,
|
|
bbr_stat_arry, BBR_STAT_SIZE, "BBR Stats");
|
|
COUNTER_ARRAY_ALLOC(bbr_opts_arry, BBR_OPTS_SIZE, M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "opts", CTLFLAG_RD,
|
|
bbr_opts_arry, BBR_OPTS_SIZE, "BBR Option Stats");
|
|
COUNTER_ARRAY_ALLOC(bbr_state_lost, BBR_MAX_STAT, M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "lost", CTLFLAG_RD,
|
|
bbr_state_lost, BBR_MAX_STAT, "Stats of when losses occur");
|
|
COUNTER_ARRAY_ALLOC(bbr_state_resend, BBR_MAX_STAT, M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "stateresend", CTLFLAG_RD,
|
|
bbr_state_resend, BBR_MAX_STAT, "Stats of what states resend");
|
|
COUNTER_ARRAY_ALLOC(bbr_state_time, BBR_MAX_STAT, M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "statetime", CTLFLAG_RD,
|
|
bbr_state_time, BBR_MAX_STAT, "Stats of time spent in the states");
|
|
COUNTER_ARRAY_ALLOC(bbr_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "outsize", CTLFLAG_RD,
|
|
bbr_out_size, TCP_MSS_ACCT_SIZE, "Size of output calls");
|
|
SYSCTL_ADD_PROC(&bbr_sysctl_ctx,
|
|
SYSCTL_CHILDREN(bbr_sysctl_root),
|
|
OID_AUTO, "clrlost", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
|
|
&bbr_clear_lost, 0, sysctl_bbr_clear_lost, "IU", "Clear lost counters");
|
|
}
|
|
|
|
static inline int32_t
|
|
bbr_progress_timeout_check(struct tcp_bbr *bbr)
|
|
{
|
|
if (bbr->rc_tp->t_maxunacktime && bbr->rc_tp->t_acktime &&
|
|
TSTMP_GT(ticks, bbr->rc_tp->t_acktime)) {
|
|
if ((((uint32_t)ticks - bbr->rc_tp->t_acktime)) >= bbr->rc_tp->t_maxunacktime) {
|
|
/*
|
|
* There is an assumption here that the caller will
|
|
* drop the connection, so we increment the
|
|
* statistics.
|
|
*/
|
|
bbr_log_progress_event(bbr, bbr->rc_tp, ticks, PROGRESS_DROP, __LINE__);
|
|
BBR_STAT_INC(bbr_progress_drops);
|
|
#ifdef NETFLIX_STATS
|
|
TCPSTAT_INC(tcps_progdrops);
|
|
#endif
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bbr_counter_destroy(void)
|
|
{
|
|
COUNTER_ARRAY_FREE(bbr_stat_arry, BBR_STAT_SIZE);
|
|
COUNTER_ARRAY_FREE(bbr_opts_arry, BBR_OPTS_SIZE);
|
|
COUNTER_ARRAY_FREE(bbr_out_size, TCP_MSS_ACCT_SIZE);
|
|
COUNTER_ARRAY_FREE(bbr_state_lost, BBR_MAX_STAT);
|
|
COUNTER_ARRAY_FREE(bbr_state_time, BBR_MAX_STAT);
|
|
COUNTER_ARRAY_FREE(bbr_state_resend, BBR_MAX_STAT);
|
|
counter_u64_free(bbr_flows_whdwr_pacing);
|
|
counter_u64_free(bbr_flows_nohdwr_pacing);
|
|
|
|
}
|
|
|
|
static __inline void
|
|
bbr_fill_in_logging_data(struct tcp_bbr *bbr, struct tcp_log_bbr *l, uint32_t cts)
|
|
{
|
|
memset(l, 0, sizeof(union tcp_log_stackspecific));
|
|
l->cur_del_rate = bbr->r_ctl.rc_bbr_cur_del_rate;
|
|
l->delRate = get_filter_value(&bbr->r_ctl.rc_delrate);
|
|
l->rttProp = get_filter_value_small(&bbr->r_ctl.rc_rttprop);
|
|
l->bw_inuse = bbr_get_bw(bbr);
|
|
l->inflight = ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
l->applimited = bbr->r_ctl.r_app_limited_until;
|
|
l->delivered = bbr->r_ctl.rc_delivered;
|
|
l->timeStamp = cts;
|
|
l->lost = bbr->r_ctl.rc_lost;
|
|
l->bbr_state = bbr->rc_bbr_state;
|
|
l->bbr_substate = bbr_state_val(bbr);
|
|
l->epoch = bbr->r_ctl.rc_rtt_epoch;
|
|
l->lt_epoch = bbr->r_ctl.rc_lt_epoch;
|
|
l->pacing_gain = bbr->r_ctl.rc_bbr_hptsi_gain;
|
|
l->cwnd_gain = bbr->r_ctl.rc_bbr_cwnd_gain;
|
|
l->inhpts = bbr->rc_inp->inp_in_hpts;
|
|
l->ininput = bbr->rc_inp->inp_in_input;
|
|
l->use_lt_bw = bbr->rc_lt_use_bw;
|
|
l->pkts_out = bbr->r_ctl.rc_flight_at_input;
|
|
l->pkt_epoch = bbr->r_ctl.rc_pkt_epoch;
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_bw_reduce(struct tcp_bbr *bbr, int reason)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
log.u_bbr.flex1 = 0;
|
|
log.u_bbr.flex2 = 0;
|
|
log.u_bbr.flex5 = 0;
|
|
log.u_bbr.flex3 = 0;
|
|
log.u_bbr.flex4 = bbr->r_ctl.rc_pkt_epoch_loss_rate;
|
|
log.u_bbr.flex7 = reason;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_bbr_enters_probertt;
|
|
log.u_bbr.flex8 = 0;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_BW_RED_EV, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_rwnd_collapse(struct tcp_bbr *bbr, int seq, int mode, uint32_t count)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
log.u_bbr.flex1 = seq;
|
|
log.u_bbr.flex2 = count;
|
|
log.u_bbr.flex8 = mode;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_LOWGAIN, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
bbr_log_type_just_return(struct tcp_bbr *bbr, uint32_t cts, uint32_t tlen, uint8_t hpts_calling,
|
|
uint8_t reason, uint32_t p_maxseg, int len)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = p_maxseg;
|
|
log.u_bbr.flex2 = bbr->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_timer_exp;
|
|
log.u_bbr.flex4 = reason;
|
|
log.u_bbr.flex5 = bbr->rc_in_persist;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_last_delay_val;
|
|
log.u_bbr.flex7 = p_maxseg;
|
|
log.u_bbr.flex8 = bbr->rc_in_persist;
|
|
log.u_bbr.pkts_out = 0;
|
|
log.u_bbr.applimited = len;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_JUSTRET, 0,
|
|
tlen, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
bbr_log_type_enter_rec(struct tcp_bbr *bbr, uint32_t seq)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
log.u_bbr.flex1 = seq;
|
|
log.u_bbr.flex2 = bbr->r_ctl.rc_cwnd_on_ent;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_recovery_start;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_ENTREC, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_msgsize_fail(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t len, uint32_t maxseg, uint32_t mtu, int32_t csum_flags, int32_t tso, uint32_t cts)
|
|
{
|
|
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = tso;
|
|
log.u_bbr.flex2 = maxseg;
|
|
log.u_bbr.flex3 = mtu;
|
|
log.u_bbr.flex4 = csum_flags;
|
|
TCP_LOG_EVENTP(tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_MSGSIZE, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_flowend(struct tcp_bbr *bbr)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct sockbuf *r, *s;
|
|
struct timeval tv;
|
|
|
|
if (bbr->rc_inp->inp_socket) {
|
|
r = &bbr->rc_inp->inp_socket->so_rcv;
|
|
s = &bbr->rc_inp->inp_socket->so_snd;
|
|
} else {
|
|
r = s = NULL;
|
|
}
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, tcp_get_usecs(&tv));
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
r, s,
|
|
TCP_LOG_FLOWEND, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_pkt_epoch(struct tcp_bbr *bbr, uint32_t cts, uint32_t line,
|
|
uint32_t lost, uint32_t del)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = lost;
|
|
log.u_bbr.flex2 = del;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_bbr_lastbtlbw;
|
|
log.u_bbr.flex4 = bbr->r_ctl.rc_pkt_epoch_rtt;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_bbr_last_startup_epoch;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_lost_at_startup;
|
|
log.u_bbr.flex7 = line;
|
|
log.u_bbr.flex8 = 0;
|
|
log.u_bbr.inflight = bbr->r_ctl.r_measurement_count;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_PKT_EPOCH, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_time_epoch(struct tcp_bbr *bbr, uint32_t cts, uint32_t line, uint32_t epoch_time)
|
|
{
|
|
if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = bbr->r_ctl.rc_lost;
|
|
log.u_bbr.flex2 = bbr->rc_inp->inp_socket->so_snd.sb_lowat;
|
|
log.u_bbr.flex3 = bbr->rc_inp->inp_socket->so_snd.sb_hiwat;
|
|
log.u_bbr.flex7 = line;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_TIME_EPOCH, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_set_of_state_target(struct tcp_bbr *bbr, uint32_t new_tar, int line, int meth)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
log.u_bbr.flex1 = bbr->r_ctl.rc_target_at_state;
|
|
log.u_bbr.flex2 = new_tar;
|
|
log.u_bbr.flex3 = line;
|
|
log.u_bbr.flex4 = bbr->r_ctl.rc_pace_max_segs;
|
|
log.u_bbr.flex5 = bbr_quanta;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_pace_min_segs;
|
|
log.u_bbr.flex7 = bbr->rc_last_options;
|
|
log.u_bbr.flex8 = meth;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_STATE_TARGET, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_statechange(struct tcp_bbr *bbr, uint32_t cts, int32_t line)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = line;
|
|
log.u_bbr.flex2 = bbr->r_ctl.rc_rtt_shrinks;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_probertt_int;
|
|
if (bbr_state_is_pkt_epoch)
|
|
log.u_bbr.flex4 = bbr_get_rtt(bbr, BBR_RTT_PKTRTT);
|
|
else
|
|
log.u_bbr.flex4 = bbr_get_rtt(bbr, BBR_RTT_PROP);
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_bbr_last_startup_epoch;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_lost_at_startup;
|
|
log.u_bbr.flex7 = (bbr->r_ctl.rc_target_at_state/1000);
|
|
log.u_bbr.lt_epoch = bbr->r_ctl.rc_level_state_extra;
|
|
log.u_bbr.pkts_out = bbr->r_ctl.rc_target_at_state;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_STATE, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_rtt_shrinks(struct tcp_bbr *bbr, uint32_t cts, uint32_t applied,
|
|
uint32_t rtt, uint32_t line, uint8_t reas, uint16_t cond)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = line;
|
|
log.u_bbr.flex2 = bbr->r_ctl.rc_rtt_shrinks;
|
|
log.u_bbr.flex3 = bbr->r_ctl.last_in_probertt;
|
|
log.u_bbr.flex4 = applied;
|
|
log.u_bbr.flex5 = rtt;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_target_at_state;
|
|
log.u_bbr.flex7 = cond;
|
|
log.u_bbr.flex8 = reas;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_RTT_SHRINKS, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_exit_rec(struct tcp_bbr *bbr)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
log.u_bbr.flex1 = bbr->r_ctl.rc_recovery_start;
|
|
log.u_bbr.flex2 = bbr->r_ctl.rc_cwnd_on_ent;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_EXITREC, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_cwndupd(struct tcp_bbr *bbr, uint32_t bytes_this_ack, uint32_t chg,
|
|
uint32_t prev_acked, int32_t meth, uint32_t target, uint32_t th_ack, int32_t line)
|
|
{
|
|
if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
log.u_bbr.flex1 = line;
|
|
log.u_bbr.flex2 = prev_acked;
|
|
log.u_bbr.flex3 = bytes_this_ack;
|
|
log.u_bbr.flex4 = chg;
|
|
log.u_bbr.flex5 = th_ack;
|
|
log.u_bbr.flex6 = target;
|
|
log.u_bbr.flex8 = meth;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_CWND, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_rtt_sample(struct tcp_bbr *bbr, uint32_t rtt, uint32_t tsin)
|
|
{
|
|
/*
|
|
* Log the rtt sample we are applying to the srtt algorithm in
|
|
* useconds.
|
|
*/
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
log.u_bbr.flex1 = rtt;
|
|
log.u_bbr.flex2 = bbr->r_ctl.rc_bbr_state_time;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_ack_hdwr_delay;
|
|
log.u_bbr.flex4 = bbr->rc_tp->ts_offset;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state;
|
|
log.u_bbr.pkts_out = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
log.u_bbr.flex6 = tsin;
|
|
log.u_bbr.flex7 = 0;
|
|
log.u_bbr.flex8 = bbr->rc_ack_was_delayed;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
TCP_LOG_RTT, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_pesist(struct tcp_bbr *bbr, uint32_t cts, uint32_t time_in, int32_t line, uint8_t enter_exit)
|
|
{
|
|
if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = time_in;
|
|
log.u_bbr.flex2 = line;
|
|
log.u_bbr.flex8 = enter_exit;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_PERSIST, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
static void
|
|
bbr_log_ack_clear(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = bbr->rc_tp->ts_recent_age;
|
|
log.u_bbr.flex2 = bbr->r_ctl.rc_rtt_shrinks;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_probertt_int;
|
|
log.u_bbr.flex4 = bbr->r_ctl.rc_went_idle_time;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_ACKCLEAR, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_ack_event(struct tcp_bbr *bbr, struct tcphdr *th, struct tcpopt *to, uint32_t tlen,
|
|
uint16_t nsegs, uint32_t cts, int32_t nxt_pkt, struct mbuf *m)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = nsegs;
|
|
log.u_bbr.flex2 = bbr->r_ctl.rc_lost_bytes;
|
|
if (m) {
|
|
struct timespec ts;
|
|
|
|
log.u_bbr.flex3 = m->m_flags;
|
|
if (m->m_flags & M_TSTMP) {
|
|
mbuf_tstmp2timespec(m, &ts);
|
|
tv.tv_sec = ts.tv_sec;
|
|
tv.tv_usec = ts.tv_nsec / 1000;
|
|
log.u_bbr.lt_epoch = tcp_tv_to_usectick(&tv);
|
|
} else {
|
|
log.u_bbr.lt_epoch = 0;
|
|
}
|
|
if (m->m_flags & M_TSTMP_LRO) {
|
|
tv.tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000;
|
|
tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000) / 1000;
|
|
log.u_bbr.flex5 = tcp_tv_to_usectick(&tv);
|
|
} else {
|
|
/* No arrival timestamp */
|
|
log.u_bbr.flex5 = 0;
|
|
}
|
|
|
|
log.u_bbr.pkts_out = tcp_get_usecs(&tv);
|
|
} else {
|
|
log.u_bbr.flex3 = 0;
|
|
log.u_bbr.flex5 = 0;
|
|
log.u_bbr.flex6 = 0;
|
|
log.u_bbr.pkts_out = 0;
|
|
}
|
|
log.u_bbr.flex4 = bbr->r_ctl.rc_target_at_state;
|
|
log.u_bbr.flex7 = bbr->r_wanted_output;
|
|
log.u_bbr.flex8 = bbr->rc_in_persist;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, th,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
TCP_LOG_IN, 0,
|
|
tlen, &log, true, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_doseg_done(struct tcp_bbr *bbr, uint32_t cts, int32_t nxt_pkt, int32_t did_out)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = did_out;
|
|
log.u_bbr.flex2 = nxt_pkt;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_last_delay_val;
|
|
log.u_bbr.flex4 = bbr->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_timer_exp;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_lost_bytes;
|
|
log.u_bbr.flex7 = bbr->r_wanted_output;
|
|
log.u_bbr.flex8 = bbr->rc_in_persist;
|
|
log.u_bbr.pkts_out = bbr->r_ctl.highest_hdwr_delay;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_DOSEG_DONE, 0,
|
|
0, &log, true, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_enobuf_jmp(struct tcp_bbr *bbr, uint32_t len, uint32_t cts,
|
|
int32_t line, uint32_t o_len, uint32_t segcnt, uint32_t segsiz)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = line;
|
|
log.u_bbr.flex2 = o_len;
|
|
log.u_bbr.flex3 = segcnt;
|
|
log.u_bbr.flex4 = segsiz;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_ENOBUF_JMP, ENOBUFS,
|
|
len, &log, true, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_to_processing(struct tcp_bbr *bbr, uint32_t cts, int32_t ret, int32_t timers, uint8_t hpts_calling)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = timers;
|
|
log.u_bbr.flex2 = ret;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_timer_exp;
|
|
log.u_bbr.flex4 = bbr->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex5 = cts;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_target_at_state;
|
|
log.u_bbr.flex8 = hpts_calling;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_TO_PROCESS, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_to_event(struct tcp_bbr *bbr, uint32_t cts, int32_t to_num)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
uint64_t ar;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = bbr->bbr_timer_src;
|
|
log.u_bbr.flex2 = 0;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_hpts_flags;
|
|
ar = (uint64_t)(bbr->r_ctl.rc_resend);
|
|
ar >>= 32;
|
|
ar &= 0x00000000ffffffff;
|
|
log.u_bbr.flex4 = (uint32_t)ar;
|
|
ar = (uint64_t)bbr->r_ctl.rc_resend;
|
|
ar &= 0x00000000ffffffff;
|
|
log.u_bbr.flex5 = (uint32_t)ar;
|
|
log.u_bbr.flex6 = TICKS_2_USEC(bbr->rc_tp->t_rxtcur);
|
|
log.u_bbr.flex8 = to_num;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_RTO, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_startup_event(struct tcp_bbr *bbr, uint32_t cts, uint32_t flex1, uint32_t flex2, uint32_t flex3, uint8_t reason)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = flex1;
|
|
log.u_bbr.flex2 = flex2;
|
|
log.u_bbr.flex3 = flex3;
|
|
log.u_bbr.flex4 = 0;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_lost_at_startup;
|
|
log.u_bbr.flex8 = reason;
|
|
log.u_bbr.cur_del_rate = bbr->r_ctl.rc_bbr_lastbtlbw;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_REDUCE, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_hpts_diag(struct tcp_bbr *bbr, uint32_t cts, struct hpts_diag *diag)
|
|
{
|
|
if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = diag->p_nxt_slot;
|
|
log.u_bbr.flex2 = diag->p_cur_slot;
|
|
log.u_bbr.flex3 = diag->slot_req;
|
|
log.u_bbr.flex4 = diag->inp_hptsslot;
|
|
log.u_bbr.flex5 = diag->slot_remaining;
|
|
log.u_bbr.flex6 = diag->need_new_to;
|
|
log.u_bbr.flex7 = diag->p_hpts_active;
|
|
log.u_bbr.flex8 = diag->p_on_min_sleep;
|
|
/* Hijack other fields as needed */
|
|
log.u_bbr.epoch = diag->have_slept;
|
|
log.u_bbr.lt_epoch = diag->yet_to_sleep;
|
|
log.u_bbr.pkts_out = diag->co_ret;
|
|
log.u_bbr.applimited = diag->hpts_sleep_time;
|
|
log.u_bbr.delivered = diag->p_prev_slot;
|
|
log.u_bbr.inflight = diag->p_runningtick;
|
|
log.u_bbr.bw_inuse = diag->wheel_tick;
|
|
log.u_bbr.rttProp = diag->wheel_cts;
|
|
log.u_bbr.delRate = diag->maxticks;
|
|
log.u_bbr.cur_del_rate = diag->p_curtick;
|
|
log.u_bbr.cur_del_rate <<= 32;
|
|
log.u_bbr.cur_del_rate |= diag->p_lasttick;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_HPTSDIAG, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_timer_var(struct tcp_bbr *bbr, int mode, uint32_t cts, uint32_t time_since_sent, uint32_t srtt,
|
|
uint32_t thresh, uint32_t to)
|
|
{
|
|
if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = bbr->rc_tp->t_rttvar;
|
|
log.u_bbr.flex2 = time_since_sent;
|
|
log.u_bbr.flex3 = srtt;
|
|
log.u_bbr.flex4 = thresh;
|
|
log.u_bbr.flex5 = to;
|
|
log.u_bbr.flex6 = bbr->rc_tp->t_srtt;
|
|
log.u_bbr.flex8 = mode;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_TIMERPREP, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_pacing_delay_calc(struct tcp_bbr *bbr, uint16_t gain, uint32_t len,
|
|
uint32_t cts, uint32_t usecs, uint64_t bw, uint32_t override, int mod)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = usecs;
|
|
log.u_bbr.flex2 = len;
|
|
log.u_bbr.flex3 = (uint32_t)((bw >> 32) & 0x00000000ffffffff);
|
|
log.u_bbr.flex4 = (uint32_t)(bw & 0x00000000ffffffff);
|
|
if (override)
|
|
log.u_bbr.flex5 = (1 << 2);
|
|
else
|
|
log.u_bbr.flex5 = 0;
|
|
log.u_bbr.flex6 = override;
|
|
log.u_bbr.flex7 = gain;
|
|
log.u_bbr.flex8 = mod;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_HPTSI_CALC, 0,
|
|
len, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_to_start(struct tcp_bbr *bbr, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
|
|
log.u_bbr.flex1 = bbr->bbr_timer_src;
|
|
log.u_bbr.flex2 = to;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex4 = slot;
|
|
log.u_bbr.flex5 = bbr->rc_inp->inp_hptsslot;
|
|
log.u_bbr.flex6 = TICKS_2_USEC(bbr->rc_tp->t_rxtcur);
|
|
log.u_bbr.pkts_out = bbr->rc_inp->inp_flags2;
|
|
log.u_bbr.flex8 = which;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_TIMERSTAR, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_thresh_choice(struct tcp_bbr *bbr, uint32_t cts, uint32_t thresh, uint32_t lro, uint32_t srtt, struct bbr_sendmap *rsm, uint8_t frm)
|
|
{
|
|
if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = thresh;
|
|
log.u_bbr.flex2 = lro;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_reorder_ts;
|
|
log.u_bbr.flex4 = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
|
|
log.u_bbr.flex5 = TICKS_2_USEC(bbr->rc_tp->t_rxtcur);
|
|
log.u_bbr.flex6 = srtt;
|
|
log.u_bbr.flex7 = bbr->r_ctl.rc_reorder_shift;
|
|
log.u_bbr.flex8 = frm;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_THRESH_CALC, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_to_cancel(struct tcp_bbr *bbr, int32_t line, uint32_t cts, uint8_t hpts_removed)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = line;
|
|
log.u_bbr.flex2 = bbr->bbr_timer_src;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex4 = bbr->rc_in_persist;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state;
|
|
log.u_bbr.flex6 = TICKS_2_USEC(bbr->rc_tp->t_rxtcur);
|
|
log.u_bbr.flex8 = hpts_removed;
|
|
log.u_bbr.pkts_out = bbr->rc_pacer_started;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_TIMERCANC, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
bbr_log_tstmp_validation(struct tcp_bbr *bbr, uint64_t peer_delta, uint64_t delta)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
log.u_bbr.flex1 = bbr->r_ctl.bbr_peer_tsratio;
|
|
log.u_bbr.flex2 = (peer_delta >> 32);
|
|
log.u_bbr.flex3 = (peer_delta & 0x00000000ffffffff);
|
|
log.u_bbr.flex4 = (delta >> 32);
|
|
log.u_bbr.flex5 = (delta & 0x00000000ffffffff);
|
|
log.u_bbr.flex7 = bbr->rc_ts_clock_set;
|
|
log.u_bbr.flex8 = bbr->rc_ts_cant_be_used;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_TSTMP_VAL, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_tsosize(struct tcp_bbr *bbr, uint32_t cts, uint32_t tsosz, uint32_t tls, uint32_t old_val, uint32_t maxseg, int hdwr)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = tsosz;
|
|
log.u_bbr.flex2 = tls;
|
|
log.u_bbr.flex3 = tcp_min_hptsi_time;
|
|
log.u_bbr.flex4 = bbr->r_ctl.bbr_hptsi_bytes_min;
|
|
log.u_bbr.flex5 = old_val;
|
|
log.u_bbr.flex6 = maxseg;
|
|
log.u_bbr.flex7 = bbr->rc_no_pacing;
|
|
log.u_bbr.flex7 <<= 1;
|
|
log.u_bbr.flex7 |= bbr->rc_past_init_win;
|
|
if (hdwr)
|
|
log.u_bbr.flex8 = 0x80 | bbr->rc_use_google;
|
|
else
|
|
log.u_bbr.flex8 = bbr->rc_use_google;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_BBRTSO, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_rsmclear(struct tcp_bbr *bbr, uint32_t cts, struct bbr_sendmap *rsm,
|
|
uint32_t flags, uint32_t line)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = line;
|
|
log.u_bbr.flex2 = rsm->r_start;
|
|
log.u_bbr.flex3 = rsm->r_end;
|
|
log.u_bbr.flex4 = rsm->r_delivered;
|
|
log.u_bbr.flex5 = rsm->r_rtr_cnt;
|
|
log.u_bbr.flex6 = rsm->r_dupack;
|
|
log.u_bbr.flex7 = rsm->r_tim_lastsent[0];
|
|
log.u_bbr.flex8 = rsm->r_flags;
|
|
/* Hijack the pkts_out fids */
|
|
log.u_bbr.applimited = flags;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_RSM_CLEARED, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_bbrupd(struct tcp_bbr *bbr, uint8_t flex8, uint32_t cts,
|
|
uint32_t flex3, uint32_t flex2, uint32_t flex5,
|
|
uint32_t flex6, uint32_t pkts_out, int flex7,
|
|
uint32_t flex4, uint32_t flex1)
|
|
{
|
|
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = flex1;
|
|
log.u_bbr.flex2 = flex2;
|
|
log.u_bbr.flex3 = flex3;
|
|
log.u_bbr.flex4 = flex4;
|
|
log.u_bbr.flex5 = flex5;
|
|
log.u_bbr.flex6 = flex6;
|
|
log.u_bbr.flex7 = flex7;
|
|
/* Hijack the pkts_out fids */
|
|
log.u_bbr.pkts_out = pkts_out;
|
|
log.u_bbr.flex8 = flex8;
|
|
if (bbr->rc_ack_was_delayed)
|
|
log.u_bbr.epoch = bbr->r_ctl.rc_ack_hdwr_delay;
|
|
else
|
|
log.u_bbr.epoch = 0;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_BBRUPD, 0,
|
|
flex2, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
bbr_log_type_ltbw(struct tcp_bbr *bbr, uint32_t cts, int32_t reason,
|
|
uint32_t newbw, uint32_t obw, uint32_t diff,
|
|
uint32_t tim)
|
|
{
|
|
if (/*bbr_verbose_logging && */(bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = reason;
|
|
log.u_bbr.flex2 = newbw;
|
|
log.u_bbr.flex3 = obw;
|
|
log.u_bbr.flex4 = diff;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_lt_lost;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_lt_del;
|
|
log.u_bbr.flex7 = bbr->rc_lt_is_sampling;
|
|
log.u_bbr.pkts_out = tim;
|
|
log.u_bbr.bw_inuse = bbr->r_ctl.rc_lt_bw;
|
|
if (bbr->rc_lt_use_bw == 0)
|
|
log.u_bbr.epoch = bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_lt_epoch;
|
|
else
|
|
log.u_bbr.epoch = bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_lt_epoch_use;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_BWSAMP, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
bbr_log_progress_event(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t tick, int event, int line)
|
|
{
|
|
if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
log.u_bbr.flex1 = line;
|
|
log.u_bbr.flex2 = tick;
|
|
log.u_bbr.flex3 = tp->t_maxunacktime;
|
|
log.u_bbr.flex4 = tp->t_acktime;
|
|
log.u_bbr.flex8 = event;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_PROGRESS, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_type_log_hdwr_pacing(struct tcp_bbr *bbr, const struct ifnet *ifp,
|
|
uint64_t rate, uint64_t hw_rate, int line, uint32_t cts,
|
|
int error)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff);
|
|
log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff);
|
|
log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff);
|
|
log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff);
|
|
log.u_bbr.bw_inuse = rate;
|
|
log.u_bbr.flex5 = line;
|
|
log.u_bbr.flex6 = error;
|
|
log.u_bbr.flex8 = bbr->skip_gain;
|
|
log.u_bbr.flex8 <<= 1;
|
|
log.u_bbr.flex8 |= bbr->gain_is_limited;
|
|
log.u_bbr.flex8 <<= 1;
|
|
log.u_bbr.flex8 |= bbr->bbr_hdrw_pacing;
|
|
log.u_bbr.pkts_out = bbr->rc_tp->t_maxseg;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_HDWR_PACE, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_bbrsnd(struct tcp_bbr *bbr, uint32_t len, uint32_t slot, uint32_t del_by, uint32_t cts, uint32_t line, uint32_t prev_delay)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = slot;
|
|
log.u_bbr.flex2 = del_by;
|
|
log.u_bbr.flex3 = prev_delay;
|
|
log.u_bbr.flex4 = line;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_last_delay_val;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_hptsi_agg_delay;
|
|
log.u_bbr.flex7 = (0x0000ffff & bbr->r_ctl.rc_hpts_flags);
|
|
log.u_bbr.flex8 = bbr->rc_in_persist;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_BBRSND, 0,
|
|
len, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_bbrrttprop(struct tcp_bbr *bbr, uint32_t t, uint32_t end, uint32_t tsconv, uint32_t cts, int32_t match, uint32_t seq, uint8_t flags)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = bbr->r_ctl.rc_delivered;
|
|
log.u_bbr.flex2 = 0;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_lowest_rtt;
|
|
log.u_bbr.flex4 = end;
|
|
log.u_bbr.flex5 = seq;
|
|
log.u_bbr.flex6 = t;
|
|
log.u_bbr.flex7 = match;
|
|
log.u_bbr.flex8 = flags;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_BBRRTT, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_exit_gain(struct tcp_bbr *bbr, uint32_t cts, int32_t entry_method)
|
|
{
|
|
if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = bbr->r_ctl.rc_target_at_state;
|
|
log.u_bbr.flex2 = (bbr->rc_tp->t_maxseg - bbr->rc_last_options);
|
|
log.u_bbr.flex3 = bbr->r_ctl.gain_epoch;
|
|
log.u_bbr.flex4 = bbr->r_ctl.rc_pace_max_segs;
|
|
log.u_bbr.flex5 = bbr->r_ctl.rc_pace_min_segs;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_bbr_state_atflight;
|
|
log.u_bbr.flex7 = 0;
|
|
log.u_bbr.flex8 = entry_method;
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_EXIT_GAIN, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_log_settings_change(struct tcp_bbr *bbr, int settings_desired)
|
|
{
|
|
if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime);
|
|
/* R-HU */
|
|
log.u_bbr.flex1 = 0;
|
|
log.u_bbr.flex2 = 0;
|
|
log.u_bbr.flex3 = 0;
|
|
log.u_bbr.flex4 = 0;
|
|
log.u_bbr.flex7 = 0;
|
|
log.u_bbr.flex8 = settings_desired;
|
|
|
|
TCP_LOG_EVENTP(bbr->rc_tp, NULL,
|
|
&bbr->rc_inp->inp_socket->so_rcv,
|
|
&bbr->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_SETTINGS_CHG, 0,
|
|
0, &log, false, &bbr->rc_tv);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the bw from the our filter.
|
|
*/
|
|
static inline uint64_t
|
|
bbr_get_full_bw(struct tcp_bbr *bbr)
|
|
{
|
|
uint64_t bw;
|
|
|
|
bw = get_filter_value(&bbr->r_ctl.rc_delrate);
|
|
|
|
return (bw);
|
|
}
|
|
|
|
static inline void
|
|
bbr_set_pktepoch(struct tcp_bbr *bbr, uint32_t cts, int32_t line)
|
|
{
|
|
uint64_t calclr;
|
|
uint32_t lost, del;
|
|
|
|
if (bbr->r_ctl.rc_lost > bbr->r_ctl.rc_lost_at_pktepoch)
|
|
lost = bbr->r_ctl.rc_lost - bbr->r_ctl.rc_lost_at_pktepoch;
|
|
else
|
|
lost = 0;
|
|
del = bbr->r_ctl.rc_delivered - bbr->r_ctl.rc_pkt_epoch_del;
|
|
if (lost == 0) {
|
|
calclr = 0;
|
|
} else if (del) {
|
|
calclr = lost;
|
|
calclr *= (uint64_t)1000;
|
|
calclr /= (uint64_t)del;
|
|
} else {
|
|
/* Nothing delivered? 100.0% loss */
|
|
calclr = 1000;
|
|
}
|
|
bbr->r_ctl.rc_pkt_epoch_loss_rate = (uint32_t)calclr;
|
|
if (IN_RECOVERY(bbr->rc_tp->t_flags))
|
|
bbr->r_ctl.recovery_lr += (uint32_t)calclr;
|
|
bbr->r_ctl.rc_pkt_epoch++;
|
|
if (bbr->rc_no_pacing &&
|
|
(bbr->r_ctl.rc_pkt_epoch >= bbr->no_pacing_until)) {
|
|
bbr->rc_no_pacing = 0;
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
}
|
|
bbr->r_ctl.rc_pkt_epoch_rtt = bbr_calc_time(cts, bbr->r_ctl.rc_pkt_epoch_time);
|
|
bbr->r_ctl.rc_pkt_epoch_time = cts;
|
|
/* What was our loss rate */
|
|
bbr_log_pkt_epoch(bbr, cts, line, lost, del);
|
|
bbr->r_ctl.rc_pkt_epoch_del = bbr->r_ctl.rc_delivered;
|
|
bbr->r_ctl.rc_lost_at_pktepoch = bbr->r_ctl.rc_lost;
|
|
}
|
|
|
|
static inline void
|
|
bbr_set_epoch(struct tcp_bbr *bbr, uint32_t cts, int32_t line)
|
|
{
|
|
uint32_t epoch_time;
|
|
|
|
/* Tick the RTT clock */
|
|
bbr->r_ctl.rc_rtt_epoch++;
|
|
epoch_time = cts - bbr->r_ctl.rc_rcv_epoch_start;
|
|
bbr_log_time_epoch(bbr, cts, line, epoch_time);
|
|
bbr->r_ctl.rc_rcv_epoch_start = cts;
|
|
}
|
|
|
|
|
|
static inline void
|
|
bbr_isit_a_pkt_epoch(struct tcp_bbr *bbr, uint32_t cts, struct bbr_sendmap *rsm, int32_t line, int32_t cum_acked)
|
|
{
|
|
if (SEQ_GEQ(rsm->r_delivered, bbr->r_ctl.rc_pkt_epoch_del)) {
|
|
bbr->rc_is_pkt_epoch_now = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the bw from either the b/w filter
|
|
* or from the lt_bw (if the connection is being
|
|
* policed).
|
|
*/
|
|
static inline uint64_t
|
|
__bbr_get_bw(struct tcp_bbr *bbr)
|
|
{
|
|
uint64_t bw, min_bw;
|
|
uint64_t rtt;
|
|
int gm_measure_cnt = 1;
|
|
|
|
/*
|
|
* For startup we make, like google, a
|
|
* minimum b/w. This is generated from the
|
|
* IW and the rttProp. We do fall back to srtt
|
|
* if for some reason (initial handshake) we don't
|
|
* have a rttProp. We, in the worst case, fall back
|
|
* to the configured min_bw (rc_initial_hptsi_bw).
|
|
*/
|
|
if (bbr->rc_bbr_state == BBR_STATE_STARTUP) {
|
|
/* Attempt first to use rttProp */
|
|
rtt = (uint64_t)get_filter_value_small(&bbr->r_ctl.rc_rttprop);
|
|
if (rtt && (rtt < 0xffffffff)) {
|
|
measure:
|
|
min_bw = (uint64_t)(bbr_initial_cwnd(bbr, bbr->rc_tp)) *
|
|
((uint64_t)1000000);
|
|
min_bw /= rtt;
|
|
if (min_bw < bbr->r_ctl.rc_initial_hptsi_bw) {
|
|
min_bw = bbr->r_ctl.rc_initial_hptsi_bw;
|
|
}
|
|
|
|
} else if (bbr->rc_tp->t_srtt != 0) {
|
|
/* No rttProp, use srtt? */
|
|
rtt = bbr_get_rtt(bbr, BBR_SRTT);
|
|
goto measure;
|
|
} else {
|
|
min_bw = bbr->r_ctl.rc_initial_hptsi_bw;
|
|
}
|
|
} else
|
|
min_bw = 0;
|
|
|
|
if ((bbr->rc_past_init_win == 0) &&
|
|
(bbr->r_ctl.rc_delivered > bbr_initial_cwnd(bbr, bbr->rc_tp)))
|
|
bbr->rc_past_init_win = 1;
|
|
if ((bbr->rc_use_google) && (bbr->r_ctl.r_measurement_count >= 1))
|
|
gm_measure_cnt = 0;
|
|
if (gm_measure_cnt &&
|
|
((bbr->r_ctl.r_measurement_count < bbr_min_measurements_req) ||
|
|
(bbr->rc_past_init_win == 0))) {
|
|
/* For google we use our guess rate until we get 1 measurement */
|
|
|
|
use_initial_window:
|
|
rtt = (uint64_t)get_filter_value_small(&bbr->r_ctl.rc_rttprop);
|
|
if (rtt && (rtt < 0xffffffff)) {
|
|
/*
|
|
* We have an RTT measurment. Use that in
|
|
* combination with our initial window to calculate
|
|
* a b/w.
|
|
*/
|
|
bw = (uint64_t)(bbr_initial_cwnd(bbr, bbr->rc_tp)) *
|
|
((uint64_t)1000000);
|
|
bw /= rtt;
|
|
if (bw < bbr->r_ctl.rc_initial_hptsi_bw) {
|
|
bw = bbr->r_ctl.rc_initial_hptsi_bw;
|
|
}
|
|
} else {
|
|
/* Drop back to the 40 and punt to a default */
|
|
bw = bbr->r_ctl.rc_initial_hptsi_bw;
|
|
}
|
|
if (bw < 1)
|
|
/* Probably should panic */
|
|
bw = 1;
|
|
if (bw > min_bw)
|
|
return (bw);
|
|
else
|
|
return (min_bw);
|
|
}
|
|
if (bbr->rc_lt_use_bw)
|
|
bw = bbr->r_ctl.rc_lt_bw;
|
|
else if (bbr->r_recovery_bw && (bbr->rc_use_google == 0))
|
|
bw = bbr->r_ctl.red_bw;
|
|
else
|
|
bw = get_filter_value(&bbr->r_ctl.rc_delrate);
|
|
if (bbr->rc_tp->t_peakrate_thr && (bbr->rc_use_google == 0)) {
|
|
/*
|
|
* Enforce user set rate limit, keep in mind that
|
|
* t_peakrate_thr is in B/s already
|
|
*/
|
|
bw = uqmin((uint64_t)bbr->rc_tp->t_peakrate_thr, bw);
|
|
}
|
|
if (bw == 0) {
|
|
/* We should not be at 0, go to the initial window then */
|
|
goto use_initial_window;
|
|
}
|
|
if (bw < 1)
|
|
/* Probably should panic */
|
|
bw = 1;
|
|
if (bw < min_bw)
|
|
bw = min_bw;
|
|
return (bw);
|
|
}
|
|
|
|
static inline uint64_t
|
|
bbr_get_bw(struct tcp_bbr *bbr)
|
|
{
|
|
uint64_t bw;
|
|
|
|
bw = __bbr_get_bw(bbr);
|
|
return (bw);
|
|
}
|
|
|
|
static inline void
|
|
bbr_reset_lt_bw_interval(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
bbr->r_ctl.rc_lt_epoch = bbr->r_ctl.rc_pkt_epoch;
|
|
bbr->r_ctl.rc_lt_time = bbr->r_ctl.rc_del_time;
|
|
bbr->r_ctl.rc_lt_del = bbr->r_ctl.rc_delivered;
|
|
bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost;
|
|
}
|
|
|
|
static inline void
|
|
bbr_reset_lt_bw_sampling(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
bbr->rc_lt_is_sampling = 0;
|
|
bbr->rc_lt_use_bw = 0;
|
|
bbr->r_ctl.rc_lt_bw = 0;
|
|
bbr_reset_lt_bw_interval(bbr, cts);
|
|
}
|
|
|
|
static inline void
|
|
bbr_lt_bw_samp_done(struct tcp_bbr *bbr, uint64_t bw, uint32_t cts, uint32_t timin)
|
|
{
|
|
uint64_t diff;
|
|
|
|
/* Do we have a previous sample? */
|
|
if (bbr->r_ctl.rc_lt_bw) {
|
|
/* Get the diff in bytes per second */
|
|
if (bbr->r_ctl.rc_lt_bw > bw)
|
|
diff = bbr->r_ctl.rc_lt_bw - bw;
|
|
else
|
|
diff = bw - bbr->r_ctl.rc_lt_bw;
|
|
if ((diff <= bbr_lt_bw_diff) ||
|
|
(diff <= (bbr->r_ctl.rc_lt_bw / bbr_lt_bw_ratio))) {
|
|
/* Consider us policed */
|
|
uint32_t saved_bw;
|
|
|
|
saved_bw = (uint32_t)bbr->r_ctl.rc_lt_bw;
|
|
bbr->r_ctl.rc_lt_bw = (bw + bbr->r_ctl.rc_lt_bw) / 2; /* average of two */
|
|
bbr->rc_lt_use_bw = 1;
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT;
|
|
/*
|
|
* Use pkt based epoch for measuring length of
|
|
* policer up
|
|
*/
|
|
bbr->r_ctl.rc_lt_epoch_use = bbr->r_ctl.rc_pkt_epoch;
|
|
/*
|
|
* reason 4 is we need to start consider being
|
|
* policed
|
|
*/
|
|
bbr_log_type_ltbw(bbr, cts, 4, (uint32_t)bw, saved_bw, (uint32_t)diff, timin);
|
|
return;
|
|
}
|
|
}
|
|
bbr->r_ctl.rc_lt_bw = bw;
|
|
bbr_reset_lt_bw_interval(bbr, cts);
|
|
bbr_log_type_ltbw(bbr, cts, 5, 0, (uint32_t)bw, 0, timin);
|
|
}
|
|
|
|
/*
|
|
* RRS: Copied from user space!
|
|
* Calculate a uniformly distributed random number less than upper_bound
|
|
* avoiding "modulo bias".
|
|
*
|
|
* Uniformity is achieved by generating new random numbers until the one
|
|
* returned is outside the range [0, 2**32 % upper_bound). This
|
|
* guarantees the selected random number will be inside
|
|
* [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound)
|
|
* after reduction modulo upper_bound.
|
|
*/
|
|
static uint32_t
|
|
arc4random_uniform(uint32_t upper_bound)
|
|
{
|
|
uint32_t r, min;
|
|
|
|
if (upper_bound < 2)
|
|
return 0;
|
|
|
|
/* 2**32 % x == (2**32 - x) % x */
|
|
min = -upper_bound % upper_bound;
|
|
|
|
/*
|
|
* This could theoretically loop forever but each retry has
|
|
* p > 0.5 (worst case, usually far better) of selecting a
|
|
* number inside the range we need, so it should rarely need
|
|
* to re-roll.
|
|
*/
|
|
for (;;) {
|
|
r = arc4random();
|
|
if (r >= min)
|
|
break;
|
|
}
|
|
|
|
return r % upper_bound;
|
|
}
|
|
|
|
static void
|
|
bbr_randomize_extra_state_time(struct tcp_bbr *bbr)
|
|
{
|
|
uint32_t ran, deduct;
|
|
|
|
ran = arc4random_uniform(bbr_rand_ot);
|
|
if (ran) {
|
|
deduct = bbr->r_ctl.rc_level_state_extra / ran;
|
|
bbr->r_ctl.rc_level_state_extra -= deduct;
|
|
}
|
|
}
|
|
/*
|
|
* Return randomly the starting state
|
|
* to use in probebw.
|
|
*/
|
|
static uint8_t
|
|
bbr_pick_probebw_substate(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
uint32_t ran;
|
|
uint8_t ret_val;
|
|
|
|
/* Initialize the offset to 0 */
|
|
bbr->r_ctl.rc_exta_time_gd = 0;
|
|
bbr->rc_hit_state_1 = 0;
|
|
bbr->r_ctl.rc_level_state_extra = 0;
|
|
ran = arc4random_uniform((BBR_SUBSTATE_COUNT-1));
|
|
/*
|
|
* The math works funny here :) the return value is used to set the
|
|
* substate and then the state change is called which increments by
|
|
* one. So if we return 1 (DRAIN) we will increment to 2 (LEVEL1) when
|
|
* we fully enter the state. Note that the (8 - 1 - ran) assures that
|
|
* we return 1 - 7, so we dont return 0 and end up starting in
|
|
* state 1 (DRAIN).
|
|
*/
|
|
ret_val = BBR_SUBSTATE_COUNT - 1 - ran;
|
|
/* Set an epoch */
|
|
if ((cts - bbr->r_ctl.rc_rcv_epoch_start) >= bbr_get_rtt(bbr, BBR_RTT_PROP))
|
|
bbr_set_epoch(bbr, cts, __LINE__);
|
|
|
|
bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost;
|
|
return (ret_val);
|
|
}
|
|
|
|
static void
|
|
bbr_lt_bw_sampling(struct tcp_bbr *bbr, uint32_t cts, int32_t loss_detected)
|
|
{
|
|
uint32_t diff, d_time;
|
|
uint64_t del_time, bw, lost, delivered;
|
|
|
|
if (bbr->r_use_policer == 0)
|
|
return;
|
|
if (bbr->rc_lt_use_bw) {
|
|
/* We are using lt bw do we stop yet? */
|
|
diff = bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_lt_epoch_use;
|
|
if (diff > bbr_lt_bw_max_rtts) {
|
|
/* Reset it all */
|
|
reset_all:
|
|
bbr_reset_lt_bw_sampling(bbr, cts);
|
|
if (bbr->rc_filled_pipe) {
|
|
bbr_set_epoch(bbr, cts, __LINE__);
|
|
bbr->rc_bbr_substate = bbr_pick_probebw_substate(bbr, cts);
|
|
bbr_substate_change(bbr, cts, __LINE__, 0);
|
|
bbr->rc_bbr_state = BBR_STATE_PROBE_BW;
|
|
bbr_log_type_statechange(bbr, cts, __LINE__);
|
|
} else {
|
|
/*
|
|
* This should not happen really
|
|
* unless we remove the startup/drain
|
|
* restrictions above.
|
|
*/
|
|
bbr->rc_bbr_state = BBR_STATE_STARTUP;
|
|
bbr_set_epoch(bbr, cts, __LINE__);
|
|
bbr->r_ctl.rc_bbr_state_time = cts;
|
|
bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost;
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.rc_startup_pg;
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = bbr->r_ctl.rc_startup_pg;
|
|
bbr_set_state_target(bbr, __LINE__);
|
|
bbr_log_type_statechange(bbr, cts, __LINE__);
|
|
}
|
|
/* reason 0 is to stop using lt-bw */
|
|
bbr_log_type_ltbw(bbr, cts, 0, 0, 0, 0, 0);
|
|
return;
|
|
}
|
|
if (bbr_lt_intvl_fp == 0) {
|
|
/* Not doing false-postive detection */
|
|
return;
|
|
}
|
|
/* False positive detection */
|
|
if (diff == bbr_lt_intvl_fp) {
|
|
/* At bbr_lt_intvl_fp we record the lost */
|
|
bbr->r_ctl.rc_lt_del = bbr->r_ctl.rc_delivered;
|
|
bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost;
|
|
} else if (diff > (bbr_lt_intvl_min_rtts + bbr_lt_intvl_fp)) {
|
|
/* Now is our loss rate still high? */
|
|
lost = bbr->r_ctl.rc_lost - bbr->r_ctl.rc_lt_lost;
|
|
delivered = bbr->r_ctl.rc_delivered - bbr->r_ctl.rc_lt_del;
|
|
if ((delivered == 0) ||
|
|
(((lost * 1000)/delivered) < bbr_lt_fd_thresh)) {
|
|
/* No still below our threshold */
|
|
bbr_log_type_ltbw(bbr, cts, 7, lost, delivered, 0, 0);
|
|
} else {
|
|
/* Yikes its still high, it must be a false positive */
|
|
bbr_log_type_ltbw(bbr, cts, 8, lost, delivered, 0, 0);
|
|
goto reset_all;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
/*
|
|
* Wait for the first loss before sampling, to let the policer
|
|
* exhaust its tokens and estimate the steady-state rate allowed by
|
|
* the policer. Starting samples earlier includes bursts that
|
|
* over-estimate the bw.
|
|
*/
|
|
if (bbr->rc_lt_is_sampling == 0) {
|
|
/* reason 1 is to begin doing the sampling */
|
|
if (loss_detected == 0)
|
|
return;
|
|
bbr_reset_lt_bw_interval(bbr, cts);
|
|
bbr->rc_lt_is_sampling = 1;
|
|
bbr_log_type_ltbw(bbr, cts, 1, 0, 0, 0, 0);
|
|
return;
|
|
}
|
|
/* Now how long were we delivering long term last> */
|
|
if (TSTMP_GEQ(bbr->r_ctl.rc_del_time, bbr->r_ctl.rc_lt_time))
|
|
d_time = bbr->r_ctl.rc_del_time - bbr->r_ctl.rc_lt_time;
|
|
else
|
|
d_time = 0;
|
|
|
|
/* To avoid underestimates, reset sampling if we run out of data. */
|
|
if (bbr->r_ctl.r_app_limited_until) {
|
|
/* Can not measure in app-limited state */
|
|
bbr_reset_lt_bw_sampling(bbr, cts);
|
|
/* reason 2 is to reset sampling due to app limits */
|
|
bbr_log_type_ltbw(bbr, cts, 2, 0, 0, 0, d_time);
|
|
return;
|
|
}
|
|
diff = bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_lt_epoch;
|
|
if (diff < bbr_lt_intvl_min_rtts) {
|
|
/*
|
|
* need more samples (we don't
|
|
* start on a round like linux so
|
|
* we need 1 more).
|
|
*/
|
|
/* 6 is not_enough time or no-loss */
|
|
bbr_log_type_ltbw(bbr, cts, 6, 0, 0, 0, d_time);
|
|
return;
|
|
}
|
|
if (diff > (4 * bbr_lt_intvl_min_rtts)) {
|
|
/*
|
|
* For now if we wait too long, reset all sampling. We need
|
|
* to do some research here, its possible that we should
|
|
* base this on how much loss as occurred.. something like
|
|
* if its under 10% (or some thresh) reset all otherwise
|
|
* don't. Thats for phase II I guess.
|
|
*/
|
|
bbr_reset_lt_bw_sampling(bbr, cts);
|
|
/* reason 3 is to reset sampling due too long of sampling */
|
|
bbr_log_type_ltbw(bbr, cts, 3, 0, 0, 0, d_time);
|
|
return;
|
|
}
|
|
/*
|
|
* End sampling interval when a packet is lost, so we estimate the
|
|
* policer tokens were exhausted. Stopping the sampling before the
|
|
* tokens are exhausted under-estimates the policed rate.
|
|
*/
|
|
if (loss_detected == 0) {
|
|
/* 6 is not_enough time or no-loss */
|
|
bbr_log_type_ltbw(bbr, cts, 6, 0, 0, 0, d_time);
|
|
return;
|
|
}
|
|
/* Calculate packets lost and delivered in sampling interval. */
|
|
lost = bbr->r_ctl.rc_lost - bbr->r_ctl.rc_lt_lost;
|
|
delivered = bbr->r_ctl.rc_delivered - bbr->r_ctl.rc_lt_del;
|
|
if ((delivered == 0) ||
|
|
(((lost * 1000)/delivered) < bbr_lt_loss_thresh)) {
|
|
bbr_log_type_ltbw(bbr, cts, 6, lost, delivered, 0, d_time);
|
|
return;
|
|
}
|
|
if (d_time < 1000) {
|
|
/* Not enough time. wait */
|
|
/* 6 is not_enough time or no-loss */
|
|
bbr_log_type_ltbw(bbr, cts, 6, 0, 0, 0, d_time);
|
|
return;
|
|
}
|
|
if (d_time >= (0xffffffff / USECS_IN_MSEC)) {
|
|
/* Too long */
|
|
bbr_reset_lt_bw_sampling(bbr, cts);
|
|
/* reason 3 is to reset sampling due too long of sampling */
|
|
bbr_log_type_ltbw(bbr, cts, 3, 0, 0, 0, d_time);
|
|
return;
|
|
}
|
|
del_time = d_time;
|
|
bw = delivered;
|
|
bw *= (uint64_t)USECS_IN_SECOND;
|
|
bw /= del_time;
|
|
bbr_lt_bw_samp_done(bbr, bw, cts, d_time);
|
|
}
|
|
|
|
/*
|
|
* Allocate a sendmap from our zone.
|
|
*/
|
|
static struct bbr_sendmap *
|
|
bbr_alloc(struct tcp_bbr *bbr)
|
|
{
|
|
struct bbr_sendmap *rsm;
|
|
|
|
BBR_STAT_INC(bbr_to_alloc);
|
|
rsm = uma_zalloc(bbr_zone, (M_NOWAIT | M_ZERO));
|
|
if (rsm) {
|
|
bbr->r_ctl.rc_num_maps_alloced++;
|
|
return (rsm);
|
|
}
|
|
if (bbr->r_ctl.rc_free_cnt) {
|
|
BBR_STAT_INC(bbr_to_alloc_emerg);
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_free);
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_free, rsm, r_next);
|
|
bbr->r_ctl.rc_free_cnt--;
|
|
return (rsm);
|
|
}
|
|
BBR_STAT_INC(bbr_to_alloc_failed);
|
|
return (NULL);
|
|
}
|
|
|
|
static struct bbr_sendmap *
|
|
bbr_alloc_full_limit(struct tcp_bbr *bbr)
|
|
{
|
|
if ((V_tcp_map_entries_limit > 0) &&
|
|
(bbr->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
|
|
BBR_STAT_INC(bbr_alloc_limited);
|
|
if (!bbr->alloc_limit_reported) {
|
|
bbr->alloc_limit_reported = 1;
|
|
BBR_STAT_INC(bbr_alloc_limited_conns);
|
|
}
|
|
return (NULL);
|
|
}
|
|
return (bbr_alloc(bbr));
|
|
}
|
|
|
|
|
|
/* wrapper to allocate a sendmap entry, subject to a specific limit */
|
|
static struct bbr_sendmap *
|
|
bbr_alloc_limit(struct tcp_bbr *bbr, uint8_t limit_type)
|
|
{
|
|
struct bbr_sendmap *rsm;
|
|
|
|
if (limit_type) {
|
|
/* currently there is only one limit type */
|
|
if (V_tcp_map_split_limit > 0 &&
|
|
bbr->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
|
|
BBR_STAT_INC(bbr_split_limited);
|
|
if (!bbr->alloc_limit_reported) {
|
|
bbr->alloc_limit_reported = 1;
|
|
BBR_STAT_INC(bbr_alloc_limited_conns);
|
|
}
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
/* allocate and mark in the limit type, if set */
|
|
rsm = bbr_alloc(bbr);
|
|
if (rsm != NULL && limit_type) {
|
|
rsm->r_limit_type = limit_type;
|
|
bbr->r_ctl.rc_num_split_allocs++;
|
|
}
|
|
return (rsm);
|
|
}
|
|
|
|
static void
|
|
bbr_free(struct tcp_bbr *bbr, struct bbr_sendmap *rsm)
|
|
{
|
|
if (rsm->r_limit_type) {
|
|
/* currently there is only one limit type */
|
|
bbr->r_ctl.rc_num_split_allocs--;
|
|
}
|
|
if (rsm->r_is_smallmap)
|
|
bbr->r_ctl.rc_num_small_maps_alloced--;
|
|
if (bbr->r_ctl.rc_tlp_send == rsm)
|
|
bbr->r_ctl.rc_tlp_send = NULL;
|
|
if (bbr->r_ctl.rc_resend == rsm) {
|
|
bbr->r_ctl.rc_resend = NULL;
|
|
}
|
|
if (bbr->r_ctl.rc_next == rsm)
|
|
bbr->r_ctl.rc_next = NULL;
|
|
if (bbr->r_ctl.rc_sacklast == rsm)
|
|
bbr->r_ctl.rc_sacklast = NULL;
|
|
if (bbr->r_ctl.rc_free_cnt < bbr_min_req_free) {
|
|
memset(rsm, 0, sizeof(struct bbr_sendmap));
|
|
TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_free, rsm, r_next);
|
|
rsm->r_limit_type = 0;
|
|
bbr->r_ctl.rc_free_cnt++;
|
|
return;
|
|
}
|
|
bbr->r_ctl.rc_num_maps_alloced--;
|
|
uma_zfree(bbr_zone, rsm);
|
|
}
|
|
|
|
/*
|
|
* Returns the BDP.
|
|
*/
|
|
static uint64_t
|
|
bbr_get_bw_delay_prod(uint64_t rtt, uint64_t bw) {
|
|
/*
|
|
* Calculate the bytes in flight needed given the bw (in bytes per
|
|
* second) and the specifyed rtt in useconds. We need to put out the
|
|
* returned value per RTT to match that rate. Gain will normaly
|
|
* raise it up from there.
|
|
*
|
|
* This should not overflow as long as the bandwidth is below 1
|
|
* TByte per second (bw < 10**12 = 2**40) and the rtt is smaller
|
|
* than 1000 seconds (rtt < 10**3 * 10**6 = 10**9 = 2**30).
|
|
*/
|
|
uint64_t usec_per_sec;
|
|
|
|
usec_per_sec = USECS_IN_SECOND;
|
|
return ((rtt * bw) / usec_per_sec);
|
|
}
|
|
|
|
/*
|
|
* Return the initial cwnd.
|
|
*/
|
|
static uint32_t
|
|
bbr_initial_cwnd(struct tcp_bbr *bbr, struct tcpcb *tp)
|
|
{
|
|
uint32_t i_cwnd;
|
|
|
|
if (bbr->rc_init_win) {
|
|
i_cwnd = bbr->rc_init_win * tp->t_maxseg;
|
|
} else if (V_tcp_initcwnd_segments)
|
|
i_cwnd = min((V_tcp_initcwnd_segments * tp->t_maxseg),
|
|
max(2 * tp->t_maxseg, 14600));
|
|
else if (V_tcp_do_rfc3390)
|
|
i_cwnd = min(4 * tp->t_maxseg,
|
|
max(2 * tp->t_maxseg, 4380));
|
|
else {
|
|
/* Per RFC5681 Section 3.1 */
|
|
if (tp->t_maxseg > 2190)
|
|
i_cwnd = 2 * tp->t_maxseg;
|
|
else if (tp->t_maxseg > 1095)
|
|
i_cwnd = 3 * tp->t_maxseg;
|
|
else
|
|
i_cwnd = 4 * tp->t_maxseg;
|
|
}
|
|
return (i_cwnd);
|
|
}
|
|
|
|
/*
|
|
* Given a specified gain, return the target
|
|
* cwnd based on that gain.
|
|
*/
|
|
static uint32_t
|
|
bbr_get_raw_target_cwnd(struct tcp_bbr *bbr, uint32_t gain, uint64_t bw)
|
|
{
|
|
uint64_t bdp, rtt;
|
|
uint32_t cwnd;
|
|
|
|
if ((get_filter_value_small(&bbr->r_ctl.rc_rttprop) == 0xffffffff) ||
|
|
(bbr_get_full_bw(bbr) == 0)) {
|
|
/* No measurements yet */
|
|
return (bbr_initial_cwnd(bbr, bbr->rc_tp));
|
|
}
|
|
/*
|
|
* Get bytes per RTT needed (rttProp is normally in
|
|
* bbr_cwndtarget_rtt_touse)
|
|
*/
|
|
rtt = bbr_get_rtt(bbr, bbr_cwndtarget_rtt_touse);
|
|
/* Get the bdp from the two values */
|
|
bdp = bbr_get_bw_delay_prod(rtt, bw);
|
|
/* Now apply the gain */
|
|
cwnd = (uint32_t)(((bdp * ((uint64_t)gain)) + (uint64_t)(BBR_UNIT - 1)) / ((uint64_t)BBR_UNIT));
|
|
|
|
return (cwnd);
|
|
}
|
|
|
|
static uint32_t
|
|
bbr_get_target_cwnd(struct tcp_bbr *bbr, uint64_t bw, uint32_t gain)
|
|
{
|
|
uint32_t cwnd, mss;
|
|
|
|
mss = min((bbr->rc_tp->t_maxseg - bbr->rc_last_options), bbr->r_ctl.rc_pace_max_segs);
|
|
/* Get the base cwnd with gain rounded to a mss */
|
|
cwnd = roundup(bbr_get_raw_target_cwnd(bbr, bw, gain), mss);
|
|
/*
|
|
* Add in N (2 default since we do not have a
|
|
* fq layer to trap packets in) quanta's per the I-D
|
|
* section 4.2.3.2 quanta adjust.
|
|
*/
|
|
cwnd += (bbr_quanta * bbr->r_ctl.rc_pace_max_segs);
|
|
if (bbr->rc_use_google) {
|
|
if((bbr->rc_bbr_state == BBR_STATE_PROBE_BW) &&
|
|
(bbr_state_val(bbr) == BBR_SUB_GAIN)) {
|
|
/*
|
|
* The linux implementation adds
|
|
* an extra 2 x mss in gain cycle which
|
|
* is documented no-where except in the code.
|
|
* so we add more for Neal undocumented feature
|
|
*/
|
|
cwnd += 2 * mss;
|
|
}
|
|
if ((cwnd / mss) & 0x1) {
|
|
/* Round up for odd num mss */
|
|
cwnd += mss;
|
|
}
|
|
}
|
|
/* Are we below the min cwnd? */
|
|
if (cwnd < get_min_cwnd(bbr))
|
|
return (get_min_cwnd(bbr));
|
|
return (cwnd);
|
|
}
|
|
|
|
static uint16_t
|
|
bbr_gain_adjust(struct tcp_bbr *bbr, uint16_t gain)
|
|
{
|
|
if (gain < 1)
|
|
gain = 1;
|
|
return (gain);
|
|
}
|
|
|
|
static uint32_t
|
|
bbr_get_header_oh(struct tcp_bbr *bbr)
|
|
{
|
|
int seg_oh;
|
|
|
|
seg_oh = 0;
|
|
if (bbr->r_ctl.rc_inc_tcp_oh) {
|
|
/* Do we include TCP overhead? */
|
|
seg_oh = (bbr->rc_last_options + sizeof(struct tcphdr));
|
|
}
|
|
if (bbr->r_ctl.rc_inc_ip_oh) {
|
|
/* Do we include IP overhead? */
|
|
#ifdef INET6
|
|
if (bbr->r_is_v6)
|
|
seg_oh += sizeof(struct ip6_hdr);
|
|
else
|
|
#endif
|
|
#ifdef INET
|
|
seg_oh += sizeof(struct ip);
|
|
#endif
|
|
}
|
|
if (bbr->r_ctl.rc_inc_enet_oh) {
|
|
/* Do we include the ethernet overhead? */
|
|
seg_oh += sizeof(struct ether_header);
|
|
}
|
|
return(seg_oh);
|
|
}
|
|
|
|
|
|
static uint32_t
|
|
bbr_get_pacing_length(struct tcp_bbr *bbr, uint16_t gain, uint32_t useconds_time, uint64_t bw)
|
|
{
|
|
uint64_t divor, res, tim;
|
|
|
|
if (useconds_time == 0)
|
|
return (0);
|
|
gain = bbr_gain_adjust(bbr, gain);
|
|
divor = (uint64_t)USECS_IN_SECOND * (uint64_t)BBR_UNIT;
|
|
tim = useconds_time;
|
|
res = (tim * bw * gain) / divor;
|
|
if (res == 0)
|
|
res = 1;
|
|
return ((uint32_t)res);
|
|
}
|
|
|
|
/*
|
|
* Given a gain and a length return the delay in useconds that
|
|
* should be used to evenly space out packets
|
|
* on the connection (based on the gain factor).
|
|
*/
|
|
static uint32_t
|
|
bbr_get_pacing_delay(struct tcp_bbr *bbr, uint16_t gain, int32_t len, uint32_t cts, int nolog)
|
|
{
|
|
uint64_t bw, lentim, res;
|
|
uint32_t usecs, srtt, over = 0;
|
|
uint32_t seg_oh, num_segs, maxseg;
|
|
|
|
if (len == 0)
|
|
return (0);
|
|
|
|
maxseg = bbr->rc_tp->t_maxseg - bbr->rc_last_options;
|
|
num_segs = (len + maxseg - 1) / maxseg;
|
|
if (bbr->rc_use_google == 0) {
|
|
seg_oh = bbr_get_header_oh(bbr);
|
|
len += (num_segs * seg_oh);
|
|
}
|
|
gain = bbr_gain_adjust(bbr, gain);
|
|
bw = bbr_get_bw(bbr);
|
|
if (bbr->rc_use_google) {
|
|
uint64_t cbw;
|
|
|
|
/*
|
|
* Reduce the b/w by the google discount
|
|
* factor 10 = 1%.
|
|
*/
|
|
cbw = bw * (uint64_t)(1000 - bbr->r_ctl.bbr_google_discount);
|
|
cbw /= (uint64_t)1000;
|
|
/* We don't apply a discount if it results in 0 */
|
|
if (cbw > 0)
|
|
bw = cbw;
|
|
}
|
|
lentim = ((uint64_t)len *
|
|
(uint64_t)USECS_IN_SECOND *
|
|
(uint64_t)BBR_UNIT);
|
|
res = lentim / ((uint64_t)gain * bw);
|
|
if (res == 0)
|
|
res = 1;
|
|
usecs = (uint32_t)res;
|
|
srtt = bbr_get_rtt(bbr, BBR_SRTT);
|
|
if (bbr_hptsi_max_mul && bbr_hptsi_max_div &&
|
|
(bbr->rc_use_google == 0) &&
|
|
(usecs > ((srtt * bbr_hptsi_max_mul) / bbr_hptsi_max_div))) {
|
|
/*
|
|
* We cannot let the delay be more than 1/2 the srtt time.
|
|
* Otherwise we cannot pace out or send properly.
|
|
*/
|
|
over = usecs = (srtt * bbr_hptsi_max_mul) / bbr_hptsi_max_div;
|
|
BBR_STAT_INC(bbr_hpts_min_time);
|
|
}
|
|
if (!nolog)
|
|
bbr_log_pacing_delay_calc(bbr, gain, len, cts, usecs, bw, over, 1);
|
|
return (usecs);
|
|
}
|
|
|
|
static void
|
|
bbr_ack_received(struct tcpcb *tp, struct tcp_bbr *bbr, struct tcphdr *th, uint32_t bytes_this_ack,
|
|
uint32_t sack_changed, uint32_t prev_acked, int32_t line, uint32_t losses)
|
|
{
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
uint64_t bw;
|
|
uint32_t cwnd, target_cwnd, saved_bytes, maxseg;
|
|
int32_t meth;
|
|
|
|
#ifdef STATS
|
|
if ((tp->t_flags & TF_GPUTINPROG) &&
|
|
SEQ_GEQ(th->th_ack, tp->gput_ack)) {
|
|
/*
|
|
* Strech acks and compressed acks will cause this to
|
|
* oscillate but we are doing it the same way as the main
|
|
* stack so it will be compariable (though possibly not
|
|
* ideal).
|
|
*/
|
|
int32_t cgput;
|
|
int64_t gput, time_stamp;
|
|
|
|
gput = (int64_t) (th->th_ack - tp->gput_seq) * 8;
|
|
time_stamp = max(1, ((bbr->r_ctl.rc_rcvtime - tp->gput_ts) / 1000));
|
|
cgput = gput / time_stamp;
|
|
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
|
|
cgput);
|
|
if (tp->t_stats_gput_prev > 0)
|
|
stats_voi_update_abs_s32(tp->t_stats,
|
|
VOI_TCP_GPUT_ND,
|
|
((gput - tp->t_stats_gput_prev) * 100) /
|
|
tp->t_stats_gput_prev);
|
|
tp->t_flags &= ~TF_GPUTINPROG;
|
|
tp->t_stats_gput_prev = cgput;
|
|
}
|
|
#endif
|
|
if ((bbr->rc_bbr_state == BBR_STATE_PROBE_RTT) &&
|
|
((bbr->r_ctl.bbr_rttprobe_gain_val == 0) || bbr->rc_use_google)) {
|
|
/* We don't change anything in probe-rtt */
|
|
return;
|
|
}
|
|
maxseg = tp->t_maxseg - bbr->rc_last_options;
|
|
saved_bytes = bytes_this_ack;
|
|
bytes_this_ack += sack_changed;
|
|
if (bytes_this_ack > prev_acked) {
|
|
bytes_this_ack -= prev_acked;
|
|
/*
|
|
* A byte ack'd gives us a full mss
|
|
* to be like linux i.e. they count packets.
|
|
*/
|
|
if ((bytes_this_ack < maxseg) && bbr->rc_use_google)
|
|
bytes_this_ack = maxseg;
|
|
} else {
|
|
/* Unlikely */
|
|
bytes_this_ack = 0;
|
|
}
|
|
cwnd = tp->snd_cwnd;
|
|
bw = get_filter_value(&bbr->r_ctl.rc_delrate);
|
|
if (bw)
|
|
target_cwnd = bbr_get_target_cwnd(bbr,
|
|
bw,
|
|
(uint32_t)bbr->r_ctl.rc_bbr_cwnd_gain);
|
|
else
|
|
target_cwnd = bbr_initial_cwnd(bbr, bbr->rc_tp);
|
|
if (IN_RECOVERY(tp->t_flags) &&
|
|
(bbr->bbr_prev_in_rec == 0)) {
|
|
/*
|
|
* We are entering recovery and
|
|
* thus packet conservation.
|
|
*/
|
|
bbr->pkt_conservation = 1;
|
|
bbr->r_ctl.rc_recovery_start = bbr->r_ctl.rc_rcvtime;
|
|
cwnd = ctf_flight_size(tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) +
|
|
bytes_this_ack;
|
|
}
|
|
if (IN_RECOVERY(tp->t_flags)) {
|
|
uint32_t flight;
|
|
|
|
bbr->bbr_prev_in_rec = 1;
|
|
if (cwnd > losses) {
|
|
cwnd -= losses;
|
|
if (cwnd < maxseg)
|
|
cwnd = maxseg;
|
|
} else
|
|
cwnd = maxseg;
|
|
flight = ctf_flight_size(tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
bbr_log_type_cwndupd(bbr, flight, 0,
|
|
losses, 10, 0, 0, line);
|
|
if (bbr->pkt_conservation) {
|
|
uint32_t time_in;
|
|
|
|
if (TSTMP_GEQ(bbr->r_ctl.rc_rcvtime, bbr->r_ctl.rc_recovery_start))
|
|
time_in = bbr->r_ctl.rc_rcvtime - bbr->r_ctl.rc_recovery_start;
|
|
else
|
|
time_in = 0;
|
|
|
|
if (time_in >= bbr_get_rtt(bbr, BBR_RTT_PROP)) {
|
|
/* Clear packet conservation after an rttProp */
|
|
bbr->pkt_conservation = 0;
|
|
} else {
|
|
if ((flight + bytes_this_ack) > cwnd)
|
|
cwnd = flight + bytes_this_ack;
|
|
if (cwnd < get_min_cwnd(bbr))
|
|
cwnd = get_min_cwnd(bbr);
|
|
tp->snd_cwnd = cwnd;
|
|
bbr_log_type_cwndupd(bbr, saved_bytes, sack_changed,
|
|
prev_acked, 1, target_cwnd, th->th_ack, line);
|
|
return;
|
|
}
|
|
}
|
|
} else
|
|
bbr->bbr_prev_in_rec = 0;
|
|
if ((bbr->rc_use_google == 0) && bbr->r_ctl.restrict_growth) {
|
|
bbr->r_ctl.restrict_growth--;
|
|
if (bytes_this_ack > maxseg)
|
|
bytes_this_ack = maxseg;
|
|
}
|
|
if (bbr->rc_filled_pipe) {
|
|
/*
|
|
* Here we have exited startup and filled the pipe. We will
|
|
* thus allow the cwnd to shrink to the target. We hit here
|
|
* mostly.
|
|
*/
|
|
uint32_t s_cwnd;
|
|
|
|
meth = 2;
|
|
s_cwnd = min((cwnd + bytes_this_ack), target_cwnd);
|
|
if (s_cwnd > cwnd)
|
|
cwnd = s_cwnd;
|
|
else if (bbr_cwnd_may_shrink || bbr->rc_use_google || bbr->rc_no_pacing)
|
|
cwnd = s_cwnd;
|
|
} else {
|
|
/*
|
|
* Here we are still in startup, we increase cwnd by what
|
|
* has been acked.
|
|
*/
|
|
if ((cwnd < target_cwnd) ||
|
|
(bbr->rc_past_init_win == 0)) {
|
|
meth = 3;
|
|
cwnd += bytes_this_ack;
|
|
} else {
|
|
/*
|
|
* Method 4 means we are at target so no gain in
|
|
* startup and past the initial window.
|
|
*/
|
|
meth = 4;
|
|
}
|
|
}
|
|
tp->snd_cwnd = max(cwnd, get_min_cwnd(bbr));
|
|
bbr_log_type_cwndupd(bbr, saved_bytes, sack_changed, prev_acked, meth, target_cwnd, th->th_ack, line);
|
|
}
|
|
|
|
static void
|
|
tcp_bbr_partialack(struct tcpcb *tp)
|
|
{
|
|
struct tcp_bbr *bbr;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (ctf_flight_size(tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) <=
|
|
tp->snd_cwnd) {
|
|
bbr->r_wanted_output = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_post_recovery(struct tcpcb *tp)
|
|
{
|
|
struct tcp_bbr *bbr;
|
|
uint32_t flight;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
/*
|
|
* Here we just exit recovery.
|
|
*/
|
|
EXIT_RECOVERY(tp->t_flags);
|
|
/* Lock in our b/w reduction for the specified number of pkt-epochs */
|
|
bbr->r_recovery_bw = 0;
|
|
tp->snd_recover = tp->snd_una;
|
|
tcp_bbr_tso_size_check(bbr, bbr->r_ctl.rc_rcvtime);
|
|
bbr->pkt_conservation = 0;
|
|
if (bbr->rc_use_google == 0) {
|
|
/*
|
|
* For non-google mode lets
|
|
* go ahead and make sure we clear
|
|
* the recovery state so if we
|
|
* bounce back in to recovery we
|
|
* will do PC.
|
|
*/
|
|
bbr->bbr_prev_in_rec = 0;
|
|
}
|
|
bbr_log_type_exit_rec(bbr);
|
|
if (bbr->rc_bbr_state != BBR_STATE_PROBE_RTT) {
|
|
tp->snd_cwnd = max(tp->snd_cwnd, bbr->r_ctl.rc_cwnd_on_ent);
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 15, 0, 0, __LINE__);
|
|
} else {
|
|
/* For probe-rtt case lets fix up its saved_cwnd */
|
|
if (bbr->r_ctl.rc_saved_cwnd < bbr->r_ctl.rc_cwnd_on_ent) {
|
|
bbr->r_ctl.rc_saved_cwnd = bbr->r_ctl.rc_cwnd_on_ent;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 16, 0, 0, __LINE__);
|
|
}
|
|
}
|
|
flight = ctf_flight_size(tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
if ((bbr->rc_use_google == 0) &&
|
|
bbr_do_red) {
|
|
uint64_t val, lr2use;
|
|
uint32_t maxseg, newcwnd, acks_inflight, ratio, cwnd;
|
|
uint32_t *cwnd_p;
|
|
|
|
if (bbr_get_rtt(bbr, BBR_SRTT)) {
|
|
val = ((uint64_t)bbr_get_rtt(bbr, BBR_RTT_PROP) * (uint64_t)1000);
|
|
val /= bbr_get_rtt(bbr, BBR_SRTT);
|
|
ratio = (uint32_t)val;
|
|
} else
|
|
ratio = 1000;
|
|
|
|
bbr_log_type_cwndupd(bbr, bbr_red_mul, bbr_red_div,
|
|
bbr->r_ctl.recovery_lr, 21,
|
|
ratio,
|
|
bbr->r_ctl.rc_red_cwnd_pe,
|
|
__LINE__);
|
|
if ((ratio < bbr_do_red) || (bbr_do_red == 0))
|
|
goto done;
|
|
if (((bbr->rc_bbr_state == BBR_STATE_PROBE_RTT) &&
|
|
bbr_prtt_slam_cwnd) ||
|
|
(bbr_sub_drain_slam_cwnd &&
|
|
(bbr->rc_bbr_state == BBR_STATE_PROBE_BW) &&
|
|
bbr->rc_hit_state_1 &&
|
|
(bbr_state_val(bbr) == BBR_SUB_DRAIN)) ||
|
|
((bbr->rc_bbr_state == BBR_STATE_DRAIN) &&
|
|
bbr_slam_cwnd_in_main_drain)) {
|
|
/*
|
|
* Here we must poke at the saved cwnd
|
|
* as well as the cwnd.
|
|
*/
|
|
cwnd = bbr->r_ctl.rc_saved_cwnd;
|
|
cwnd_p = &bbr->r_ctl.rc_saved_cwnd;
|
|
} else {
|
|
cwnd = tp->snd_cwnd;
|
|
cwnd_p = &tp->snd_cwnd;
|
|
}
|
|
maxseg = tp->t_maxseg - bbr->rc_last_options;
|
|
/* Add the overall lr with the recovery lr */
|
|
if (bbr->r_ctl.rc_lost == 0)
|
|
lr2use = 0;
|
|
else if (bbr->r_ctl.rc_delivered == 0)
|
|
lr2use = 1000;
|
|
else {
|
|
lr2use = bbr->r_ctl.rc_lost * 1000;
|
|
lr2use /= bbr->r_ctl.rc_delivered;
|
|
}
|
|
lr2use += bbr->r_ctl.recovery_lr;
|
|
acks_inflight = (flight / (maxseg * 2));
|
|
if (bbr_red_scale) {
|
|
lr2use *= bbr_get_rtt(bbr, BBR_SRTT);
|
|
lr2use /= bbr_red_scale;
|
|
if ((bbr_red_growth_restrict) &&
|
|
((bbr_get_rtt(bbr, BBR_SRTT)/bbr_red_scale) > 1))
|
|
bbr->r_ctl.restrict_growth += acks_inflight;
|
|
}
|
|
if (lr2use) {
|
|
val = (uint64_t)cwnd * lr2use;
|
|
val /= 1000;
|
|
if (cwnd > val)
|
|
newcwnd = roundup((cwnd - val), maxseg);
|
|
else
|
|
newcwnd = maxseg;
|
|
} else {
|
|
val = (uint64_t)cwnd * (uint64_t)bbr_red_mul;
|
|
val /= (uint64_t)bbr_red_div;
|
|
newcwnd = roundup((uint32_t)val, maxseg);
|
|
}
|
|
/* with standard delayed acks how many acks can I expect? */
|
|
if (bbr_drop_limit == 0) {
|
|
/*
|
|
* Anticpate how much we will
|
|
* raise the cwnd based on the acks.
|
|
*/
|
|
if ((newcwnd + (acks_inflight * maxseg)) < get_min_cwnd(bbr)) {
|
|
/* We do enforce the min (with the acks) */
|
|
newcwnd = (get_min_cwnd(bbr) - acks_inflight);
|
|
}
|
|
} else {
|
|
/*
|
|
* A strict drop limit of N is is inplace
|
|
*/
|
|
if (newcwnd < (bbr_drop_limit * maxseg)) {
|
|
newcwnd = bbr_drop_limit * maxseg;
|
|
}
|
|
}
|
|
/* For the next N acks do we restrict the growth */
|
|
*cwnd_p = newcwnd;
|
|
if (tp->snd_cwnd > newcwnd)
|
|
tp->snd_cwnd = newcwnd;
|
|
bbr_log_type_cwndupd(bbr, bbr_red_mul, bbr_red_div, val, 22,
|
|
(uint32_t)lr2use,
|
|
bbr_get_rtt(bbr, BBR_SRTT), __LINE__);
|
|
bbr->r_ctl.rc_red_cwnd_pe = bbr->r_ctl.rc_pkt_epoch;
|
|
}
|
|
done:
|
|
bbr->r_ctl.recovery_lr = 0;
|
|
if (flight <= tp->snd_cwnd) {
|
|
bbr->r_wanted_output = 1;
|
|
}
|
|
tcp_bbr_tso_size_check(bbr, bbr->r_ctl.rc_rcvtime);
|
|
}
|
|
|
|
static void
|
|
bbr_setup_red_bw(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
bbr->r_ctl.red_bw = get_filter_value(&bbr->r_ctl.rc_delrate);
|
|
/* Limit the drop in b/w to 1/2 our current filter. */
|
|
if (bbr->r_ctl.red_bw > bbr->r_ctl.rc_bbr_cur_del_rate)
|
|
bbr->r_ctl.red_bw = bbr->r_ctl.rc_bbr_cur_del_rate;
|
|
if (bbr->r_ctl.red_bw < (get_filter_value(&bbr->r_ctl.rc_delrate) / 2))
|
|
bbr->r_ctl.red_bw = get_filter_value(&bbr->r_ctl.rc_delrate) / 2;
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
}
|
|
|
|
static void
|
|
bbr_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type, struct bbr_sendmap *rsm)
|
|
{
|
|
struct tcp_bbr *bbr;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
switch (type) {
|
|
case CC_NDUPACK:
|
|
if (!IN_RECOVERY(tp->t_flags)) {
|
|
tp->snd_recover = tp->snd_max;
|
|
/* Start a new epoch */
|
|
bbr_set_pktepoch(bbr, bbr->r_ctl.rc_rcvtime, __LINE__);
|
|
if (bbr->rc_lt_is_sampling || bbr->rc_lt_use_bw) {
|
|
/*
|
|
* Move forward the lt epoch
|
|
* so it won't count the truncated
|
|
* epoch.
|
|
*/
|
|
bbr->r_ctl.rc_lt_epoch++;
|
|
}
|
|
if (bbr->rc_bbr_state == BBR_STATE_STARTUP) {
|
|
/*
|
|
* Just like the policer detection code
|
|
* if we are in startup we must push
|
|
* forward the last startup epoch
|
|
* to hide the truncated PE.
|
|
*/
|
|
bbr->r_ctl.rc_bbr_last_startup_epoch++;
|
|
}
|
|
bbr->r_ctl.rc_cwnd_on_ent = tp->snd_cwnd;
|
|
ENTER_RECOVERY(tp->t_flags);
|
|
bbr->rc_tlp_rtx_out = 0;
|
|
bbr->r_ctl.recovery_lr = bbr->r_ctl.rc_pkt_epoch_loss_rate;
|
|
tcp_bbr_tso_size_check(bbr, bbr->r_ctl.rc_rcvtime);
|
|
if (bbr->rc_inp->inp_in_hpts &&
|
|
((bbr->r_ctl.rc_hpts_flags & PACE_TMR_RACK) == 0)) {
|
|
/*
|
|
* When we enter recovery, we need to restart
|
|
* any timers. This may mean we gain an agg
|
|
* early, which will be made up for at the last
|
|
* rxt out.
|
|
*/
|
|
bbr->rc_timer_first = 1;
|
|
bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime);
|
|
}
|
|
/*
|
|
* Calculate a new cwnd based on to the current
|
|
* delivery rate with no gain. We get the bdp
|
|
* without gaining it up like we normally would and
|
|
* we use the last cur_del_rate.
|
|
*/
|
|
if ((bbr->rc_use_google == 0) &&
|
|
(bbr->r_ctl.bbr_rttprobe_gain_val ||
|
|
(bbr->rc_bbr_state != BBR_STATE_PROBE_RTT))) {
|
|
tp->snd_cwnd = ctf_flight_size(tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) +
|
|
(tp->t_maxseg - bbr->rc_last_options);
|
|
if (tp->snd_cwnd < get_min_cwnd(bbr)) {
|
|
/* We always gate to min cwnd */
|
|
tp->snd_cwnd = get_min_cwnd(bbr);
|
|
}
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 14, 0, 0, __LINE__);
|
|
}
|
|
bbr_log_type_enter_rec(bbr, rsm->r_start);
|
|
}
|
|
break;
|
|
case CC_RTO_ERR:
|
|
TCPSTAT_INC(tcps_sndrexmitbad);
|
|
/* RTO was unnecessary, so reset everything. */
|
|
bbr_reset_lt_bw_sampling(bbr, bbr->r_ctl.rc_rcvtime);
|
|
if (bbr->rc_bbr_state != BBR_STATE_PROBE_RTT) {
|
|
tp->snd_cwnd = tp->snd_cwnd_prev;
|
|
tp->snd_ssthresh = tp->snd_ssthresh_prev;
|
|
tp->snd_recover = tp->snd_recover_prev;
|
|
tp->snd_cwnd = max(tp->snd_cwnd, bbr->r_ctl.rc_cwnd_on_ent);
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 13, 0, 0, __LINE__);
|
|
}
|
|
tp->t_badrxtwin = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Indicate whether this ack should be delayed. We can delay the ack if
|
|
* following conditions are met:
|
|
* - There is no delayed ack timer in progress.
|
|
* - Our last ack wasn't a 0-sized window. We never want to delay
|
|
* the ack that opens up a 0-sized window.
|
|
* - LRO wasn't used for this segment. We make sure by checking that the
|
|
* segment size is not larger than the MSS.
|
|
* - Delayed acks are enabled or this is a half-synchronized T/TCP
|
|
* connection.
|
|
* - The data being acked is less than a full segment (a stretch ack
|
|
* of more than a segment we should ack.
|
|
* - nsegs is 1 (if its more than that we received more than 1 ack).
|
|
*/
|
|
#define DELAY_ACK(tp, bbr, nsegs) \
|
|
(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
|
|
((bbr->bbr_segs_rcvd + nsegs) < tp->t_delayed_ack) && \
|
|
(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
|
|
|
|
/*
|
|
* Return the lowest RSM in the map of
|
|
* packets still in flight that is not acked.
|
|
* This should normally find on the first one
|
|
* since we remove packets from the send
|
|
* map after they are marked ACKED.
|
|
*/
|
|
static struct bbr_sendmap *
|
|
bbr_find_lowest_rsm(struct tcp_bbr *bbr)
|
|
{
|
|
struct bbr_sendmap *rsm;
|
|
|
|
/*
|
|
* Walk the time-order transmitted list looking for an rsm that is
|
|
* not acked. This will be the one that was sent the longest time
|
|
* ago that is still outstanding.
|
|
*/
|
|
TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_tmap, r_tnext) {
|
|
if (rsm->r_flags & BBR_ACKED) {
|
|
continue;
|
|
}
|
|
goto finish;
|
|
}
|
|
finish:
|
|
return (rsm);
|
|
}
|
|
|
|
static struct bbr_sendmap *
|
|
bbr_find_high_nonack(struct tcp_bbr *bbr, struct bbr_sendmap *rsm)
|
|
{
|
|
struct bbr_sendmap *prsm;
|
|
|
|
/*
|
|
* Walk the sequence order list backward until we hit and arrive at
|
|
* the highest seq not acked. In theory when this is called it
|
|
* should be the last segment (which it was not).
|
|
*/
|
|
prsm = rsm;
|
|
TAILQ_FOREACH_REVERSE_FROM(prsm, &bbr->r_ctl.rc_map, bbr_head, r_next) {
|
|
if (prsm->r_flags & (BBR_ACKED | BBR_HAS_FIN)) {
|
|
continue;
|
|
}
|
|
return (prsm);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Returns to the caller the number of microseconds that
|
|
* the packet can be outstanding before we think we
|
|
* should have had an ack returned.
|
|
*/
|
|
static uint32_t
|
|
bbr_calc_thresh_rack(struct tcp_bbr *bbr, uint32_t srtt, uint32_t cts, struct bbr_sendmap *rsm)
|
|
{
|
|
/*
|
|
* lro is the flag we use to determine if we have seen reordering.
|
|
* If it gets set we have seen reordering. The reorder logic either
|
|
* works in one of two ways:
|
|
*
|
|
* If reorder-fade is configured, then we track the last time we saw
|
|
* re-ordering occur. If we reach the point where enough time as
|
|
* passed we no longer consider reordering has occuring.
|
|
*
|
|
* Or if reorder-face is 0, then once we see reordering we consider
|
|
* the connection to alway be subject to reordering and just set lro
|
|
* to 1.
|
|
*
|
|
* In the end if lro is non-zero we add the extra time for
|
|
* reordering in.
|
|
*/
|
|
int32_t lro;
|
|
uint32_t thresh, t_rxtcur;
|
|
|
|
if (srtt == 0)
|
|
srtt = 1;
|
|
if (bbr->r_ctl.rc_reorder_ts) {
|
|
if (bbr->r_ctl.rc_reorder_fade) {
|
|
if (SEQ_GEQ(cts, bbr->r_ctl.rc_reorder_ts)) {
|
|
lro = cts - bbr->r_ctl.rc_reorder_ts;
|
|
if (lro == 0) {
|
|
/*
|
|
* No time as passed since the last
|
|
* reorder, mark it as reordering.
|
|
*/
|
|
lro = 1;
|
|
}
|
|
} else {
|
|
/* Negative time? */
|
|
lro = 0;
|
|
}
|
|
if (lro > bbr->r_ctl.rc_reorder_fade) {
|
|
/* Turn off reordering seen too */
|
|
bbr->r_ctl.rc_reorder_ts = 0;
|
|
lro = 0;
|
|
}
|
|
} else {
|
|
/* Reodering does not fade */
|
|
lro = 1;
|
|
}
|
|
} else {
|
|
lro = 0;
|
|
}
|
|
thresh = srtt + bbr->r_ctl.rc_pkt_delay;
|
|
if (lro) {
|
|
/* It must be set, if not you get 1/4 rtt */
|
|
if (bbr->r_ctl.rc_reorder_shift)
|
|
thresh += (srtt >> bbr->r_ctl.rc_reorder_shift);
|
|
else
|
|
thresh += (srtt >> 2);
|
|
} else {
|
|
thresh += 1000;
|
|
}
|
|
/* We don't let the rack timeout be above a RTO */
|
|
if ((bbr->rc_tp)->t_srtt == 0)
|
|
t_rxtcur = BBR_INITIAL_RTO;
|
|
else
|
|
t_rxtcur = TICKS_2_USEC(bbr->rc_tp->t_rxtcur);
|
|
if (thresh > t_rxtcur) {
|
|
thresh = t_rxtcur;
|
|
}
|
|
/* And we don't want it above the RTO max either */
|
|
if (thresh > (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND)) {
|
|
thresh = (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND);
|
|
}
|
|
bbr_log_thresh_choice(bbr, cts, thresh, lro, srtt, rsm, BBR_TO_FRM_RACK);
|
|
return (thresh);
|
|
}
|
|
|
|
/*
|
|
* Return to the caller the amount of time in mico-seconds
|
|
* that should be used for the TLP timer from the last
|
|
* send time of this packet.
|
|
*/
|
|
static uint32_t
|
|
bbr_calc_thresh_tlp(struct tcpcb *tp, struct tcp_bbr *bbr,
|
|
struct bbr_sendmap *rsm, uint32_t srtt,
|
|
uint32_t cts)
|
|
{
|
|
uint32_t thresh, len, maxseg, t_rxtcur;
|
|
struct bbr_sendmap *prsm;
|
|
|
|
if (srtt == 0)
|
|
srtt = 1;
|
|
if (bbr->rc_tlp_threshold)
|
|
thresh = srtt + (srtt / bbr->rc_tlp_threshold);
|
|
else
|
|
thresh = (srtt * 2);
|
|
maxseg = tp->t_maxseg - bbr->rc_last_options;
|
|
/* Get the previous sent packet, if any */
|
|
len = rsm->r_end - rsm->r_start;
|
|
|
|
/* 2.1 behavior */
|
|
prsm = TAILQ_PREV(rsm, bbr_head, r_tnext);
|
|
if (prsm && (len <= maxseg)) {
|
|
/*
|
|
* Two packets outstanding, thresh should be (2*srtt) +
|
|
* possible inter-packet delay (if any).
|
|
*/
|
|
uint32_t inter_gap = 0;
|
|
int idx, nidx;
|
|
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
nidx = prsm->r_rtr_cnt - 1;
|
|
if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
|
|
/* Yes it was sent later (or at the same time) */
|
|
inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
|
|
}
|
|
thresh += inter_gap;
|
|
} else if (len <= maxseg) {
|
|
/*
|
|
* Possibly compensate for delayed-ack.
|
|
*/
|
|
uint32_t alt_thresh;
|
|
|
|
alt_thresh = srtt + (srtt / 2) + bbr_delayed_ack_time;
|
|
if (alt_thresh > thresh)
|
|
thresh = alt_thresh;
|
|
}
|
|
/* Not above the current RTO */
|
|
if (tp->t_srtt == 0)
|
|
t_rxtcur = BBR_INITIAL_RTO;
|
|
else
|
|
t_rxtcur = TICKS_2_USEC(tp->t_rxtcur);
|
|
|
|
bbr_log_thresh_choice(bbr, cts, thresh, t_rxtcur, srtt, rsm, BBR_TO_FRM_TLP);
|
|
/* Not above an RTO */
|
|
if (thresh > t_rxtcur) {
|
|
thresh = t_rxtcur;
|
|
}
|
|
/* Not above a RTO max */
|
|
if (thresh > (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND)) {
|
|
thresh = (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND);
|
|
}
|
|
/* And now apply the user TLP min */
|
|
if (thresh < bbr_tlp_min) {
|
|
thresh = bbr_tlp_min;
|
|
}
|
|
return (thresh);
|
|
}
|
|
|
|
/*
|
|
* Return one of three RTTs to use (in microseconds).
|
|
*/
|
|
static __inline uint32_t
|
|
bbr_get_rtt(struct tcp_bbr *bbr, int32_t rtt_type)
|
|
{
|
|
uint32_t f_rtt;
|
|
uint32_t srtt;
|
|
|
|
f_rtt = get_filter_value_small(&bbr->r_ctl.rc_rttprop);
|
|
if (get_filter_value_small(&bbr->r_ctl.rc_rttprop) == 0xffffffff) {
|
|
/* We have no rtt at all */
|
|
if (bbr->rc_tp->t_srtt == 0)
|
|
f_rtt = BBR_INITIAL_RTO;
|
|
else
|
|
f_rtt = (TICKS_2_USEC(bbr->rc_tp->t_srtt) >> TCP_RTT_SHIFT);
|
|
/*
|
|
* Since we don't know how good the rtt is apply a
|
|
* delayed-ack min
|
|
*/
|
|
if (f_rtt < bbr_delayed_ack_time) {
|
|
f_rtt = bbr_delayed_ack_time;
|
|
}
|
|
}
|
|
/* Take the filter version or last measured pkt-rtt */
|
|
if (rtt_type == BBR_RTT_PROP) {
|
|
srtt = f_rtt;
|
|
} else if (rtt_type == BBR_RTT_PKTRTT) {
|
|
if (bbr->r_ctl.rc_pkt_epoch_rtt) {
|
|
srtt = bbr->r_ctl.rc_pkt_epoch_rtt;
|
|
} else {
|
|
/* No pkt rtt yet */
|
|
srtt = f_rtt;
|
|
}
|
|
} else if (rtt_type == BBR_RTT_RACK) {
|
|
srtt = bbr->r_ctl.rc_last_rtt;
|
|
/* We need to add in any internal delay for our timer */
|
|
if (bbr->rc_ack_was_delayed)
|
|
srtt += bbr->r_ctl.rc_ack_hdwr_delay;
|
|
} else if (rtt_type == BBR_SRTT) {
|
|
srtt = (TICKS_2_USEC(bbr->rc_tp->t_srtt) >> TCP_RTT_SHIFT);
|
|
} else {
|
|
/* TSNH */
|
|
srtt = f_rtt;
|
|
#ifdef BBR_INVARIANTS
|
|
panic("Unknown rtt request type %d", rtt_type);
|
|
#endif
|
|
}
|
|
return (srtt);
|
|
}
|
|
|
|
static int
|
|
bbr_is_lost(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t cts)
|
|
{
|
|
uint32_t thresh;
|
|
|
|
|
|
thresh = bbr_calc_thresh_rack(bbr, bbr_get_rtt(bbr, BBR_RTT_RACK),
|
|
cts, rsm);
|
|
if ((cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]) >= thresh) {
|
|
/* It is lost (past time) */
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return a sendmap if we need to retransmit something.
|
|
*/
|
|
static struct bbr_sendmap *
|
|
bbr_check_recovery_mode(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
/*
|
|
* Check to see that we don't need to fall into recovery. We will
|
|
* need to do so if our oldest transmit is past the time we should
|
|
* have had an ack.
|
|
*/
|
|
|
|
struct bbr_sendmap *rsm;
|
|
int32_t idx;
|
|
|
|
if (TAILQ_EMPTY(&bbr->r_ctl.rc_map)) {
|
|
/* Nothing outstanding that we know of */
|
|
return (NULL);
|
|
}
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap);
|
|
if (rsm == NULL) {
|
|
/* Nothing in the transmit map */
|
|
return (NULL);
|
|
}
|
|
if (tp->t_flags & TF_SENTFIN) {
|
|
/* Fin restricted, don't find anything once a fin is sent */
|
|
return (NULL);
|
|
}
|
|
if (rsm->r_flags & BBR_ACKED) {
|
|
/*
|
|
* Ok the first one is acked (this really should not happen
|
|
* since we remove the from the tmap once they are acked)
|
|
*/
|
|
rsm = bbr_find_lowest_rsm(bbr);
|
|
if (rsm == NULL)
|
|
return (NULL);
|
|
}
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
if (SEQ_LEQ(cts, rsm->r_tim_lastsent[idx])) {
|
|
/* Send timestamp is the same or less? can't be ready */
|
|
return (NULL);
|
|
}
|
|
/* Get our RTT time */
|
|
if (bbr_is_lost(bbr, rsm, cts) &&
|
|
((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
|
|
(rsm->r_flags & BBR_SACK_PASSED))) {
|
|
if ((rsm->r_flags & BBR_MARKED_LOST) == 0) {
|
|
rsm->r_flags |= BBR_MARKED_LOST;
|
|
bbr->r_ctl.rc_lost += rsm->r_end - rsm->r_start;
|
|
bbr->r_ctl.rc_lost_bytes += rsm->r_end - rsm->r_start;
|
|
}
|
|
bbr_cong_signal(tp, NULL, CC_NDUPACK, rsm);
|
|
#ifdef BBR_INVARIANTS
|
|
if ((rsm->r_end - rsm->r_start) == 0)
|
|
panic("tp:%p bbr:%p rsm:%p length is 0?", tp, bbr, rsm);
|
|
#endif
|
|
return (rsm);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* RACK Timer, here we simply do logging and house keeping.
|
|
* the normal bbr_output_wtime() function will call the
|
|
* appropriate thing to check if we need to do a RACK retransmit.
|
|
* We return 1, saying don't proceed with bbr_output_wtime only
|
|
* when all timers have been stopped (destroyed PCB?).
|
|
*/
|
|
static int
|
|
bbr_timeout_rack(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
/*
|
|
* This timer simply provides an internal trigger to send out data.
|
|
* The check_recovery_mode call will see if there are needed
|
|
* retransmissions, if so we will enter fast-recovery. The output
|
|
* call may or may not do the same thing depending on sysctl
|
|
* settings.
|
|
*/
|
|
uint32_t lost;
|
|
|
|
if (bbr->rc_all_timers_stopped) {
|
|
return (1);
|
|
}
|
|
if (TSTMP_LT(cts, bbr->r_ctl.rc_timer_exp)) {
|
|
/* Its not time yet */
|
|
return (0);
|
|
}
|
|
BBR_STAT_INC(bbr_to_tot);
|
|
lost = bbr->r_ctl.rc_lost;
|
|
if (bbr->r_state && (bbr->r_state != tp->t_state))
|
|
bbr_set_state(tp, bbr, 0);
|
|
bbr_log_to_event(bbr, cts, BBR_TO_FRM_RACK);
|
|
if (bbr->r_ctl.rc_resend == NULL) {
|
|
/* Lets do the check here */
|
|
bbr->r_ctl.rc_resend = bbr_check_recovery_mode(tp, bbr, cts);
|
|
}
|
|
if (bbr_policer_call_from_rack_to)
|
|
bbr_lt_bw_sampling(bbr, cts, (bbr->r_ctl.rc_lost > lost));
|
|
bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
|
|
return (0);
|
|
}
|
|
|
|
static __inline void
|
|
bbr_clone_rsm(struct tcp_bbr *bbr, struct bbr_sendmap *nrsm, struct bbr_sendmap *rsm, uint32_t start)
|
|
{
|
|
int idx;
|
|
|
|
nrsm->r_start = start;
|
|
nrsm->r_end = rsm->r_end;
|
|
nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
|
|
nrsm->r_flags = rsm->r_flags;
|
|
/* We don't transfer forward the SYN flag */
|
|
nrsm->r_flags &= ~BBR_HAS_SYN;
|
|
/* We move forward the FIN flag, not that this should happen */
|
|
rsm->r_flags &= ~BBR_HAS_FIN;
|
|
nrsm->r_dupack = rsm->r_dupack;
|
|
nrsm->r_rtr_bytes = 0;
|
|
nrsm->r_is_gain = rsm->r_is_gain;
|
|
nrsm->r_is_drain = rsm->r_is_drain;
|
|
nrsm->r_delivered = rsm->r_delivered;
|
|
nrsm->r_ts_valid = rsm->r_ts_valid;
|
|
nrsm->r_del_ack_ts = rsm->r_del_ack_ts;
|
|
nrsm->r_del_time = rsm->r_del_time;
|
|
nrsm->r_app_limited = rsm->r_app_limited;
|
|
nrsm->r_first_sent_time = rsm->r_first_sent_time;
|
|
nrsm->r_flight_at_send = rsm->r_flight_at_send;
|
|
/* We split a piece the lower section looses any just_ret flag. */
|
|
nrsm->r_bbr_state = rsm->r_bbr_state;
|
|
for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
|
|
nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
|
|
}
|
|
rsm->r_end = nrsm->r_start;
|
|
idx = min((bbr->rc_tp->t_maxseg - bbr->rc_last_options), bbr->r_ctl.rc_pace_max_segs);
|
|
idx /= 8;
|
|
/* Check if we got too small */
|
|
if ((rsm->r_is_smallmap == 0) &&
|
|
((rsm->r_end - rsm->r_start) <= idx)) {
|
|
bbr->r_ctl.rc_num_small_maps_alloced++;
|
|
rsm->r_is_smallmap = 1;
|
|
}
|
|
/* Check the new one as well */
|
|
if ((nrsm->r_end - nrsm->r_start) <= idx) {
|
|
bbr->r_ctl.rc_num_small_maps_alloced++;
|
|
nrsm->r_is_smallmap = 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bbr_sack_mergable(struct bbr_sendmap *at,
|
|
uint32_t start, uint32_t end)
|
|
{
|
|
/*
|
|
* Given a sack block defined by
|
|
* start and end, and a current postion
|
|
* at. Return 1 if either side of at
|
|
* would show that the block is mergable
|
|
* to that side. A block to be mergable
|
|
* must have overlap with the start/end
|
|
* and be in the SACK'd state.
|
|
*/
|
|
struct bbr_sendmap *l_rsm;
|
|
struct bbr_sendmap *r_rsm;
|
|
|
|
/* first get the either side blocks */
|
|
l_rsm = TAILQ_PREV(at, bbr_head, r_next);
|
|
r_rsm = TAILQ_NEXT(at, r_next);
|
|
if (l_rsm && (l_rsm->r_flags & BBR_ACKED)) {
|
|
/* Potentially mergeable */
|
|
if ((l_rsm->r_end == start) ||
|
|
(SEQ_LT(start, l_rsm->r_end) &&
|
|
SEQ_GT(end, l_rsm->r_end))) {
|
|
/*
|
|
* map blk |------|
|
|
* sack blk |------|
|
|
* <or>
|
|
* map blk |------|
|
|
* sack blk |------|
|
|
*/
|
|
return (1);
|
|
}
|
|
}
|
|
if (r_rsm && (r_rsm->r_flags & BBR_ACKED)) {
|
|
/* Potentially mergeable */
|
|
if ((r_rsm->r_start == end) ||
|
|
(SEQ_LT(start, r_rsm->r_start) &&
|
|
SEQ_GT(end, r_rsm->r_start))) {
|
|
/*
|
|
* map blk |---------|
|
|
* sack blk |----|
|
|
* <or>
|
|
* map blk |---------|
|
|
* sack blk |-------|
|
|
*/
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static struct bbr_sendmap *
|
|
bbr_merge_rsm(struct tcp_bbr *bbr,
|
|
struct bbr_sendmap *l_rsm,
|
|
struct bbr_sendmap *r_rsm)
|
|
{
|
|
/*
|
|
* We are merging two ack'd RSM's,
|
|
* the l_rsm is on the left (lower seq
|
|
* values) and the r_rsm is on the right
|
|
* (higher seq value). The simplest way
|
|
* to merge these is to move the right
|
|
* one into the left. I don't think there
|
|
* is any reason we need to try to find
|
|
* the oldest (or last oldest retransmitted).
|
|
*/
|
|
l_rsm->r_end = r_rsm->r_end;
|
|
if (l_rsm->r_dupack < r_rsm->r_dupack)
|
|
l_rsm->r_dupack = r_rsm->r_dupack;
|
|
if (r_rsm->r_rtr_bytes)
|
|
l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
|
|
if (r_rsm->r_in_tmap) {
|
|
/* This really should not happen */
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, r_rsm, r_tnext);
|
|
}
|
|
if (r_rsm->r_app_limited)
|
|
l_rsm->r_app_limited = r_rsm->r_app_limited;
|
|
/* Now the flags */
|
|
if (r_rsm->r_flags & BBR_HAS_FIN)
|
|
l_rsm->r_flags |= BBR_HAS_FIN;
|
|
if (r_rsm->r_flags & BBR_TLP)
|
|
l_rsm->r_flags |= BBR_TLP;
|
|
if (r_rsm->r_flags & BBR_RWND_COLLAPSED)
|
|
l_rsm->r_flags |= BBR_RWND_COLLAPSED;
|
|
if (r_rsm->r_flags & BBR_MARKED_LOST) {
|
|
/* This really should not happen */
|
|
bbr->r_ctl.rc_lost_bytes -= r_rsm->r_end - r_rsm->r_start;
|
|
}
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_map, r_rsm, r_next);
|
|
if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
|
|
/* Transfer the split limit to the map we free */
|
|
r_rsm->r_limit_type = l_rsm->r_limit_type;
|
|
l_rsm->r_limit_type = 0;
|
|
}
|
|
bbr_free(bbr, r_rsm);
|
|
return(l_rsm);
|
|
}
|
|
|
|
/*
|
|
* TLP Timer, here we simply setup what segment we want to
|
|
* have the TLP expire on, the normal bbr_output_wtime() will then
|
|
* send it out.
|
|
*
|
|
* We return 1, saying don't proceed with bbr_output_wtime only
|
|
* when all timers have been stopped (destroyed PCB?).
|
|
*/
|
|
static int
|
|
bbr_timeout_tlp(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
/*
|
|
* Tail Loss Probe.
|
|
*/
|
|
struct bbr_sendmap *rsm = NULL;
|
|
struct socket *so;
|
|
uint32_t amm;
|
|
uint32_t out, avail;
|
|
uint32_t maxseg;
|
|
int collapsed_win = 0;
|
|
|
|
if (bbr->rc_all_timers_stopped) {
|
|
return (1);
|
|
}
|
|
if (TSTMP_LT(cts, bbr->r_ctl.rc_timer_exp)) {
|
|
/* Its not time yet */
|
|
return (0);
|
|
}
|
|
if (bbr_progress_timeout_check(bbr)) {
|
|
tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT);
|
|
return (1);
|
|
}
|
|
/* Did we somehow get into persists? */
|
|
if (bbr->rc_in_persist) {
|
|
return (0);
|
|
}
|
|
if (bbr->r_state && (bbr->r_state != tp->t_state))
|
|
bbr_set_state(tp, bbr, 0);
|
|
BBR_STAT_INC(bbr_tlp_tot);
|
|
maxseg = tp->t_maxseg - bbr->rc_last_options;
|
|
#ifdef KERN_TLS
|
|
if (bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
|
|
/*
|
|
* For hardware TLS we do *not* want to send
|
|
* new data.
|
|
*/
|
|
goto need_retran;
|
|
}
|
|
#endif
|
|
/*
|
|
* A TLP timer has expired. We have been idle for 2 rtts. So we now
|
|
* need to figure out how to force a full MSS segment out.
|
|
*/
|
|
so = tp->t_inpcb->inp_socket;
|
|
avail = sbavail(&so->so_snd);
|
|
out = ctf_outstanding(tp);
|
|
if (out > tp->snd_wnd) {
|
|
/* special case, we need a retransmission */
|
|
collapsed_win = 1;
|
|
goto need_retran;
|
|
}
|
|
if (avail > out) {
|
|
/* New data is available */
|
|
amm = avail - out;
|
|
if (amm > maxseg) {
|
|
amm = maxseg;
|
|
} else if ((amm < maxseg) && ((tp->t_flags & TF_NODELAY) == 0)) {
|
|
/* not enough to fill a MTU and no-delay is off */
|
|
goto need_retran;
|
|
}
|
|
/* Set the send-new override */
|
|
if ((out + amm) <= tp->snd_wnd) {
|
|
bbr->rc_tlp_new_data = 1;
|
|
} else {
|
|
goto need_retran;
|
|
}
|
|
bbr->r_ctl.rc_tlp_seg_send_cnt = 0;
|
|
bbr->r_ctl.rc_last_tlp_seq = tp->snd_max;
|
|
bbr->r_ctl.rc_tlp_send = NULL;
|
|
/* cap any slots */
|
|
BBR_STAT_INC(bbr_tlp_newdata);
|
|
goto send;
|
|
}
|
|
need_retran:
|
|
/*
|
|
* Ok we need to arrange the last un-acked segment to be re-sent, or
|
|
* optionally the first un-acked segment.
|
|
*/
|
|
if (collapsed_win == 0) {
|
|
rsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_map, bbr_sendmap, r_next);
|
|
if (rsm && (BBR_ACKED | BBR_HAS_FIN)) {
|
|
rsm = bbr_find_high_nonack(bbr, rsm);
|
|
}
|
|
if (rsm == NULL) {
|
|
goto restore;
|
|
}
|
|
} else {
|
|
/*
|
|
* We must find the last segment
|
|
* that was acceptable by the client.
|
|
*/
|
|
TAILQ_FOREACH_REVERSE(rsm, &bbr->r_ctl.rc_map, bbr_head, r_next) {
|
|
if ((rsm->r_flags & BBR_RWND_COLLAPSED) == 0) {
|
|
/* Found one */
|
|
break;
|
|
}
|
|
}
|
|
if (rsm == NULL) {
|
|
/* None? if so send the first */
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
if (rsm == NULL)
|
|
goto restore;
|
|
}
|
|
}
|
|
if ((rsm->r_end - rsm->r_start) > maxseg) {
|
|
/*
|
|
* We need to split this the last segment in two.
|
|
*/
|
|
struct bbr_sendmap *nrsm;
|
|
|
|
nrsm = bbr_alloc_full_limit(bbr);
|
|
if (nrsm == NULL) {
|
|
/*
|
|
* We can't get memory to split, we can either just
|
|
* not split it. Or retransmit the whole piece, lets
|
|
* do the large send (BTLP :-) ).
|
|
*/
|
|
goto go_for_it;
|
|
}
|
|
bbr_clone_rsm(bbr, nrsm, rsm, (rsm->r_end - maxseg));
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next);
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
rsm->r_flags &= (~BBR_HAS_FIN);
|
|
rsm = nrsm;
|
|
}
|
|
go_for_it:
|
|
bbr->r_ctl.rc_tlp_send = rsm;
|
|
bbr->rc_tlp_rtx_out = 1;
|
|
if (rsm->r_start == bbr->r_ctl.rc_last_tlp_seq) {
|
|
bbr->r_ctl.rc_tlp_seg_send_cnt++;
|
|
tp->t_rxtshift++;
|
|
} else {
|
|
bbr->r_ctl.rc_last_tlp_seq = rsm->r_start;
|
|
bbr->r_ctl.rc_tlp_seg_send_cnt = 1;
|
|
}
|
|
send:
|
|
if (bbr->r_ctl.rc_tlp_seg_send_cnt > bbr_tlp_max_resend) {
|
|
/*
|
|
* Can't [re]/transmit a segment we have retranmitted the
|
|
* max times. We need the retransmit timer to take over.
|
|
*/
|
|
restore:
|
|
bbr->rc_tlp_new_data = 0;
|
|
bbr->r_ctl.rc_tlp_send = NULL;
|
|
if (rsm)
|
|
rsm->r_flags &= ~BBR_TLP;
|
|
BBR_STAT_INC(bbr_tlp_retran_fail);
|
|
return (0);
|
|
} else if (rsm) {
|
|
rsm->r_flags |= BBR_TLP;
|
|
}
|
|
if (rsm && (rsm->r_start == bbr->r_ctl.rc_last_tlp_seq) &&
|
|
(bbr->r_ctl.rc_tlp_seg_send_cnt > bbr_tlp_max_resend)) {
|
|
/*
|
|
* We have retransmitted to many times for TLP. Switch to
|
|
* the regular RTO timer
|
|
*/
|
|
goto restore;
|
|
}
|
|
bbr_log_to_event(bbr, cts, BBR_TO_FRM_TLP);
|
|
bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Delayed ack Timer, here we simply need to setup the
|
|
* ACK_NOW flag and remove the DELACK flag. From there
|
|
* the output routine will send the ack out.
|
|
*
|
|
* We only return 1, saying don't proceed, if all timers
|
|
* are stopped (destroyed PCB?).
|
|
*/
|
|
static int
|
|
bbr_timeout_delack(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
if (bbr->rc_all_timers_stopped) {
|
|
return (1);
|
|
}
|
|
bbr_log_to_event(bbr, cts, BBR_TO_FRM_DELACK);
|
|
tp->t_flags &= ~TF_DELACK;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
TCPSTAT_INC(tcps_delack);
|
|
bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Persists timer, here we simply need to setup the
|
|
* FORCE-DATA flag the output routine will send
|
|
* the one byte send.
|
|
*
|
|
* We only return 1, saying don't proceed, if all timers
|
|
* are stopped (destroyed PCB?).
|
|
*/
|
|
static int
|
|
bbr_timeout_persist(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
struct tcptemp *t_template;
|
|
int32_t retval = 1;
|
|
|
|
if (bbr->rc_all_timers_stopped) {
|
|
return (1);
|
|
}
|
|
if (bbr->rc_in_persist == 0)
|
|
return (0);
|
|
KASSERT(tp->t_inpcb != NULL,
|
|
("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
|
|
/*
|
|
* Persistence timer into zero window. Force a byte to be output, if
|
|
* possible.
|
|
*/
|
|
bbr_log_to_event(bbr, cts, BBR_TO_FRM_PERSIST);
|
|
bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
|
|
TCPSTAT_INC(tcps_persisttimeo);
|
|
/*
|
|
* Have we exceeded the user specified progress time?
|
|
*/
|
|
if (bbr_progress_timeout_check(bbr)) {
|
|
tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT);
|
|
goto out;
|
|
}
|
|
/*
|
|
* Hack: if the peer is dead/unreachable, we do not time out if the
|
|
* window is closed. After a full backoff, drop the connection if
|
|
* the idle time (no responses to probes) reaches the maximum
|
|
* backoff that we would use if retransmitting.
|
|
*/
|
|
if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
|
|
(ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
|
|
ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
|
|
TCPSTAT_INC(tcps_persistdrop);
|
|
tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT);
|
|
goto out;
|
|
}
|
|
if ((sbavail(&bbr->rc_inp->inp_socket->so_snd) == 0) &&
|
|
tp->snd_una == tp->snd_max) {
|
|
bbr_exit_persist(tp, bbr, cts, __LINE__);
|
|
retval = 0;
|
|
goto out;
|
|
}
|
|
/*
|
|
* If the user has closed the socket then drop a persisting
|
|
* connection after a much reduced timeout.
|
|
*/
|
|
if (tp->t_state > TCPS_CLOSE_WAIT &&
|
|
(ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
|
|
TCPSTAT_INC(tcps_persistdrop);
|
|
tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT);
|
|
goto out;
|
|
}
|
|
t_template = tcpip_maketemplate(bbr->rc_inp);
|
|
if (t_template) {
|
|
tcp_respond(tp, t_template->tt_ipgen,
|
|
&t_template->tt_t, (struct mbuf *)NULL,
|
|
tp->rcv_nxt, tp->snd_una - 1, 0);
|
|
/* This sends an ack */
|
|
if (tp->t_flags & TF_DELACK)
|
|
tp->t_flags &= ~TF_DELACK;
|
|
free(t_template, M_TEMP);
|
|
}
|
|
if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
|
|
tp->t_rxtshift++;
|
|
bbr_start_hpts_timer(bbr, tp, cts, 3, 0, 0);
|
|
out:
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* If a keepalive goes off, we had no other timers
|
|
* happening. We always return 1 here since this
|
|
* routine either drops the connection or sends
|
|
* out a segment with respond.
|
|
*/
|
|
static int
|
|
bbr_timeout_keepalive(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
struct tcptemp *t_template;
|
|
struct inpcb *inp;
|
|
|
|
if (bbr->rc_all_timers_stopped) {
|
|
return (1);
|
|
}
|
|
bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
|
|
inp = tp->t_inpcb;
|
|
bbr_log_to_event(bbr, cts, BBR_TO_FRM_KEEP);
|
|
/*
|
|
* Keep-alive timer went off; send something or drop connection if
|
|
* idle for too long.
|
|
*/
|
|
TCPSTAT_INC(tcps_keeptimeo);
|
|
if (tp->t_state < TCPS_ESTABLISHED)
|
|
goto dropit;
|
|
if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
|
|
tp->t_state <= TCPS_CLOSING) {
|
|
if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
|
|
goto dropit;
|
|
/*
|
|
* Send a packet designed to force a response if the peer is
|
|
* up and reachable: either an ACK if the connection is
|
|
* still alive, or an RST if the peer has closed the
|
|
* connection due to timeout or reboot. Using sequence
|
|
* number tp->snd_una-1 causes the transmitted zero-length
|
|
* segment to lie outside the receive window; by the
|
|
* protocol spec, this requires the correspondent TCP to
|
|
* respond.
|
|
*/
|
|
TCPSTAT_INC(tcps_keepprobe);
|
|
t_template = tcpip_maketemplate(inp);
|
|
if (t_template) {
|
|
tcp_respond(tp, t_template->tt_ipgen,
|
|
&t_template->tt_t, (struct mbuf *)NULL,
|
|
tp->rcv_nxt, tp->snd_una - 1, 0);
|
|
free(t_template, M_TEMP);
|
|
}
|
|
}
|
|
bbr_start_hpts_timer(bbr, tp, cts, 4, 0, 0);
|
|
return (1);
|
|
dropit:
|
|
TCPSTAT_INC(tcps_keepdrops);
|
|
tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Retransmit helper function, clear up all the ack
|
|
* flags and take care of important book keeping.
|
|
*/
|
|
static void
|
|
bbr_remxt_tmr(struct tcpcb *tp)
|
|
{
|
|
/*
|
|
* The retransmit timer went off, all sack'd blocks must be
|
|
* un-acked.
|
|
*/
|
|
struct bbr_sendmap *rsm, *trsm = NULL;
|
|
struct tcp_bbr *bbr;
|
|
uint32_t cts, lost;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
cts = tcp_get_usecs(&bbr->rc_tv);
|
|
lost = bbr->r_ctl.rc_lost;
|
|
if (bbr->r_state && (bbr->r_state != tp->t_state))
|
|
bbr_set_state(tp, bbr, 0);
|
|
|
|
TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) {
|
|
if (rsm->r_flags & BBR_ACKED) {
|
|
uint32_t old_flags;
|
|
|
|
rsm->r_dupack = 0;
|
|
if (rsm->r_in_tmap == 0) {
|
|
/* We must re-add it back to the tlist */
|
|
if (trsm == NULL) {
|
|
TAILQ_INSERT_HEAD(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
} else {
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, trsm, rsm, r_tnext);
|
|
}
|
|
rsm->r_in_tmap = 1;
|
|
}
|
|
old_flags = rsm->r_flags;
|
|
rsm->r_flags |= BBR_RXT_CLEARED;
|
|
rsm->r_flags &= ~(BBR_ACKED | BBR_SACK_PASSED | BBR_WAS_SACKPASS);
|
|
bbr_log_type_rsmclear(bbr, cts, rsm, old_flags, __LINE__);
|
|
} else {
|
|
if ((rsm->r_flags & BBR_MARKED_LOST) == 0) {
|
|
bbr->r_ctl.rc_lost += rsm->r_end - rsm->r_start;
|
|
bbr->r_ctl.rc_lost_bytes += rsm->r_end - rsm->r_start;
|
|
}
|
|
if (bbr_marks_rxt_sack_passed) {
|
|
/*
|
|
* With this option, we will rack out
|
|
* in 1ms increments the rest of the packets.
|
|
*/
|
|
rsm->r_flags |= BBR_SACK_PASSED | BBR_MARKED_LOST;
|
|
rsm->r_flags &= ~BBR_WAS_SACKPASS;
|
|
} else {
|
|
/*
|
|
* With this option we only mark them lost
|
|
* and remove all sack'd markings. We will run
|
|
* another RXT or a TLP. This will cause
|
|
* us to eventually send more based on what
|
|
* ack's come in.
|
|
*/
|
|
rsm->r_flags |= BBR_MARKED_LOST;
|
|
rsm->r_flags &= ~BBR_WAS_SACKPASS;
|
|
rsm->r_flags &= ~BBR_SACK_PASSED;
|
|
}
|
|
}
|
|
trsm = rsm;
|
|
}
|
|
bbr->r_ctl.rc_resend = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
/* Clear the count (we just un-acked them) */
|
|
bbr_log_to_event(bbr, cts, BBR_TO_FRM_TMR);
|
|
bbr->rc_tlp_new_data = 0;
|
|
bbr->r_ctl.rc_tlp_seg_send_cnt = 0;
|
|
/* zap the behindness on a rxt */
|
|
bbr->r_ctl.rc_hptsi_agg_delay = 0;
|
|
bbr->r_agg_early_set = 0;
|
|
bbr->r_ctl.rc_agg_early = 0;
|
|
bbr->rc_tlp_rtx_out = 0;
|
|
bbr->r_ctl.rc_sacked = 0;
|
|
bbr->r_ctl.rc_sacklast = NULL;
|
|
bbr->r_timer_override = 1;
|
|
bbr_lt_bw_sampling(bbr, cts, (bbr->r_ctl.rc_lost > lost));
|
|
}
|
|
|
|
/*
|
|
* Re-transmit timeout! If we drop the PCB we will return 1, otherwise
|
|
* we will setup to retransmit the lowest seq number outstanding.
|
|
*/
|
|
static int
|
|
bbr_timeout_rxt(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
int32_t rexmt;
|
|
int32_t retval = 0;
|
|
|
|
bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
|
|
if (bbr->rc_all_timers_stopped) {
|
|
return (1);
|
|
}
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->snd_una == tp->snd_max)) {
|
|
/* Nothing outstanding .. nothing to do */
|
|
return (0);
|
|
}
|
|
/*
|
|
* Retransmission timer went off. Message has not been acked within
|
|
* retransmit interval. Back off to a longer retransmit interval
|
|
* and retransmit one segment.
|
|
*/
|
|
if (bbr_progress_timeout_check(bbr)) {
|
|
retval = 1;
|
|
tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT);
|
|
goto out;
|
|
}
|
|
bbr_remxt_tmr(tp);
|
|
if ((bbr->r_ctl.rc_resend == NULL) ||
|
|
((bbr->r_ctl.rc_resend->r_flags & BBR_RWND_COLLAPSED) == 0)) {
|
|
/*
|
|
* If the rwnd collapsed on
|
|
* the one we are retransmitting
|
|
* it does not count against the
|
|
* rxt count.
|
|
*/
|
|
tp->t_rxtshift++;
|
|
}
|
|
if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
|
|
tp->t_rxtshift = TCP_MAXRXTSHIFT;
|
|
TCPSTAT_INC(tcps_timeoutdrop);
|
|
retval = 1;
|
|
tcp_set_inp_to_drop(bbr->rc_inp,
|
|
(tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
|
|
goto out;
|
|
}
|
|
if (tp->t_state == TCPS_SYN_SENT) {
|
|
/*
|
|
* If the SYN was retransmitted, indicate CWND to be limited
|
|
* to 1 segment in cc_conn_init().
|
|
*/
|
|
tp->snd_cwnd = 1;
|
|
} else if (tp->t_rxtshift == 1) {
|
|
/*
|
|
* first retransmit; record ssthresh and cwnd so they can be
|
|
* recovered if this turns out to be a "bad" retransmit. A
|
|
* retransmit is considered "bad" if an ACK for this segment
|
|
* is received within RTT/2 interval; the assumption here is
|
|
* that the ACK was already in flight. See "On Estimating
|
|
* End-to-End Network Path Properties" by Allman and Paxson
|
|
* for more details.
|
|
*/
|
|
tp->snd_cwnd = tp->t_maxseg - bbr->rc_last_options;
|
|
if (!IN_RECOVERY(tp->t_flags)) {
|
|
tp->snd_cwnd_prev = tp->snd_cwnd;
|
|
tp->snd_ssthresh_prev = tp->snd_ssthresh;
|
|
tp->snd_recover_prev = tp->snd_recover;
|
|
tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
|
|
tp->t_flags |= TF_PREVVALID;
|
|
} else {
|
|
tp->t_flags &= ~TF_PREVVALID;
|
|
}
|
|
tp->snd_cwnd = tp->t_maxseg - bbr->rc_last_options;
|
|
} else {
|
|
tp->snd_cwnd = tp->t_maxseg - bbr->rc_last_options;
|
|
tp->t_flags &= ~TF_PREVVALID;
|
|
}
|
|
TCPSTAT_INC(tcps_rexmttimeo);
|
|
if ((tp->t_state == TCPS_SYN_SENT) ||
|
|
(tp->t_state == TCPS_SYN_RECEIVED))
|
|
rexmt = USEC_2_TICKS(BBR_INITIAL_RTO) * tcp_backoff[tp->t_rxtshift];
|
|
else
|
|
rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
|
|
TCPT_RANGESET(tp->t_rxtcur, rexmt,
|
|
MSEC_2_TICKS(bbr->r_ctl.rc_min_rto_ms),
|
|
MSEC_2_TICKS(((uint32_t)bbr->rc_max_rto_sec) * 1000));
|
|
/*
|
|
* We enter the path for PLMTUD if connection is established or, if
|
|
* connection is FIN_WAIT_1 status, reason for the last is that if
|
|
* amount of data we send is very small, we could send it in couple
|
|
* of packets and process straight to FIN. In that case we won't
|
|
* catch ESTABLISHED state.
|
|
*/
|
|
if (V_tcp_pmtud_blackhole_detect && (((tp->t_state == TCPS_ESTABLISHED))
|
|
|| (tp->t_state == TCPS_FIN_WAIT_1))) {
|
|
#ifdef INET6
|
|
int32_t isipv6;
|
|
#endif
|
|
|
|
/*
|
|
* Idea here is that at each stage of mtu probe (usually,
|
|
* 1448 -> 1188 -> 524) should be given 2 chances to recover
|
|
* before further clamping down. 'tp->t_rxtshift % 2 == 0'
|
|
* should take care of that.
|
|
*/
|
|
if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
|
|
(TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
|
|
(tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
|
|
tp->t_rxtshift % 2 == 0)) {
|
|
/*
|
|
* Enter Path MTU Black-hole Detection mechanism: -
|
|
* Disable Path MTU Discovery (IP "DF" bit). -
|
|
* Reduce MTU to lower value than what we negotiated
|
|
* with peer.
|
|
*/
|
|
if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
|
|
/*
|
|
* Record that we may have found a black
|
|
* hole.
|
|
*/
|
|
tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
|
|
/* Keep track of previous MSS. */
|
|
tp->t_pmtud_saved_maxseg = tp->t_maxseg;
|
|
}
|
|
/*
|
|
* Reduce the MSS to blackhole value or to the
|
|
* default in an attempt to retransmit.
|
|
*/
|
|
#ifdef INET6
|
|
isipv6 = bbr->r_is_v6;
|
|
if (isipv6 &&
|
|
tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
|
|
/* Use the sysctl tuneable blackhole MSS. */
|
|
tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_activated);
|
|
} else if (isipv6) {
|
|
/* Use the default MSS. */
|
|
tp->t_maxseg = V_tcp_v6mssdflt;
|
|
/*
|
|
* Disable Path MTU Discovery when we switch
|
|
* to minmss.
|
|
*/
|
|
tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
|
|
}
|
|
#endif
|
|
#if defined(INET6) && defined(INET)
|
|
else
|
|
#endif
|
|
#ifdef INET
|
|
if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
|
|
/* Use the sysctl tuneable blackhole MSS. */
|
|
tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_activated);
|
|
} else {
|
|
/* Use the default MSS. */
|
|
tp->t_maxseg = V_tcp_mssdflt;
|
|
/*
|
|
* Disable Path MTU Discovery when we switch
|
|
* to minmss.
|
|
*/
|
|
tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* If further retransmissions are still unsuccessful
|
|
* with a lowered MTU, maybe this isn't a blackhole
|
|
* and we restore the previous MSS and blackhole
|
|
* detection flags. The limit '6' is determined by
|
|
* giving each probe stage (1448, 1188, 524) 2
|
|
* chances to recover.
|
|
*/
|
|
if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
|
|
(tp->t_rxtshift >= 6)) {
|
|
tp->t_flags2 |= TF2_PLPMTU_PMTUD;
|
|
tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
|
|
tp->t_maxseg = tp->t_pmtud_saved_maxseg;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_failed);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Disable RFC1323 and SACK if we haven't got any response to our
|
|
* third SYN to work-around some broken terminal servers (most of
|
|
* which have hopefully been retired) that have bad VJ header
|
|
* compression code which trashes TCP segments containing
|
|
* unknown-to-them TCP options.
|
|
*/
|
|
if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) &&
|
|
(tp->t_rxtshift == 3))
|
|
tp->t_flags &= ~(TF_REQ_SCALE | TF_REQ_TSTMP | TF_SACK_PERMIT);
|
|
/*
|
|
* If we backed off this far, our srtt estimate is probably bogus.
|
|
* Clobber it so we'll take the next rtt measurement as our srtt;
|
|
* move the current srtt into rttvar to keep the current retransmit
|
|
* times until then.
|
|
*/
|
|
if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
|
|
#ifdef INET6
|
|
if (bbr->r_is_v6)
|
|
in6_losing(tp->t_inpcb);
|
|
else
|
|
#endif
|
|
in_losing(tp->t_inpcb);
|
|
tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
|
|
tp->t_srtt = 0;
|
|
}
|
|
sack_filter_clear(&bbr->r_ctl.bbr_sf, tp->snd_una);
|
|
tp->snd_recover = tp->snd_max;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tp->t_rtttime = 0;
|
|
out:
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
bbr_process_timers(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, uint8_t hpts_calling)
|
|
{
|
|
int32_t ret = 0;
|
|
int32_t timers = (bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
|
|
|
|
if (timers == 0) {
|
|
return (0);
|
|
}
|
|
if (tp->t_state == TCPS_LISTEN) {
|
|
/* no timers on listen sockets */
|
|
if (bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
if (TSTMP_LT(cts, bbr->r_ctl.rc_timer_exp)) {
|
|
uint32_t left;
|
|
|
|
if (bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
|
|
ret = -1;
|
|
bbr_log_to_processing(bbr, cts, ret, 0, hpts_calling);
|
|
return (0);
|
|
}
|
|
if (hpts_calling == 0) {
|
|
ret = -2;
|
|
bbr_log_to_processing(bbr, cts, ret, 0, hpts_calling);
|
|
return (0);
|
|
}
|
|
/*
|
|
* Ok our timer went off early and we are not paced false
|
|
* alarm, go back to sleep.
|
|
*/
|
|
left = bbr->r_ctl.rc_timer_exp - cts;
|
|
ret = -3;
|
|
bbr_log_to_processing(bbr, cts, ret, left, hpts_calling);
|
|
tcp_hpts_insert(tp->t_inpcb, HPTS_USEC_TO_SLOTS(left));
|
|
return (1);
|
|
}
|
|
bbr->rc_tmr_stopped = 0;
|
|
bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
|
|
if (timers & PACE_TMR_DELACK) {
|
|
ret = bbr_timeout_delack(tp, bbr, cts);
|
|
} else if (timers & PACE_TMR_PERSIT) {
|
|
ret = bbr_timeout_persist(tp, bbr, cts);
|
|
} else if (timers & PACE_TMR_RACK) {
|
|
bbr->r_ctl.rc_tlp_rxt_last_time = cts;
|
|
ret = bbr_timeout_rack(tp, bbr, cts);
|
|
} else if (timers & PACE_TMR_TLP) {
|
|
bbr->r_ctl.rc_tlp_rxt_last_time = cts;
|
|
ret = bbr_timeout_tlp(tp, bbr, cts);
|
|
} else if (timers & PACE_TMR_RXT) {
|
|
bbr->r_ctl.rc_tlp_rxt_last_time = cts;
|
|
ret = bbr_timeout_rxt(tp, bbr, cts);
|
|
} else if (timers & PACE_TMR_KEEP) {
|
|
ret = bbr_timeout_keepalive(tp, bbr, cts);
|
|
}
|
|
bbr_log_to_processing(bbr, cts, ret, timers, hpts_calling);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
bbr_timer_cancel(struct tcp_bbr *bbr, int32_t line, uint32_t cts)
|
|
{
|
|
if (bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
|
|
uint8_t hpts_removed = 0;
|
|
|
|
if (bbr->rc_inp->inp_in_hpts &&
|
|
(bbr->rc_timer_first == 1)) {
|
|
/*
|
|
* If we are canceling timer's when we have the
|
|
* timer ahead of the output being paced. We also
|
|
* must remove ourselves from the hpts.
|
|
*/
|
|
hpts_removed = 1;
|
|
tcp_hpts_remove(bbr->rc_inp, HPTS_REMOVE_OUTPUT);
|
|
if (bbr->r_ctl.rc_last_delay_val) {
|
|
/* Update the last hptsi delay too */
|
|
uint32_t time_since_send;
|
|
|
|
if (TSTMP_GT(cts, bbr->rc_pacer_started))
|
|
time_since_send = cts - bbr->rc_pacer_started;
|
|
else
|
|
time_since_send = 0;
|
|
if (bbr->r_ctl.rc_last_delay_val > time_since_send) {
|
|
/* Cut down our slot time */
|
|
bbr->r_ctl.rc_last_delay_val -= time_since_send;
|
|
} else {
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
}
|
|
bbr->rc_pacer_started = cts;
|
|
}
|
|
}
|
|
bbr->rc_timer_first = 0;
|
|
bbr_log_to_cancel(bbr, line, cts, hpts_removed);
|
|
bbr->rc_tmr_stopped = bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
|
|
bbr->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_timer_stop(struct tcpcb *tp, uint32_t timer_type)
|
|
{
|
|
struct tcp_bbr *bbr;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
bbr->rc_all_timers_stopped = 1;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* stop all timers always returning 0.
|
|
*/
|
|
static int
|
|
bbr_stopall(struct tcpcb *tp)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bbr_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* return true if a bbr timer (rack or tlp) is active.
|
|
*/
|
|
static int
|
|
bbr_timer_active(struct tcpcb *tp, uint32_t timer_type)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static uint32_t
|
|
bbr_get_earliest_send_outstanding(struct tcp_bbr *bbr, struct bbr_sendmap *u_rsm, uint32_t cts)
|
|
{
|
|
struct bbr_sendmap *rsm;
|
|
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap);
|
|
if ((rsm == NULL) || (u_rsm == rsm))
|
|
return (cts);
|
|
return(rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]);
|
|
}
|
|
|
|
static void
|
|
bbr_update_rsm(struct tcpcb *tp, struct tcp_bbr *bbr,
|
|
struct bbr_sendmap *rsm, uint32_t cts, uint32_t pacing_time)
|
|
{
|
|
int32_t idx;
|
|
|
|
rsm->r_rtr_cnt++;
|
|
rsm->r_dupack = 0;
|
|
if (rsm->r_rtr_cnt > BBR_NUM_OF_RETRANS) {
|
|
rsm->r_rtr_cnt = BBR_NUM_OF_RETRANS;
|
|
rsm->r_flags |= BBR_OVERMAX;
|
|
}
|
|
if (rsm->r_flags & BBR_RWND_COLLAPSED) {
|
|
/* Take off the collapsed flag at rxt */
|
|
rsm->r_flags &= ~BBR_RWND_COLLAPSED;
|
|
}
|
|
if (rsm->r_flags & BBR_MARKED_LOST) {
|
|
/* We have retransmitted, its no longer lost */
|
|
rsm->r_flags &= ~BBR_MARKED_LOST;
|
|
bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start;
|
|
}
|
|
if (rsm->r_flags & BBR_RXT_CLEARED) {
|
|
/*
|
|
* We hit a RXT timer on it and
|
|
* we cleared the "acked" flag.
|
|
* We now have it going back into
|
|
* flight, we can remove the cleared
|
|
* flag and possibly do accounting on
|
|
* this piece.
|
|
*/
|
|
rsm->r_flags &= ~BBR_RXT_CLEARED;
|
|
}
|
|
if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & BBR_TLP) == 0)) {
|
|
bbr->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
|
|
rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
|
|
}
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
rsm->r_tim_lastsent[idx] = cts;
|
|
rsm->r_pacing_delay = pacing_time;
|
|
rsm->r_delivered = bbr->r_ctl.rc_delivered;
|
|
rsm->r_ts_valid = bbr->rc_ts_valid;
|
|
if (bbr->rc_ts_valid)
|
|
rsm->r_del_ack_ts = bbr->r_ctl.last_inbound_ts;
|
|
if (bbr->r_ctl.r_app_limited_until)
|
|
rsm->r_app_limited = 1;
|
|
else
|
|
rsm->r_app_limited = 0;
|
|
if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW)
|
|
rsm->r_bbr_state = bbr_state_val(bbr);
|
|
else
|
|
rsm->r_bbr_state = 8;
|
|
if (rsm->r_flags & BBR_ACKED) {
|
|
/* Problably MTU discovery messing with us */
|
|
uint32_t old_flags;
|
|
|
|
old_flags = rsm->r_flags;
|
|
rsm->r_flags &= ~BBR_ACKED;
|
|
bbr_log_type_rsmclear(bbr, cts, rsm, old_flags, __LINE__);
|
|
bbr->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
|
|
if (bbr->r_ctl.rc_sacked == 0)
|
|
bbr->r_ctl.rc_sacklast = NULL;
|
|
}
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
}
|
|
TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 1;
|
|
if (rsm->r_flags & BBR_SACK_PASSED) {
|
|
/* We have retransmitted due to the SACK pass */
|
|
rsm->r_flags &= ~BBR_SACK_PASSED;
|
|
rsm->r_flags |= BBR_WAS_SACKPASS;
|
|
}
|
|
rsm->r_first_sent_time = bbr_get_earliest_send_outstanding(bbr, rsm, cts);
|
|
rsm->r_flight_at_send = ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
bbr->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next);
|
|
if (bbr->r_ctl.rc_bbr_hptsi_gain > BBR_UNIT) {
|
|
rsm->r_is_gain = 1;
|
|
rsm->r_is_drain = 0;
|
|
} else if (bbr->r_ctl.rc_bbr_hptsi_gain < BBR_UNIT) {
|
|
rsm->r_is_drain = 1;
|
|
rsm->r_is_gain = 0;
|
|
} else {
|
|
rsm->r_is_drain = 0;
|
|
rsm->r_is_gain = 0;
|
|
}
|
|
rsm->r_del_time = bbr->r_ctl.rc_del_time; /* TEMP GOOGLE CODE */
|
|
}
|
|
|
|
/*
|
|
* Returns 0, or the sequence where we stopped
|
|
* updating. We also update the lenp to be the amount
|
|
* of data left.
|
|
*/
|
|
|
|
static uint32_t
|
|
bbr_update_entry(struct tcpcb *tp, struct tcp_bbr *bbr,
|
|
struct bbr_sendmap *rsm, uint32_t cts, int32_t *lenp, uint32_t pacing_time)
|
|
{
|
|
/*
|
|
* We (re-)transmitted starting at rsm->r_start for some length
|
|
* (possibly less than r_end.
|
|
*/
|
|
struct bbr_sendmap *nrsm;
|
|
uint32_t c_end;
|
|
int32_t len;
|
|
|
|
len = *lenp;
|
|
c_end = rsm->r_start + len;
|
|
if (SEQ_GEQ(c_end, rsm->r_end)) {
|
|
/*
|
|
* We retransmitted the whole piece or more than the whole
|
|
* slopping into the next rsm.
|
|
*/
|
|
bbr_update_rsm(tp, bbr, rsm, cts, pacing_time);
|
|
if (c_end == rsm->r_end) {
|
|
*lenp = 0;
|
|
return (0);
|
|
} else {
|
|
int32_t act_len;
|
|
|
|
/* Hangs over the end return whats left */
|
|
act_len = rsm->r_end - rsm->r_start;
|
|
*lenp = (len - act_len);
|
|
return (rsm->r_end);
|
|
}
|
|
/* We don't get out of this block. */
|
|
}
|
|
/*
|
|
* Here we retransmitted less than the whole thing which means we
|
|
* have to split this into what was transmitted and what was not.
|
|
*/
|
|
nrsm = bbr_alloc_full_limit(bbr);
|
|
if (nrsm == NULL) {
|
|
*lenp = 0;
|
|
return (0);
|
|
}
|
|
/*
|
|
* So here we are going to take the original rsm and make it what we
|
|
* retransmitted. nrsm will be the tail portion we did not
|
|
* retransmit. For example say the chunk was 1, 11 (10 bytes). And
|
|
* we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
|
|
* 1, 6 and the new piece will be 6, 11.
|
|
*/
|
|
bbr_clone_rsm(bbr, nrsm, rsm, c_end);
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next);
|
|
nrsm->r_dupack = 0;
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
rsm->r_flags &= (~BBR_HAS_FIN);
|
|
bbr_update_rsm(tp, bbr, rsm, cts, pacing_time);
|
|
*lenp = 0;
|
|
return (0);
|
|
}
|
|
|
|
static uint64_t
|
|
bbr_get_hardware_rate(struct tcp_bbr *bbr)
|
|
{
|
|
uint64_t bw;
|
|
|
|
bw = bbr_get_bw(bbr);
|
|
bw *= (uint64_t)bbr_hptsi_gain[BBR_SUB_GAIN];
|
|
bw /= (uint64_t)BBR_UNIT;
|
|
return(bw);
|
|
}
|
|
|
|
static void
|
|
bbr_setup_less_of_rate(struct tcp_bbr *bbr, uint32_t cts,
|
|
uint64_t act_rate, uint64_t rate_wanted)
|
|
{
|
|
/*
|
|
* We could not get a full gains worth
|
|
* of rate.
|
|
*/
|
|
if (get_filter_value(&bbr->r_ctl.rc_delrate) >= act_rate) {
|
|
/* we can't even get the real rate */
|
|
uint64_t red;
|
|
|
|
bbr->skip_gain = 1;
|
|
bbr->gain_is_limited = 0;
|
|
red = get_filter_value(&bbr->r_ctl.rc_delrate) - act_rate;
|
|
if (red)
|
|
filter_reduce_by(&bbr->r_ctl.rc_delrate, red, cts);
|
|
} else {
|
|
/* We can use a lower gain */
|
|
bbr->skip_gain = 0;
|
|
bbr->gain_is_limited = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_update_hardware_pacing_rate(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
const struct tcp_hwrate_limit_table *nrte;
|
|
int error, rate = -1;
|
|
|
|
if (bbr->r_ctl.crte == NULL)
|
|
return;
|
|
if ((bbr->rc_inp->inp_route.ro_rt == NULL) ||
|
|
(bbr->rc_inp->inp_route.ro_rt->rt_ifp == NULL)) {
|
|
/* Lost our routes? */
|
|
/* Clear the way for a re-attempt */
|
|
bbr->bbr_attempt_hdwr_pace = 0;
|
|
lost_rate:
|
|
bbr->gain_is_limited = 0;
|
|
bbr->skip_gain = 0;
|
|
bbr->bbr_hdrw_pacing = 0;
|
|
counter_u64_add(bbr_flows_whdwr_pacing, -1);
|
|
counter_u64_add(bbr_flows_nohdwr_pacing, 1);
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
return;
|
|
}
|
|
rate = bbr_get_hardware_rate(bbr);
|
|
nrte = tcp_chg_pacing_rate(bbr->r_ctl.crte,
|
|
bbr->rc_tp,
|
|
bbr->rc_inp->inp_route.ro_rt->rt_ifp,
|
|
rate,
|
|
(RS_PACING_GEQ|RS_PACING_SUB_OK),
|
|
&error);
|
|
if (nrte == NULL) {
|
|
goto lost_rate;
|
|
}
|
|
if (nrte != bbr->r_ctl.crte) {
|
|
bbr->r_ctl.crte = nrte;
|
|
if (error == 0) {
|
|
BBR_STAT_INC(bbr_hdwr_rl_mod_ok);
|
|
if (bbr->r_ctl.crte->rate < rate) {
|
|
/* We have a problem */
|
|
bbr_setup_less_of_rate(bbr, cts,
|
|
bbr->r_ctl.crte->rate, rate);
|
|
} else {
|
|
/* We are good */
|
|
bbr->gain_is_limited = 0;
|
|
bbr->skip_gain = 0;
|
|
}
|
|
} else {
|
|
/* A failure should release the tag */
|
|
BBR_STAT_INC(bbr_hdwr_rl_mod_fail);
|
|
bbr->gain_is_limited = 0;
|
|
bbr->skip_gain = 0;
|
|
bbr->bbr_hdrw_pacing = 0;
|
|
}
|
|
bbr_type_log_hdwr_pacing(bbr,
|
|
bbr->r_ctl.crte->ptbl->rs_ifp,
|
|
rate,
|
|
((bbr->r_ctl.crte == NULL) ? 0 : bbr->r_ctl.crte->rate),
|
|
__LINE__,
|
|
cts,
|
|
error);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_adjust_for_hw_pacing(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
/*
|
|
* If we have hardware pacing support
|
|
* we need to factor that in for our
|
|
* TSO size.
|
|
*/
|
|
const struct tcp_hwrate_limit_table *rlp;
|
|
uint32_t cur_delay, seg_sz, maxseg, new_tso, delta, hdwr_delay;
|
|
|
|
if ((bbr->bbr_hdrw_pacing == 0) ||
|
|
(IN_RECOVERY(bbr->rc_tp->t_flags)) ||
|
|
(bbr->r_ctl.crte == NULL))
|
|
return;
|
|
if (bbr->hw_pacing_set == 0) {
|
|
/* Not yet by the hdwr pacing count delay */
|
|
return;
|
|
}
|
|
if (bbr_hdwr_pace_adjust == 0) {
|
|
/* No adjustment */
|
|
return;
|
|
}
|
|
rlp = bbr->r_ctl.crte;
|
|
if (bbr->rc_tp->t_maxseg > bbr->rc_last_options)
|
|
maxseg = bbr->rc_tp->t_maxseg - bbr->rc_last_options;
|
|
else
|
|
maxseg = BBR_MIN_SEG - bbr->rc_last_options;
|
|
/*
|
|
* So lets first get the
|
|
* time we will take between
|
|
* TSO sized sends currently without
|
|
* hardware help.
|
|
*/
|
|
cur_delay = bbr_get_pacing_delay(bbr, BBR_UNIT,
|
|
bbr->r_ctl.rc_pace_max_segs, cts, 1);
|
|
hdwr_delay = bbr->r_ctl.rc_pace_max_segs / maxseg;
|
|
hdwr_delay *= rlp->time_between;
|
|
if (cur_delay > hdwr_delay)
|
|
delta = cur_delay - hdwr_delay;
|
|
else
|
|
delta = 0;
|
|
bbr_log_type_tsosize(bbr, cts, delta, cur_delay, hdwr_delay,
|
|
(bbr->r_ctl.rc_pace_max_segs / maxseg),
|
|
1);
|
|
if (delta &&
|
|
(delta < (max(rlp->time_between,
|
|
bbr->r_ctl.bbr_hptsi_segments_delay_tar)))) {
|
|
/*
|
|
* Now lets divide by the pacing
|
|
* time between each segment the
|
|
* hardware sends rounding up and
|
|
* derive a bytes from that. We multiply
|
|
* that by bbr_hdwr_pace_adjust to get
|
|
* more bang for our buck.
|
|
*
|
|
* The goal is to have the software pacer
|
|
* waiting no more than an additional
|
|
* pacing delay if we can (without the
|
|
* compensation i.e. x bbr_hdwr_pace_adjust).
|
|
*/
|
|
seg_sz = max(((cur_delay + rlp->time_between)/rlp->time_between),
|
|
(bbr->r_ctl.rc_pace_max_segs/maxseg));
|
|
seg_sz *= bbr_hdwr_pace_adjust;
|
|
if (bbr_hdwr_pace_floor &&
|
|
(seg_sz < bbr->r_ctl.crte->ptbl->rs_min_seg)) {
|
|
/* Currently hardware paces
|
|
* out rs_min_seg segments at a time.
|
|
* We need to make sure we always send at least
|
|
* a full burst of bbr_hdwr_pace_floor down.
|
|
*/
|
|
seg_sz = bbr->r_ctl.crte->ptbl->rs_min_seg;
|
|
}
|
|
seg_sz *= maxseg;
|
|
} else if (delta == 0) {
|
|
/*
|
|
* The highest pacing rate is
|
|
* above our b/w gained. This means
|
|
* we probably are going quite fast at
|
|
* the hardware highest rate. Lets just multiply
|
|
* the calculated TSO size by the
|
|
* multiplier factor (its probably
|
|
* 4 segments in the default config for
|
|
* mlx).
|
|
*/
|
|
seg_sz = bbr->r_ctl.rc_pace_max_segs * bbr_hdwr_pace_adjust;
|
|
if (bbr_hdwr_pace_floor &&
|
|
(seg_sz < bbr->r_ctl.crte->ptbl->rs_min_seg)) {
|
|
/* Currently hardware paces
|
|
* out rs_min_seg segments at a time.
|
|
* We need to make sure we always send at least
|
|
* a full burst of bbr_hdwr_pace_floor down.
|
|
*/
|
|
seg_sz = bbr->r_ctl.crte->ptbl->rs_min_seg;
|
|
}
|
|
} else {
|
|
/*
|
|
* The pacing time difference is so
|
|
* big that the hardware will
|
|
* pace out more rapidly then we
|
|
* really want and then we
|
|
* will have a long delay. Lets just keep
|
|
* the same TSO size so its as if
|
|
* we were not using hdwr pacing (we
|
|
* just gain a bit of spacing from the
|
|
* hardware if seg_sz > 1).
|
|
*/
|
|
seg_sz = bbr->r_ctl.rc_pace_max_segs;
|
|
}
|
|
if (seg_sz > bbr->r_ctl.rc_pace_max_segs)
|
|
new_tso = seg_sz;
|
|
else
|
|
new_tso = bbr->r_ctl.rc_pace_max_segs;
|
|
if (new_tso >= (PACE_MAX_IP_BYTES-maxseg))
|
|
new_tso = PACE_MAX_IP_BYTES - maxseg;
|
|
|
|
if (new_tso != bbr->r_ctl.rc_pace_max_segs) {
|
|
bbr_log_type_tsosize(bbr, cts, new_tso, 0, bbr->r_ctl.rc_pace_max_segs, maxseg, 0);
|
|
bbr->r_ctl.rc_pace_max_segs = new_tso;
|
|
}
|
|
}
|
|
|
|
static void
|
|
tcp_bbr_tso_size_check(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
uint64_t bw;
|
|
uint32_t old_tso = 0, new_tso;
|
|
uint32_t maxseg, bytes;
|
|
uint32_t tls_seg=0;
|
|
/*
|
|
* Google/linux uses the following algorithm to determine
|
|
* the TSO size based on the b/w of the link (from Neal Cardwell email 9/27/18):
|
|
*
|
|
* bytes = bw_in_bytes_per_second / 1000
|
|
* bytes = min(bytes, 64k)
|
|
* tso_segs = bytes / MSS
|
|
* if (bw < 1.2Mbs)
|
|
* min_tso_segs = 1
|
|
* else
|
|
* min_tso_segs = 2
|
|
* tso_segs = max(tso_segs, min_tso_segs)
|
|
*
|
|
* * Note apply a device specific limit (we apply this in the
|
|
* tcp_m_copym).
|
|
* Note that before the initial measurement is made google bursts out
|
|
* a full iwnd just like new-reno/cubic.
|
|
*
|
|
* We do not use this algorithm. Instead we
|
|
* use a two phased approach:
|
|
*
|
|
* if ( bw <= per-tcb-cross-over)
|
|
* goal_tso = calculate how much with this bw we
|
|
* can send in goal-time seconds.
|
|
* if (goal_tso > mss)
|
|
* seg = goal_tso / mss
|
|
* tso = seg * mss
|
|
* else
|
|
* tso = mss
|
|
* if (tso > per-tcb-max)
|
|
* tso = per-tcb-max
|
|
* else if ( bw > 512Mbps)
|
|
* tso = max-tso (64k/mss)
|
|
* else
|
|
* goal_tso = bw / per-tcb-divsor
|
|
* seg = (goal_tso + mss-1)/mss
|
|
* tso = seg * mss
|
|
*
|
|
* if (tso < per-tcb-floor)
|
|
* tso = per-tcb-floor
|
|
* if (tso > per-tcb-utter_max)
|
|
* tso = per-tcb-utter_max
|
|
*
|
|
* Note the default per-tcb-divisor is 1000 (same as google).
|
|
* the goal cross over is 30Mbps however. To recreate googles
|
|
* algorithm you need to set:
|
|
*
|
|
* cross-over = 23,168,000 bps
|
|
* goal-time = 18000
|
|
* per-tcb-max = 2
|
|
* per-tcb-divisor = 1000
|
|
* per-tcb-floor = 1
|
|
*
|
|
* This will get you "google bbr" behavior with respect to tso size.
|
|
*
|
|
* Note we do set anything TSO size until we are past the initial
|
|
* window. Before that we gnerally use either a single MSS
|
|
* or we use the full IW size (so we burst a IW at a time)
|
|
* Also note that Hardware-TLS is special and does alternate
|
|
* things to minimize PCI Bus Bandwidth use.
|
|
*/
|
|
|
|
if (bbr->rc_tp->t_maxseg > bbr->rc_last_options) {
|
|
maxseg = bbr->rc_tp->t_maxseg - bbr->rc_last_options;
|
|
} else {
|
|
maxseg = BBR_MIN_SEG - bbr->rc_last_options;
|
|
}
|
|
#ifdef KERN_TLS
|
|
if (bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
|
|
tls_seg = ctf_get_opt_tls_size(bbr->rc_inp->inp_socket, bbr->rc_tp->snd_wnd);
|
|
bbr->r_ctl.rc_pace_min_segs = (tls_seg + bbr->rc_last_options);
|
|
}
|
|
#endif
|
|
old_tso = bbr->r_ctl.rc_pace_max_segs;
|
|
if (bbr->rc_past_init_win == 0) {
|
|
/*
|
|
* Not enough data has been acknowledged to make a
|
|
* judgement unless we are hardware TLS. Set up
|
|
* the initial TSO based on if we are sending a
|
|
* full IW at once or not.
|
|
*/
|
|
if (bbr->rc_use_google)
|
|
bbr->r_ctl.rc_pace_max_segs = ((bbr->rc_tp->t_maxseg - bbr->rc_last_options) * 2);
|
|
else if (bbr->bbr_init_win_cheat)
|
|
bbr->r_ctl.rc_pace_max_segs = bbr_initial_cwnd(bbr, bbr->rc_tp);
|
|
else
|
|
bbr->r_ctl.rc_pace_max_segs = bbr->rc_tp->t_maxseg - bbr->rc_last_options;
|
|
if (bbr->r_ctl.rc_pace_min_segs != bbr->rc_tp->t_maxseg)
|
|
bbr->r_ctl.rc_pace_min_segs = bbr->rc_tp->t_maxseg;
|
|
#ifdef KERN_TLS
|
|
if ((bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) && tls_seg) {
|
|
/*
|
|
* For hardware TLS we set our min to the tls_seg size.
|
|
*/
|
|
bbr->r_ctl.rc_pace_max_segs = tls_seg;
|
|
bbr->r_ctl.rc_pace_min_segs = tls_seg + bbr->rc_last_options;
|
|
}
|
|
#endif
|
|
if (bbr->r_ctl.rc_pace_max_segs == 0) {
|
|
bbr->r_ctl.rc_pace_max_segs = maxseg;
|
|
}
|
|
bbr_log_type_tsosize(bbr, cts, bbr->r_ctl.rc_pace_max_segs, tls_seg, old_tso, maxseg, 0);
|
|
#ifdef KERN_TLS
|
|
if ((bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) == 0)
|
|
#endif
|
|
bbr_adjust_for_hw_pacing(bbr, cts);
|
|
return;
|
|
}
|
|
/**
|
|
* Now lets set the TSO goal based on our delivery rate in
|
|
* bytes per second. Note we only do this if
|
|
* we have acked at least the initial cwnd worth of data.
|
|
*/
|
|
bw = bbr_get_bw(bbr);
|
|
if (IN_RECOVERY(bbr->rc_tp->t_flags) &&
|
|
(bbr->rc_use_google == 0)) {
|
|
/* We clamp to one MSS in recovery */
|
|
new_tso = maxseg;
|
|
} else if (bbr->rc_use_google) {
|
|
int min_tso_segs;
|
|
|
|
/* Google considers the gain too */
|
|
if (bbr->r_ctl.rc_bbr_hptsi_gain != BBR_UNIT) {
|
|
bw *= bbr->r_ctl.rc_bbr_hptsi_gain;
|
|
bw /= BBR_UNIT;
|
|
}
|
|
bytes = bw / 1024;
|
|
if (bytes > (64 * 1024))
|
|
bytes = 64 * 1024;
|
|
new_tso = bytes / maxseg;
|
|
if (bw < ONE_POINT_TWO_MEG)
|
|
min_tso_segs = 1;
|
|
else
|
|
min_tso_segs = 2;
|
|
if (new_tso < min_tso_segs)
|
|
new_tso = min_tso_segs;
|
|
new_tso *= maxseg;
|
|
} else if (bbr->rc_no_pacing) {
|
|
new_tso = (PACE_MAX_IP_BYTES / maxseg) * maxseg;
|
|
} else if (bw <= bbr->r_ctl.bbr_cross_over) {
|
|
/*
|
|
* Calculate the worse case b/w TSO if we are inserting no
|
|
* more than a delay_target number of TSO's.
|
|
*/
|
|
uint32_t tso_len, min_tso;
|
|
|
|
tso_len = bbr_get_pacing_length(bbr, BBR_UNIT, bbr->r_ctl.bbr_hptsi_segments_delay_tar, bw);
|
|
if (tso_len > maxseg) {
|
|
new_tso = tso_len / maxseg;
|
|
if (new_tso > bbr->r_ctl.bbr_hptsi_segments_max)
|
|
new_tso = bbr->r_ctl.bbr_hptsi_segments_max;
|
|
new_tso *= maxseg;
|
|
} else {
|
|
/*
|
|
* less than a full sized frame yikes.. long rtt or
|
|
* low bw?
|
|
*/
|
|
min_tso = bbr_minseg(bbr);
|
|
if ((tso_len > min_tso) && (bbr_all_get_min == 0))
|
|
new_tso = rounddown(tso_len, min_tso);
|
|
else
|
|
new_tso = min_tso;
|
|
}
|
|
} else if (bw > FIVETWELVE_MBPS) {
|
|
/*
|
|
* This guy is so fast b/w wise that we can TSO as large as
|
|
* possible of segments that the NIC will allow.
|
|
*/
|
|
new_tso = rounddown(PACE_MAX_IP_BYTES, maxseg);
|
|
} else {
|
|
/*
|
|
* This formula is based on attempting to send a segment or
|
|
* more every bbr_hptsi_per_second. The default is 1000
|
|
* which means you are targeting what you can send every 1ms
|
|
* based on the peers bw.
|
|
*
|
|
* If the number drops to say 500, then you are looking more
|
|
* at 2ms and you will raise how much we send in a single
|
|
* TSO thus saving CPU (less bbr_output_wtime() calls). The
|
|
* trade off of course is you will send more at once and
|
|
* thus tend to clump up the sends into larger "bursts"
|
|
* building a queue.
|
|
*/
|
|
bw /= bbr->r_ctl.bbr_hptsi_per_second;
|
|
new_tso = roundup(bw, (uint64_t)maxseg);
|
|
/*
|
|
* Gate the floor to match what our lower than 48Mbps
|
|
* algorithm does. The ceiling (bbr_hptsi_segments_max) thus
|
|
* becomes the floor for this calculation.
|
|
*/
|
|
if (new_tso < (bbr->r_ctl.bbr_hptsi_segments_max * maxseg))
|
|
new_tso = (bbr->r_ctl.bbr_hptsi_segments_max * maxseg);
|
|
}
|
|
if (bbr->r_ctl.bbr_hptsi_segments_floor && (new_tso < (maxseg * bbr->r_ctl.bbr_hptsi_segments_floor)))
|
|
new_tso = maxseg * bbr->r_ctl.bbr_hptsi_segments_floor;
|
|
if (new_tso > PACE_MAX_IP_BYTES)
|
|
new_tso = rounddown(PACE_MAX_IP_BYTES, maxseg);
|
|
/* Enforce an utter maximum if we are not HW-TLS */
|
|
#ifdef KERN_TLS
|
|
if ((bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) == 0)
|
|
#endif
|
|
if (bbr->r_ctl.bbr_utter_max && (new_tso > (bbr->r_ctl.bbr_utter_max * maxseg))) {
|
|
new_tso = bbr->r_ctl.bbr_utter_max * maxseg;
|
|
}
|
|
#ifdef KERN_TLS
|
|
if (tls_seg) {
|
|
/*
|
|
* Lets move the output size
|
|
* up to 1 or more TLS record sizes.
|
|
*/
|
|
uint32_t temp;
|
|
|
|
temp = roundup(new_tso, tls_seg);
|
|
new_tso = temp;
|
|
/* Back down if needed to under a full frame */
|
|
while (new_tso > PACE_MAX_IP_BYTES)
|
|
new_tso -= tls_seg;
|
|
}
|
|
#endif
|
|
if (old_tso != new_tso) {
|
|
/* Only log changes */
|
|
bbr_log_type_tsosize(bbr, cts, new_tso, tls_seg, old_tso, maxseg, 0);
|
|
bbr->r_ctl.rc_pace_max_segs = new_tso;
|
|
}
|
|
#ifdef KERN_TLS
|
|
if ((bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) &&
|
|
tls_seg) {
|
|
bbr->r_ctl.rc_pace_min_segs = tls_seg + bbr->rc_last_options;
|
|
} else
|
|
#endif
|
|
/* We have hardware pacing and not hardware TLS! */
|
|
bbr_adjust_for_hw_pacing(bbr, cts);
|
|
}
|
|
|
|
static void
|
|
bbr_log_output(struct tcp_bbr *bbr, struct tcpcb *tp, struct tcpopt *to, int32_t len,
|
|
uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t cts,
|
|
struct mbuf *mb, int32_t * abandon, struct bbr_sendmap *hintrsm, uint32_t delay_calc,
|
|
struct sockbuf *sb)
|
|
{
|
|
|
|
struct bbr_sendmap *rsm, *nrsm;
|
|
register uint32_t snd_max, snd_una;
|
|
uint32_t pacing_time;
|
|
/*
|
|
* Add to the RACK log of packets in flight or retransmitted. If
|
|
* there is a TS option we will use the TS echoed, if not we will
|
|
* grab a TS.
|
|
*
|
|
* Retransmissions will increment the count and move the ts to its
|
|
* proper place. Note that if options do not include TS's then we
|
|
* won't be able to effectively use the ACK for an RTT on a retran.
|
|
*
|
|
* Notes about r_start and r_end. Lets consider a send starting at
|
|
* sequence 1 for 10 bytes. In such an example the r_start would be
|
|
* 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
|
|
* This means that r_end is actually the first sequence for the next
|
|
* slot (11).
|
|
*
|
|
*/
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (err) {
|
|
/*
|
|
* We don't log errors -- we could but snd_max does not
|
|
* advance in this case either.
|
|
*/
|
|
return;
|
|
}
|
|
if (th_flags & TH_RST) {
|
|
/*
|
|
* We don't log resets and we return immediately from
|
|
* sending
|
|
*/
|
|
*abandon = 1;
|
|
return;
|
|
}
|
|
snd_una = tp->snd_una;
|
|
if (th_flags & (TH_SYN | TH_FIN) && (hintrsm == NULL)) {
|
|
/*
|
|
* The call to bbr_log_output is made before bumping
|
|
* snd_max. This means we can record one extra byte on a SYN
|
|
* or FIN if seq_out is adding more on and a FIN is present
|
|
* (and we are not resending).
|
|
*/
|
|
if (th_flags & TH_SYN)
|
|
len++;
|
|
if (th_flags & TH_FIN)
|
|
len++;
|
|
}
|
|
if (SEQ_LEQ((seq_out + len), snd_una)) {
|
|
/* Are sending an old segment to induce an ack (keep-alive)? */
|
|
return;
|
|
}
|
|
if (SEQ_LT(seq_out, snd_una)) {
|
|
/* huh? should we panic? */
|
|
uint32_t end;
|
|
|
|
end = seq_out + len;
|
|
seq_out = snd_una;
|
|
len = end - seq_out;
|
|
}
|
|
snd_max = tp->snd_max;
|
|
if (len == 0) {
|
|
/* We don't log zero window probes */
|
|
return;
|
|
}
|
|
pacing_time = bbr_get_pacing_delay(bbr, bbr->r_ctl.rc_bbr_hptsi_gain, len, cts, 1);
|
|
/* First question is it a retransmission? */
|
|
if (seq_out == snd_max) {
|
|
again:
|
|
rsm = bbr_alloc(bbr);
|
|
if (rsm == NULL) {
|
|
return;
|
|
}
|
|
rsm->r_flags = 0;
|
|
if (th_flags & TH_SYN)
|
|
rsm->r_flags |= BBR_HAS_SYN;
|
|
if (th_flags & TH_FIN)
|
|
rsm->r_flags |= BBR_HAS_FIN;
|
|
rsm->r_tim_lastsent[0] = cts;
|
|
rsm->r_rtr_cnt = 1;
|
|
rsm->r_rtr_bytes = 0;
|
|
rsm->r_start = seq_out;
|
|
rsm->r_end = rsm->r_start + len;
|
|
rsm->r_dupack = 0;
|
|
rsm->r_delivered = bbr->r_ctl.rc_delivered;
|
|
rsm->r_pacing_delay = pacing_time;
|
|
rsm->r_ts_valid = bbr->rc_ts_valid;
|
|
if (bbr->rc_ts_valid)
|
|
rsm->r_del_ack_ts = bbr->r_ctl.last_inbound_ts;
|
|
rsm->r_del_time = bbr->r_ctl.rc_del_time;
|
|
if (bbr->r_ctl.r_app_limited_until)
|
|
rsm->r_app_limited = 1;
|
|
else
|
|
rsm->r_app_limited = 0;
|
|
rsm->r_first_sent_time = bbr_get_earliest_send_outstanding(bbr, rsm, cts);
|
|
rsm->r_flight_at_send = ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
/*
|
|
* Here we must also add in this rsm since snd_max
|
|
* is updated after we return from a new send.
|
|
*/
|
|
rsm->r_flight_at_send += len;
|
|
TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_map, rsm, r_next);
|
|
TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 1;
|
|
if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW)
|
|
rsm->r_bbr_state = bbr_state_val(bbr);
|
|
else
|
|
rsm->r_bbr_state = 8;
|
|
if (bbr->r_ctl.rc_bbr_hptsi_gain > BBR_UNIT) {
|
|
rsm->r_is_gain = 1;
|
|
rsm->r_is_drain = 0;
|
|
} else if (bbr->r_ctl.rc_bbr_hptsi_gain < BBR_UNIT) {
|
|
rsm->r_is_drain = 1;
|
|
rsm->r_is_gain = 0;
|
|
} else {
|
|
rsm->r_is_drain = 0;
|
|
rsm->r_is_gain = 0;
|
|
}
|
|
return;
|
|
}
|
|
/*
|
|
* If we reach here its a retransmission and we need to find it.
|
|
*/
|
|
more:
|
|
if (hintrsm && (hintrsm->r_start == seq_out)) {
|
|
rsm = hintrsm;
|
|
hintrsm = NULL;
|
|
} else if (bbr->r_ctl.rc_next) {
|
|
/* We have a hint from a previous run */
|
|
rsm = bbr->r_ctl.rc_next;
|
|
} else {
|
|
/* No hints sorry */
|
|
rsm = NULL;
|
|
}
|
|
if ((rsm) && (rsm->r_start == seq_out)) {
|
|
/*
|
|
* We used rc_next or hintrsm to retransmit, hopefully the
|
|
* likely case.
|
|
*/
|
|
seq_out = bbr_update_entry(tp, bbr, rsm, cts, &len, pacing_time);
|
|
if (len == 0) {
|
|
return;
|
|
} else {
|
|
goto more;
|
|
}
|
|
}
|
|
/* Ok it was not the last pointer go through it the hard way. */
|
|
TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) {
|
|
if (rsm->r_start == seq_out) {
|
|
seq_out = bbr_update_entry(tp, bbr, rsm, cts, &len, pacing_time);
|
|
bbr->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next);
|
|
if (len == 0) {
|
|
return;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
|
|
/* Transmitted within this piece */
|
|
/*
|
|
* Ok we must split off the front and then let the
|
|
* update do the rest
|
|
*/
|
|
nrsm = bbr_alloc_full_limit(bbr);
|
|
if (nrsm == NULL) {
|
|
bbr_update_rsm(tp, bbr, rsm, cts, pacing_time);
|
|
return;
|
|
}
|
|
/*
|
|
* copy rsm to nrsm and then trim the front of rsm
|
|
* to not include this part.
|
|
*/
|
|
bbr_clone_rsm(bbr, nrsm, rsm, seq_out);
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next);
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
rsm->r_flags &= (~BBR_HAS_FIN);
|
|
seq_out = bbr_update_entry(tp, bbr, nrsm, cts, &len, pacing_time);
|
|
if (len == 0) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Hmm not found in map did they retransmit both old and on into the
|
|
* new?
|
|
*/
|
|
if (seq_out == tp->snd_max) {
|
|
goto again;
|
|
} else if (SEQ_LT(seq_out, tp->snd_max)) {
|
|
#ifdef BBR_INVARIANTS
|
|
printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
|
|
seq_out, len, tp->snd_una, tp->snd_max);
|
|
printf("Starting Dump of all rack entries\n");
|
|
TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) {
|
|
printf("rsm:%p start:%u end:%u\n",
|
|
rsm, rsm->r_start, rsm->r_end);
|
|
}
|
|
printf("Dump complete\n");
|
|
panic("seq_out not found rack:%p tp:%p",
|
|
bbr, tp);
|
|
#endif
|
|
} else {
|
|
#ifdef BBR_INVARIANTS
|
|
/*
|
|
* Hmm beyond sndmax? (only if we are using the new rtt-pack
|
|
* flag)
|
|
*/
|
|
panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
|
|
seq_out, len, tp->snd_max, tp);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_collapse_rtt(struct tcpcb *tp, struct tcp_bbr *bbr, int32_t rtt)
|
|
{
|
|
/*
|
|
* Collapse timeout back the cum-ack moved.
|
|
*/
|
|
tp->t_rxtshift = 0;
|
|
tp->t_softerror = 0;
|
|
}
|
|
|
|
|
|
static void
|
|
tcp_bbr_xmit_timer(struct tcp_bbr *bbr, uint32_t rtt_usecs, uint32_t rsm_send_time, uint32_t r_start, uint32_t tsin)
|
|
{
|
|
bbr->rtt_valid = 1;
|
|
bbr->r_ctl.cur_rtt = rtt_usecs;
|
|
bbr->r_ctl.ts_in = tsin;
|
|
if (rsm_send_time)
|
|
bbr->r_ctl.cur_rtt_send_time = rsm_send_time;
|
|
}
|
|
|
|
static void
|
|
bbr_make_timestamp_determination(struct tcp_bbr *bbr)
|
|
{
|
|
/**
|
|
* We have in our bbr control:
|
|
* 1) The timestamp we started observing cum-acks (bbr->r_ctl.bbr_ts_check_tstmp).
|
|
* 2) Our timestamp indicating when we sent that packet (bbr->r_ctl.rsm->bbr_ts_check_our_cts).
|
|
* 3) The current timestamp that just came in (bbr->r_ctl.last_inbound_ts)
|
|
* 4) The time that the packet that generated that ack was sent (bbr->r_ctl.cur_rtt_send_time)
|
|
*
|
|
* Now we can calculate the time between the sends by doing:
|
|
*
|
|
* delta = bbr->r_ctl.cur_rtt_send_time - bbr->r_ctl.bbr_ts_check_our_cts
|
|
*
|
|
* And the peer's time between receiving them by doing:
|
|
*
|
|
* peer_delta = bbr->r_ctl.last_inbound_ts - bbr->r_ctl.bbr_ts_check_tstmp
|
|
*
|
|
* We want to figure out if the timestamp values are in msec, 10msec or usec.
|
|
* We also may find that we can't use the timestamps if say we see
|
|
* that the peer_delta indicates that though we may have taken 10ms to
|
|
* pace out the data, it only saw 1ms between the two packets. This would
|
|
* indicate that somewhere on the path is a batching entity that is giving
|
|
* out time-slices of the actual b/w. This would mean we could not use
|
|
* reliably the peers timestamps.
|
|
*
|
|
* We expect delta > peer_delta initially. Until we figure out the
|
|
* timestamp difference which we will store in bbr->r_ctl.bbr_peer_tsratio.
|
|
* If we place 1000 there then its a ms vs our usec. If we place 10000 there
|
|
* then its 10ms vs our usec. If the peer is running a usec clock we would
|
|
* put a 1 there. If the value is faster then ours, we will disable the
|
|
* use of timestamps (though we could revist this later if we find it to be not
|
|
* just an isolated one or two flows)).
|
|
*
|
|
* To detect the batching middle boxes we will come up with our compensation and
|
|
* if with it in place, we find the peer is drastically off (by some margin) in
|
|
* the smaller direction, then we will assume the worst case and disable use of timestamps.
|
|
*
|
|
*/
|
|
uint64_t delta, peer_delta, delta_up;
|
|
|
|
delta = bbr->r_ctl.cur_rtt_send_time - bbr->r_ctl.bbr_ts_check_our_cts;
|
|
if (delta < bbr_min_usec_delta) {
|
|
/*
|
|
* Have not seen a min amount of time
|
|
* between our send times so we can
|
|
* make a determination of the timestamp
|
|
* yet.
|
|
*/
|
|
return;
|
|
}
|
|
peer_delta = bbr->r_ctl.last_inbound_ts - bbr->r_ctl.bbr_ts_check_tstmp;
|
|
if (peer_delta < bbr_min_peer_delta) {
|
|
/*
|
|
* We may have enough in the form of
|
|
* our delta but the peers number
|
|
* has not changed that much. It could
|
|
* be its clock ratio is such that
|
|
* we need more data (10ms tick) or
|
|
* there may be other compression scenarios
|
|
* going on. In any event we need the
|
|
* spread to be larger.
|
|
*/
|
|
return;
|
|
}
|
|
/* Ok lets first see which way our delta is going */
|
|
if (peer_delta > delta) {
|
|
/* Very unlikely, the peer without
|
|
* compensation shows that it saw
|
|
* the two sends arrive further apart
|
|
* then we saw then in micro-seconds.
|
|
*/
|
|
if (peer_delta < (delta + ((delta * (uint64_t)1000)/ (uint64_t)bbr_delta_percent))) {
|
|
/* well it looks like the peer is a micro-second clock. */
|
|
bbr->rc_ts_clock_set = 1;
|
|
bbr->r_ctl.bbr_peer_tsratio = 1;
|
|
} else {
|
|
bbr->rc_ts_cant_be_used = 1;
|
|
bbr->rc_ts_clock_set = 1;
|
|
}
|
|
return;
|
|
}
|
|
/* Ok we know that the peer_delta is smaller than our send distance */
|
|
bbr->rc_ts_clock_set = 1;
|
|
/* First question is it within the percentage that they are using usec time? */
|
|
delta_up = (peer_delta * 1000) / (uint64_t)bbr_delta_percent;
|
|
if ((peer_delta + delta_up) >= delta) {
|
|
/* Its a usec clock */
|
|
bbr->r_ctl.bbr_peer_tsratio = 1;
|
|
bbr_log_tstmp_validation(bbr, peer_delta, delta);
|
|
return;
|
|
}
|
|
/* Ok if not usec, what about 10usec (though unlikely)? */
|
|
delta_up = (peer_delta * 1000 * 10) / (uint64_t)bbr_delta_percent;
|
|
if (((peer_delta * 10) + delta_up) >= delta) {
|
|
bbr->r_ctl.bbr_peer_tsratio = 10;
|
|
bbr_log_tstmp_validation(bbr, peer_delta, delta);
|
|
return;
|
|
}
|
|
/* And what about 100usec (though again unlikely)? */
|
|
delta_up = (peer_delta * 1000 * 100) / (uint64_t)bbr_delta_percent;
|
|
if (((peer_delta * 100) + delta_up) >= delta) {
|
|
bbr->r_ctl.bbr_peer_tsratio = 100;
|
|
bbr_log_tstmp_validation(bbr, peer_delta, delta);
|
|
return;
|
|
}
|
|
/* And how about 1 msec (the most likely one)? */
|
|
delta_up = (peer_delta * 1000 * 1000) / (uint64_t)bbr_delta_percent;
|
|
if (((peer_delta * 1000) + delta_up) >= delta) {
|
|
bbr->r_ctl.bbr_peer_tsratio = 1000;
|
|
bbr_log_tstmp_validation(bbr, peer_delta, delta);
|
|
return;
|
|
}
|
|
/* Ok if not msec could it be 10 msec? */
|
|
delta_up = (peer_delta * 1000 * 10000) / (uint64_t)bbr_delta_percent;
|
|
if (((peer_delta * 10000) + delta_up) >= delta) {
|
|
bbr->r_ctl.bbr_peer_tsratio = 10000;
|
|
return;
|
|
}
|
|
/* If we fall down here the clock tick so slowly we can't use it */
|
|
bbr->rc_ts_cant_be_used = 1;
|
|
bbr->r_ctl.bbr_peer_tsratio = 0;
|
|
bbr_log_tstmp_validation(bbr, peer_delta, delta);
|
|
}
|
|
|
|
/*
|
|
* Collect new round-trip time estimate
|
|
* and update averages and current timeout.
|
|
*/
|
|
static void
|
|
tcp_bbr_xmit_timer_commit(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t cts)
|
|
{
|
|
int32_t delta;
|
|
uint32_t rtt, tsin;
|
|
int32_t rtt_ticks;
|
|
|
|
|
|
if (bbr->rtt_valid == 0)
|
|
/* No valid sample */
|
|
return;
|
|
|
|
rtt = bbr->r_ctl.cur_rtt;
|
|
tsin = bbr->r_ctl.ts_in;
|
|
if (bbr->rc_prtt_set_ts) {
|
|
/*
|
|
* We are to force feed the rttProp filter due
|
|
* to an entry into PROBE_RTT. This assures
|
|
* that the times are sync'd between when we
|
|
* go into PROBE_RTT and the filter expiration.
|
|
*
|
|
* Google does not use a true filter, so they do
|
|
* this implicitly since they only keep one value
|
|
* and when they enter probe-rtt they update the
|
|
* value to the newest rtt.
|
|
*/
|
|
uint32_t rtt_prop;
|
|
|
|
bbr->rc_prtt_set_ts = 0;
|
|
rtt_prop = get_filter_value_small(&bbr->r_ctl.rc_rttprop);
|
|
if (rtt > rtt_prop)
|
|
filter_increase_by_small(&bbr->r_ctl.rc_rttprop, (rtt - rtt_prop), cts);
|
|
else
|
|
apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, cts);
|
|
}
|
|
if (bbr->rc_ack_was_delayed)
|
|
rtt += bbr->r_ctl.rc_ack_hdwr_delay;
|
|
|
|
if (rtt < bbr->r_ctl.rc_lowest_rtt)
|
|
bbr->r_ctl.rc_lowest_rtt = rtt;
|
|
bbr_log_rtt_sample(bbr, rtt, tsin);
|
|
if (bbr->r_init_rtt) {
|
|
/*
|
|
* The initial rtt is not-trusted, nuke it and lets get
|
|
* our first valid measurement in.
|
|
*/
|
|
bbr->r_init_rtt = 0;
|
|
tp->t_srtt = 0;
|
|
}
|
|
if ((bbr->rc_ts_clock_set == 0) && bbr->rc_ts_valid) {
|
|
/*
|
|
* So we have not yet figured out
|
|
* what the peers TSTMP value is
|
|
* in (most likely ms). We need a
|
|
* series of cum-ack's to determine
|
|
* this reliably.
|
|
*/
|
|
if (bbr->rc_ack_is_cumack) {
|
|
if (bbr->rc_ts_data_set) {
|
|
/* Lets attempt to determine the timestamp granularity. */
|
|
bbr_make_timestamp_determination(bbr);
|
|
} else {
|
|
bbr->rc_ts_data_set = 1;
|
|
bbr->r_ctl.bbr_ts_check_tstmp = bbr->r_ctl.last_inbound_ts;
|
|
bbr->r_ctl.bbr_ts_check_our_cts = bbr->r_ctl.cur_rtt_send_time;
|
|
}
|
|
} else {
|
|
/*
|
|
* We have to have consecutive acks
|
|
* reset any "filled" state to none.
|
|
*/
|
|
bbr->rc_ts_data_set = 0;
|
|
}
|
|
}
|
|
/* Round it up */
|
|
rtt_ticks = USEC_2_TICKS((rtt + (USECS_IN_MSEC - 1)));
|
|
if (rtt_ticks == 0)
|
|
rtt_ticks = 1;
|
|
if (tp->t_srtt != 0) {
|
|
/*
|
|
* srtt is stored as fixed point with 5 bits after the
|
|
* binary point (i.e., scaled by 8). The following magic is
|
|
* equivalent to the smoothing algorithm in rfc793 with an
|
|
* alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
|
|
* Adjust rtt to origin 0.
|
|
*/
|
|
|
|
delta = ((rtt_ticks - 1) << TCP_DELTA_SHIFT)
|
|
- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
|
|
|
|
tp->t_srtt += delta;
|
|
if (tp->t_srtt <= 0)
|
|
tp->t_srtt = 1;
|
|
|
|
/*
|
|
* We accumulate a smoothed rtt variance (actually, a
|
|
* smoothed mean difference), then set the retransmit timer
|
|
* to smoothed rtt + 4 times the smoothed variance. rttvar
|
|
* is stored as fixed point with 4 bits after the binary
|
|
* point (scaled by 16). The following is equivalent to
|
|
* rfc793 smoothing with an alpha of .75 (rttvar =
|
|
* rttvar*3/4 + |delta| / 4). This replaces rfc793's
|
|
* wired-in beta.
|
|
*/
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
|
|
tp->t_rttvar += delta;
|
|
if (tp->t_rttvar <= 0)
|
|
tp->t_rttvar = 1;
|
|
if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
|
|
tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
|
|
} else {
|
|
/*
|
|
* No rtt measurement yet - use the unsmoothed rtt. Set the
|
|
* variance to half the rtt (so our first retransmit happens
|
|
* at 3*rtt).
|
|
*/
|
|
tp->t_srtt = rtt_ticks << TCP_RTT_SHIFT;
|
|
tp->t_rttvar = rtt_ticks << (TCP_RTTVAR_SHIFT - 1);
|
|
tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
|
|
}
|
|
TCPSTAT_INC(tcps_rttupdated);
|
|
tp->t_rttupdated++;
|
|
#ifdef STATS
|
|
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt_ticks));
|
|
#endif
|
|
/*
|
|
* the retransmit should happen at rtt + 4 * rttvar. Because of the
|
|
* way we do the smoothing, srtt and rttvar will each average +1/2
|
|
* tick of bias. When we compute the retransmit timer, we want 1/2
|
|
* tick of rounding and 1 extra tick because of +-1/2 tick
|
|
* uncertainty in the firing of the timer. The bias will give us
|
|
* exactly the 1.5 tick we need. But, because the bias is
|
|
* statistical, we have to test that we don't drop below the minimum
|
|
* feasible timer (which is 2 ticks).
|
|
*/
|
|
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
|
|
max(MSEC_2_TICKS(bbr->r_ctl.rc_min_rto_ms), rtt_ticks + 2),
|
|
MSEC_2_TICKS(((uint32_t)bbr->rc_max_rto_sec) * 1000));
|
|
|
|
/*
|
|
* We received an ack for a packet that wasn't retransmitted; it is
|
|
* probably safe to discard any error indications we've received
|
|
* recently. This isn't quite right, but close enough for now (a
|
|
* route might have failed after we sent a segment, and the return
|
|
* path might not be symmetrical).
|
|
*/
|
|
tp->t_softerror = 0;
|
|
rtt = (TICKS_2_USEC(bbr->rc_tp->t_srtt) >> TCP_RTT_SHIFT);
|
|
if (bbr->r_ctl.bbr_smallest_srtt_this_state > rtt)
|
|
bbr->r_ctl.bbr_smallest_srtt_this_state = rtt;
|
|
}
|
|
|
|
static void
|
|
bbr_earlier_retran(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm,
|
|
uint32_t t, uint32_t cts, int ack_type)
|
|
{
|
|
/*
|
|
* For this RSM, we acknowledged the data from a previous
|
|
* transmission, not the last one we made. This means we did a false
|
|
* retransmit.
|
|
*/
|
|
if (rsm->r_flags & BBR_HAS_FIN) {
|
|
/*
|
|
* The sending of the FIN often is multiple sent when we
|
|
* have everything outstanding ack'd. We ignore this case
|
|
* since its over now.
|
|
*/
|
|
return;
|
|
}
|
|
if (rsm->r_flags & BBR_TLP) {
|
|
/*
|
|
* We expect TLP's to have this occur often
|
|
*/
|
|
bbr->rc_tlp_rtx_out = 0;
|
|
return;
|
|
}
|
|
if (ack_type != BBR_CUM_ACKED) {
|
|
/*
|
|
* If it was not a cum-ack we
|
|
* don't really know for sure since
|
|
* the timestamp could be from some
|
|
* other transmission.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (rsm->r_flags & BBR_WAS_SACKPASS) {
|
|
/*
|
|
* We retransmitted based on a sack and the earlier
|
|
* retransmission ack'd it - re-ordering is occuring.
|
|
*/
|
|
BBR_STAT_INC(bbr_reorder_seen);
|
|
bbr->r_ctl.rc_reorder_ts = cts;
|
|
}
|
|
/* Back down the loss count */
|
|
if (rsm->r_flags & BBR_MARKED_LOST) {
|
|
bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start;
|
|
bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start;
|
|
rsm->r_flags &= ~BBR_MARKED_LOST;
|
|
if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost))
|
|
/* LT sampling also needs adjustment */
|
|
bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost;
|
|
}
|
|
/***** RRS HERE ************************/
|
|
/* Do we need to do this??? */
|
|
/* bbr_reset_lt_bw_sampling(bbr, cts); */
|
|
/***** RRS HERE ************************/
|
|
BBR_STAT_INC(bbr_badfr);
|
|
BBR_STAT_ADD(bbr_badfr_bytes, (rsm->r_end - rsm->r_start));
|
|
}
|
|
|
|
|
|
static void
|
|
bbr_set_reduced_rtt(struct tcp_bbr *bbr, uint32_t cts, uint32_t line)
|
|
{
|
|
bbr->r_ctl.rc_rtt_shrinks = cts;
|
|
if (bbr_can_force_probertt &&
|
|
(TSTMP_GT(cts, bbr->r_ctl.last_in_probertt)) &&
|
|
((cts - bbr->r_ctl.last_in_probertt) > bbr->r_ctl.rc_probertt_int)) {
|
|
/*
|
|
* We should enter probe-rtt its been too long
|
|
* since we have been there.
|
|
*/
|
|
bbr_enter_probe_rtt(bbr, cts, __LINE__);
|
|
} else
|
|
bbr_check_probe_rtt_limits(bbr, cts);
|
|
}
|
|
|
|
static void
|
|
tcp_bbr_commit_bw(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
uint64_t orig_bw;
|
|
|
|
if (bbr->r_ctl.rc_bbr_cur_del_rate == 0) {
|
|
/* We never apply a zero measurment */
|
|
bbr_log_type_bbrupd(bbr, 20, cts, 0, 0,
|
|
0, 0, 0, 0, 0, 0);
|
|
return;
|
|
}
|
|
if (bbr->r_ctl.r_measurement_count < 0xffffffff)
|
|
bbr->r_ctl.r_measurement_count++;
|
|
orig_bw = get_filter_value(&bbr->r_ctl.rc_delrate);
|
|
apply_filter_max(&bbr->r_ctl.rc_delrate, bbr->r_ctl.rc_bbr_cur_del_rate, bbr->r_ctl.rc_pkt_epoch);
|
|
bbr_log_type_bbrupd(bbr, 21, cts, (uint32_t)orig_bw,
|
|
(uint32_t)get_filter_value(&bbr->r_ctl.rc_delrate),
|
|
0, 0, 0, 0, 0, 0);
|
|
if (orig_bw &&
|
|
(orig_bw != get_filter_value(&bbr->r_ctl.rc_delrate))) {
|
|
if (bbr->bbr_hdrw_pacing) {
|
|
/*
|
|
* Apply a new rate to the hardware
|
|
* possibly.
|
|
*/
|
|
bbr_update_hardware_pacing_rate(bbr, cts);
|
|
}
|
|
bbr_set_state_target(bbr, __LINE__);
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
if (bbr->r_recovery_bw) {
|
|
bbr_setup_red_bw(bbr, cts);
|
|
bbr_log_type_bw_reduce(bbr, BBR_RED_BW_USELRBW);
|
|
}
|
|
} else if ((orig_bw == 0) && get_filter_value(&bbr->r_ctl.rc_delrate))
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
}
|
|
|
|
static void
|
|
bbr_nf_measurement(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t rtt, uint32_t cts)
|
|
{
|
|
if (bbr->rc_in_persist == 0) {
|
|
/* We log only when not in persist */
|
|
/* Translate to a Bytes Per Second */
|
|
uint64_t tim, bw, ts_diff, ts_bw;
|
|
uint32_t upper, lower, delivered;
|
|
|
|
if (TSTMP_GT(bbr->r_ctl.rc_del_time, rsm->r_del_time))
|
|
tim = (uint64_t)(bbr->r_ctl.rc_del_time - rsm->r_del_time);
|
|
else
|
|
tim = 1;
|
|
/*
|
|
* Now that we have processed the tim (skipping the sample
|
|
* or possibly updating the time, go ahead and
|
|
* calculate the cdr.
|
|
*/
|
|
delivered = (bbr->r_ctl.rc_delivered - rsm->r_delivered);
|
|
bw = (uint64_t)delivered;
|
|
bw *= (uint64_t)USECS_IN_SECOND;
|
|
bw /= tim;
|
|
if (bw == 0) {
|
|
/* We must have a calculatable amount */
|
|
return;
|
|
}
|
|
upper = (bw >> 32) & 0x00000000ffffffff;
|
|
lower = bw & 0x00000000ffffffff;
|
|
/*
|
|
* If we are using this b/w shove it in now so we
|
|
* can see in the trace viewer if it gets over-ridden.
|
|
*/
|
|
if (rsm->r_ts_valid &&
|
|
bbr->rc_ts_valid &&
|
|
bbr->rc_ts_clock_set &&
|
|
(bbr->rc_ts_cant_be_used == 0) &&
|
|
bbr->rc_use_ts_limit) {
|
|
ts_diff = max((bbr->r_ctl.last_inbound_ts - rsm->r_del_ack_ts), 1);
|
|
ts_diff *= bbr->r_ctl.bbr_peer_tsratio;
|
|
if ((delivered == 0) ||
|
|
(rtt < 1000)) {
|
|
/* Can't use the ts */
|
|
bbr_log_type_bbrupd(bbr, 61, cts,
|
|
ts_diff,
|
|
bbr->r_ctl.last_inbound_ts,
|
|
rsm->r_del_ack_ts, 0,
|
|
0, 0, 0, delivered);
|
|
} else {
|
|
ts_bw = (uint64_t)delivered;
|
|
ts_bw *= (uint64_t)USECS_IN_SECOND;
|
|
ts_bw /= ts_diff;
|
|
bbr_log_type_bbrupd(bbr, 62, cts,
|
|
(ts_bw >> 32),
|
|
(ts_bw & 0xffffffff), 0, 0,
|
|
0, 0, ts_diff, delivered);
|
|
if ((bbr->ts_can_raise) &&
|
|
(ts_bw > bw)) {
|
|
bbr_log_type_bbrupd(bbr, 8, cts,
|
|
delivered,
|
|
ts_diff,
|
|
(bw >> 32),
|
|
(bw & 0x00000000ffffffff),
|
|
0, 0, 0, 0);
|
|
bw = ts_bw;
|
|
} else if (ts_bw && (ts_bw < bw)) {
|
|
bbr_log_type_bbrupd(bbr, 7, cts,
|
|
delivered,
|
|
ts_diff,
|
|
(bw >> 32),
|
|
(bw & 0x00000000ffffffff),
|
|
0, 0, 0, 0);
|
|
bw = ts_bw;
|
|
}
|
|
}
|
|
}
|
|
if (rsm->r_first_sent_time &&
|
|
TSTMP_GT(rsm->r_tim_lastsent[(rsm->r_rtr_cnt -1)],rsm->r_first_sent_time)) {
|
|
uint64_t sbw, sti;
|
|
/*
|
|
* We use what was in flight at the time of our
|
|
* send and the size of this send to figure
|
|
* out what we have been sending at (amount).
|
|
* For the time we take from the time of
|
|
* the send of the first send outstanding
|
|
* until this send plus this sends pacing
|
|
* time. This gives us a good calculation
|
|
* as to the rate we have been sending at.
|
|
*/
|
|
|
|
sbw = (uint64_t)(rsm->r_flight_at_send);
|
|
sbw *= (uint64_t)USECS_IN_SECOND;
|
|
sti = rsm->r_tim_lastsent[(rsm->r_rtr_cnt -1)] - rsm->r_first_sent_time;
|
|
sti += rsm->r_pacing_delay;
|
|
sbw /= sti;
|
|
if (sbw < bw) {
|
|
bbr_log_type_bbrupd(bbr, 6, cts,
|
|
delivered,
|
|
(uint32_t)sti,
|
|
(bw >> 32),
|
|
(uint32_t)bw,
|
|
rsm->r_first_sent_time, 0, (sbw >> 32),
|
|
(uint32_t)sbw);
|
|
bw = sbw;
|
|
}
|
|
}
|
|
/* Use the google algorithm for b/w measurements */
|
|
bbr->r_ctl.rc_bbr_cur_del_rate = bw;
|
|
if ((rsm->r_app_limited == 0) ||
|
|
(bw > get_filter_value(&bbr->r_ctl.rc_delrate))) {
|
|
tcp_bbr_commit_bw(bbr, cts);
|
|
bbr_log_type_bbrupd(bbr, 10, cts, (uint32_t)tim, delivered,
|
|
0, 0, 0, 0, bbr->r_ctl.rc_del_time, rsm->r_del_time);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_google_measurement(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t rtt, uint32_t cts)
|
|
{
|
|
if (bbr->rc_in_persist == 0) {
|
|
/* We log only when not in persist */
|
|
/* Translate to a Bytes Per Second */
|
|
uint64_t tim, bw;
|
|
uint32_t upper, lower, delivered;
|
|
int no_apply = 0;
|
|
|
|
if (TSTMP_GT(bbr->r_ctl.rc_del_time, rsm->r_del_time))
|
|
tim = (uint64_t)(bbr->r_ctl.rc_del_time - rsm->r_del_time);
|
|
else
|
|
tim = 1;
|
|
/*
|
|
* Now that we have processed the tim (skipping the sample
|
|
* or possibly updating the time, go ahead and
|
|
* calculate the cdr.
|
|
*/
|
|
delivered = (bbr->r_ctl.rc_delivered - rsm->r_delivered);
|
|
bw = (uint64_t)delivered;
|
|
bw *= (uint64_t)USECS_IN_SECOND;
|
|
bw /= tim;
|
|
if (tim < bbr->r_ctl.rc_lowest_rtt) {
|
|
bbr_log_type_bbrupd(bbr, 99, cts, (uint32_t)tim, delivered,
|
|
tim, bbr->r_ctl.rc_lowest_rtt, 0, 0, 0, 0);
|
|
|
|
no_apply = 1;
|
|
}
|
|
upper = (bw >> 32) & 0x00000000ffffffff;
|
|
lower = bw & 0x00000000ffffffff;
|
|
/*
|
|
* If we are using this b/w shove it in now so we
|
|
* can see in the trace viewer if it gets over-ridden.
|
|
*/
|
|
bbr->r_ctl.rc_bbr_cur_del_rate = bw;
|
|
/* Gate by the sending rate */
|
|
if (rsm->r_first_sent_time &&
|
|
TSTMP_GT(rsm->r_tim_lastsent[(rsm->r_rtr_cnt -1)],rsm->r_first_sent_time)) {
|
|
uint64_t sbw, sti;
|
|
/*
|
|
* We use what was in flight at the time of our
|
|
* send and the size of this send to figure
|
|
* out what we have been sending at (amount).
|
|
* For the time we take from the time of
|
|
* the send of the first send outstanding
|
|
* until this send plus this sends pacing
|
|
* time. This gives us a good calculation
|
|
* as to the rate we have been sending at.
|
|
*/
|
|
|
|
sbw = (uint64_t)(rsm->r_flight_at_send);
|
|
sbw *= (uint64_t)USECS_IN_SECOND;
|
|
sti = rsm->r_tim_lastsent[(rsm->r_rtr_cnt -1)] - rsm->r_first_sent_time;
|
|
sti += rsm->r_pacing_delay;
|
|
sbw /= sti;
|
|
if (sbw < bw) {
|
|
bbr_log_type_bbrupd(bbr, 6, cts,
|
|
delivered,
|
|
(uint32_t)sti,
|
|
(bw >> 32),
|
|
(uint32_t)bw,
|
|
rsm->r_first_sent_time, 0, (sbw >> 32),
|
|
(uint32_t)sbw);
|
|
bw = sbw;
|
|
}
|
|
if ((sti > tim) &&
|
|
(sti < bbr->r_ctl.rc_lowest_rtt)) {
|
|
bbr_log_type_bbrupd(bbr, 99, cts, (uint32_t)tim, delivered,
|
|
(uint32_t)sti, bbr->r_ctl.rc_lowest_rtt, 0, 0, 0, 0);
|
|
no_apply = 1;
|
|
} else
|
|
no_apply = 0;
|
|
}
|
|
bbr->r_ctl.rc_bbr_cur_del_rate = bw;
|
|
if ((no_apply == 0) &&
|
|
((rsm->r_app_limited == 0) ||
|
|
(bw > get_filter_value(&bbr->r_ctl.rc_delrate)))) {
|
|
tcp_bbr_commit_bw(bbr, cts);
|
|
bbr_log_type_bbrupd(bbr, 10, cts, (uint32_t)tim, delivered,
|
|
0, 0, 0, 0, bbr->r_ctl.rc_del_time, rsm->r_del_time);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
bbr_update_bbr_info(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t rtt, uint32_t cts, uint32_t tsin,
|
|
uint32_t uts, int32_t match, uint32_t rsm_send_time, int32_t ack_type, struct tcpopt *to)
|
|
{
|
|
uint64_t old_rttprop;
|
|
|
|
/* Update our delivery time and amount */
|
|
bbr->r_ctl.rc_delivered += (rsm->r_end - rsm->r_start);
|
|
bbr->r_ctl.rc_del_time = cts;
|
|
if (rtt == 0) {
|
|
/*
|
|
* 0 means its a retransmit, for now we don't use these for
|
|
* the rest of BBR.
|
|
*/
|
|
return;
|
|
}
|
|
if ((bbr->rc_use_google == 0) &&
|
|
(match != BBR_RTT_BY_EXACTMATCH) &&
|
|
(match != BBR_RTT_BY_TIMESTAMP)){
|
|
/*
|
|
* We get a lot of rtt updates, lets not pay attention to
|
|
* any that are not an exact match. That way we don't have
|
|
* to worry about timestamps and the whole nonsense of
|
|
* unsure if its a retransmission etc (if we ever had the
|
|
* timestamp fixed to always have the last thing sent this
|
|
* would not be a issue).
|
|
*/
|
|
return;
|
|
}
|
|
if ((bbr_no_retran && bbr->rc_use_google) &&
|
|
(match != BBR_RTT_BY_EXACTMATCH) &&
|
|
(match != BBR_RTT_BY_TIMESTAMP)){
|
|
/*
|
|
* We only do measurements in google mode
|
|
* with bbr_no_retran on for sure things.
|
|
*/
|
|
return;
|
|
}
|
|
/* Only update srtt if we know by exact match */
|
|
tcp_bbr_xmit_timer(bbr, rtt, rsm_send_time, rsm->r_start, tsin);
|
|
if (ack_type == BBR_CUM_ACKED)
|
|
bbr->rc_ack_is_cumack = 1;
|
|
else
|
|
bbr->rc_ack_is_cumack = 0;
|
|
old_rttprop = bbr_get_rtt(bbr, BBR_RTT_PROP);
|
|
/*
|
|
* Note the following code differs to the original
|
|
* BBR spec. It calls for <= not <. However after a
|
|
* long discussion in email with Neal, he acknowledged
|
|
* that it should be < than so that we will have flows
|
|
* going into probe-rtt (we were seeing cases where that
|
|
* did not happen and caused ugly things to occur). We
|
|
* have added this agreed upon fix to our code base.
|
|
*/
|
|
if (rtt < old_rttprop) {
|
|
/* Update when we last saw a rtt drop */
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, rtt, __LINE__, BBR_RTTS_NEWRTT, 0);
|
|
bbr_set_reduced_rtt(bbr, cts, __LINE__);
|
|
}
|
|
bbr_log_type_bbrrttprop(bbr, rtt, (rsm ? rsm->r_end : 0), uts, cts,
|
|
match, rsm->r_start, rsm->r_flags);
|
|
apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, cts);
|
|
if (old_rttprop != bbr_get_rtt(bbr, BBR_RTT_PROP)) {
|
|
/*
|
|
* The RTT-prop moved, reset the target (may be a
|
|
* nop for some states).
|
|
*/
|
|
bbr_set_state_target(bbr, __LINE__);
|
|
if (bbr->rc_bbr_state == BBR_STATE_PROBE_RTT)
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0,
|
|
__LINE__, BBR_RTTS_NEW_TARGET, 0);
|
|
else if (old_rttprop < bbr_get_rtt(bbr, BBR_RTT_PROP))
|
|
/* It went up */
|
|
bbr_check_probe_rtt_limits(bbr, cts);
|
|
}
|
|
if ((bbr->rc_use_google == 0) &&
|
|
(match == BBR_RTT_BY_TIMESTAMP)) {
|
|
/*
|
|
* We don't do b/w update with
|
|
* these since they are not really
|
|
* reliable.
|
|
*/
|
|
return;
|
|
}
|
|
if (bbr->r_ctl.r_app_limited_until &&
|
|
(bbr->r_ctl.rc_delivered >= bbr->r_ctl.r_app_limited_until)) {
|
|
/* We are no longer app-limited */
|
|
bbr->r_ctl.r_app_limited_until = 0;
|
|
}
|
|
if (bbr->rc_use_google) {
|
|
bbr_google_measurement(bbr, rsm, rtt, cts);
|
|
} else {
|
|
bbr_nf_measurement(bbr, rsm, rtt, cts);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert a timestamp that the main stack
|
|
* uses (milliseconds) into one that bbr uses
|
|
* (microseconds). Return that converted timestamp.
|
|
*/
|
|
static uint32_t
|
|
bbr_ts_convert(uint32_t cts) {
|
|
uint32_t sec, msec;
|
|
|
|
sec = cts / MS_IN_USEC;
|
|
msec = cts - (MS_IN_USEC * sec);
|
|
return ((sec * USECS_IN_SECOND) + (msec * MS_IN_USEC));
|
|
}
|
|
|
|
/*
|
|
* Return 0 if we did not update the RTT time, return
|
|
* 1 if we did.
|
|
*/
|
|
static int
|
|
bbr_update_rtt(struct tcpcb *tp, struct tcp_bbr *bbr,
|
|
struct bbr_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, uint32_t th_ack)
|
|
{
|
|
int32_t i;
|
|
uint32_t t, uts = 0;
|
|
|
|
if ((rsm->r_flags & BBR_ACKED) ||
|
|
(rsm->r_flags & BBR_WAS_RENEGED) ||
|
|
(rsm->r_flags & BBR_RXT_CLEARED)) {
|
|
/* Already done */
|
|
return (0);
|
|
}
|
|
if (rsm->r_rtr_cnt == 1) {
|
|
/*
|
|
* Only one transmit. Hopefully the normal case.
|
|
*/
|
|
if (TSTMP_GT(cts, rsm->r_tim_lastsent[0]))
|
|
t = cts - rsm->r_tim_lastsent[0];
|
|
else
|
|
t = 1;
|
|
if ((int)t <= 0)
|
|
t = 1;
|
|
bbr->r_ctl.rc_last_rtt = t;
|
|
bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, 0,
|
|
BBR_RTT_BY_EXACTMATCH, rsm->r_tim_lastsent[0], ack_type, to);
|
|
return (1);
|
|
}
|
|
/* Convert to usecs */
|
|
if ((bbr_can_use_ts_for_rtt == 1) &&
|
|
(bbr->rc_use_google == 1) &&
|
|
(ack_type == BBR_CUM_ACKED) &&
|
|
(to->to_flags & TOF_TS) &&
|
|
(to->to_tsecr != 0)) {
|
|
|
|
t = tcp_tv_to_mssectick(&bbr->rc_tv) - to->to_tsecr;
|
|
if (t < 1)
|
|
t = 1;
|
|
t *= MS_IN_USEC;
|
|
bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, 0,
|
|
BBR_RTT_BY_TIMESTAMP,
|
|
rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)],
|
|
ack_type, to);
|
|
return (1);
|
|
}
|
|
uts = bbr_ts_convert(to->to_tsecr);
|
|
if ((to->to_flags & TOF_TS) &&
|
|
(to->to_tsecr != 0) &&
|
|
(ack_type == BBR_CUM_ACKED) &&
|
|
((rsm->r_flags & BBR_OVERMAX) == 0)) {
|
|
/*
|
|
* Now which timestamp does it match? In this block the ACK
|
|
* may be coming from a previous transmission.
|
|
*/
|
|
uint32_t fudge;
|
|
|
|
fudge = BBR_TIMER_FUDGE;
|
|
for (i = 0; i < rsm->r_rtr_cnt; i++) {
|
|
if ((SEQ_GEQ(uts, (rsm->r_tim_lastsent[i] - fudge))) &&
|
|
(SEQ_LEQ(uts, (rsm->r_tim_lastsent[i] + fudge)))) {
|
|
if (TSTMP_GT(cts, rsm->r_tim_lastsent[i]))
|
|
t = cts - rsm->r_tim_lastsent[i];
|
|
else
|
|
t = 1;
|
|
if ((int)t <= 0)
|
|
t = 1;
|
|
bbr->r_ctl.rc_last_rtt = t;
|
|
bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, uts, BBR_RTT_BY_TSMATCHING,
|
|
rsm->r_tim_lastsent[i], ack_type, to);
|
|
if ((i + 1) < rsm->r_rtr_cnt) {
|
|
/* Likely */
|
|
bbr_earlier_retran(tp, bbr, rsm, t, cts, ack_type);
|
|
} else if (rsm->r_flags & BBR_TLP) {
|
|
bbr->rc_tlp_rtx_out = 0;
|
|
}
|
|
return (1);
|
|
}
|
|
}
|
|
/* Fall through if we can't find a matching timestamp */
|
|
}
|
|
/*
|
|
* Ok its a SACK block that we retransmitted. or a windows
|
|
* machine without timestamps. We can tell nothing from the
|
|
* time-stamp since its not there or the time the peer last
|
|
* recieved a segment that moved forward its cum-ack point.
|
|
*
|
|
* Lets look at the last retransmit and see what we can tell
|
|
* (with BBR for space we only keep 2 note we have to keep
|
|
* at least 2 so the map can not be condensed more).
|
|
*/
|
|
i = rsm->r_rtr_cnt - 1;
|
|
if (TSTMP_GT(cts, rsm->r_tim_lastsent[i]))
|
|
t = cts - rsm->r_tim_lastsent[i];
|
|
else
|
|
goto not_sure;
|
|
if (t < bbr->r_ctl.rc_lowest_rtt) {
|
|
/*
|
|
* We retransmitted and the ack came back in less
|
|
* than the smallest rtt we have observed in the
|
|
* windowed rtt. We most likey did an improper
|
|
* retransmit as outlined in 4.2 Step 3 point 2 in
|
|
* the rack-draft.
|
|
*
|
|
* Use the prior transmission to update all the
|
|
* information as long as there is only one prior
|
|
* transmission.
|
|
*/
|
|
if ((rsm->r_flags & BBR_OVERMAX) == 0) {
|
|
#ifdef BBR_INVARIANTS
|
|
if (rsm->r_rtr_cnt == 1)
|
|
panic("rsm:%p bbr:%p rsm has overmax and only 1 retranmit flags:%x?", rsm, bbr, rsm->r_flags);
|
|
#endif
|
|
i = rsm->r_rtr_cnt - 2;
|
|
if (TSTMP_GT(cts, rsm->r_tim_lastsent[i]))
|
|
t = cts - rsm->r_tim_lastsent[i];
|
|
else
|
|
t = 1;
|
|
bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, uts, BBR_RTT_BY_EARLIER_RET,
|
|
rsm->r_tim_lastsent[i], ack_type, to);
|
|
bbr_earlier_retran(tp, bbr, rsm, t, cts, ack_type);
|
|
} else {
|
|
/*
|
|
* Too many prior transmissions, just
|
|
* updated BBR delivered
|
|
*/
|
|
not_sure:
|
|
bbr_update_bbr_info(bbr, rsm, 0, cts, to->to_tsecr, uts,
|
|
BBR_RTT_BY_SOME_RETRAN, 0, ack_type, to);
|
|
}
|
|
} else {
|
|
/*
|
|
* We retransmitted it and the retransmit did the
|
|
* job.
|
|
*/
|
|
if (rsm->r_flags & BBR_TLP)
|
|
bbr->rc_tlp_rtx_out = 0;
|
|
if ((rsm->r_flags & BBR_OVERMAX) == 0)
|
|
bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, uts,
|
|
BBR_RTT_BY_THIS_RETRAN, 0, ack_type, to);
|
|
else
|
|
bbr_update_bbr_info(bbr, rsm, 0, cts, to->to_tsecr, uts,
|
|
BBR_RTT_BY_SOME_RETRAN, 0, ack_type, to);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Mark the SACK_PASSED flag on all entries prior to rsm send wise.
|
|
*/
|
|
static void
|
|
bbr_log_sack_passed(struct tcpcb *tp,
|
|
struct tcp_bbr *bbr, struct bbr_sendmap *rsm)
|
|
{
|
|
struct bbr_sendmap *nrsm;
|
|
|
|
nrsm = rsm;
|
|
TAILQ_FOREACH_REVERSE_FROM(nrsm, &bbr->r_ctl.rc_tmap,
|
|
bbr_head, r_tnext) {
|
|
if (nrsm == rsm) {
|
|
/* Skip orginal segment he is acked */
|
|
continue;
|
|
}
|
|
if (nrsm->r_flags & BBR_ACKED) {
|
|
/* Skip ack'd segments */
|
|
continue;
|
|
}
|
|
if (nrsm->r_flags & BBR_SACK_PASSED) {
|
|
/*
|
|
* We found one that is already marked
|
|
* passed, we have been here before and
|
|
* so all others below this are marked.
|
|
*/
|
|
break;
|
|
}
|
|
BBR_STAT_INC(bbr_sack_passed);
|
|
nrsm->r_flags |= BBR_SACK_PASSED;
|
|
if (((nrsm->r_flags & BBR_MARKED_LOST) == 0) &&
|
|
bbr_is_lost(bbr, nrsm, bbr->r_ctl.rc_rcvtime)) {
|
|
bbr->r_ctl.rc_lost += nrsm->r_end - nrsm->r_start;
|
|
bbr->r_ctl.rc_lost_bytes += nrsm->r_end - nrsm->r_start;
|
|
nrsm->r_flags |= BBR_MARKED_LOST;
|
|
}
|
|
nrsm->r_flags &= ~BBR_WAS_SACKPASS;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the number of bytes that were
|
|
* newly ack'd by sack blocks.
|
|
*/
|
|
static uint32_t
|
|
bbr_proc_sack_blk(struct tcpcb *tp, struct tcp_bbr *bbr, struct sackblk *sack,
|
|
struct tcpopt *to, struct bbr_sendmap **prsm, uint32_t cts)
|
|
{
|
|
int32_t times = 0;
|
|
uint32_t start, end, maxseg, changed = 0;
|
|
struct bbr_sendmap *rsm, *nrsm;
|
|
int32_t used_ref = 1;
|
|
uint8_t went_back = 0, went_fwd = 0;
|
|
|
|
maxseg = tp->t_maxseg - bbr->rc_last_options;
|
|
start = sack->start;
|
|
end = sack->end;
|
|
rsm = *prsm;
|
|
if (rsm == NULL)
|
|
used_ref = 0;
|
|
|
|
/* Do we locate the block behind where we last were? */
|
|
if (rsm && SEQ_LT(start, rsm->r_start)) {
|
|
went_back = 1;
|
|
TAILQ_FOREACH_REVERSE_FROM(rsm, &bbr->r_ctl.rc_map, bbr_head, r_next) {
|
|
if (SEQ_GEQ(start, rsm->r_start) &&
|
|
SEQ_LT(start, rsm->r_end)) {
|
|
goto do_rest_ofb;
|
|
}
|
|
}
|
|
}
|
|
start_at_beginning:
|
|
went_fwd = 1;
|
|
/*
|
|
* Ok lets locate the block where this guy is fwd from rsm (if its
|
|
* set)
|
|
*/
|
|
TAILQ_FOREACH_FROM(rsm, &bbr->r_ctl.rc_map, r_next) {
|
|
if (SEQ_GEQ(start, rsm->r_start) &&
|
|
SEQ_LT(start, rsm->r_end)) {
|
|
break;
|
|
}
|
|
}
|
|
do_rest_ofb:
|
|
if (rsm == NULL) {
|
|
/*
|
|
* This happens when we get duplicate sack blocks with the
|
|
* same end. For example SACK 4: 100 SACK 3: 100 The sort
|
|
* will not change there location so we would just start at
|
|
* the end of the first one and get lost.
|
|
*/
|
|
if (tp->t_flags & TF_SENTFIN) {
|
|
/*
|
|
* Check to see if we have not logged the FIN that
|
|
* went out.
|
|
*/
|
|
nrsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_map, bbr_sendmap, r_next);
|
|
if (nrsm && (nrsm->r_end + 1) == tp->snd_max) {
|
|
/*
|
|
* Ok we did not get the FIN logged.
|
|
*/
|
|
nrsm->r_end++;
|
|
rsm = nrsm;
|
|
goto do_rest_ofb;
|
|
}
|
|
}
|
|
if (times == 1) {
|
|
#ifdef BBR_INVARIANTS
|
|
panic("tp:%p bbr:%p sack:%p to:%p prsm:%p",
|
|
tp, bbr, sack, to, prsm);
|
|
#else
|
|
goto out;
|
|
#endif
|
|
}
|
|
times++;
|
|
BBR_STAT_INC(bbr_sack_proc_restart);
|
|
rsm = NULL;
|
|
goto start_at_beginning;
|
|
}
|
|
/* Ok we have an ACK for some piece of rsm */
|
|
if (rsm->r_start != start) {
|
|
/*
|
|
* Need to split this in two pieces the before and after.
|
|
*/
|
|
if (bbr_sack_mergable(rsm, start, end))
|
|
nrsm = bbr_alloc_full_limit(bbr);
|
|
else
|
|
nrsm = bbr_alloc_limit(bbr, BBR_LIMIT_TYPE_SPLIT);
|
|
if (nrsm == NULL) {
|
|
/* We could not allocate ignore the sack */
|
|
struct sackblk blk;
|
|
|
|
blk.start = start;
|
|
blk.end = end;
|
|
sack_filter_reject(&bbr->r_ctl.bbr_sf, &blk);
|
|
goto out;
|
|
}
|
|
bbr_clone_rsm(bbr, nrsm, rsm, start);
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next);
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
rsm->r_flags &= (~BBR_HAS_FIN);
|
|
rsm = nrsm;
|
|
}
|
|
if (SEQ_GEQ(end, rsm->r_end)) {
|
|
/*
|
|
* The end of this block is either beyond this guy or right
|
|
* at this guy.
|
|
*/
|
|
if ((rsm->r_flags & BBR_ACKED) == 0) {
|
|
bbr_update_rtt(tp, bbr, rsm, to, cts, BBR_SACKED, 0);
|
|
changed += (rsm->r_end - rsm->r_start);
|
|
bbr->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
|
|
bbr_log_sack_passed(tp, bbr, rsm);
|
|
if (rsm->r_flags & BBR_MARKED_LOST) {
|
|
bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start;
|
|
}
|
|
/* Is Reordering occuring? */
|
|
if (rsm->r_flags & BBR_SACK_PASSED) {
|
|
BBR_STAT_INC(bbr_reorder_seen);
|
|
bbr->r_ctl.rc_reorder_ts = cts;
|
|
if (rsm->r_flags & BBR_MARKED_LOST) {
|
|
bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start;
|
|
if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost))
|
|
/* LT sampling also needs adjustment */
|
|
bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost;
|
|
}
|
|
}
|
|
rsm->r_flags |= BBR_ACKED;
|
|
rsm->r_flags &= ~(BBR_TLP|BBR_WAS_RENEGED|BBR_RXT_CLEARED|BBR_MARKED_LOST);
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 0;
|
|
}
|
|
}
|
|
bbr_isit_a_pkt_epoch(bbr, cts, rsm, __LINE__, BBR_SACKED);
|
|
if (end == rsm->r_end) {
|
|
/* This block only - done */
|
|
goto out;
|
|
}
|
|
/* There is more not coverend by this rsm move on */
|
|
start = rsm->r_end;
|
|
nrsm = TAILQ_NEXT(rsm, r_next);
|
|
rsm = nrsm;
|
|
times = 0;
|
|
goto do_rest_ofb;
|
|
}
|
|
if (rsm->r_flags & BBR_ACKED) {
|
|
/* Been here done that */
|
|
goto out;
|
|
}
|
|
/* Ok we need to split off this one at the tail */
|
|
if (bbr_sack_mergable(rsm, start, end))
|
|
nrsm = bbr_alloc_full_limit(bbr);
|
|
else
|
|
nrsm = bbr_alloc_limit(bbr, BBR_LIMIT_TYPE_SPLIT);
|
|
if (nrsm == NULL) {
|
|
/* failed XXXrrs what can we do but loose the sack info? */
|
|
struct sackblk blk;
|
|
|
|
blk.start = start;
|
|
blk.end = end;
|
|
sack_filter_reject(&bbr->r_ctl.bbr_sf, &blk);
|
|
goto out;
|
|
}
|
|
/* Clone it */
|
|
bbr_clone_rsm(bbr, nrsm, rsm, end);
|
|
/* The sack block does not cover this guy fully */
|
|
rsm->r_flags &= (~BBR_HAS_FIN);
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next);
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
nrsm->r_dupack = 0;
|
|
bbr_update_rtt(tp, bbr, rsm, to, cts, BBR_SACKED, 0);
|
|
bbr_isit_a_pkt_epoch(bbr, cts, rsm, __LINE__, BBR_SACKED);
|
|
changed += (rsm->r_end - rsm->r_start);
|
|
bbr->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
|
|
bbr_log_sack_passed(tp, bbr, rsm);
|
|
/* Is Reordering occuring? */
|
|
if (rsm->r_flags & BBR_MARKED_LOST) {
|
|
bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start;
|
|
}
|
|
if (rsm->r_flags & BBR_SACK_PASSED) {
|
|
BBR_STAT_INC(bbr_reorder_seen);
|
|
bbr->r_ctl.rc_reorder_ts = cts;
|
|
if (rsm->r_flags & BBR_MARKED_LOST) {
|
|
bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start;
|
|
if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost))
|
|
/* LT sampling also needs adjustment */
|
|
bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost;
|
|
}
|
|
}
|
|
rsm->r_flags &= ~(BBR_TLP|BBR_WAS_RENEGED|BBR_RXT_CLEARED|BBR_MARKED_LOST);
|
|
rsm->r_flags |= BBR_ACKED;
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 0;
|
|
}
|
|
out:
|
|
if (rsm && (rsm->r_flags & BBR_ACKED)) {
|
|
/*
|
|
* Now can we merge this newly acked
|
|
* block with either the previous or
|
|
* next block?
|
|
*/
|
|
nrsm = TAILQ_NEXT(rsm, r_next);
|
|
if (nrsm &&
|
|
(nrsm->r_flags & BBR_ACKED)) {
|
|
/* yep this and next can be merged */
|
|
rsm = bbr_merge_rsm(bbr, rsm, nrsm);
|
|
}
|
|
/* Now what about the previous? */
|
|
nrsm = TAILQ_PREV(rsm, bbr_head, r_next);
|
|
if (nrsm &&
|
|
(nrsm->r_flags & BBR_ACKED)) {
|
|
/* yep the previous and this can be merged */
|
|
rsm = bbr_merge_rsm(bbr, nrsm, rsm);
|
|
}
|
|
}
|
|
if (used_ref == 0) {
|
|
BBR_STAT_INC(bbr_sack_proc_all);
|
|
} else {
|
|
BBR_STAT_INC(bbr_sack_proc_short);
|
|
}
|
|
if (went_fwd && went_back) {
|
|
BBR_STAT_INC(bbr_sack_search_both);
|
|
} else if (went_fwd) {
|
|
BBR_STAT_INC(bbr_sack_search_fwd);
|
|
} else if (went_back) {
|
|
BBR_STAT_INC(bbr_sack_search_back);
|
|
}
|
|
/* Save off where the next seq is */
|
|
if (rsm)
|
|
bbr->r_ctl.rc_sacklast = TAILQ_NEXT(rsm, r_next);
|
|
else
|
|
bbr->r_ctl.rc_sacklast = NULL;
|
|
*prsm = rsm;
|
|
return (changed);
|
|
}
|
|
|
|
|
|
static void inline
|
|
bbr_peer_reneges(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, tcp_seq th_ack)
|
|
{
|
|
struct bbr_sendmap *tmap;
|
|
|
|
BBR_STAT_INC(bbr_reneges_seen);
|
|
tmap = NULL;
|
|
while (rsm && (rsm->r_flags & BBR_ACKED)) {
|
|
/* Its no longer sacked, mark it so */
|
|
uint32_t oflags;
|
|
bbr->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
|
|
#ifdef BBR_INVARIANTS
|
|
if (rsm->r_in_tmap) {
|
|
panic("bbr:%p rsm:%p flags:0x%x in tmap?",
|
|
bbr, rsm, rsm->r_flags);
|
|
}
|
|
#endif
|
|
oflags = rsm->r_flags;
|
|
if (rsm->r_flags & BBR_MARKED_LOST) {
|
|
bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start;
|
|
bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start;
|
|
if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost))
|
|
/* LT sampling also needs adjustment */
|
|
bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost;
|
|
}
|
|
rsm->r_flags &= ~(BBR_ACKED | BBR_SACK_PASSED | BBR_WAS_SACKPASS | BBR_MARKED_LOST);
|
|
rsm->r_flags |= BBR_WAS_RENEGED;
|
|
rsm->r_flags |= BBR_RXT_CLEARED;
|
|
bbr_log_type_rsmclear(bbr, bbr->r_ctl.rc_rcvtime, rsm, oflags, __LINE__);
|
|
/* Rebuild it into our tmap */
|
|
if (tmap == NULL) {
|
|
TAILQ_INSERT_HEAD(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
tmap = rsm;
|
|
} else {
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, tmap, rsm, r_tnext);
|
|
tmap = rsm;
|
|
}
|
|
tmap->r_in_tmap = 1;
|
|
/*
|
|
* XXXrrs Delivered? Should we do anything here?
|
|
*
|
|
* Of course we don't on a rxt timeout so maybe its ok that
|
|
* we don't?
|
|
*
|
|
* For now lets not.
|
|
*/
|
|
rsm = TAILQ_NEXT(rsm, r_next);
|
|
}
|
|
/*
|
|
* Now lets possibly clear the sack filter so we start recognizing
|
|
* sacks that cover this area.
|
|
*/
|
|
sack_filter_clear(&bbr->r_ctl.bbr_sf, th_ack);
|
|
}
|
|
|
|
static void
|
|
bbr_log_syn(struct tcpcb *tp, struct tcpopt *to)
|
|
{
|
|
struct tcp_bbr *bbr;
|
|
struct bbr_sendmap *rsm;
|
|
uint32_t cts;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
cts = bbr->r_ctl.rc_rcvtime;
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
if (rsm && (rsm->r_flags & BBR_HAS_SYN)) {
|
|
if ((rsm->r_end - rsm->r_start) <= 1) {
|
|
/* Log out the SYN completely */
|
|
bbr->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
|
|
rsm->r_rtr_bytes = 0;
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_map, rsm, r_next);
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 0;
|
|
}
|
|
if (bbr->r_ctl.rc_next == rsm) {
|
|
/* scoot along the marker */
|
|
bbr->r_ctl.rc_next = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
}
|
|
if (to != NULL)
|
|
bbr_update_rtt(tp, bbr, rsm, to, cts, BBR_CUM_ACKED, 0);
|
|
bbr_free(bbr, rsm);
|
|
} else {
|
|
/* There is more (Fast open)? strip out SYN. */
|
|
rsm->r_flags &= ~BBR_HAS_SYN;
|
|
rsm->r_start++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the number of bytes that were
|
|
* acknowledged by SACK blocks.
|
|
*/
|
|
|
|
static uint32_t
|
|
bbr_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th,
|
|
uint32_t *prev_acked)
|
|
{
|
|
uint32_t changed, last_seq, entered_recovery = 0;
|
|
struct tcp_bbr *bbr;
|
|
struct bbr_sendmap *rsm;
|
|
struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
|
|
register uint32_t th_ack;
|
|
int32_t i, j, k, new_sb, num_sack_blks = 0;
|
|
uint32_t cts, acked, ack_point, sack_changed = 0;
|
|
uint32_t p_maxseg, maxseg, p_acked = 0;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (th->th_flags & TH_RST) {
|
|
/* We don't log resets */
|
|
return (0);
|
|
}
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
cts = bbr->r_ctl.rc_rcvtime;
|
|
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
changed = 0;
|
|
maxseg = tp->t_maxseg - bbr->rc_last_options;
|
|
p_maxseg = min(bbr->r_ctl.rc_pace_max_segs, maxseg);
|
|
th_ack = th->th_ack;
|
|
if (SEQ_GT(th_ack, tp->snd_una)) {
|
|
acked = th_ack - tp->snd_una;
|
|
bbr_log_progress_event(bbr, tp, ticks, PROGRESS_UPDATE, __LINE__);
|
|
bbr->rc_tp->t_acktime = ticks;
|
|
} else
|
|
acked = 0;
|
|
if (SEQ_LEQ(th_ack, tp->snd_una)) {
|
|
/* Only sent here for sack processing */
|
|
goto proc_sack;
|
|
}
|
|
if (rsm && SEQ_GT(th_ack, rsm->r_start)) {
|
|
changed = th_ack - rsm->r_start;
|
|
} else if ((rsm == NULL) && ((th_ack - 1) == tp->iss)) {
|
|
/*
|
|
* For the SYN incoming case we will not have called
|
|
* tcp_output for the sending of the SYN, so there will be
|
|
* no map. All other cases should probably be a panic.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) && (to->to_tsecr != 0)) {
|
|
/*
|
|
* We have a timestamp that can be used to generate
|
|
* an initial RTT.
|
|
*/
|
|
uint32_t ts, now, rtt;
|
|
|
|
ts = bbr_ts_convert(to->to_tsecr);
|
|
now = bbr_ts_convert(tcp_tv_to_mssectick(&bbr->rc_tv));
|
|
rtt = now - ts;
|
|
if (rtt < 1)
|
|
rtt = 1;
|
|
bbr_log_type_bbrrttprop(bbr, rtt,
|
|
tp->iss, 0, cts,
|
|
BBR_RTT_BY_TIMESTAMP, tp->iss, 0);
|
|
apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, cts);
|
|
changed = 1;
|
|
bbr->r_wanted_output = 1;
|
|
goto out;
|
|
}
|
|
goto proc_sack;
|
|
} else if (rsm == NULL) {
|
|
goto out;
|
|
}
|
|
if (changed) {
|
|
/*
|
|
* The ACK point is advancing to th_ack, we must drop off
|
|
* the packets in the rack log and calculate any eligble
|
|
* RTT's.
|
|
*/
|
|
bbr->r_wanted_output = 1;
|
|
more:
|
|
if (rsm == NULL) {
|
|
|
|
if (tp->t_flags & TF_SENTFIN) {
|
|
/* if we send a FIN we will not hav a map */
|
|
goto proc_sack;
|
|
}
|
|
#ifdef BBR_INVARIANTS
|
|
panic("No rack map tp:%p for th:%p state:%d bbr:%p snd_una:%u snd_max:%u chg:%d\n",
|
|
tp,
|
|
th, tp->t_state, bbr,
|
|
tp->snd_una, tp->snd_max, changed);
|
|
#endif
|
|
goto proc_sack;
|
|
}
|
|
}
|
|
if (SEQ_LT(th_ack, rsm->r_start)) {
|
|
/* Huh map is missing this */
|
|
#ifdef BBR_INVARIANTS
|
|
printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d bbr:%p\n",
|
|
rsm->r_start,
|
|
th_ack, tp->t_state,
|
|
bbr->r_state, bbr);
|
|
panic("th-ack is bad bbr:%p tp:%p", bbr, tp);
|
|
#endif
|
|
goto proc_sack;
|
|
} else if (th_ack == rsm->r_start) {
|
|
/* None here to ack */
|
|
goto proc_sack;
|
|
}
|
|
/*
|
|
* Clear the dup ack counter, it will
|
|
* either be freed or if there is some
|
|
* remaining we need to start it at zero.
|
|
*/
|
|
rsm->r_dupack = 0;
|
|
/* Now do we consume the whole thing? */
|
|
if (SEQ_GEQ(th_ack, rsm->r_end)) {
|
|
/* Its all consumed. */
|
|
uint32_t left;
|
|
|
|
if (rsm->r_flags & BBR_ACKED) {
|
|
/*
|
|
* It was acked on the scoreboard -- remove it from
|
|
* total
|
|
*/
|
|
p_acked += (rsm->r_end - rsm->r_start);
|
|
bbr->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
|
|
if (bbr->r_ctl.rc_sacked == 0)
|
|
bbr->r_ctl.rc_sacklast = NULL;
|
|
} else {
|
|
bbr_update_rtt(tp, bbr, rsm, to, cts, BBR_CUM_ACKED, th_ack);
|
|
if (rsm->r_flags & BBR_MARKED_LOST) {
|
|
bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start;
|
|
}
|
|
if (rsm->r_flags & BBR_SACK_PASSED) {
|
|
/*
|
|
* There are acked segments ACKED on the
|
|
* scoreboard further up. We are seeing
|
|
* reordering.
|
|
*/
|
|
BBR_STAT_INC(bbr_reorder_seen);
|
|
bbr->r_ctl.rc_reorder_ts = cts;
|
|
if (rsm->r_flags & BBR_MARKED_LOST) {
|
|
bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start;
|
|
if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost))
|
|
/* LT sampling also needs adjustment */
|
|
bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost;
|
|
}
|
|
}
|
|
rsm->r_flags &= ~BBR_MARKED_LOST;
|
|
}
|
|
bbr->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
|
|
rsm->r_rtr_bytes = 0;
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_map, rsm, r_next);
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 0;
|
|
}
|
|
if (bbr->r_ctl.rc_next == rsm) {
|
|
/* scoot along the marker */
|
|
bbr->r_ctl.rc_next = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
}
|
|
bbr_isit_a_pkt_epoch(bbr, cts, rsm, __LINE__, BBR_CUM_ACKED);
|
|
/* Adjust the packet counts */
|
|
left = th_ack - rsm->r_end;
|
|
/* Free back to zone */
|
|
bbr_free(bbr, rsm);
|
|
if (left) {
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
goto more;
|
|
}
|
|
goto proc_sack;
|
|
}
|
|
if (rsm->r_flags & BBR_ACKED) {
|
|
/*
|
|
* It was acked on the scoreboard -- remove it from total
|
|
* for the part being cum-acked.
|
|
*/
|
|
p_acked += (rsm->r_end - rsm->r_start);
|
|
bbr->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
|
|
if (bbr->r_ctl.rc_sacked == 0)
|
|
bbr->r_ctl.rc_sacklast = NULL;
|
|
} else {
|
|
/*
|
|
* It was acked up to th_ack point for the first time
|
|
*/
|
|
struct bbr_sendmap lrsm;
|
|
|
|
memcpy(&lrsm, rsm, sizeof(struct bbr_sendmap));
|
|
lrsm.r_end = th_ack;
|
|
bbr_update_rtt(tp, bbr, &lrsm, to, cts, BBR_CUM_ACKED, th_ack);
|
|
}
|
|
if ((rsm->r_flags & BBR_MARKED_LOST) &&
|
|
((rsm->r_flags & BBR_ACKED) == 0)) {
|
|
/*
|
|
* It was marked lost and partly ack'd now
|
|
* for the first time. We lower the rc_lost_bytes
|
|
* and still leave it MARKED.
|
|
*/
|
|
bbr->r_ctl.rc_lost_bytes -= th_ack - rsm->r_start;
|
|
}
|
|
bbr_isit_a_pkt_epoch(bbr, cts, rsm, __LINE__, BBR_CUM_ACKED);
|
|
bbr->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
|
|
rsm->r_rtr_bytes = 0;
|
|
/* adjust packet count */
|
|
rsm->r_start = th_ack;
|
|
proc_sack:
|
|
/* Check for reneging */
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
if (rsm && (rsm->r_flags & BBR_ACKED) && (th_ack == rsm->r_start)) {
|
|
/*
|
|
* The peer has moved snd_una up to the edge of this send,
|
|
* i.e. one that it had previously acked. The only way that
|
|
* can be true if the peer threw away data (space issues)
|
|
* that it had previously sacked (else it would have given
|
|
* us snd_una up to (rsm->r_end). We need to undo the acked
|
|
* markings here.
|
|
*
|
|
* Note we have to look to make sure th_ack is our
|
|
* rsm->r_start in case we get an old ack where th_ack is
|
|
* behind snd_una.
|
|
*/
|
|
bbr_peer_reneges(bbr, rsm, th->th_ack);
|
|
}
|
|
if ((to->to_flags & TOF_SACK) == 0) {
|
|
/* We are done nothing left to log */
|
|
goto out;
|
|
}
|
|
rsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_map, bbr_sendmap, r_next);
|
|
if (rsm) {
|
|
last_seq = rsm->r_end;
|
|
} else {
|
|
last_seq = tp->snd_max;
|
|
}
|
|
/* Sack block processing */
|
|
if (SEQ_GT(th_ack, tp->snd_una))
|
|
ack_point = th_ack;
|
|
else
|
|
ack_point = tp->snd_una;
|
|
for (i = 0; i < to->to_nsacks; i++) {
|
|
bcopy((to->to_sacks + i * TCPOLEN_SACK),
|
|
&sack, sizeof(sack));
|
|
sack.start = ntohl(sack.start);
|
|
sack.end = ntohl(sack.end);
|
|
if (SEQ_GT(sack.end, sack.start) &&
|
|
SEQ_GT(sack.start, ack_point) &&
|
|
SEQ_LT(sack.start, tp->snd_max) &&
|
|
SEQ_GT(sack.end, ack_point) &&
|
|
SEQ_LEQ(sack.end, tp->snd_max)) {
|
|
if ((bbr->r_ctl.rc_num_small_maps_alloced > bbr_sack_block_limit) &&
|
|
(SEQ_LT(sack.end, last_seq)) &&
|
|
((sack.end - sack.start) < (p_maxseg / 8))) {
|
|
/*
|
|
* Not the last piece and its smaller than
|
|
* 1/8th of a p_maxseg. We ignore this.
|
|
*/
|
|
BBR_STAT_INC(bbr_runt_sacks);
|
|
continue;
|
|
}
|
|
sack_blocks[num_sack_blks] = sack;
|
|
num_sack_blks++;
|
|
#ifdef NETFLIX_STATS
|
|
} else if (SEQ_LEQ(sack.start, th_ack) &&
|
|
SEQ_LEQ(sack.end, th_ack)) {
|
|
/*
|
|
* Its a D-SACK block.
|
|
*/
|
|
tcp_record_dsack(sack.start, sack.end);
|
|
#endif
|
|
}
|
|
}
|
|
if (num_sack_blks == 0)
|
|
goto out;
|
|
/*
|
|
* Sort the SACK blocks so we can update the rack scoreboard with
|
|
* just one pass.
|
|
*/
|
|
new_sb = sack_filter_blks(&bbr->r_ctl.bbr_sf, sack_blocks,
|
|
num_sack_blks, th->th_ack);
|
|
ctf_log_sack_filter(bbr->rc_tp, new_sb, sack_blocks);
|
|
BBR_STAT_ADD(bbr_sack_blocks, num_sack_blks);
|
|
BBR_STAT_ADD(bbr_sack_blocks_skip, (num_sack_blks - new_sb));
|
|
num_sack_blks = new_sb;
|
|
if (num_sack_blks < 2) {
|
|
goto do_sack_work;
|
|
}
|
|
/* Sort the sacks */
|
|
for (i = 0; i < num_sack_blks; i++) {
|
|
for (j = i + 1; j < num_sack_blks; j++) {
|
|
if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
|
|
sack = sack_blocks[i];
|
|
sack_blocks[i] = sack_blocks[j];
|
|
sack_blocks[j] = sack;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Now are any of the sack block ends the same (yes some
|
|
* implememtations send these)?
|
|
*/
|
|
again:
|
|
if (num_sack_blks > 1) {
|
|
for (i = 0; i < num_sack_blks; i++) {
|
|
for (j = i + 1; j < num_sack_blks; j++) {
|
|
if (sack_blocks[i].end == sack_blocks[j].end) {
|
|
/*
|
|
* Ok these two have the same end we
|
|
* want the smallest end and then
|
|
* throw away the larger and start
|
|
* again.
|
|
*/
|
|
if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
|
|
/*
|
|
* The second block covers
|
|
* more area use that
|
|
*/
|
|
sack_blocks[i].start = sack_blocks[j].start;
|
|
}
|
|
/*
|
|
* Now collapse out the dup-sack and
|
|
* lower the count
|
|
*/
|
|
for (k = (j + 1); k < num_sack_blks; k++) {
|
|
sack_blocks[j].start = sack_blocks[k].start;
|
|
sack_blocks[j].end = sack_blocks[k].end;
|
|
j++;
|
|
}
|
|
num_sack_blks--;
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
do_sack_work:
|
|
rsm = bbr->r_ctl.rc_sacklast;
|
|
for (i = 0; i < num_sack_blks; i++) {
|
|
acked = bbr_proc_sack_blk(tp, bbr, &sack_blocks[i], to, &rsm, cts);
|
|
if (acked) {
|
|
bbr->r_wanted_output = 1;
|
|
changed += acked;
|
|
sack_changed += acked;
|
|
}
|
|
}
|
|
out:
|
|
*prev_acked = p_acked;
|
|
if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
|
|
/*
|
|
* Ok we have a high probability that we need to go in to
|
|
* recovery since we have data sack'd
|
|
*/
|
|
struct bbr_sendmap *rsm;
|
|
|
|
rsm = bbr_check_recovery_mode(tp, bbr, cts);
|
|
if (rsm) {
|
|
/* Enter recovery */
|
|
entered_recovery = 1;
|
|
bbr->r_wanted_output = 1;
|
|
/*
|
|
* When we enter recovery we need to assure we send
|
|
* one packet.
|
|
*/
|
|
if (bbr->r_ctl.rc_resend == NULL) {
|
|
bbr->r_ctl.rc_resend = rsm;
|
|
}
|
|
}
|
|
}
|
|
if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
|
|
/*
|
|
* See if we need to rack-retransmit anything if so set it
|
|
* up as the thing to resend assuming something else is not
|
|
* already in that position.
|
|
*/
|
|
if (bbr->r_ctl.rc_resend == NULL) {
|
|
bbr->r_ctl.rc_resend = bbr_check_recovery_mode(tp, bbr, cts);
|
|
}
|
|
}
|
|
/*
|
|
* We return the amount that changed via sack, this is used by the
|
|
* ack-received code to augment what was changed between th_ack <->
|
|
* snd_una.
|
|
*/
|
|
return (sack_changed);
|
|
}
|
|
|
|
static void
|
|
bbr_strike_dupack(struct tcp_bbr *bbr)
|
|
{
|
|
struct bbr_sendmap *rsm;
|
|
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap);
|
|
if (rsm && (rsm->r_dupack < 0xff)) {
|
|
rsm->r_dupack++;
|
|
if (rsm->r_dupack >= DUP_ACK_THRESHOLD)
|
|
bbr->r_wanted_output = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, we do not need to call bbr_process_data().
|
|
* return value of 0, bbr_process_data can be called.
|
|
* For ret_val if its 0 the TCB is locked and valid, if its non-zero
|
|
* its unlocked and probably unsafe to touch the TCB.
|
|
*/
|
|
static int
|
|
bbr_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to,
|
|
uint32_t tiwin, int32_t tlen,
|
|
int32_t * ofia, int32_t thflags, int32_t * ret_val)
|
|
{
|
|
int32_t ourfinisacked = 0;
|
|
int32_t acked_amount;
|
|
uint16_t nsegs;
|
|
int32_t acked;
|
|
uint32_t lost, sack_changed = 0;
|
|
struct mbuf *mfree;
|
|
struct tcp_bbr *bbr;
|
|
uint32_t prev_acked = 0;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
lost = bbr->r_ctl.rc_lost;
|
|
nsegs = max(1, m->m_pkthdr.lro_nsegs);
|
|
if (SEQ_GT(th->th_ack, tp->snd_max)) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
|
|
bbr->r_wanted_output = 1;
|
|
return (1);
|
|
}
|
|
if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
|
|
/* Process the ack */
|
|
if (bbr->rc_in_persist)
|
|
tp->t_rxtshift = 0;
|
|
if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd))
|
|
bbr_strike_dupack(bbr);
|
|
sack_changed = bbr_log_ack(tp, to, th, &prev_acked);
|
|
}
|
|
bbr_lt_bw_sampling(bbr, bbr->r_ctl.rc_rcvtime, (bbr->r_ctl.rc_lost > lost));
|
|
if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
|
|
/*
|
|
* Old ack, behind the last one rcv'd or a duplicate ack
|
|
* with SACK info.
|
|
*/
|
|
if (th->th_ack == tp->snd_una) {
|
|
bbr_ack_received(tp, bbr, th, 0, sack_changed, prev_acked, __LINE__, 0);
|
|
if (bbr->r_state == TCPS_SYN_SENT) {
|
|
/*
|
|
* Special case on where we sent SYN. When
|
|
* the SYN-ACK is processed in syn_sent
|
|
* state it bumps the snd_una. This causes
|
|
* us to hit here even though we did ack 1
|
|
* byte.
|
|
*
|
|
* Go through the nothing left case so we
|
|
* send data.
|
|
*/
|
|
goto nothing_left;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
/*
|
|
* If we reach this point, ACK is not a duplicate, i.e., it ACKs
|
|
* something we sent.
|
|
*/
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
/*
|
|
* T/TCP: Connection was half-synchronized, and our SYN has
|
|
* been ACK'd (so connection is now fully synchronized). Go
|
|
* to non-starred state, increment snd_una for ACK of SYN,
|
|
* and check if we can do window scaling.
|
|
*/
|
|
tp->t_flags &= ~TF_NEEDSYN;
|
|
tp->snd_una++;
|
|
/* Do window scaling? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE | TF_REQ_SCALE)) {
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
/* Send window already scaled. */
|
|
}
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
acked = BYTES_THIS_ACK(tp, th);
|
|
TCPSTAT_ADD(tcps_rcvackpack, (int)nsegs);
|
|
TCPSTAT_ADD(tcps_rcvackbyte, acked);
|
|
|
|
/*
|
|
* If we just performed our first retransmit, and the ACK arrives
|
|
* within our recovery window, then it was a mistake to do the
|
|
* retransmit in the first place. Recover our original cwnd and
|
|
* ssthresh, and proceed to transmit where we left off.
|
|
*/
|
|
if (tp->t_flags & TF_PREVVALID) {
|
|
tp->t_flags &= ~TF_PREVVALID;
|
|
if (tp->t_rxtshift == 1 &&
|
|
(int)(ticks - tp->t_badrxtwin) < 0)
|
|
bbr_cong_signal(tp, th, CC_RTO_ERR, NULL);
|
|
}
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
acked_amount = min(acked, (int)sbavail(&so->so_snd));
|
|
tp->snd_wnd -= acked_amount;
|
|
mfree = sbcut_locked(&so->so_snd, acked_amount);
|
|
/* NB: sowwakeup_locked() does an implicit unlock. */
|
|
sowwakeup_locked(so);
|
|
m_freem(mfree);
|
|
if (SEQ_GT(th->th_ack, tp->snd_una)) {
|
|
bbr_collapse_rtt(tp, bbr, TCP_REXMTVAL(tp));
|
|
}
|
|
tp->snd_una = th->th_ack;
|
|
bbr_ack_received(tp, bbr, th, acked, sack_changed, prev_acked, __LINE__, (bbr->r_ctl.rc_lost - lost));
|
|
if (IN_RECOVERY(tp->t_flags)) {
|
|
if (SEQ_LT(th->th_ack, tp->snd_recover) &&
|
|
(SEQ_LT(th->th_ack, tp->snd_max))) {
|
|
tcp_bbr_partialack(tp);
|
|
} else {
|
|
bbr_post_recovery(tp);
|
|
}
|
|
}
|
|
if (SEQ_GT(tp->snd_una, tp->snd_recover)) {
|
|
tp->snd_recover = tp->snd_una;
|
|
}
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {
|
|
tp->snd_nxt = tp->snd_max;
|
|
}
|
|
if (tp->snd_una == tp->snd_max) {
|
|
/* Nothing left outstanding */
|
|
nothing_left:
|
|
bbr_log_progress_event(bbr, tp, ticks, PROGRESS_CLEAR, __LINE__);
|
|
if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
|
|
bbr->rc_tp->t_acktime = 0;
|
|
if ((sbused(&so->so_snd) == 0) &&
|
|
(tp->t_flags & TF_SENTFIN)) {
|
|
ourfinisacked = 1;
|
|
}
|
|
bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime);
|
|
if (bbr->rc_in_persist == 0) {
|
|
bbr->r_ctl.rc_went_idle_time = bbr->r_ctl.rc_rcvtime;
|
|
}
|
|
sack_filter_clear(&bbr->r_ctl.bbr_sf, tp->snd_una);
|
|
bbr_log_ack_clear(bbr, bbr->r_ctl.rc_rcvtime);
|
|
/*
|
|
* We invalidate the last ack here since we
|
|
* don't want to transfer forward the time
|
|
* for our sum's calculations.
|
|
*/
|
|
if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
|
|
(sbavail(&so->so_snd) == 0) &&
|
|
(tp->t_flags2 & TF2_DROP_AF_DATA)) {
|
|
/*
|
|
* The socket was gone and the peer sent data, time
|
|
* to reset him.
|
|
*/
|
|
*ret_val = 1;
|
|
tp = tcp_close(tp);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
|
|
BBR_STAT_INC(bbr_dropped_af_data);
|
|
return (1);
|
|
}
|
|
/* Set need output so persist might get set */
|
|
bbr->r_wanted_output = 1;
|
|
}
|
|
if (ofia)
|
|
*ofia = ourfinisacked;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bbr_enter_persist(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, int32_t line)
|
|
{
|
|
if (bbr->rc_in_persist == 0) {
|
|
bbr_timer_cancel(bbr, __LINE__, cts);
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
tp->t_rxtshift = 0;
|
|
bbr->rc_in_persist = 1;
|
|
bbr->r_ctl.rc_went_idle_time = cts;
|
|
/* We should be capped when rw went to 0 but just in case */
|
|
bbr_log_type_pesist(bbr, cts, 0, line, 1);
|
|
/* Time freezes for the state, so do the accounting now */
|
|
if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) {
|
|
uint32_t time_in;
|
|
|
|
time_in = cts - bbr->r_ctl.rc_bbr_state_time;
|
|
if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) {
|
|
int32_t idx;
|
|
|
|
idx = bbr_state_val(bbr);
|
|
counter_u64_add(bbr_state_time[(idx + 5)], time_in);
|
|
} else {
|
|
counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in);
|
|
}
|
|
}
|
|
bbr->r_ctl.rc_bbr_state_time = cts;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_restart_after_idle(struct tcp_bbr *bbr, uint32_t cts, uint32_t idle_time)
|
|
{
|
|
/*
|
|
* Note that if idle time does not exceed our
|
|
* threshold, we do nothing continuing the state
|
|
* transitions we were last walking through.
|
|
*/
|
|
if (idle_time >= bbr_idle_restart_threshold) {
|
|
if (bbr->rc_use_idle_restart) {
|
|
bbr->rc_bbr_state = BBR_STATE_IDLE_EXIT;
|
|
/*
|
|
* Set our target using BBR_UNIT, so
|
|
* we increase at a dramatic rate but
|
|
* we stop when we get the pipe
|
|
* full again for our current b/w estimate.
|
|
*/
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT;
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = BBR_UNIT;
|
|
bbr_set_state_target(bbr, __LINE__);
|
|
/* Now setup our gains to ramp up */
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.rc_startup_pg;
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = bbr->r_ctl.rc_startup_pg;
|
|
bbr_log_type_statechange(bbr, cts, __LINE__);
|
|
} else {
|
|
bbr_substate_change(bbr, cts, __LINE__, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_exit_persist(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, int32_t line)
|
|
{
|
|
uint32_t idle_time;
|
|
|
|
if (bbr->rc_in_persist == 0)
|
|
return;
|
|
idle_time = bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time);
|
|
bbr->rc_in_persist = 0;
|
|
bbr->rc_hit_state_1 = 0;
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
bbr->r_ctl.rc_del_time = cts;
|
|
/*
|
|
* We invalidate the last ack here since we
|
|
* don't want to transfer forward the time
|
|
* for our sum's calculations.
|
|
*/
|
|
if (bbr->rc_inp->inp_in_hpts) {
|
|
tcp_hpts_remove(bbr->rc_inp, HPTS_REMOVE_OUTPUT);
|
|
bbr->rc_timer_first = 0;
|
|
bbr->r_ctl.rc_hpts_flags = 0;
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
bbr->r_ctl.rc_hptsi_agg_delay = 0;
|
|
bbr->r_agg_early_set = 0;
|
|
bbr->r_ctl.rc_agg_early = 0;
|
|
}
|
|
bbr_log_type_pesist(bbr, cts, idle_time, line, 0);
|
|
if (idle_time >= bbr_rtt_probe_time) {
|
|
/*
|
|
* This qualifies as a RTT_PROBE session since we drop the
|
|
* data outstanding to nothing and waited more than
|
|
* bbr_rtt_probe_time.
|
|
*/
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_PERSIST, 0);
|
|
bbr->r_ctl.last_in_probertt = bbr->r_ctl.rc_rtt_shrinks = cts;
|
|
}
|
|
tp->t_rxtshift = 0;
|
|
/*
|
|
* If in probeBW and we have persisted more than an RTT lets do
|
|
* special handling.
|
|
*/
|
|
/* Force a time based epoch */
|
|
bbr_set_epoch(bbr, cts, __LINE__);
|
|
/*
|
|
* Setup the lost so we don't count anything against the guy
|
|
* we have been stuck with during persists.
|
|
*/
|
|
bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost;
|
|
/* Time un-freezes for the state */
|
|
bbr->r_ctl.rc_bbr_state_time = cts;
|
|
if ((bbr->rc_bbr_state == BBR_STATE_PROBE_BW) ||
|
|
(bbr->rc_bbr_state == BBR_STATE_PROBE_RTT)) {
|
|
/*
|
|
* If we are going back to probe-bw
|
|
* or probe_rtt, we may need to possibly
|
|
* do a fast restart.
|
|
*/
|
|
bbr_restart_after_idle(bbr, cts, idle_time);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_collapsed_window(struct tcp_bbr *bbr)
|
|
{
|
|
/*
|
|
* Now we must walk the
|
|
* send map and divide the
|
|
* ones left stranded. These
|
|
* guys can't cause us to abort
|
|
* the connection and are really
|
|
* "unsent". However if a buggy
|
|
* client actually did keep some
|
|
* of the data i.e. collapsed the win
|
|
* and refused to ack and then opened
|
|
* the win and acked that data. We would
|
|
* get into an ack war, the simplier
|
|
* method then of just pretending we
|
|
* did not send those segments something
|
|
* won't work.
|
|
*/
|
|
struct bbr_sendmap *rsm, *nrsm;
|
|
tcp_seq max_seq;
|
|
uint32_t maxseg;
|
|
int can_split = 0;
|
|
int fnd = 0;
|
|
|
|
maxseg = bbr->rc_tp->t_maxseg - bbr->rc_last_options;
|
|
max_seq = bbr->rc_tp->snd_una + bbr->rc_tp->snd_wnd;
|
|
bbr_log_type_rwnd_collapse(bbr, max_seq, 1, 0);
|
|
TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) {
|
|
/* Find the first seq past or at maxseq */
|
|
if (rsm->r_flags & BBR_RWND_COLLAPSED)
|
|
rsm->r_flags &= ~BBR_RWND_COLLAPSED;
|
|
if (SEQ_GEQ(max_seq, rsm->r_start) &&
|
|
SEQ_GEQ(rsm->r_end, max_seq)) {
|
|
fnd = 1;
|
|
break;
|
|
}
|
|
}
|
|
bbr->rc_has_collapsed = 0;
|
|
if (!fnd) {
|
|
/* Nothing to do strange */
|
|
return;
|
|
}
|
|
/*
|
|
* Now can we split?
|
|
*
|
|
* We don't want to split if splitting
|
|
* would generate too many small segments
|
|
* less we let an attacker fragment our
|
|
* send_map and leave us out of memory.
|
|
*/
|
|
if ((max_seq != rsm->r_start) &&
|
|
(max_seq != rsm->r_end)){
|
|
/* can we split? */
|
|
int res1, res2;
|
|
|
|
res1 = max_seq - rsm->r_start;
|
|
res2 = rsm->r_end - max_seq;
|
|
if ((res1 >= (maxseg/8)) &&
|
|
(res2 >= (maxseg/8))) {
|
|
/* No small pieces here */
|
|
can_split = 1;
|
|
} else if (bbr->r_ctl.rc_num_small_maps_alloced < bbr_sack_block_limit) {
|
|
/* We are under the limit */
|
|
can_split = 1;
|
|
}
|
|
}
|
|
/* Ok do we need to split this rsm? */
|
|
if (max_seq == rsm->r_start) {
|
|
/* It's this guy no split required */
|
|
nrsm = rsm;
|
|
} else if (max_seq == rsm->r_end) {
|
|
/* It's the next one no split required. */
|
|
nrsm = TAILQ_NEXT(rsm, r_next);
|
|
if (nrsm == NULL) {
|
|
/* Huh? */
|
|
return;
|
|
}
|
|
} else if (can_split && SEQ_LT(max_seq, rsm->r_end)) {
|
|
/* yep we need to split it */
|
|
nrsm = bbr_alloc_limit(bbr, BBR_LIMIT_TYPE_SPLIT);
|
|
if (nrsm == NULL) {
|
|
/* failed XXXrrs what can we do mark the whole? */
|
|
nrsm = rsm;
|
|
goto no_split;
|
|
}
|
|
/* Clone it */
|
|
bbr_log_type_rwnd_collapse(bbr, max_seq, 3, 0);
|
|
bbr_clone_rsm(bbr, nrsm, rsm, max_seq);
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next);
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* Split not allowed just start here just
|
|
* use this guy.
|
|
*/
|
|
nrsm = rsm;
|
|
}
|
|
no_split:
|
|
BBR_STAT_INC(bbr_collapsed_win);
|
|
/* reuse fnd as a count */
|
|
fnd = 0;
|
|
TAILQ_FOREACH_FROM(nrsm, &bbr->r_ctl.rc_map, r_next) {
|
|
nrsm->r_flags |= BBR_RWND_COLLAPSED;
|
|
fnd++;
|
|
bbr->rc_has_collapsed = 1;
|
|
}
|
|
bbr_log_type_rwnd_collapse(bbr, max_seq, 4, fnd);
|
|
}
|
|
|
|
static void
|
|
bbr_un_collapse_window(struct tcp_bbr *bbr)
|
|
{
|
|
struct bbr_sendmap *rsm;
|
|
int cleared = 0;
|
|
|
|
TAILQ_FOREACH_REVERSE(rsm, &bbr->r_ctl.rc_map, bbr_head, r_next) {
|
|
if (rsm->r_flags & BBR_RWND_COLLAPSED) {
|
|
/* Clear the flag */
|
|
rsm->r_flags &= ~BBR_RWND_COLLAPSED;
|
|
cleared++;
|
|
} else
|
|
break;
|
|
}
|
|
bbr_log_type_rwnd_collapse(bbr,
|
|
(bbr->rc_tp->snd_una + bbr->rc_tp->snd_wnd), 0, cleared);
|
|
bbr->rc_has_collapsed = 0;
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCB is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
bbr_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
/*
|
|
* Update window information. Don't look at window if no ACK: TAC's
|
|
* send garbage on first SYN.
|
|
*/
|
|
uint16_t nsegs;
|
|
int32_t tfo_syn;
|
|
struct tcp_bbr *bbr;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
nsegs = max(1, m->m_pkthdr.lro_nsegs);
|
|
if ((thflags & TH_ACK) &&
|
|
(SEQ_LT(tp->snd_wl1, th->th_seq) ||
|
|
(tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
|
|
(tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
|
|
/* keep track of pure window updates */
|
|
if (tlen == 0 &&
|
|
tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
|
|
TCPSTAT_INC(tcps_rcvwinupd);
|
|
tp->snd_wnd = tiwin;
|
|
tp->snd_wl1 = th->th_seq;
|
|
tp->snd_wl2 = th->th_ack;
|
|
if (tp->snd_wnd > tp->max_sndwnd)
|
|
tp->max_sndwnd = tp->snd_wnd;
|
|
bbr->r_wanted_output = 1;
|
|
} else if (thflags & TH_ACK) {
|
|
if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
|
|
tp->snd_wnd = tiwin;
|
|
tp->snd_wl1 = th->th_seq;
|
|
tp->snd_wl2 = th->th_ack;
|
|
}
|
|
}
|
|
if (tp->snd_wnd < ctf_outstanding(tp))
|
|
/* The peer collapsed its window on us */
|
|
bbr_collapsed_window(bbr);
|
|
else if (bbr->rc_has_collapsed)
|
|
bbr_un_collapse_window(bbr);
|
|
/* Was persist timer active and now we have window space? */
|
|
if ((bbr->rc_in_persist != 0) &&
|
|
(tp->snd_wnd >= min((bbr->r_ctl.rc_high_rwnd/2),
|
|
bbr_minseg(bbr)))) {
|
|
/*
|
|
* Make the rate persist at end of persist mode if idle long
|
|
* enough
|
|
*/
|
|
bbr_exit_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__);
|
|
|
|
/* Make sure we output to start the timer */
|
|
bbr->r_wanted_output = 1;
|
|
}
|
|
/* Do we need to enter persist? */
|
|
if ((bbr->rc_in_persist == 0) &&
|
|
(tp->snd_wnd < min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) &&
|
|
TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->snd_max == tp->snd_una) &&
|
|
sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
|
|
(sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
|
|
/* No send window.. we must enter persist */
|
|
bbr_enter_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__);
|
|
}
|
|
if (tp->t_flags2 & TF2_DROP_AF_DATA) {
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
/*
|
|
* Process segments with URG.
|
|
*/
|
|
if ((thflags & TH_URG) && th->th_urp &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
/*
|
|
* This is a kludge, but if we receive and accept random
|
|
* urgent pointers, we'll crash in soreceive. It's hard to
|
|
* imagine someone actually wanting to send this much urgent
|
|
* data.
|
|
*/
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
|
|
th->th_urp = 0; /* XXX */
|
|
thflags &= ~TH_URG; /* XXX */
|
|
SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */
|
|
goto dodata; /* XXX */
|
|
}
|
|
/*
|
|
* If this segment advances the known urgent pointer, then
|
|
* mark the data stream. This should not happen in
|
|
* CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
|
|
* FIN has been received from the remote side. In these
|
|
* states we ignore the URG.
|
|
*
|
|
* According to RFC961 (Assigned Protocols), the urgent
|
|
* pointer points to the last octet of urgent data. We
|
|
* continue, however, to consider it to indicate the first
|
|
* octet of data past the urgent section as the original
|
|
* spec states (in one of two places).
|
|
*/
|
|
if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
|
|
tp->rcv_up = th->th_seq + th->th_urp;
|
|
so->so_oobmark = sbavail(&so->so_rcv) +
|
|
(tp->rcv_up - tp->rcv_nxt) - 1;
|
|
if (so->so_oobmark == 0)
|
|
so->so_rcv.sb_state |= SBS_RCVATMARK;
|
|
sohasoutofband(so);
|
|
tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
|
|
}
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
/*
|
|
* Remove out of band data so doesn't get presented to user.
|
|
* This can happen independent of advancing the URG pointer,
|
|
* but if two URG's are pending at once, some out-of-band
|
|
* data may creep in... ick.
|
|
*/
|
|
if (th->th_urp <= (uint32_t)tlen &&
|
|
!(so->so_options & SO_OOBINLINE)) {
|
|
/* hdr drop is delayed */
|
|
tcp_pulloutofband(so, th, m, drop_hdrlen);
|
|
}
|
|
} else {
|
|
/*
|
|
* If no out of band data is expected, pull receive urgent
|
|
* pointer along with the receive window.
|
|
*/
|
|
if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
|
|
tp->rcv_up = tp->rcv_nxt;
|
|
}
|
|
dodata: /* XXX */
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
/*
|
|
* Process the segment text, merging it into the TCP sequencing
|
|
* queue, and arranging for acknowledgment of receipt if necessary.
|
|
* This process logically involves adjusting tp->rcv_wnd as data is
|
|
* presented to the user (this happens in tcp_usrreq.c, case
|
|
* PRU_RCVD). If a FIN has already been received on this connection
|
|
* then we just ignore the text.
|
|
*/
|
|
tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
|
|
IS_FASTOPEN(tp->t_flags));
|
|
if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
tcp_seq save_start = th->th_seq;
|
|
tcp_seq save_rnxt = tp->rcv_nxt;
|
|
int save_tlen = tlen;
|
|
|
|
m_adj(m, drop_hdrlen); /* delayed header drop */
|
|
/*
|
|
* Insert segment which includes th into TCP reassembly
|
|
* queue with control block tp. Set thflags to whether
|
|
* reassembly now includes a segment with FIN. This handles
|
|
* the common case inline (segment is the next to be
|
|
* received on an established connection, and the queue is
|
|
* empty), avoiding linkage into and removal from the queue
|
|
* and repetition of various conversions. Set DELACK for
|
|
* segments received in order, but ack immediately when
|
|
* segments are out of order (so fast retransmit can work).
|
|
*/
|
|
if (th->th_seq == tp->rcv_nxt &&
|
|
SEGQ_EMPTY(tp) &&
|
|
(TCPS_HAVEESTABLISHED(tp->t_state) ||
|
|
tfo_syn)) {
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
u_int mcnt, appended;
|
|
|
|
if (so->so_rcv.sb_shlim) {
|
|
mcnt = m_memcnt(m);
|
|
appended = 0;
|
|
if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
|
|
CFO_NOSLEEP, NULL) == false) {
|
|
counter_u64_add(tcp_sb_shlim_fails, 1);
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
if (DELAY_ACK(tp, bbr, nsegs) || tfo_syn) {
|
|
bbr->bbr_segs_rcvd += max(1, nsegs);
|
|
tp->t_flags |= TF_DELACK;
|
|
bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime);
|
|
} else {
|
|
bbr->r_wanted_output = 1;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
tp->rcv_nxt += tlen;
|
|
thflags = th->th_flags & TH_FIN;
|
|
TCPSTAT_ADD(tcps_rcvpack, (int)nsegs);
|
|
TCPSTAT_ADD(tcps_rcvbyte, tlen);
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
|
|
m_freem(m);
|
|
else
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
appended =
|
|
#endif
|
|
sbappendstream_locked(&so->so_rcv, m, 0);
|
|
/* NB: sorwakeup_locked() does an implicit unlock. */
|
|
sorwakeup_locked(so);
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
if (so->so_rcv.sb_shlim && appended != mcnt)
|
|
counter_fo_release(so->so_rcv.sb_shlim,
|
|
mcnt - appended);
|
|
#endif
|
|
} else {
|
|
/*
|
|
* XXX: Due to the header drop above "th" is
|
|
* theoretically invalid by now. Fortunately
|
|
* m_adj() doesn't actually frees any mbufs when
|
|
* trimming from the head.
|
|
*/
|
|
tcp_seq temp = save_start;
|
|
thflags = tcp_reass(tp, th, &temp, &tlen, m);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
|
|
if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
|
|
/*
|
|
* DSACK actually handled in the fastpath
|
|
* above.
|
|
*/
|
|
tcp_update_sack_list(tp, save_start,
|
|
save_start + save_tlen);
|
|
} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
|
|
if ((tp->rcv_numsacks >= 1) &&
|
|
(tp->sackblks[0].end == save_start)) {
|
|
/*
|
|
* Partial overlap, recorded at todrop
|
|
* above.
|
|
*/
|
|
tcp_update_sack_list(tp,
|
|
tp->sackblks[0].start,
|
|
tp->sackblks[0].end);
|
|
} else {
|
|
tcp_update_dsack_list(tp, save_start,
|
|
save_start + save_tlen);
|
|
}
|
|
} else if (tlen >= save_tlen) {
|
|
/* Update of sackblks. */
|
|
tcp_update_dsack_list(tp, save_start,
|
|
save_start + save_tlen);
|
|
} else if (tlen > 0) {
|
|
tcp_update_dsack_list(tp, save_start,
|
|
save_start + tlen);
|
|
}
|
|
}
|
|
} else {
|
|
m_freem(m);
|
|
thflags &= ~TH_FIN;
|
|
}
|
|
|
|
/*
|
|
* If FIN is received ACK the FIN and let the user know that the
|
|
* connection is closing.
|
|
*/
|
|
if (thflags & TH_FIN) {
|
|
if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
socantrcvmore(so);
|
|
/*
|
|
* If connection is half-synchronized (ie NEEDSYN
|
|
* flag on) then delay ACK, so it may be piggybacked
|
|
* when SYN is sent. Otherwise, since we received a
|
|
* FIN then no more input can be expected, send ACK
|
|
* now.
|
|
*/
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
tp->t_flags |= TF_DELACK;
|
|
bbr_timer_cancel(bbr,
|
|
__LINE__, bbr->r_ctl.rc_rcvtime);
|
|
} else {
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
tp->rcv_nxt++;
|
|
}
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In SYN_RECEIVED and ESTABLISHED STATES enter the
|
|
* CLOSE_WAIT state.
|
|
*/
|
|
case TCPS_SYN_RECEIVED:
|
|
tp->t_starttime = ticks;
|
|
/* FALLTHROUGH */
|
|
case TCPS_ESTABLISHED:
|
|
tcp_state_change(tp, TCPS_CLOSE_WAIT);
|
|
break;
|
|
|
|
/*
|
|
* If still in FIN_WAIT_1 STATE FIN has not been
|
|
* acked so enter the CLOSING state.
|
|
*/
|
|
case TCPS_FIN_WAIT_1:
|
|
tcp_state_change(tp, TCPS_CLOSING);
|
|
break;
|
|
|
|
/*
|
|
* In FIN_WAIT_2 state enter the TIME_WAIT state,
|
|
* starting the time-wait timer, turning off the
|
|
* other standard timers.
|
|
*/
|
|
case TCPS_FIN_WAIT_2:
|
|
bbr->rc_timer_first = 1;
|
|
bbr_timer_cancel(bbr,
|
|
__LINE__, bbr->r_ctl.rc_rcvtime);
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
tcp_twstart(tp);
|
|
return (1);
|
|
}
|
|
}
|
|
/*
|
|
* Return any desired output.
|
|
*/
|
|
if ((tp->t_flags & TF_ACKNOW) ||
|
|
(sbavail(&so->so_snd) > ctf_outstanding(tp))) {
|
|
bbr->r_wanted_output = 1;
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Here nothing is really faster, its just that we
|
|
* have broken out the fast-data path also just like
|
|
* the fast-ack. Return 1 if we processed the packet
|
|
* return 0 if you need to take the "slow-path".
|
|
*/
|
|
static int
|
|
bbr_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t nxt_pkt)
|
|
{
|
|
uint16_t nsegs;
|
|
int32_t newsize = 0; /* automatic sockbuf scaling */
|
|
struct tcp_bbr *bbr;
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
u_int mcnt, appended;
|
|
#endif
|
|
#ifdef TCPDEBUG
|
|
/*
|
|
* The size of tcp_saveipgen must be the size of the max ip header,
|
|
* now IPv6.
|
|
*/
|
|
u_char tcp_saveipgen[IP6_HDR_LEN];
|
|
struct tcphdr tcp_savetcp;
|
|
short ostate = 0;
|
|
|
|
#endif
|
|
/* On the hpts and we would have called output */
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* the timestamp. NOTE that the test is modified according to the
|
|
* latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
|
|
*/
|
|
if (bbr->r_ctl.rc_resend != NULL) {
|
|
return (0);
|
|
}
|
|
if (tiwin && tiwin != tp->snd_wnd) {
|
|
return (0);
|
|
}
|
|
if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
|
|
return (0);
|
|
}
|
|
if (__predict_false((to->to_flags & TOF_TS) &&
|
|
(TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
|
|
return (0);
|
|
}
|
|
if (__predict_false((th->th_ack != tp->snd_una))) {
|
|
return (0);
|
|
}
|
|
if (__predict_false(tlen > sbspace(&so->so_rcv))) {
|
|
return (0);
|
|
}
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
|
tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* This is a pure, in-sequence data packet with nothing on the
|
|
* reassembly queue and we have enough buffer space to take it.
|
|
*/
|
|
nsegs = max(1, m->m_pkthdr.lro_nsegs);
|
|
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
if (so->so_rcv.sb_shlim) {
|
|
mcnt = m_memcnt(m);
|
|
appended = 0;
|
|
if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
|
|
CFO_NOSLEEP, NULL) == false) {
|
|
counter_u64_add(tcp_sb_shlim_fails, 1);
|
|
m_freem(m);
|
|
return (1);
|
|
}
|
|
}
|
|
#endif
|
|
/* Clean receiver SACK report if present */
|
|
if (tp->rcv_numsacks)
|
|
tcp_clean_sackreport(tp);
|
|
TCPSTAT_INC(tcps_preddat);
|
|
tp->rcv_nxt += tlen;
|
|
/*
|
|
* Pull snd_wl1 up to prevent seq wrap relative to th_seq.
|
|
*/
|
|
tp->snd_wl1 = th->th_seq;
|
|
/*
|
|
* Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
|
|
*/
|
|
tp->rcv_up = tp->rcv_nxt;
|
|
TCPSTAT_ADD(tcps_rcvpack, (int)nsegs);
|
|
TCPSTAT_ADD(tcps_rcvbyte, tlen);
|
|
#ifdef TCPDEBUG
|
|
if (so->so_options & SO_DEBUG)
|
|
tcp_trace(TA_INPUT, ostate, tp,
|
|
(void *)tcp_saveipgen, &tcp_savetcp, 0);
|
|
#endif
|
|
newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
|
|
|
|
/* Add data to socket buffer. */
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
m_freem(m);
|
|
} else {
|
|
/*
|
|
* Set new socket buffer size. Give up when limit is
|
|
* reached.
|
|
*/
|
|
if (newsize)
|
|
if (!sbreserve_locked(&so->so_rcv,
|
|
newsize, so, NULL))
|
|
so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
|
|
m_adj(m, drop_hdrlen); /* delayed header drop */
|
|
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
appended =
|
|
#endif
|
|
sbappendstream_locked(&so->so_rcv, m, 0);
|
|
ctf_calc_rwin(so, tp);
|
|
}
|
|
/* NB: sorwakeup_locked() does an implicit unlock. */
|
|
sorwakeup_locked(so);
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
if (so->so_rcv.sb_shlim && mcnt != appended)
|
|
counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
|
|
#endif
|
|
if (DELAY_ACK(tp, bbr, nsegs)) {
|
|
bbr->bbr_segs_rcvd += max(1, nsegs);
|
|
tp->t_flags |= TF_DELACK;
|
|
bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime);
|
|
} else {
|
|
bbr->r_wanted_output = 1;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* This subfunction is used to try to highly optimize the
|
|
* fast path. We again allow window updates that are
|
|
* in sequence to remain in the fast-path. We also add
|
|
* in the __predict's to attempt to help the compiler.
|
|
* Note that if we return a 0, then we can *not* process
|
|
* it and the caller should push the packet into the
|
|
* slow-path. If we return 1, then all is well and
|
|
* the packet is fully processed.
|
|
*/
|
|
static int
|
|
bbr_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t nxt_pkt)
|
|
{
|
|
int32_t acked;
|
|
uint16_t nsegs;
|
|
uint32_t sack_changed;
|
|
#ifdef TCPDEBUG
|
|
/*
|
|
* The size of tcp_saveipgen must be the size of the max ip header,
|
|
* now IPv6.
|
|
*/
|
|
u_char tcp_saveipgen[IP6_HDR_LEN];
|
|
struct tcphdr tcp_savetcp;
|
|
short ostate = 0;
|
|
|
|
#endif
|
|
uint32_t prev_acked = 0;
|
|
struct tcp_bbr *bbr;
|
|
|
|
if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
|
|
/* Old ack, behind (or duplicate to) the last one rcv'd */
|
|
return (0);
|
|
}
|
|
if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
|
|
/* Above what we have sent? */
|
|
return (0);
|
|
}
|
|
if (__predict_false(tiwin == 0)) {
|
|
/* zero window */
|
|
return (0);
|
|
}
|
|
if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
|
|
/* We need a SYN or a FIN, unlikely.. */
|
|
return (0);
|
|
}
|
|
if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
|
|
/* Timestamp is behind .. old ack with seq wrap? */
|
|
return (0);
|
|
}
|
|
if (__predict_false(IN_RECOVERY(tp->t_flags))) {
|
|
/* Still recovering */
|
|
return (0);
|
|
}
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
if (__predict_false(bbr->r_ctl.rc_resend != NULL)) {
|
|
/* We are retransmitting */
|
|
return (0);
|
|
}
|
|
if (__predict_false(bbr->rc_in_persist != 0)) {
|
|
/* In persist mode */
|
|
return (0);
|
|
}
|
|
if (bbr->r_ctl.rc_sacked) {
|
|
/* We have sack holes on our scoreboard */
|
|
return (0);
|
|
}
|
|
/* Ok if we reach here, we can process a fast-ack */
|
|
nsegs = max(1, m->m_pkthdr.lro_nsegs);
|
|
sack_changed = bbr_log_ack(tp, to, th, &prev_acked);
|
|
/*
|
|
* We never detect loss in fast ack [we can't
|
|
* have a sack and can't be in recovery so
|
|
* we always pass 0 (nothing detected)].
|
|
*/
|
|
bbr_lt_bw_sampling(bbr, bbr->r_ctl.rc_rcvtime, 0);
|
|
/* Did the window get updated? */
|
|
if (tiwin != tp->snd_wnd) {
|
|
tp->snd_wnd = tiwin;
|
|
tp->snd_wl1 = th->th_seq;
|
|
if (tp->snd_wnd > tp->max_sndwnd)
|
|
tp->max_sndwnd = tp->snd_wnd;
|
|
}
|
|
/* Do we need to exit persists? */
|
|
if ((bbr->rc_in_persist != 0) &&
|
|
(tp->snd_wnd >= min((bbr->r_ctl.rc_high_rwnd/2),
|
|
bbr_minseg(bbr)))) {
|
|
bbr_exit_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__);
|
|
bbr->r_wanted_output = 1;
|
|
}
|
|
/* Do we need to enter persists? */
|
|
if ((bbr->rc_in_persist == 0) &&
|
|
(tp->snd_wnd < min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) &&
|
|
TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->snd_max == tp->snd_una) &&
|
|
sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
|
|
(sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
|
|
/* No send window.. we must enter persist */
|
|
bbr_enter_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* the timestamp. NOTE that the test is modified according to the
|
|
* latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
|
tp->ts_recent_age = bbr->r_ctl.rc_rcvtime;
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* This is a pure ack for outstanding data.
|
|
*/
|
|
TCPSTAT_INC(tcps_predack);
|
|
|
|
/*
|
|
* "bad retransmit" recovery.
|
|
*/
|
|
if (tp->t_flags & TF_PREVVALID) {
|
|
tp->t_flags &= ~TF_PREVVALID;
|
|
if (tp->t_rxtshift == 1 &&
|
|
(int)(ticks - tp->t_badrxtwin) < 0)
|
|
bbr_cong_signal(tp, th, CC_RTO_ERR, NULL);
|
|
}
|
|
/*
|
|
* Recalculate the transmit timer / rtt.
|
|
*
|
|
* Some boxes send broken timestamp replies during the SYN+ACK
|
|
* phase, ignore timestamps of 0 or we could calculate a huge RTT
|
|
* and blow up the retransmit timer.
|
|
*/
|
|
acked = BYTES_THIS_ACK(tp, th);
|
|
|
|
#ifdef TCP_HHOOK
|
|
/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
|
|
hhook_run_tcp_est_in(tp, th, to);
|
|
#endif
|
|
|
|
TCPSTAT_ADD(tcps_rcvackpack, (int)nsegs);
|
|
TCPSTAT_ADD(tcps_rcvackbyte, acked);
|
|
sbdrop(&so->so_snd, acked);
|
|
|
|
if (SEQ_GT(th->th_ack, tp->snd_una))
|
|
bbr_collapse_rtt(tp, bbr, TCP_REXMTVAL(tp));
|
|
tp->snd_una = th->th_ack;
|
|
if (tp->snd_wnd < ctf_outstanding(tp))
|
|
/* The peer collapsed its window on us */
|
|
bbr_collapsed_window(bbr);
|
|
else if (bbr->rc_has_collapsed)
|
|
bbr_un_collapse_window(bbr);
|
|
|
|
if (SEQ_GT(tp->snd_una, tp->snd_recover)) {
|
|
tp->snd_recover = tp->snd_una;
|
|
}
|
|
bbr_ack_received(tp, bbr, th, acked, sack_changed, prev_acked, __LINE__, 0);
|
|
/*
|
|
* Pull snd_wl2 up to prevent seq wrap relative to th_ack.
|
|
*/
|
|
tp->snd_wl2 = th->th_ack;
|
|
m_freem(m);
|
|
/*
|
|
* If all outstanding data are acked, stop retransmit timer,
|
|
* otherwise restart timer using current (possibly backed-off)
|
|
* value. If process is waiting for space, wakeup/selwakeup/signal.
|
|
* If data are ready to send, let tcp_output decide between more
|
|
* output or persist.
|
|
*/
|
|
#ifdef TCPDEBUG
|
|
if (so->so_options & SO_DEBUG)
|
|
tcp_trace(TA_INPUT, ostate, tp,
|
|
(void *)tcp_saveipgen,
|
|
&tcp_savetcp, 0);
|
|
#endif
|
|
/* Wake up the socket if we have room to write more */
|
|
sowwakeup(so);
|
|
if (tp->snd_una == tp->snd_max) {
|
|
/* Nothing left outstanding */
|
|
bbr_log_progress_event(bbr, tp, ticks, PROGRESS_CLEAR, __LINE__);
|
|
if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
|
|
bbr->rc_tp->t_acktime = 0;
|
|
bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime);
|
|
if (bbr->rc_in_persist == 0) {
|
|
bbr->r_ctl.rc_went_idle_time = bbr->r_ctl.rc_rcvtime;
|
|
}
|
|
sack_filter_clear(&bbr->r_ctl.bbr_sf, tp->snd_una);
|
|
bbr_log_ack_clear(bbr, bbr->r_ctl.rc_rcvtime);
|
|
/*
|
|
* We invalidate the last ack here since we
|
|
* don't want to transfer forward the time
|
|
* for our sum's calculations.
|
|
*/
|
|
bbr->r_wanted_output = 1;
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
bbr->r_wanted_output = 1;
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCB is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
bbr_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t todrop;
|
|
int32_t ourfinisacked = 0;
|
|
struct tcp_bbr *bbr;
|
|
int32_t ret_val = 0;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
ctf_calc_rwin(so, tp);
|
|
/*
|
|
* If the state is SYN_SENT: if seg contains an ACK, but not for our
|
|
* SYN, drop the input. if seg contains a RST, then drop the
|
|
* connection. if seg does not contain SYN, then drop it. Otherwise
|
|
* this is an acceptable SYN segment initialize tp->rcv_nxt and
|
|
* tp->irs if seg contains ack then advance tp->snd_una. BRR does
|
|
* not support ECN so we will not say we are capable. if SYN has
|
|
* been acked change to ESTABLISHED else SYN_RCVD state arrange for
|
|
* segment to be acked (eventually) continue processing rest of
|
|
* data/controls, beginning with URG
|
|
*/
|
|
if ((thflags & TH_ACK) &&
|
|
(SEQ_LEQ(th->th_ack, tp->iss) ||
|
|
SEQ_GT(th->th_ack, tp->snd_max))) {
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
|
|
TCP_PROBE5(connect__refused, NULL, tp,
|
|
mtod(m, const char *), tp, th);
|
|
tp = tcp_drop(tp, ECONNREFUSED);
|
|
ctf_do_drop(m, tp);
|
|
return (1);
|
|
}
|
|
if (thflags & TH_RST) {
|
|
ctf_do_drop(m, tp);
|
|
return (1);
|
|
}
|
|
if (!(thflags & TH_SYN)) {
|
|
ctf_do_drop(m, tp);
|
|
return (1);
|
|
}
|
|
tp->irs = th->th_seq;
|
|
tcp_rcvseqinit(tp);
|
|
if (thflags & TH_ACK) {
|
|
int tfo_partial = 0;
|
|
|
|
TCPSTAT_INC(tcps_connects);
|
|
soisconnected(so);
|
|
#ifdef MAC
|
|
mac_socketpeer_set_from_mbuf(m, so);
|
|
#endif
|
|
/* Do window scaling on this connection? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE | TF_REQ_SCALE)) {
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
}
|
|
tp->rcv_adv += min(tp->rcv_wnd,
|
|
TCP_MAXWIN << tp->rcv_scale);
|
|
/*
|
|
* If not all the data that was sent in the TFO SYN
|
|
* has been acked, resend the remainder right away.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
(tp->snd_una != tp->snd_max)) {
|
|
tp->snd_nxt = th->th_ack;
|
|
tfo_partial = 1;
|
|
}
|
|
/*
|
|
* If there's data, delay ACK; if there's also a FIN ACKNOW
|
|
* will be turned on later.
|
|
*/
|
|
if (DELAY_ACK(tp, bbr, 1) && tlen != 0 && (tfo_partial == 0)) {
|
|
bbr->bbr_segs_rcvd += 1;
|
|
tp->t_flags |= TF_DELACK;
|
|
bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime);
|
|
} else {
|
|
bbr->r_wanted_output = 1;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
if (SEQ_GT(th->th_ack, tp->iss)) {
|
|
/*
|
|
* The SYN is acked
|
|
* handle it specially.
|
|
*/
|
|
bbr_log_syn(tp, to);
|
|
}
|
|
if (SEQ_GT(th->th_ack, tp->snd_una)) {
|
|
/*
|
|
* We advance snd_una for the
|
|
* fast open case. If th_ack is
|
|
* acknowledging data beyond
|
|
* snd_una we can't just call
|
|
* ack-processing since the
|
|
* data stream in our send-map
|
|
* will start at snd_una + 1 (one
|
|
* beyond the SYN). If its just
|
|
* equal we don't need to do that
|
|
* and there is no send_map.
|
|
*/
|
|
tp->snd_una++;
|
|
}
|
|
/*
|
|
* Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
|
|
* SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
|
|
*/
|
|
tp->t_starttime = ticks;
|
|
if (tp->t_flags & TF_NEEDFIN) {
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_1);
|
|
tp->t_flags &= ~TF_NEEDFIN;
|
|
thflags &= ~TH_SYN;
|
|
} else {
|
|
tcp_state_change(tp, TCPS_ESTABLISHED);
|
|
TCP_PROBE5(connect__established, NULL, tp,
|
|
mtod(m, const char *), tp, th);
|
|
cc_conn_init(tp);
|
|
}
|
|
} else {
|
|
/*
|
|
* Received initial SYN in SYN-SENT[*] state => simultaneous
|
|
* open. If segment contains CC option and there is a
|
|
* cached CC, apply TAO test. If it succeeds, connection is *
|
|
* half-synchronized. Otherwise, do 3-way handshake:
|
|
* SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
|
|
* there was no CC option, clear cached CC value.
|
|
*/
|
|
tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
|
|
tcp_state_change(tp, TCPS_SYN_RECEIVED);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
/*
|
|
* Advance th->th_seq to correspond to first data byte. If data,
|
|
* trim to stay within window, dropping FIN if necessary.
|
|
*/
|
|
th->th_seq++;
|
|
if (tlen > tp->rcv_wnd) {
|
|
todrop = tlen - tp->rcv_wnd;
|
|
m_adj(m, -todrop);
|
|
tlen = tp->rcv_wnd;
|
|
thflags &= ~TH_FIN;
|
|
TCPSTAT_INC(tcps_rcvpackafterwin);
|
|
TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
|
|
}
|
|
tp->snd_wl1 = th->th_seq - 1;
|
|
tp->rcv_up = th->th_seq;
|
|
/*
|
|
* Client side of transaction: already sent SYN and data. If the
|
|
* remote host used T/TCP to validate the SYN, our data will be
|
|
* ACK'd; if so, enter normal data segment processing in the middle
|
|
* of step 5, ack processing. Otherwise, goto step 6.
|
|
*/
|
|
if (thflags & TH_ACK) {
|
|
if ((to->to_flags & TOF_TS) != 0) {
|
|
uint32_t t, rtt;
|
|
|
|
t = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
if (TSTMP_GEQ(t, to->to_tsecr)) {
|
|
rtt = t - to->to_tsecr;
|
|
if (rtt == 0) {
|
|
rtt = 1;
|
|
}
|
|
rtt *= MS_IN_USEC;
|
|
tcp_bbr_xmit_timer(bbr, rtt, 0, 0, 0);
|
|
apply_filter_min_small(&bbr->r_ctl.rc_rttprop,
|
|
rtt, bbr->r_ctl.rc_rcvtime);
|
|
}
|
|
}
|
|
if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
|
|
return (ret_val);
|
|
/* We may have changed to FIN_WAIT_1 above */
|
|
if (tp->t_state == TCPS_FIN_WAIT_1) {
|
|
/*
|
|
* In FIN_WAIT_1 STATE in addition to the processing
|
|
* for the ESTABLISHED state if our FIN is now
|
|
* acknowledged then enter FIN_WAIT_2.
|
|
*/
|
|
if (ourfinisacked) {
|
|
/*
|
|
* If we can't receive any more data, then
|
|
* closing user can proceed. Starting the
|
|
* timer is contrary to the specification,
|
|
* but if we don't get a FIN we'll hang
|
|
* forever.
|
|
*
|
|
* XXXjl: we should release the tp also, and
|
|
* use a compressed state.
|
|
*/
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
soisdisconnected(so);
|
|
tcp_timer_activate(tp, TT_2MSL,
|
|
(tcp_fast_finwait2_recycle ?
|
|
tcp_finwait2_timeout :
|
|
TP_MAXIDLE(tp)));
|
|
}
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_2);
|
|
}
|
|
}
|
|
}
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCB is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
bbr_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ourfinisacked = 0;
|
|
int32_t ret_val;
|
|
struct tcp_bbr *bbr;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
ctf_calc_rwin(so, tp);
|
|
if ((thflags & TH_ACK) &&
|
|
(SEQ_LEQ(th->th_ack, tp->snd_una) ||
|
|
SEQ_GT(th->th_ack, tp->snd_max))) {
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
if (IS_FASTOPEN(tp->t_flags)) {
|
|
/*
|
|
* When a TFO connection is in SYN_RECEIVED, the only valid
|
|
* packets are the initial SYN, a retransmit/copy of the
|
|
* initial SYN (possibly with a subset of the original
|
|
* data), a valid ACK, a FIN, or a RST.
|
|
*/
|
|
if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
} else if (thflags & TH_SYN) {
|
|
/* non-initial SYN is ignored */
|
|
if ((bbr->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
|
|
(bbr->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
|
|
(bbr->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* In the SYN-RECEIVED state, validate that the packet belongs to
|
|
* this connection before trimming the data to fit the receive
|
|
* window. Check the sequence number versus IRS since we know the
|
|
* sequence numbers haven't wrapped. This is a partial fix for the
|
|
* "LAND" DoS attack.
|
|
*/
|
|
if (SEQ_LT(th->th_seq, tp->irs)) {
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
tp->snd_wnd = tiwin;
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (IS_FASTOPEN(tp->t_flags)) {
|
|
cc_conn_init(tp);
|
|
}
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
TCPSTAT_INC(tcps_connects);
|
|
soisconnected(so);
|
|
/* Do window scaling? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE | TF_REQ_SCALE)) {
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
}
|
|
/*
|
|
* ok for the first time in lets see if we can use the ts to figure
|
|
* out what the initial RTT was.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0) {
|
|
uint32_t t, rtt;
|
|
|
|
t = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
if (TSTMP_GEQ(t, to->to_tsecr)) {
|
|
rtt = t - to->to_tsecr;
|
|
if (rtt == 0) {
|
|
rtt = 1;
|
|
}
|
|
rtt *= MS_IN_USEC;
|
|
tcp_bbr_xmit_timer(bbr, rtt, 0, 0, 0);
|
|
apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, bbr->r_ctl.rc_rcvtime);
|
|
}
|
|
}
|
|
/* Drop off any SYN in the send map (probably not there) */
|
|
if (thflags & TH_ACK)
|
|
bbr_log_syn(tp, to);
|
|
if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
|
|
|
|
tcp_fastopen_decrement_counter(tp->t_tfo_pending);
|
|
tp->t_tfo_pending = NULL;
|
|
/*
|
|
* Account for the ACK of our SYN prior to regular
|
|
* ACK processing below.
|
|
*/
|
|
tp->snd_una++;
|
|
}
|
|
/*
|
|
* Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* ->
|
|
* FIN-WAIT-1
|
|
*/
|
|
tp->t_starttime = ticks;
|
|
if (tp->t_flags & TF_NEEDFIN) {
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_1);
|
|
tp->t_flags &= ~TF_NEEDFIN;
|
|
} else {
|
|
tcp_state_change(tp, TCPS_ESTABLISHED);
|
|
TCP_PROBE5(accept__established, NULL, tp,
|
|
mtod(m, const char *), tp, th);
|
|
/*
|
|
* TFO connections call cc_conn_init() during SYN
|
|
* processing. Calling it again here for such connections
|
|
* is not harmless as it would undo the snd_cwnd reduction
|
|
* that occurs when a TFO SYN|ACK is retransmitted.
|
|
*/
|
|
if (!IS_FASTOPEN(tp->t_flags))
|
|
cc_conn_init(tp);
|
|
}
|
|
/*
|
|
* If segment contains data or ACK, will call tcp_reass() later; if
|
|
* not, do so now to pass queued data to user.
|
|
*/
|
|
if (tlen == 0 && (thflags & TH_FIN) == 0)
|
|
(void)tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
|
|
(struct mbuf *)0);
|
|
tp->snd_wl1 = th->th_seq - 1;
|
|
if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (tp->t_state == TCPS_FIN_WAIT_1) {
|
|
/* We could have went to FIN_WAIT_1 (or EST) above */
|
|
/*
|
|
* In FIN_WAIT_1 STATE in addition to the processing for the
|
|
* ESTABLISHED state if our FIN is now acknowledged then
|
|
* enter FIN_WAIT_2.
|
|
*/
|
|
if (ourfinisacked) {
|
|
/*
|
|
* If we can't receive any more data, then closing
|
|
* user can proceed. Starting the timer is contrary
|
|
* to the specification, but if we don't get a FIN
|
|
* we'll hang forever.
|
|
*
|
|
* XXXjl: we should release the tp also, and use a
|
|
* compressed state.
|
|
*/
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
soisdisconnected(so);
|
|
tcp_timer_activate(tp, TT_2MSL,
|
|
(tcp_fast_finwait2_recycle ?
|
|
tcp_finwait2_timeout :
|
|
TP_MAXIDLE(tp)));
|
|
}
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_2);
|
|
}
|
|
}
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCB is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
bbr_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
struct tcp_bbr *bbr;
|
|
int32_t ret_val;
|
|
|
|
/*
|
|
* Header prediction: check for the two common cases of a
|
|
* uni-directional data xfer. If the packet has no control flags,
|
|
* is in-sequence, the window didn't change and we're not
|
|
* retransmitting, it's a candidate. If the length is zero and the
|
|
* ack moved forward, we're the sender side of the xfer. Just free
|
|
* the data acked & wake any higher level process that was blocked
|
|
* waiting for space. If the length is non-zero and the ack didn't
|
|
* move, we're the receiver side. If we're getting packets in-order
|
|
* (the reassembly queue is empty), add the data toc The socket
|
|
* buffer and note that we need a delayed ack. Make sure that the
|
|
* hidden state-flags are also off. Since we check for
|
|
* TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
|
|
*/
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
if (bbr->r_ctl.rc_delivered < (4 * tp->t_maxseg)) {
|
|
/*
|
|
* If we have delived under 4 segments increase the initial
|
|
* window if raised by the peer. We use this to determine
|
|
* dynamic and static rwnd's at the end of a connection.
|
|
*/
|
|
bbr->r_ctl.rc_init_rwnd = max(tiwin, tp->snd_wnd);
|
|
}
|
|
if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
|
|
__predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
|
|
__predict_true(SEGQ_EMPTY(tp)) &&
|
|
__predict_true(th->th_seq == tp->rcv_nxt)) {
|
|
if (tlen == 0) {
|
|
if (bbr_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
|
|
tiwin, nxt_pkt)) {
|
|
return (0);
|
|
}
|
|
} else {
|
|
if (bbr_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
|
|
tiwin, nxt_pkt)) {
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
ctf_calc_rwin(so, tp);
|
|
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
bbr->r_wanted_output = 1;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (bbr_progress_timeout_check(bbr)) {
|
|
ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
/* State changes only happen in bbr_process_data() */
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCB is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
bbr_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
struct tcp_bbr *bbr;
|
|
int32_t ret_val;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
ctf_calc_rwin(so, tp);
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
bbr->r_wanted_output = 1;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (bbr_progress_timeout_check(bbr)) {
|
|
ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
static int
|
|
bbr_check_data_after_close(struct mbuf *m, struct tcp_bbr *bbr,
|
|
struct tcpcb *tp, int32_t * tlen, struct tcphdr *th, struct socket *so)
|
|
{
|
|
|
|
if (bbr->rc_allow_data_af_clo == 0) {
|
|
close_now:
|
|
tp = tcp_close(tp);
|
|
TCPSTAT_INC(tcps_rcvafterclose);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
|
|
return (1);
|
|
}
|
|
if (sbavail(&so->so_snd) == 0)
|
|
goto close_now;
|
|
/* Ok we allow data that is ignored and a followup reset */
|
|
tp->rcv_nxt = th->th_seq + *tlen;
|
|
tp->t_flags2 |= TF2_DROP_AF_DATA;
|
|
bbr->r_wanted_output = 1;
|
|
*tlen = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCB is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
bbr_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ourfinisacked = 0;
|
|
int32_t ret_val;
|
|
struct tcp_bbr *bbr;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
ctf_calc_rwin(so, tp);
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If new data are received on a connection after the user processes
|
|
* are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) && tlen) {
|
|
/*
|
|
* We call a new function now so we might continue and setup
|
|
* to reset at all data being ack'd.
|
|
*/
|
|
if (bbr_check_data_after_close(m, bbr, tp, &tlen, th, so))
|
|
return (1);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
bbr->r_wanted_output = 1;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (ourfinisacked) {
|
|
/*
|
|
* If we can't receive any more data, then closing user can
|
|
* proceed. Starting the timer is contrary to the
|
|
* specification, but if we don't get a FIN we'll hang
|
|
* forever.
|
|
*
|
|
* XXXjl: we should release the tp also, and use a
|
|
* compressed state.
|
|
*/
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
soisdisconnected(so);
|
|
tcp_timer_activate(tp, TT_2MSL,
|
|
(tcp_fast_finwait2_recycle ?
|
|
tcp_finwait2_timeout :
|
|
TP_MAXIDLE(tp)));
|
|
}
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_2);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (bbr_progress_timeout_check(bbr)) {
|
|
ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCB is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
bbr_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ourfinisacked = 0;
|
|
int32_t ret_val;
|
|
struct tcp_bbr *bbr;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
ctf_calc_rwin(so, tp);
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If new data are received on a connection after the user processes
|
|
* are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) && tlen) {
|
|
/*
|
|
* We call a new function now so we might continue and setup
|
|
* to reset at all data being ack'd.
|
|
*/
|
|
if (bbr_check_data_after_close(m, bbr, tp, &tlen, th, so))
|
|
return (1);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
bbr->r_wanted_output = 1;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (ourfinisacked) {
|
|
tcp_twstart(tp);
|
|
m_freem(m);
|
|
return (1);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (bbr_progress_timeout_check(bbr)) {
|
|
ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCB is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
bbr_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ourfinisacked = 0;
|
|
int32_t ret_val;
|
|
struct tcp_bbr *bbr;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
ctf_calc_rwin(so, tp);
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If new data are received on a connection after the user processes
|
|
* are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) && tlen) {
|
|
/*
|
|
* We call a new function now so we might continue and setup
|
|
* to reset at all data being ack'd.
|
|
*/
|
|
if (bbr_check_data_after_close(m, bbr, tp, &tlen, th, so))
|
|
return (1);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
bbr->r_wanted_output = 1;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* case TCPS_LAST_ACK: Ack processing.
|
|
*/
|
|
if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (ourfinisacked) {
|
|
tp = tcp_close(tp);
|
|
ctf_do_drop(m, tp);
|
|
return (1);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (bbr_progress_timeout_check(bbr)) {
|
|
ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCB is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
bbr_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ourfinisacked = 0;
|
|
int32_t ret_val;
|
|
struct tcp_bbr *bbr;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
ctf_calc_rwin(so, tp);
|
|
/* Reset receive buffer auto scaling when not in bulk receive mode. */
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If new data are received on a connection after the user processes
|
|
* are gone, then we may RST the other end depending on the outcome
|
|
* of bbr_check_data_after_close.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) &&
|
|
tlen) {
|
|
/*
|
|
* We call a new function now so we might continue and setup
|
|
* to reset at all data being ack'd.
|
|
*/
|
|
if (bbr_check_data_after_close(m, bbr, tp, &tlen, th, so))
|
|
return (1);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
bbr->r_wanted_output = 1;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (bbr_progress_timeout_check(bbr)) {
|
|
ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
static void
|
|
bbr_stop_all_timers(struct tcpcb *tp)
|
|
{
|
|
struct tcp_bbr *bbr;
|
|
|
|
/*
|
|
* Assure no timers are running.
|
|
*/
|
|
if (tcp_timer_active(tp, TT_PERSIST)) {
|
|
/* We enter in persists, set the flag appropriately */
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
bbr->rc_in_persist = 1;
|
|
}
|
|
tcp_timer_suspend(tp, TT_PERSIST);
|
|
tcp_timer_suspend(tp, TT_REXMT);
|
|
tcp_timer_suspend(tp, TT_KEEP);
|
|
tcp_timer_suspend(tp, TT_DELACK);
|
|
}
|
|
|
|
static void
|
|
bbr_google_mode_on(struct tcp_bbr *bbr)
|
|
{
|
|
bbr->rc_use_google = 1;
|
|
bbr->rc_no_pacing = 0;
|
|
bbr->r_ctl.bbr_google_discount = bbr_google_discount;
|
|
bbr->r_use_policer = bbr_policer_detection_enabled;
|
|
bbr->r_ctl.rc_probertt_int = (USECS_IN_SECOND * 10);
|
|
bbr->bbr_use_rack_cheat = 0;
|
|
bbr->r_ctl.rc_incr_tmrs = 0;
|
|
bbr->r_ctl.rc_inc_tcp_oh = 0;
|
|
bbr->r_ctl.rc_inc_ip_oh = 0;
|
|
bbr->r_ctl.rc_inc_enet_oh = 0;
|
|
reset_time(&bbr->r_ctl.rc_delrate,
|
|
BBR_NUM_RTTS_FOR_GOOG_DEL_LIMIT);
|
|
reset_time_small(&bbr->r_ctl.rc_rttprop,
|
|
(11 * USECS_IN_SECOND));
|
|
tcp_bbr_tso_size_check(bbr, tcp_get_usecs(&bbr->rc_tv));
|
|
}
|
|
|
|
static void
|
|
bbr_google_mode_off(struct tcp_bbr *bbr)
|
|
{
|
|
bbr->rc_use_google = 0;
|
|
bbr->r_ctl.bbr_google_discount = 0;
|
|
bbr->no_pacing_until = bbr_no_pacing_until;
|
|
bbr->r_use_policer = 0;
|
|
if (bbr->no_pacing_until)
|
|
bbr->rc_no_pacing = 1;
|
|
else
|
|
bbr->rc_no_pacing = 0;
|
|
if (bbr_use_rack_resend_cheat)
|
|
bbr->bbr_use_rack_cheat = 1;
|
|
else
|
|
bbr->bbr_use_rack_cheat = 0;
|
|
if (bbr_incr_timers)
|
|
bbr->r_ctl.rc_incr_tmrs = 1;
|
|
else
|
|
bbr->r_ctl.rc_incr_tmrs = 0;
|
|
if (bbr_include_tcp_oh)
|
|
bbr->r_ctl.rc_inc_tcp_oh = 1;
|
|
else
|
|
bbr->r_ctl.rc_inc_tcp_oh = 0;
|
|
if (bbr_include_ip_oh)
|
|
bbr->r_ctl.rc_inc_ip_oh = 1;
|
|
else
|
|
bbr->r_ctl.rc_inc_ip_oh = 0;
|
|
if (bbr_include_enet_oh)
|
|
bbr->r_ctl.rc_inc_enet_oh = 1;
|
|
else
|
|
bbr->r_ctl.rc_inc_enet_oh = 0;
|
|
bbr->r_ctl.rc_probertt_int = bbr_rtt_probe_limit;
|
|
reset_time(&bbr->r_ctl.rc_delrate,
|
|
bbr_num_pktepo_for_del_limit);
|
|
reset_time_small(&bbr->r_ctl.rc_rttprop,
|
|
(bbr_filter_len_sec * USECS_IN_SECOND));
|
|
tcp_bbr_tso_size_check(bbr, tcp_get_usecs(&bbr->rc_tv));
|
|
}
|
|
/*
|
|
* Return 0 on success, non-zero on failure
|
|
* which indicates the error (usually no memory).
|
|
*/
|
|
static int
|
|
bbr_init(struct tcpcb *tp)
|
|
{
|
|
struct tcp_bbr *bbr = NULL;
|
|
struct inpcb *inp;
|
|
uint32_t cts;
|
|
|
|
tp->t_fb_ptr = uma_zalloc(bbr_pcb_zone, (M_NOWAIT | M_ZERO));
|
|
if (tp->t_fb_ptr == NULL) {
|
|
/*
|
|
* We need to allocate memory but cant. The INP and INP_INFO
|
|
* locks and they are recusive (happens during setup. So a
|
|
* scheme to drop the locks fails :(
|
|
*
|
|
*/
|
|
return (ENOMEM);
|
|
}
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
bbr->rtt_valid = 0;
|
|
inp = tp->t_inpcb;
|
|
inp->inp_flags2 |= INP_CANNOT_DO_ECN;
|
|
inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
|
|
TAILQ_INIT(&bbr->r_ctl.rc_map);
|
|
TAILQ_INIT(&bbr->r_ctl.rc_free);
|
|
TAILQ_INIT(&bbr->r_ctl.rc_tmap);
|
|
bbr->rc_tp = tp;
|
|
if (tp->t_inpcb) {
|
|
bbr->rc_inp = tp->t_inpcb;
|
|
}
|
|
cts = tcp_get_usecs(&bbr->rc_tv);
|
|
tp->t_acktime = 0;
|
|
bbr->rc_allow_data_af_clo = bbr_ignore_data_after_close;
|
|
bbr->r_ctl.rc_reorder_fade = bbr_reorder_fade;
|
|
bbr->rc_tlp_threshold = bbr_tlp_thresh;
|
|
bbr->r_ctl.rc_reorder_shift = bbr_reorder_thresh;
|
|
bbr->r_ctl.rc_pkt_delay = bbr_pkt_delay;
|
|
bbr->r_ctl.rc_min_to = bbr_min_to;
|
|
bbr->rc_bbr_state = BBR_STATE_STARTUP;
|
|
bbr->r_ctl.bbr_lost_at_state = 0;
|
|
bbr->r_ctl.rc_lost_at_startup = 0;
|
|
bbr->rc_all_timers_stopped = 0;
|
|
bbr->r_ctl.rc_bbr_lastbtlbw = 0;
|
|
bbr->r_ctl.rc_pkt_epoch_del = 0;
|
|
bbr->r_ctl.rc_pkt_epoch = 0;
|
|
bbr->r_ctl.rc_lowest_rtt = 0xffffffff;
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr_high_gain;
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = bbr_high_gain;
|
|
bbr->r_ctl.rc_went_idle_time = cts;
|
|
bbr->rc_pacer_started = cts;
|
|
bbr->r_ctl.rc_pkt_epoch_time = cts;
|
|
bbr->r_ctl.rc_rcvtime = cts;
|
|
bbr->r_ctl.rc_bbr_state_time = cts;
|
|
bbr->r_ctl.rc_del_time = cts;
|
|
bbr->r_ctl.rc_tlp_rxt_last_time = cts;
|
|
bbr->r_ctl.last_in_probertt = cts;
|
|
bbr->skip_gain = 0;
|
|
bbr->gain_is_limited = 0;
|
|
bbr->no_pacing_until = bbr_no_pacing_until;
|
|
if (bbr->no_pacing_until)
|
|
bbr->rc_no_pacing = 1;
|
|
if (bbr_use_google_algo) {
|
|
bbr->rc_no_pacing = 0;
|
|
bbr->rc_use_google = 1;
|
|
bbr->r_ctl.bbr_google_discount = bbr_google_discount;
|
|
bbr->r_use_policer = bbr_policer_detection_enabled;
|
|
} else {
|
|
bbr->rc_use_google = 0;
|
|
bbr->r_ctl.bbr_google_discount = 0;
|
|
bbr->r_use_policer = 0;
|
|
}
|
|
if (bbr_ts_limiting)
|
|
bbr->rc_use_ts_limit = 1;
|
|
else
|
|
bbr->rc_use_ts_limit = 0;
|
|
if (bbr_ts_can_raise)
|
|
bbr->ts_can_raise = 1;
|
|
else
|
|
bbr->ts_can_raise = 0;
|
|
if (V_tcp_delack_enabled == 1)
|
|
tp->t_delayed_ack = 2;
|
|
else if (V_tcp_delack_enabled == 0)
|
|
tp->t_delayed_ack = 0;
|
|
else if (V_tcp_delack_enabled < 100)
|
|
tp->t_delayed_ack = V_tcp_delack_enabled;
|
|
else
|
|
tp->t_delayed_ack = 2;
|
|
if (bbr->rc_use_google == 0)
|
|
bbr->r_ctl.rc_probertt_int = bbr_rtt_probe_limit;
|
|
else
|
|
bbr->r_ctl.rc_probertt_int = (USECS_IN_SECOND * 10);
|
|
bbr->r_ctl.rc_min_rto_ms = bbr_rto_min_ms;
|
|
bbr->rc_max_rto_sec = bbr_rto_max_sec;
|
|
bbr->rc_init_win = bbr_def_init_win;
|
|
if (tp->t_flags & TF_REQ_TSTMP)
|
|
bbr->rc_last_options = TCP_TS_OVERHEAD;
|
|
bbr->r_ctl.rc_pace_max_segs = tp->t_maxseg - bbr->rc_last_options;
|
|
bbr->r_ctl.rc_high_rwnd = tp->snd_wnd;
|
|
bbr->r_init_rtt = 1;
|
|
|
|
counter_u64_add(bbr_flows_nohdwr_pacing, 1);
|
|
if (bbr_allow_hdwr_pacing)
|
|
bbr->bbr_hdw_pace_ena = 1;
|
|
else
|
|
bbr->bbr_hdw_pace_ena = 0;
|
|
if (bbr_sends_full_iwnd)
|
|
bbr->bbr_init_win_cheat = 1;
|
|
else
|
|
bbr->bbr_init_win_cheat = 0;
|
|
bbr->r_ctl.bbr_utter_max = bbr_hptsi_utter_max;
|
|
bbr->r_ctl.rc_drain_pg = bbr_drain_gain;
|
|
bbr->r_ctl.rc_startup_pg = bbr_high_gain;
|
|
bbr->rc_loss_exit = bbr_exit_startup_at_loss;
|
|
bbr->r_ctl.bbr_rttprobe_gain_val = bbr_rttprobe_gain;
|
|
bbr->r_ctl.bbr_hptsi_per_second = bbr_hptsi_per_second;
|
|
bbr->r_ctl.bbr_hptsi_segments_delay_tar = bbr_hptsi_segments_delay_tar;
|
|
bbr->r_ctl.bbr_hptsi_segments_max = bbr_hptsi_segments_max;
|
|
bbr->r_ctl.bbr_hptsi_segments_floor = bbr_hptsi_segments_floor;
|
|
bbr->r_ctl.bbr_hptsi_bytes_min = bbr_hptsi_bytes_min;
|
|
bbr->r_ctl.bbr_cross_over = bbr_cross_over;
|
|
bbr->r_ctl.rc_rtt_shrinks = cts;
|
|
if (bbr->rc_use_google) {
|
|
setup_time_filter(&bbr->r_ctl.rc_delrate,
|
|
FILTER_TYPE_MAX,
|
|
BBR_NUM_RTTS_FOR_GOOG_DEL_LIMIT);
|
|
setup_time_filter_small(&bbr->r_ctl.rc_rttprop,
|
|
FILTER_TYPE_MIN, (11 * USECS_IN_SECOND));
|
|
} else {
|
|
setup_time_filter(&bbr->r_ctl.rc_delrate,
|
|
FILTER_TYPE_MAX,
|
|
bbr_num_pktepo_for_del_limit);
|
|
setup_time_filter_small(&bbr->r_ctl.rc_rttprop,
|
|
FILTER_TYPE_MIN, (bbr_filter_len_sec * USECS_IN_SECOND));
|
|
}
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_INIT, 0);
|
|
if (bbr_uses_idle_restart)
|
|
bbr->rc_use_idle_restart = 1;
|
|
else
|
|
bbr->rc_use_idle_restart = 0;
|
|
bbr->r_ctl.rc_bbr_cur_del_rate = 0;
|
|
bbr->r_ctl.rc_initial_hptsi_bw = bbr_initial_bw_bps;
|
|
if (bbr_resends_use_tso)
|
|
bbr->rc_resends_use_tso = 1;
|
|
#ifdef NETFLIX_PEAKRATE
|
|
tp->t_peakrate_thr = tp->t_maxpeakrate;
|
|
#endif
|
|
if (tp->snd_una != tp->snd_max) {
|
|
/* Create a send map for the current outstanding data */
|
|
struct bbr_sendmap *rsm;
|
|
|
|
rsm = bbr_alloc(bbr);
|
|
if (rsm == NULL) {
|
|
uma_zfree(bbr_pcb_zone, tp->t_fb_ptr);
|
|
tp->t_fb_ptr = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
rsm->r_flags = BBR_OVERMAX;
|
|
rsm->r_tim_lastsent[0] = cts;
|
|
rsm->r_rtr_cnt = 1;
|
|
rsm->r_rtr_bytes = 0;
|
|
rsm->r_start = tp->snd_una;
|
|
rsm->r_end = tp->snd_max;
|
|
rsm->r_dupack = 0;
|
|
rsm->r_delivered = bbr->r_ctl.rc_delivered;
|
|
rsm->r_ts_valid = 0;
|
|
rsm->r_del_ack_ts = tp->ts_recent;
|
|
rsm->r_del_time = cts;
|
|
if (bbr->r_ctl.r_app_limited_until)
|
|
rsm->r_app_limited = 1;
|
|
else
|
|
rsm->r_app_limited = 0;
|
|
TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_map, rsm, r_next);
|
|
TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 1;
|
|
if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW)
|
|
rsm->r_bbr_state = bbr_state_val(bbr);
|
|
else
|
|
rsm->r_bbr_state = 8;
|
|
}
|
|
if (bbr_use_rack_resend_cheat && (bbr->rc_use_google == 0))
|
|
bbr->bbr_use_rack_cheat = 1;
|
|
if (bbr_incr_timers && (bbr->rc_use_google == 0))
|
|
bbr->r_ctl.rc_incr_tmrs = 1;
|
|
if (bbr_include_tcp_oh && (bbr->rc_use_google == 0))
|
|
bbr->r_ctl.rc_inc_tcp_oh = 1;
|
|
if (bbr_include_ip_oh && (bbr->rc_use_google == 0))
|
|
bbr->r_ctl.rc_inc_ip_oh = 1;
|
|
if (bbr_include_enet_oh && (bbr->rc_use_google == 0))
|
|
bbr->r_ctl.rc_inc_enet_oh = 1;
|
|
|
|
bbr_log_type_statechange(bbr, cts, __LINE__);
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->t_srtt)) {
|
|
uint32_t rtt;
|
|
|
|
rtt = (TICKS_2_USEC(tp->t_srtt) >> TCP_RTT_SHIFT);
|
|
apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, cts);
|
|
}
|
|
/* announce the settings and state */
|
|
bbr_log_settings_change(bbr, BBR_RECOVERY_LOWRTT);
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
/*
|
|
* Now call the generic function to start a timer. This will place
|
|
* the TCB on the hptsi wheel if a timer is needed with appropriate
|
|
* flags.
|
|
*/
|
|
bbr_stop_all_timers(tp);
|
|
bbr_start_hpts_timer(bbr, tp, cts, 5, 0, 0);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return 0 if we can accept the connection. Return
|
|
* non-zero if we can't handle the connection. A EAGAIN
|
|
* means you need to wait until the connection is up.
|
|
* a EADDRNOTAVAIL means we can never handle the connection
|
|
* (no SACK).
|
|
*/
|
|
static int
|
|
bbr_handoff_ok(struct tcpcb *tp)
|
|
{
|
|
if ((tp->t_state == TCPS_CLOSED) ||
|
|
(tp->t_state == TCPS_LISTEN)) {
|
|
/* Sure no problem though it may not stick */
|
|
return (0);
|
|
}
|
|
if ((tp->t_state == TCPS_SYN_SENT) ||
|
|
(tp->t_state == TCPS_SYN_RECEIVED)) {
|
|
/*
|
|
* We really don't know you have to get to ESTAB or beyond
|
|
* to tell.
|
|
*/
|
|
return (EAGAIN);
|
|
}
|
|
if ((tp->t_flags & TF_SACK_PERMIT) || bbr_sack_not_required) {
|
|
return (0);
|
|
}
|
|
/*
|
|
* If we reach here we don't do SACK on this connection so we can
|
|
* never do rack.
|
|
*/
|
|
return (EINVAL);
|
|
}
|
|
|
|
static void
|
|
bbr_fini(struct tcpcb *tp, int32_t tcb_is_purged)
|
|
{
|
|
if (tp->t_fb_ptr) {
|
|
uint32_t calc;
|
|
struct tcp_bbr *bbr;
|
|
struct bbr_sendmap *rsm;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
if (bbr->r_ctl.crte)
|
|
tcp_rel_pacing_rate(bbr->r_ctl.crte, bbr->rc_tp);
|
|
bbr_log_flowend(bbr);
|
|
bbr->rc_tp = NULL;
|
|
if (tp->t_inpcb) {
|
|
/* Backout any flags2 we applied */
|
|
tp->t_inpcb->inp_flags2 &= ~INP_CANNOT_DO_ECN;
|
|
tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
|
|
tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
|
|
}
|
|
if (bbr->bbr_hdrw_pacing)
|
|
counter_u64_add(bbr_flows_whdwr_pacing, -1);
|
|
else
|
|
counter_u64_add(bbr_flows_nohdwr_pacing, -1);
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
while (rsm) {
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_map, rsm, r_next);
|
|
uma_zfree(bbr_zone, rsm);
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
}
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_free);
|
|
while (rsm) {
|
|
TAILQ_REMOVE(&bbr->r_ctl.rc_free, rsm, r_next);
|
|
uma_zfree(bbr_zone, rsm);
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_free);
|
|
}
|
|
calc = bbr->r_ctl.rc_high_rwnd - bbr->r_ctl.rc_init_rwnd;
|
|
if (calc > (bbr->r_ctl.rc_init_rwnd / 10))
|
|
BBR_STAT_INC(bbr_dynamic_rwnd);
|
|
else
|
|
BBR_STAT_INC(bbr_static_rwnd);
|
|
bbr->r_ctl.rc_free_cnt = 0;
|
|
uma_zfree(bbr_pcb_zone, tp->t_fb_ptr);
|
|
tp->t_fb_ptr = NULL;
|
|
}
|
|
/* Make sure snd_nxt is correctly set */
|
|
tp->snd_nxt = tp->snd_max;
|
|
}
|
|
|
|
static void
|
|
bbr_set_state(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t win)
|
|
{
|
|
switch (tp->t_state) {
|
|
case TCPS_SYN_SENT:
|
|
bbr->r_state = TCPS_SYN_SENT;
|
|
bbr->r_substate = bbr_do_syn_sent;
|
|
break;
|
|
case TCPS_SYN_RECEIVED:
|
|
bbr->r_state = TCPS_SYN_RECEIVED;
|
|
bbr->r_substate = bbr_do_syn_recv;
|
|
break;
|
|
case TCPS_ESTABLISHED:
|
|
bbr->r_ctl.rc_init_rwnd = max(win, bbr->rc_tp->snd_wnd);
|
|
bbr->r_state = TCPS_ESTABLISHED;
|
|
bbr->r_substate = bbr_do_established;
|
|
break;
|
|
case TCPS_CLOSE_WAIT:
|
|
bbr->r_state = TCPS_CLOSE_WAIT;
|
|
bbr->r_substate = bbr_do_close_wait;
|
|
break;
|
|
case TCPS_FIN_WAIT_1:
|
|
bbr->r_state = TCPS_FIN_WAIT_1;
|
|
bbr->r_substate = bbr_do_fin_wait_1;
|
|
break;
|
|
case TCPS_CLOSING:
|
|
bbr->r_state = TCPS_CLOSING;
|
|
bbr->r_substate = bbr_do_closing;
|
|
break;
|
|
case TCPS_LAST_ACK:
|
|
bbr->r_state = TCPS_LAST_ACK;
|
|
bbr->r_substate = bbr_do_lastack;
|
|
break;
|
|
case TCPS_FIN_WAIT_2:
|
|
bbr->r_state = TCPS_FIN_WAIT_2;
|
|
bbr->r_substate = bbr_do_fin_wait_2;
|
|
break;
|
|
case TCPS_LISTEN:
|
|
case TCPS_CLOSED:
|
|
case TCPS_TIME_WAIT:
|
|
default:
|
|
break;
|
|
};
|
|
}
|
|
|
|
static void
|
|
bbr_substate_change(struct tcp_bbr *bbr, uint32_t cts, int32_t line, int dolog)
|
|
{
|
|
/*
|
|
* Now what state are we going into now? Is there adjustments
|
|
* needed?
|
|
*/
|
|
int32_t old_state, old_gain;
|
|
|
|
|
|
old_state = bbr_state_val(bbr);
|
|
old_gain = bbr->r_ctl.rc_bbr_hptsi_gain;
|
|
if (bbr_state_val(bbr) == BBR_SUB_LEVEL1) {
|
|
/* Save the lowest srtt we saw in our end of the sub-state */
|
|
bbr->rc_hit_state_1 = 0;
|
|
if (bbr->r_ctl.bbr_smallest_srtt_this_state != 0xffffffff)
|
|
bbr->r_ctl.bbr_smallest_srtt_state2 = bbr->r_ctl.bbr_smallest_srtt_this_state;
|
|
}
|
|
bbr->rc_bbr_substate++;
|
|
if (bbr->rc_bbr_substate >= BBR_SUBSTATE_COUNT) {
|
|
/* Cycle back to first state-> gain */
|
|
bbr->rc_bbr_substate = 0;
|
|
}
|
|
if (bbr_state_val(bbr) == BBR_SUB_GAIN) {
|
|
/*
|
|
* We enter the gain(5/4) cycle (possibly less if
|
|
* shallow buffer detection is enabled)
|
|
*/
|
|
if (bbr->skip_gain) {
|
|
/*
|
|
* Hardware pacing has set our rate to
|
|
* the max and limited our b/w just
|
|
* do level i.e. no gain.
|
|
*/
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[BBR_SUB_LEVEL1];
|
|
} else if (bbr->gain_is_limited &&
|
|
bbr->bbr_hdrw_pacing &&
|
|
bbr->r_ctl.crte) {
|
|
/*
|
|
* We can't gain above the hardware pacing
|
|
* rate which is less than our rate + the gain
|
|
* calculate the gain needed to reach the hardware
|
|
* pacing rate..
|
|
*/
|
|
uint64_t bw, rate, gain_calc;
|
|
|
|
bw = bbr_get_bw(bbr);
|
|
rate = bbr->r_ctl.crte->rate;
|
|
if ((rate > bw) &&
|
|
(((bw * (uint64_t)bbr_hptsi_gain[BBR_SUB_GAIN]) / (uint64_t)BBR_UNIT) > rate)) {
|
|
gain_calc = (rate * BBR_UNIT) / bw;
|
|
if (gain_calc < BBR_UNIT)
|
|
gain_calc = BBR_UNIT;
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = (uint16_t)gain_calc;
|
|
} else {
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[BBR_SUB_GAIN];
|
|
}
|
|
} else
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[BBR_SUB_GAIN];
|
|
if ((bbr->rc_use_google == 0) && (bbr_gain_to_target == 0)) {
|
|
bbr->r_ctl.rc_bbr_state_atflight = cts;
|
|
} else
|
|
bbr->r_ctl.rc_bbr_state_atflight = 0;
|
|
} else if (bbr_state_val(bbr) == BBR_SUB_DRAIN) {
|
|
bbr->rc_hit_state_1 = 1;
|
|
bbr->r_ctl.rc_exta_time_gd = 0;
|
|
bbr->r_ctl.flightsize_at_drain = ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
if (bbr_state_drain_2_tar) {
|
|
bbr->r_ctl.rc_bbr_state_atflight = 0;
|
|
} else
|
|
bbr->r_ctl.rc_bbr_state_atflight = cts;
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[BBR_SUB_DRAIN];
|
|
} else {
|
|
/* All other cycles hit here 2-7 */
|
|
if ((old_state == BBR_SUB_DRAIN) && bbr->rc_hit_state_1) {
|
|
if (bbr_sub_drain_slam_cwnd &&
|
|
(bbr->rc_use_google == 0) &&
|
|
(bbr->rc_tp->snd_cwnd < bbr->r_ctl.rc_saved_cwnd)) {
|
|
bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_saved_cwnd;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
if ((cts - bbr->r_ctl.rc_bbr_state_time) > bbr_get_rtt(bbr, BBR_RTT_PROP))
|
|
bbr->r_ctl.rc_exta_time_gd += ((cts - bbr->r_ctl.rc_bbr_state_time) -
|
|
bbr_get_rtt(bbr, BBR_RTT_PROP));
|
|
else
|
|
bbr->r_ctl.rc_exta_time_gd = 0;
|
|
if (bbr->r_ctl.rc_exta_time_gd) {
|
|
bbr->r_ctl.rc_level_state_extra = bbr->r_ctl.rc_exta_time_gd;
|
|
/* Now chop up the time for each state (div by 7) */
|
|
bbr->r_ctl.rc_level_state_extra /= 7;
|
|
if (bbr_rand_ot && bbr->r_ctl.rc_level_state_extra) {
|
|
/* Add a randomization */
|
|
bbr_randomize_extra_state_time(bbr);
|
|
}
|
|
}
|
|
}
|
|
bbr->r_ctl.rc_bbr_state_atflight = max(1, cts);
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[bbr_state_val(bbr)];
|
|
}
|
|
if (bbr->rc_use_google) {
|
|
bbr->r_ctl.rc_bbr_state_atflight = max(1, cts);
|
|
}
|
|
bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost;
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = bbr_cwnd_gain;
|
|
if (dolog)
|
|
bbr_log_type_statechange(bbr, cts, line);
|
|
|
|
if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) {
|
|
uint32_t time_in;
|
|
|
|
time_in = cts - bbr->r_ctl.rc_bbr_state_time;
|
|
if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) {
|
|
counter_u64_add(bbr_state_time[(old_state + 5)], time_in);
|
|
} else {
|
|
counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in);
|
|
}
|
|
}
|
|
bbr->r_ctl.bbr_smallest_srtt_this_state = 0xffffffff;
|
|
bbr_set_state_target(bbr, __LINE__);
|
|
if (bbr_sub_drain_slam_cwnd &&
|
|
(bbr->rc_use_google == 0) &&
|
|
(bbr_state_val(bbr) == BBR_SUB_DRAIN)) {
|
|
/* Slam down the cwnd */
|
|
bbr->r_ctl.rc_saved_cwnd = bbr->rc_tp->snd_cwnd;
|
|
bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state;
|
|
if (bbr_sub_drain_app_limit) {
|
|
/* Go app limited if we are on a long drain */
|
|
bbr->r_ctl.r_app_limited_until = (bbr->r_ctl.rc_delivered +
|
|
ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked +
|
|
bbr->r_ctl.rc_lost_bytes)));
|
|
}
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
if (bbr->rc_lt_use_bw) {
|
|
/* In policed mode we clamp pacing_gain to BBR_UNIT */
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT;
|
|
}
|
|
/* Google changes TSO size every cycle */
|
|
if (bbr->rc_use_google)
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
bbr->r_ctl.gain_epoch = cts;
|
|
bbr->r_ctl.rc_bbr_state_time = cts;
|
|
bbr->r_ctl.substate_pe = bbr->r_ctl.rc_pkt_epoch;
|
|
}
|
|
|
|
static void
|
|
bbr_set_probebw_google_gains(struct tcp_bbr *bbr, uint32_t cts, uint32_t losses)
|
|
{
|
|
if ((bbr_state_val(bbr) == BBR_SUB_DRAIN) &&
|
|
(google_allow_early_out == 1) &&
|
|
(bbr->r_ctl.rc_flight_at_input <= bbr->r_ctl.rc_target_at_state)) {
|
|
/* We have reached out target flight size possibly early */
|
|
goto change_state;
|
|
}
|
|
if (TSTMP_LT(cts, bbr->r_ctl.rc_bbr_state_time)) {
|
|
return;
|
|
}
|
|
if ((cts - bbr->r_ctl.rc_bbr_state_time) < bbr_get_rtt(bbr, BBR_RTT_PROP)) {
|
|
/*
|
|
* Must be a rttProp movement forward before
|
|
* we can change states.
|
|
*/
|
|
return;
|
|
}
|
|
if (bbr_state_val(bbr) == BBR_SUB_GAIN) {
|
|
/*
|
|
* The needed time has passed but for
|
|
* the gain cycle extra rules apply:
|
|
* 1) If we have seen loss, we exit
|
|
* 2) If we have not reached the target
|
|
* we stay in GAIN (gain-to-target).
|
|
*/
|
|
if (google_consider_lost && losses)
|
|
goto change_state;
|
|
if (bbr->r_ctl.rc_target_at_state > bbr->r_ctl.rc_flight_at_input) {
|
|
return;
|
|
}
|
|
}
|
|
change_state:
|
|
/* For gain we must reach our target, all others last 1 rttProp */
|
|
bbr_substate_change(bbr, cts, __LINE__, 1);
|
|
}
|
|
|
|
static void
|
|
bbr_set_probebw_gains(struct tcp_bbr *bbr, uint32_t cts, uint32_t losses)
|
|
{
|
|
uint32_t flight, bbr_cur_cycle_time;
|
|
|
|
if (bbr->rc_use_google) {
|
|
bbr_set_probebw_google_gains(bbr, cts, losses);
|
|
return;
|
|
}
|
|
if (cts == 0) {
|
|
/*
|
|
* Never alow cts to be 0 we
|
|
* do this so we can judge if
|
|
* we have set a timestamp.
|
|
*/
|
|
cts = 1;
|
|
}
|
|
if (bbr_state_is_pkt_epoch)
|
|
bbr_cur_cycle_time = bbr_get_rtt(bbr, BBR_RTT_PKTRTT);
|
|
else
|
|
bbr_cur_cycle_time = bbr_get_rtt(bbr, BBR_RTT_PROP);
|
|
|
|
if (bbr->r_ctl.rc_bbr_state_atflight == 0) {
|
|
if (bbr_state_val(bbr) == BBR_SUB_DRAIN) {
|
|
flight = ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
if (bbr_sub_drain_slam_cwnd && bbr->rc_hit_state_1) {
|
|
/* Keep it slam down */
|
|
if (bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state) {
|
|
bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
if (bbr_sub_drain_app_limit) {
|
|
/* Go app limited if we are on a long drain */
|
|
bbr->r_ctl.r_app_limited_until = (bbr->r_ctl.rc_delivered + flight);
|
|
}
|
|
}
|
|
if (TSTMP_GT(cts, bbr->r_ctl.gain_epoch) &&
|
|
(((cts - bbr->r_ctl.gain_epoch) > bbr_get_rtt(bbr, BBR_RTT_PROP)) ||
|
|
(flight >= bbr->r_ctl.flightsize_at_drain))) {
|
|
/*
|
|
* Still here after the same time as
|
|
* the gain. We need to drain harder
|
|
* for the next srtt. Reduce by a set amount
|
|
* the gain drop is capped at DRAIN states
|
|
* value (88).
|
|
*/
|
|
bbr->r_ctl.flightsize_at_drain = flight;
|
|
if (bbr_drain_drop_mul &&
|
|
bbr_drain_drop_div &&
|
|
(bbr_drain_drop_mul < bbr_drain_drop_div)) {
|
|
/* Use your specific drop value (def 4/5 = 20%) */
|
|
bbr->r_ctl.rc_bbr_hptsi_gain *= bbr_drain_drop_mul;
|
|
bbr->r_ctl.rc_bbr_hptsi_gain /= bbr_drain_drop_div;
|
|
} else {
|
|
/* You get drop of 20% */
|
|
bbr->r_ctl.rc_bbr_hptsi_gain *= 4;
|
|
bbr->r_ctl.rc_bbr_hptsi_gain /= 5;
|
|
}
|
|
if (bbr->r_ctl.rc_bbr_hptsi_gain <= bbr_drain_floor) {
|
|
/* Reduce our gain again to the bottom */
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = max(bbr_drain_floor, 1);
|
|
}
|
|
bbr_log_exit_gain(bbr, cts, 4);
|
|
/*
|
|
* Extend out so we wait another
|
|
* epoch before dropping again.
|
|
*/
|
|
bbr->r_ctl.gain_epoch = cts;
|
|
}
|
|
if (flight <= bbr->r_ctl.rc_target_at_state) {
|
|
if (bbr_sub_drain_slam_cwnd &&
|
|
(bbr->rc_use_google == 0) &&
|
|
(bbr->rc_tp->snd_cwnd < bbr->r_ctl.rc_saved_cwnd)) {
|
|
bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_saved_cwnd;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
bbr->r_ctl.rc_bbr_state_atflight = max(cts, 1);
|
|
bbr_log_exit_gain(bbr, cts, 3);
|
|
}
|
|
} else {
|
|
/* Its a gain */
|
|
if (bbr->r_ctl.rc_lost > bbr->r_ctl.bbr_lost_at_state) {
|
|
bbr->r_ctl.rc_bbr_state_atflight = max(cts, 1);
|
|
goto change_state;
|
|
}
|
|
if ((ctf_outstanding(bbr->rc_tp) >= bbr->r_ctl.rc_target_at_state) ||
|
|
((ctf_outstanding(bbr->rc_tp) + bbr->rc_tp->t_maxseg - 1) >=
|
|
bbr->rc_tp->snd_wnd)) {
|
|
bbr->r_ctl.rc_bbr_state_atflight = max(cts, 1);
|
|
bbr_log_exit_gain(bbr, cts, 2);
|
|
}
|
|
}
|
|
/**
|
|
* We fall through and return always one of two things has
|
|
* occured.
|
|
* 1) We are still not at target
|
|
* <or>
|
|
* 2) We reached the target and set rc_bbr_state_atflight
|
|
* which means we no longer hit this block
|
|
* next time we are called.
|
|
*/
|
|
return;
|
|
}
|
|
change_state:
|
|
if (TSTMP_LT(cts, bbr->r_ctl.rc_bbr_state_time))
|
|
return;
|
|
if ((cts - bbr->r_ctl.rc_bbr_state_time) < bbr_cur_cycle_time) {
|
|
/* Less than a full time-period has passed */
|
|
return;
|
|
}
|
|
if (bbr->r_ctl.rc_level_state_extra &&
|
|
(bbr_state_val(bbr) > BBR_SUB_DRAIN) &&
|
|
((cts - bbr->r_ctl.rc_bbr_state_time) <
|
|
(bbr_cur_cycle_time + bbr->r_ctl.rc_level_state_extra))) {
|
|
/* Less than a full time-period + extra has passed */
|
|
return;
|
|
}
|
|
if (bbr_gain_gets_extra_too &&
|
|
bbr->r_ctl.rc_level_state_extra &&
|
|
(bbr_state_val(bbr) == BBR_SUB_GAIN) &&
|
|
((cts - bbr->r_ctl.rc_bbr_state_time) <
|
|
(bbr_cur_cycle_time + bbr->r_ctl.rc_level_state_extra))) {
|
|
/* Less than a full time-period + extra has passed */
|
|
return;
|
|
}
|
|
bbr_substate_change(bbr, cts, __LINE__, 1);
|
|
}
|
|
|
|
static uint32_t
|
|
bbr_get_a_state_target(struct tcp_bbr *bbr, uint32_t gain)
|
|
{
|
|
uint32_t mss, tar;
|
|
|
|
if (bbr->rc_use_google) {
|
|
/* Google just uses the cwnd target */
|
|
tar = bbr_get_target_cwnd(bbr, bbr_get_bw(bbr), gain);
|
|
} else {
|
|
mss = min((bbr->rc_tp->t_maxseg - bbr->rc_last_options),
|
|
bbr->r_ctl.rc_pace_max_segs);
|
|
/* Get the base cwnd with gain rounded to a mss */
|
|
tar = roundup(bbr_get_raw_target_cwnd(bbr, bbr_get_bw(bbr),
|
|
gain), mss);
|
|
/* Make sure it is within our min */
|
|
if (tar < get_min_cwnd(bbr))
|
|
return (get_min_cwnd(bbr));
|
|
}
|
|
return (tar);
|
|
}
|
|
|
|
static void
|
|
bbr_set_state_target(struct tcp_bbr *bbr, int line)
|
|
{
|
|
uint32_t tar, meth;
|
|
|
|
if ((bbr->rc_bbr_state == BBR_STATE_PROBE_RTT) &&
|
|
((bbr->r_ctl.bbr_rttprobe_gain_val == 0) || bbr->rc_use_google)) {
|
|
/* Special case using old probe-rtt method */
|
|
tar = bbr_rtt_probe_cwndtarg * (bbr->rc_tp->t_maxseg - bbr->rc_last_options);
|
|
meth = 1;
|
|
} else {
|
|
/* Non-probe-rtt case and reduced probe-rtt */
|
|
if ((bbr->rc_bbr_state == BBR_STATE_PROBE_BW) &&
|
|
(bbr->r_ctl.rc_bbr_hptsi_gain > BBR_UNIT)) {
|
|
/* For gain cycle we use the hptsi gain */
|
|
tar = bbr_get_a_state_target(bbr, bbr->r_ctl.rc_bbr_hptsi_gain);
|
|
meth = 2;
|
|
} else if ((bbr_target_is_bbunit) || bbr->rc_use_google) {
|
|
/*
|
|
* If configured, or for google all other states
|
|
* get BBR_UNIT.
|
|
*/
|
|
tar = bbr_get_a_state_target(bbr, BBR_UNIT);
|
|
meth = 3;
|
|
} else {
|
|
/*
|
|
* Or we set a target based on the pacing gain
|
|
* for non-google mode and default (non-configured).
|
|
* Note we don't set a target goal below drain (192).
|
|
*/
|
|
if (bbr->r_ctl.rc_bbr_hptsi_gain < bbr_hptsi_gain[BBR_SUB_DRAIN]) {
|
|
tar = bbr_get_a_state_target(bbr, bbr_hptsi_gain[BBR_SUB_DRAIN]);
|
|
meth = 4;
|
|
} else {
|
|
tar = bbr_get_a_state_target(bbr, bbr->r_ctl.rc_bbr_hptsi_gain);
|
|
meth = 5;
|
|
}
|
|
}
|
|
}
|
|
bbr_log_set_of_state_target(bbr, tar, line, meth);
|
|
bbr->r_ctl.rc_target_at_state = tar;
|
|
}
|
|
|
|
static void
|
|
bbr_enter_probe_rtt(struct tcp_bbr *bbr, uint32_t cts, int32_t line)
|
|
{
|
|
/* Change to probe_rtt */
|
|
uint32_t time_in;
|
|
|
|
bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost;
|
|
bbr->r_ctl.flightsize_at_drain = ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
bbr->r_ctl.r_app_limited_until = (bbr->r_ctl.flightsize_at_drain
|
|
+ bbr->r_ctl.rc_delivered);
|
|
/* Setup so we force feed the filter */
|
|
if (bbr->rc_use_google || bbr_probertt_sets_rtt)
|
|
bbr->rc_prtt_set_ts = 1;
|
|
if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) {
|
|
time_in = cts - bbr->r_ctl.rc_bbr_state_time;
|
|
counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in);
|
|
}
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_ENTERPROBE, 0);
|
|
bbr->r_ctl.rc_rtt_shrinks = cts;
|
|
bbr->r_ctl.last_in_probertt = cts;
|
|
bbr->r_ctl.rc_probertt_srttchktim = cts;
|
|
bbr->r_ctl.rc_bbr_state_time = cts;
|
|
bbr->rc_bbr_state = BBR_STATE_PROBE_RTT;
|
|
/* We need to force the filter to update */
|
|
|
|
if ((bbr_sub_drain_slam_cwnd) &&
|
|
bbr->rc_hit_state_1 &&
|
|
(bbr->rc_use_google == 0) &&
|
|
(bbr_state_val(bbr) == BBR_SUB_DRAIN)) {
|
|
if (bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_saved_cwnd)
|
|
bbr->r_ctl.rc_saved_cwnd = bbr->rc_tp->snd_cwnd;
|
|
} else
|
|
bbr->r_ctl.rc_saved_cwnd = bbr->rc_tp->snd_cwnd;
|
|
/* Update the lost */
|
|
bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost;
|
|
if ((bbr->r_ctl.bbr_rttprobe_gain_val == 0) || bbr->rc_use_google){
|
|
/* Set to the non-configurable default of 4 (PROBE_RTT_MIN) */
|
|
bbr->rc_tp->snd_cwnd = bbr_rtt_probe_cwndtarg * (bbr->rc_tp->t_maxseg - bbr->rc_last_options);
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT;
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = BBR_UNIT;
|
|
bbr_log_set_of_state_target(bbr, bbr->rc_tp->snd_cwnd, __LINE__, 6);
|
|
bbr->r_ctl.rc_target_at_state = bbr->rc_tp->snd_cwnd;
|
|
} else {
|
|
/*
|
|
* We bring it down slowly by using a hptsi gain that is
|
|
* probably 75%. This will slowly float down our outstanding
|
|
* without tampering with the cwnd.
|
|
*/
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.bbr_rttprobe_gain_val;
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = BBR_UNIT;
|
|
bbr_set_state_target(bbr, __LINE__);
|
|
if (bbr_prtt_slam_cwnd &&
|
|
(bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state)) {
|
|
bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
}
|
|
if (ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) <=
|
|
bbr->r_ctl.rc_target_at_state) {
|
|
/* We are at target */
|
|
bbr->r_ctl.rc_bbr_enters_probertt = cts;
|
|
} else {
|
|
/* We need to come down to reach target before our time begins */
|
|
bbr->r_ctl.rc_bbr_enters_probertt = 0;
|
|
}
|
|
bbr->r_ctl.rc_pe_of_prtt = bbr->r_ctl.rc_pkt_epoch;
|
|
BBR_STAT_INC(bbr_enter_probertt);
|
|
bbr_log_exit_gain(bbr, cts, 0);
|
|
bbr_log_type_statechange(bbr, cts, line);
|
|
}
|
|
|
|
static void
|
|
bbr_check_probe_rtt_limits(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
/*
|
|
* Sanity check on probe-rtt intervals.
|
|
* In crazy situations where we are competing
|
|
* against new-reno flows with huge buffers
|
|
* our rtt-prop interval could come to dominate
|
|
* things if we can't get through a full set
|
|
* of cycles, we need to adjust it.
|
|
*/
|
|
if (bbr_can_adjust_probertt &&
|
|
(bbr->rc_use_google == 0)) {
|
|
uint16_t val = 0;
|
|
uint32_t cur_rttp, fval, newval, baseval;
|
|
|
|
/* Are we to small and go into probe-rtt to often? */
|
|
baseval = (bbr_get_rtt(bbr, BBR_RTT_PROP) * (BBR_SUBSTATE_COUNT + 1));
|
|
cur_rttp = roundup(baseval, USECS_IN_SECOND);
|
|
fval = bbr_filter_len_sec * USECS_IN_SECOND;
|
|
if (bbr_is_ratio == 0) {
|
|
if (fval > bbr_rtt_probe_limit)
|
|
newval = cur_rttp + (fval - bbr_rtt_probe_limit);
|
|
else
|
|
newval = cur_rttp;
|
|
} else {
|
|
int mul;
|
|
|
|
mul = fval / bbr_rtt_probe_limit;
|
|
newval = cur_rttp * mul;
|
|
}
|
|
if (cur_rttp > bbr->r_ctl.rc_probertt_int) {
|
|
bbr->r_ctl.rc_probertt_int = cur_rttp;
|
|
reset_time_small(&bbr->r_ctl.rc_rttprop, newval);
|
|
val = 1;
|
|
} else {
|
|
/*
|
|
* No adjustments were made
|
|
* do we need to shrink it?
|
|
*/
|
|
if (bbr->r_ctl.rc_probertt_int > bbr_rtt_probe_limit) {
|
|
if (cur_rttp <= bbr_rtt_probe_limit) {
|
|
/*
|
|
* Things have calmed down lets
|
|
* shrink all the way to default
|
|
*/
|
|
bbr->r_ctl.rc_probertt_int = bbr_rtt_probe_limit;
|
|
reset_time_small(&bbr->r_ctl.rc_rttprop,
|
|
(bbr_filter_len_sec * USECS_IN_SECOND));
|
|
cur_rttp = bbr_rtt_probe_limit;
|
|
newval = (bbr_filter_len_sec * USECS_IN_SECOND);
|
|
val = 2;
|
|
} else {
|
|
/*
|
|
* Well does some adjustment make sense?
|
|
*/
|
|
if (cur_rttp < bbr->r_ctl.rc_probertt_int) {
|
|
/* We can reduce interval time some */
|
|
bbr->r_ctl.rc_probertt_int = cur_rttp;
|
|
reset_time_small(&bbr->r_ctl.rc_rttprop, newval);
|
|
val = 3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (val)
|
|
bbr_log_rtt_shrinks(bbr, cts, cur_rttp, newval, __LINE__, BBR_RTTS_RESETS_VALUES, val);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_exit_probe_rtt(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
/* Exit probe-rtt */
|
|
|
|
if (tp->snd_cwnd < bbr->r_ctl.rc_saved_cwnd) {
|
|
tp->snd_cwnd = bbr->r_ctl.rc_saved_cwnd;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
bbr_log_exit_gain(bbr, cts, 1);
|
|
bbr->rc_hit_state_1 = 0;
|
|
bbr->r_ctl.rc_rtt_shrinks = cts;
|
|
bbr->r_ctl.last_in_probertt = cts;
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_RTTPROBE, 0);
|
|
bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost;
|
|
bbr->r_ctl.r_app_limited_until = (ctf_flight_size(tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) +
|
|
bbr->r_ctl.rc_delivered);
|
|
if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) {
|
|
uint32_t time_in;
|
|
|
|
time_in = cts - bbr->r_ctl.rc_bbr_state_time;
|
|
counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in);
|
|
}
|
|
if (bbr->rc_filled_pipe) {
|
|
/* Switch to probe_bw */
|
|
bbr->rc_bbr_state = BBR_STATE_PROBE_BW;
|
|
bbr->rc_bbr_substate = bbr_pick_probebw_substate(bbr, cts);
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = bbr_cwnd_gain;
|
|
bbr_substate_change(bbr, cts, __LINE__, 0);
|
|
bbr_log_type_statechange(bbr, cts, __LINE__);
|
|
} else {
|
|
/* Back to startup */
|
|
bbr->rc_bbr_state = BBR_STATE_STARTUP;
|
|
bbr->r_ctl.rc_bbr_state_time = cts;
|
|
/*
|
|
* We don't want to give a complete free 3
|
|
* measurements until we exit, so we use
|
|
* the number of pe's we were in probe-rtt
|
|
* to add to the startup_epoch. That way
|
|
* we will still retain the old state.
|
|
*/
|
|
bbr->r_ctl.rc_bbr_last_startup_epoch += (bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_pe_of_prtt);
|
|
bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost;
|
|
/* Make sure to use the lower pg when shifting back in */
|
|
if (bbr->r_ctl.rc_lost &&
|
|
bbr_use_lower_gain_in_startup &&
|
|
(bbr->rc_use_google == 0))
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr_startup_lower;
|
|
else
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.rc_startup_pg;
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = bbr->r_ctl.rc_startup_pg;
|
|
/* Probably not needed but set it anyway */
|
|
bbr_set_state_target(bbr, __LINE__);
|
|
bbr_log_type_statechange(bbr, cts, __LINE__);
|
|
bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch,
|
|
bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 0);
|
|
}
|
|
bbr_check_probe_rtt_limits(bbr, cts);
|
|
}
|
|
|
|
static int32_t inline
|
|
bbr_should_enter_probe_rtt(struct tcp_bbr *bbr, uint32_t cts)
|
|
{
|
|
if ((bbr->rc_past_init_win == 1) &&
|
|
(bbr->rc_in_persist == 0) &&
|
|
(bbr_calc_time(cts, bbr->r_ctl.rc_rtt_shrinks) >= bbr->r_ctl.rc_probertt_int)) {
|
|
return (1);
|
|
}
|
|
if (bbr_can_force_probertt &&
|
|
(bbr->rc_in_persist == 0) &&
|
|
(TSTMP_GT(cts, bbr->r_ctl.last_in_probertt)) &&
|
|
((cts - bbr->r_ctl.last_in_probertt) > bbr->r_ctl.rc_probertt_int)) {
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int32_t
|
|
bbr_google_startup(struct tcp_bbr *bbr, uint32_t cts, int32_t pkt_epoch)
|
|
{
|
|
uint64_t btlbw, gain;
|
|
if (pkt_epoch == 0) {
|
|
/*
|
|
* Need to be on a pkt-epoch to continue.
|
|
*/
|
|
return (0);
|
|
}
|
|
btlbw = bbr_get_full_bw(bbr);
|
|
gain = ((bbr->r_ctl.rc_bbr_lastbtlbw *
|
|
(uint64_t)bbr_start_exit) / (uint64_t)100) + bbr->r_ctl.rc_bbr_lastbtlbw;
|
|
if (btlbw >= gain) {
|
|
bbr->r_ctl.rc_bbr_last_startup_epoch = bbr->r_ctl.rc_pkt_epoch;
|
|
bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch,
|
|
bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 3);
|
|
bbr->r_ctl.rc_bbr_lastbtlbw = btlbw;
|
|
}
|
|
if ((bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_bbr_last_startup_epoch) >= BBR_STARTUP_EPOCHS)
|
|
return (1);
|
|
bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch,
|
|
bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 8);
|
|
return(0);
|
|
}
|
|
|
|
static int32_t inline
|
|
bbr_state_startup(struct tcp_bbr *bbr, uint32_t cts, int32_t epoch, int32_t pkt_epoch)
|
|
{
|
|
/* Have we gained 25% in the last 3 packet based epoch's? */
|
|
uint64_t btlbw, gain;
|
|
int do_exit;
|
|
int delta, rtt_gain;
|
|
|
|
if ((bbr->rc_tp->snd_una == bbr->rc_tp->snd_max) &&
|
|
(bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time) >= bbr_rtt_probe_time)) {
|
|
/*
|
|
* This qualifies as a RTT_PROBE session since we drop the
|
|
* data outstanding to nothing and waited more than
|
|
* bbr_rtt_probe_time.
|
|
*/
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_WASIDLE, 0);
|
|
bbr_set_reduced_rtt(bbr, cts, __LINE__);
|
|
}
|
|
if (bbr_should_enter_probe_rtt(bbr, cts)) {
|
|
bbr_enter_probe_rtt(bbr, cts, __LINE__);
|
|
return (0);
|
|
}
|
|
if (bbr->rc_use_google)
|
|
return (bbr_google_startup(bbr, cts, pkt_epoch));
|
|
|
|
if ((bbr->r_ctl.rc_lost > bbr->r_ctl.rc_lost_at_startup) &&
|
|
(bbr_use_lower_gain_in_startup)) {
|
|
/* Drop to a lower gain 1.5 x since we saw loss */
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr_startup_lower;
|
|
}
|
|
if (pkt_epoch == 0) {
|
|
/*
|
|
* Need to be on a pkt-epoch to continue.
|
|
*/
|
|
return (0);
|
|
}
|
|
if (bbr_rtt_gain_thresh) {
|
|
/*
|
|
* Do we allow a flow to stay
|
|
* in startup with no loss and no
|
|
* gain in rtt over a set threshold?
|
|
*/
|
|
if (bbr->r_ctl.rc_pkt_epoch_rtt &&
|
|
bbr->r_ctl.startup_last_srtt &&
|
|
(bbr->r_ctl.rc_pkt_epoch_rtt > bbr->r_ctl.startup_last_srtt)) {
|
|
delta = bbr->r_ctl.rc_pkt_epoch_rtt - bbr->r_ctl.startup_last_srtt;
|
|
rtt_gain = (delta * 100) / bbr->r_ctl.startup_last_srtt;
|
|
} else
|
|
rtt_gain = 0;
|
|
if ((bbr->r_ctl.startup_last_srtt == 0) ||
|
|
(bbr->r_ctl.rc_pkt_epoch_rtt < bbr->r_ctl.startup_last_srtt))
|
|
/* First time or new lower value */
|
|
bbr->r_ctl.startup_last_srtt = bbr->r_ctl.rc_pkt_epoch_rtt;
|
|
|
|
if ((bbr->r_ctl.rc_lost == 0) &&
|
|
(rtt_gain < bbr_rtt_gain_thresh)) {
|
|
/*
|
|
* No loss, and we are under
|
|
* our gain threhold for
|
|
* increasing RTT.
|
|
*/
|
|
if (bbr->r_ctl.rc_bbr_last_startup_epoch < bbr->r_ctl.rc_pkt_epoch)
|
|
bbr->r_ctl.rc_bbr_last_startup_epoch++;
|
|
bbr_log_startup_event(bbr, cts, rtt_gain,
|
|
delta, bbr->r_ctl.startup_last_srtt, 10);
|
|
return (0);
|
|
}
|
|
}
|
|
if ((bbr->r_ctl.r_measurement_count == bbr->r_ctl.last_startup_measure) &&
|
|
(bbr->r_ctl.rc_lost_at_startup == bbr->r_ctl.rc_lost) &&
|
|
(!IN_RECOVERY(bbr->rc_tp->t_flags))) {
|
|
/*
|
|
* We only assess if we have a new measurment when
|
|
* we have no loss and are not in recovery.
|
|
* Drag up by one our last_startup epoch so we will hold
|
|
* the number of non-gain we have already accumulated.
|
|
*/
|
|
if (bbr->r_ctl.rc_bbr_last_startup_epoch < bbr->r_ctl.rc_pkt_epoch)
|
|
bbr->r_ctl.rc_bbr_last_startup_epoch++;
|
|
bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch,
|
|
bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 9);
|
|
return (0);
|
|
}
|
|
/* Case where we reduced the lost (bad retransmit) */
|
|
if (bbr->r_ctl.rc_lost_at_startup > bbr->r_ctl.rc_lost)
|
|
bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost;
|
|
bbr->r_ctl.last_startup_measure = bbr->r_ctl.r_measurement_count;
|
|
btlbw = bbr_get_full_bw(bbr);
|
|
if (bbr->r_ctl.rc_bbr_hptsi_gain == bbr_startup_lower)
|
|
gain = ((bbr->r_ctl.rc_bbr_lastbtlbw *
|
|
(uint64_t)bbr_low_start_exit) / (uint64_t)100) + bbr->r_ctl.rc_bbr_lastbtlbw;
|
|
else
|
|
gain = ((bbr->r_ctl.rc_bbr_lastbtlbw *
|
|
(uint64_t)bbr_start_exit) / (uint64_t)100) + bbr->r_ctl.rc_bbr_lastbtlbw;
|
|
do_exit = 0;
|
|
if (btlbw > bbr->r_ctl.rc_bbr_lastbtlbw)
|
|
bbr->r_ctl.rc_bbr_lastbtlbw = btlbw;
|
|
if (btlbw >= gain) {
|
|
bbr->r_ctl.rc_bbr_last_startup_epoch = bbr->r_ctl.rc_pkt_epoch;
|
|
/* Update the lost so we won't exit in next set of tests */
|
|
bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost;
|
|
bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch,
|
|
bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 3);
|
|
}
|
|
if ((bbr->rc_loss_exit &&
|
|
(bbr->r_ctl.rc_lost > bbr->r_ctl.rc_lost_at_startup) &&
|
|
(bbr->r_ctl.rc_pkt_epoch_loss_rate > bbr_startup_loss_thresh)) &&
|
|
((bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_bbr_last_startup_epoch) >= BBR_STARTUP_EPOCHS)) {
|
|
/*
|
|
* If we had no gain, we had loss and that loss was above
|
|
* our threshould, the rwnd is not constrained, and we have
|
|
* had at least 3 packet epochs exit. Note that this is
|
|
* switched off by sysctl. Google does not do this by the
|
|
* way.
|
|
*/
|
|
if ((ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) +
|
|
(2 * max(bbr->r_ctl.rc_pace_max_segs, bbr->rc_tp->t_maxseg))) <= bbr->rc_tp->snd_wnd) {
|
|
do_exit = 1;
|
|
bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch,
|
|
bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 4);
|
|
} else {
|
|
/* Just record an updated loss value */
|
|
bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost;
|
|
bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch,
|
|
bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 5);
|
|
}
|
|
} else
|
|
bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost;
|
|
if (((bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_bbr_last_startup_epoch) >= BBR_STARTUP_EPOCHS) ||
|
|
do_exit) {
|
|
/* Return 1 to exit the startup state. */
|
|
return (1);
|
|
}
|
|
/* Stay in startup */
|
|
bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch,
|
|
bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 8);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
bbr_state_change(struct tcp_bbr *bbr, uint32_t cts, int32_t epoch, int32_t pkt_epoch, uint32_t losses)
|
|
{
|
|
/*
|
|
* A tick occured in the rtt epoch do we need to do anything?
|
|
*/
|
|
#ifdef BBR_INVARIANTS
|
|
if ((bbr->rc_bbr_state != BBR_STATE_STARTUP) &&
|
|
(bbr->rc_bbr_state != BBR_STATE_DRAIN) &&
|
|
(bbr->rc_bbr_state != BBR_STATE_PROBE_RTT) &&
|
|
(bbr->rc_bbr_state != BBR_STATE_IDLE_EXIT) &&
|
|
(bbr->rc_bbr_state != BBR_STATE_PROBE_BW)) {
|
|
/* Debug code? */
|
|
panic("Unknown BBR state %d?\n", bbr->rc_bbr_state);
|
|
}
|
|
#endif
|
|
if (bbr->rc_bbr_state == BBR_STATE_STARTUP) {
|
|
/* Do we exit the startup state? */
|
|
if (bbr_state_startup(bbr, cts, epoch, pkt_epoch)) {
|
|
uint32_t time_in;
|
|
|
|
bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch,
|
|
bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 6);
|
|
bbr->rc_filled_pipe = 1;
|
|
bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost;
|
|
if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) {
|
|
|
|
time_in = cts - bbr->r_ctl.rc_bbr_state_time;
|
|
counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in);
|
|
} else
|
|
time_in = 0;
|
|
if (bbr->rc_no_pacing)
|
|
bbr->rc_no_pacing = 0;
|
|
bbr->r_ctl.rc_bbr_state_time = cts;
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.rc_drain_pg;
|
|
bbr->rc_bbr_state = BBR_STATE_DRAIN;
|
|
bbr_set_state_target(bbr, __LINE__);
|
|
if ((bbr->rc_use_google == 0) &&
|
|
bbr_slam_cwnd_in_main_drain) {
|
|
/* Here we don't have to worry about probe-rtt */
|
|
bbr->r_ctl.rc_saved_cwnd = bbr->rc_tp->snd_cwnd;
|
|
bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = bbr_high_gain;
|
|
bbr_log_type_statechange(bbr, cts, __LINE__);
|
|
if (ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) <=
|
|
bbr->r_ctl.rc_target_at_state) {
|
|
/*
|
|
* Switch to probe_bw if we are already
|
|
* there
|
|
*/
|
|
bbr->rc_bbr_substate = bbr_pick_probebw_substate(bbr, cts);
|
|
bbr_substate_change(bbr, cts, __LINE__, 0);
|
|
bbr->rc_bbr_state = BBR_STATE_PROBE_BW;
|
|
bbr_log_type_statechange(bbr, cts, __LINE__);
|
|
}
|
|
}
|
|
} else if (bbr->rc_bbr_state == BBR_STATE_IDLE_EXIT) {
|
|
uint32_t inflight;
|
|
struct tcpcb *tp;
|
|
|
|
tp = bbr->rc_tp;
|
|
inflight = ctf_flight_size(tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
if (inflight >= bbr->r_ctl.rc_target_at_state) {
|
|
/* We have reached a flight of the cwnd target */
|
|
bbr->rc_bbr_state = BBR_STATE_PROBE_BW;
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT;
|
|
bbr->r_ctl.rc_bbr_cwnd_gain = BBR_UNIT;
|
|
bbr_set_state_target(bbr, __LINE__);
|
|
/*
|
|
* Rig it so we don't do anything crazy and
|
|
* start fresh with a new randomization.
|
|
*/
|
|
bbr->r_ctl.bbr_smallest_srtt_this_state = 0xffffffff;
|
|
bbr->rc_bbr_substate = BBR_SUB_LEVEL6;
|
|
bbr_substate_change(bbr, cts, __LINE__, 1);
|
|
}
|
|
} else if (bbr->rc_bbr_state == BBR_STATE_DRAIN) {
|
|
/* Has in-flight reached the bdp (or less)? */
|
|
uint32_t inflight;
|
|
struct tcpcb *tp;
|
|
|
|
tp = bbr->rc_tp;
|
|
inflight = ctf_flight_size(tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
if ((bbr->rc_use_google == 0) &&
|
|
bbr_slam_cwnd_in_main_drain &&
|
|
(bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state)) {
|
|
/*
|
|
* Here we don't have to worry about probe-rtt
|
|
* re-slam it, but keep it slammed down.
|
|
*/
|
|
bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
if (inflight <= bbr->r_ctl.rc_target_at_state) {
|
|
/* We have drained */
|
|
bbr->rc_bbr_state = BBR_STATE_PROBE_BW;
|
|
bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost;
|
|
if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) {
|
|
uint32_t time_in;
|
|
|
|
time_in = cts - bbr->r_ctl.rc_bbr_state_time;
|
|
counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in);
|
|
}
|
|
if ((bbr->rc_use_google == 0) &&
|
|
bbr_slam_cwnd_in_main_drain &&
|
|
(tp->snd_cwnd < bbr->r_ctl.rc_saved_cwnd)) {
|
|
/* Restore the cwnd */
|
|
tp->snd_cwnd = bbr->r_ctl.rc_saved_cwnd;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
/* Setup probe-rtt has being done now RRS-HERE */
|
|
bbr->r_ctl.rc_rtt_shrinks = cts;
|
|
bbr->r_ctl.last_in_probertt = cts;
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_LEAVE_DRAIN, 0);
|
|
/* Randomly pick a sub-state */
|
|
bbr->rc_bbr_substate = bbr_pick_probebw_substate(bbr, cts);
|
|
bbr_substate_change(bbr, cts, __LINE__, 0);
|
|
bbr_log_type_statechange(bbr, cts, __LINE__);
|
|
}
|
|
} else if (bbr->rc_bbr_state == BBR_STATE_PROBE_RTT) {
|
|
uint32_t flight;
|
|
|
|
flight = ctf_flight_size(bbr->rc_tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
bbr->r_ctl.r_app_limited_until = (flight + bbr->r_ctl.rc_delivered);
|
|
if (((bbr->r_ctl.bbr_rttprobe_gain_val == 0) || bbr->rc_use_google) &&
|
|
(bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state)) {
|
|
/*
|
|
* We must keep cwnd at the desired MSS.
|
|
*/
|
|
bbr->rc_tp->snd_cwnd = bbr_rtt_probe_cwndtarg * (bbr->rc_tp->t_maxseg - bbr->rc_last_options);
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
} else if ((bbr_prtt_slam_cwnd) &&
|
|
(bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state)) {
|
|
/* Re-slam it */
|
|
bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__);
|
|
}
|
|
if (bbr->r_ctl.rc_bbr_enters_probertt == 0) {
|
|
/* Has outstanding reached our target? */
|
|
if (flight <= bbr->r_ctl.rc_target_at_state) {
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_REACHTAR, 0);
|
|
bbr->r_ctl.rc_bbr_enters_probertt = cts;
|
|
/* If time is exactly 0, be 1usec off */
|
|
if (bbr->r_ctl.rc_bbr_enters_probertt == 0)
|
|
bbr->r_ctl.rc_bbr_enters_probertt = 1;
|
|
if (bbr->rc_use_google == 0) {
|
|
/*
|
|
* Restore any lowering that as occured to
|
|
* reach here
|
|
*/
|
|
if (bbr->r_ctl.bbr_rttprobe_gain_val)
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.bbr_rttprobe_gain_val;
|
|
else
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT;
|
|
}
|
|
}
|
|
if ((bbr->r_ctl.rc_bbr_enters_probertt == 0) &&
|
|
(bbr->rc_use_google == 0) &&
|
|
bbr->r_ctl.bbr_rttprobe_gain_val &&
|
|
(((cts - bbr->r_ctl.rc_probertt_srttchktim) > bbr_get_rtt(bbr, bbr_drain_rtt)) ||
|
|
(flight >= bbr->r_ctl.flightsize_at_drain))) {
|
|
/*
|
|
* We have doddled with our current hptsi
|
|
* gain an srtt and have still not made it
|
|
* to target, or we have increased our flight.
|
|
* Lets reduce the gain by xx%
|
|
* flooring the reduce at DRAIN (based on
|
|
* mul/div)
|
|
*/
|
|
int red;
|
|
|
|
bbr->r_ctl.flightsize_at_drain = flight;
|
|
bbr->r_ctl.rc_probertt_srttchktim = cts;
|
|
red = max((bbr->r_ctl.bbr_rttprobe_gain_val / 10), 1);
|
|
if ((bbr->r_ctl.rc_bbr_hptsi_gain - red) > max(bbr_drain_floor, 1)) {
|
|
/* Reduce our gain again */
|
|
bbr->r_ctl.rc_bbr_hptsi_gain -= red;
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_SHRINK_PG, 0);
|
|
} else if (bbr->r_ctl.rc_bbr_hptsi_gain > max(bbr_drain_floor, 1)) {
|
|
/* one more chance before we give up */
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = max(bbr_drain_floor, 1);
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_SHRINK_PG_FINAL, 0);
|
|
} else {
|
|
/* At the very bottom */
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = max((bbr_drain_floor-1), 1);
|
|
}
|
|
}
|
|
}
|
|
if (bbr->r_ctl.rc_bbr_enters_probertt &&
|
|
(TSTMP_GT(cts, bbr->r_ctl.rc_bbr_enters_probertt)) &&
|
|
((cts - bbr->r_ctl.rc_bbr_enters_probertt) >= bbr_rtt_probe_time)) {
|
|
/* Time to exit probe RTT normally */
|
|
bbr_exit_probe_rtt(bbr->rc_tp, bbr, cts);
|
|
}
|
|
} else if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) {
|
|
if ((bbr->rc_tp->snd_una == bbr->rc_tp->snd_max) &&
|
|
(bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time) >= bbr_rtt_probe_time)) {
|
|
/*
|
|
* This qualifies as a RTT_PROBE session since we
|
|
* drop the data outstanding to nothing and waited
|
|
* more than bbr_rtt_probe_time.
|
|
*/
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_WASIDLE, 0);
|
|
bbr_set_reduced_rtt(bbr, cts, __LINE__);
|
|
}
|
|
if (bbr_should_enter_probe_rtt(bbr, cts)) {
|
|
bbr_enter_probe_rtt(bbr, cts, __LINE__);
|
|
} else {
|
|
bbr_set_probebw_gains(bbr, cts, losses);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_check_bbr_for_state(struct tcp_bbr *bbr, uint32_t cts, int32_t line, uint32_t losses)
|
|
{
|
|
int32_t epoch = 0;
|
|
|
|
if ((cts - bbr->r_ctl.rc_rcv_epoch_start) >= bbr_get_rtt(bbr, BBR_RTT_PROP)) {
|
|
bbr_set_epoch(bbr, cts, line);
|
|
/* At each epoch doe lt bw sampling */
|
|
epoch = 1;
|
|
}
|
|
bbr_state_change(bbr, cts, epoch, bbr->rc_is_pkt_epoch_now, losses);
|
|
}
|
|
|
|
static int
|
|
bbr_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
|
|
int32_t nxt_pkt, struct timeval *tv)
|
|
{
|
|
int32_t thflags, retval;
|
|
uint32_t cts, lcts;
|
|
uint32_t tiwin;
|
|
struct tcpopt to;
|
|
struct tcp_bbr *bbr;
|
|
struct bbr_sendmap *rsm;
|
|
struct timeval ltv;
|
|
int32_t did_out = 0;
|
|
int32_t in_recovery;
|
|
uint16_t nsegs;
|
|
int32_t prev_state;
|
|
uint32_t lost;
|
|
|
|
nsegs = max(1, m->m_pkthdr.lro_nsegs);
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
/* add in our stats */
|
|
kern_prefetch(bbr, &prev_state);
|
|
prev_state = 0;
|
|
thflags = th->th_flags;
|
|
/*
|
|
* If this is either a state-changing packet or current state isn't
|
|
* established, we require a write lock on tcbinfo. Otherwise, we
|
|
* allow the tcbinfo to be in either alocked or unlocked, as the
|
|
* caller may have unnecessarily acquired a write lock due to a
|
|
* race.
|
|
*/
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
|
|
__func__));
|
|
KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
|
|
__func__));
|
|
|
|
tp->t_rcvtime = ticks;
|
|
/*
|
|
* Unscale the window into a 32-bit value. For the SYN_SENT state
|
|
* the scale is zero.
|
|
*/
|
|
tiwin = th->th_win << tp->snd_scale;
|
|
#ifdef STATS
|
|
stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
|
|
#endif
|
|
/*
|
|
* Parse options on any incoming segment.
|
|
*/
|
|
tcp_dooptions(&to, (u_char *)(th + 1),
|
|
(th->th_off << 2) - sizeof(struct tcphdr),
|
|
(thflags & TH_SYN) ? TO_SYN : 0);
|
|
|
|
if (m->m_flags & M_TSTMP) {
|
|
/* Prefer the hardware timestamp if present */
|
|
struct timespec ts;
|
|
|
|
mbuf_tstmp2timespec(m, &ts);
|
|
bbr->rc_tv.tv_sec = ts.tv_sec;
|
|
bbr->rc_tv.tv_usec = ts.tv_nsec / 1000;
|
|
bbr->r_ctl.rc_rcvtime = cts = tcp_tv_to_usectick(&bbr->rc_tv);
|
|
} else if (m->m_flags & M_TSTMP_LRO) {
|
|
/* Next the arrival timestamp */
|
|
struct timespec ts;
|
|
|
|
mbuf_tstmp2timespec(m, &ts);
|
|
bbr->rc_tv.tv_sec = ts.tv_sec;
|
|
bbr->rc_tv.tv_usec = ts.tv_nsec / 1000;
|
|
bbr->r_ctl.rc_rcvtime = cts = tcp_tv_to_usectick(&bbr->rc_tv);
|
|
} else {
|
|
/*
|
|
* Ok just get the current time.
|
|
*/
|
|
bbr->r_ctl.rc_rcvtime = lcts = cts = tcp_get_usecs(&bbr->rc_tv);
|
|
}
|
|
/*
|
|
* If echoed timestamp is later than the current time, fall back to
|
|
* non RFC1323 RTT calculation. Normalize timestamp if syncookies
|
|
* were used when this connection was established.
|
|
*/
|
|
if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
|
|
to.to_tsecr -= tp->ts_offset;
|
|
if (TSTMP_GT(to.to_tsecr, tcp_tv_to_mssectick(&bbr->rc_tv)))
|
|
to.to_tsecr = 0;
|
|
}
|
|
/*
|
|
* If its the first time in we need to take care of options and
|
|
* verify we can do SACK for rack!
|
|
*/
|
|
if (bbr->r_state == 0) {
|
|
/*
|
|
* Process options only when we get SYN/ACK back. The SYN
|
|
* case for incoming connections is handled in tcp_syncache.
|
|
* According to RFC1323 the window field in a SYN (i.e., a
|
|
* <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
|
|
* this is traditional behavior, may need to be cleaned up.
|
|
*/
|
|
if (bbr->rc_inp == NULL) {
|
|
bbr->rc_inp = tp->t_inpcb;
|
|
}
|
|
/*
|
|
* We need to init rc_inp here since its not init'd when
|
|
* bbr_init is called
|
|
*/
|
|
if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
|
|
if ((to.to_flags & TOF_SCALE) &&
|
|
(tp->t_flags & TF_REQ_SCALE)) {
|
|
tp->t_flags |= TF_RCVD_SCALE;
|
|
tp->snd_scale = to.to_wscale;
|
|
}
|
|
/*
|
|
* Initial send window. It will be updated with the
|
|
* next incoming segment to the scaled value.
|
|
*/
|
|
tp->snd_wnd = th->th_win;
|
|
if (to.to_flags & TOF_TS) {
|
|
tp->t_flags |= TF_RCVD_TSTMP;
|
|
tp->ts_recent = to.to_tsval;
|
|
tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
}
|
|
if (to.to_flags & TOF_MSS)
|
|
tcp_mss(tp, to.to_mss);
|
|
if ((tp->t_flags & TF_SACK_PERMIT) &&
|
|
(to.to_flags & TOF_SACKPERM) == 0)
|
|
tp->t_flags &= ~TF_SACK_PERMIT;
|
|
if (IS_FASTOPEN(tp->t_flags)) {
|
|
if (to.to_flags & TOF_FASTOPEN) {
|
|
uint16_t mss;
|
|
|
|
if (to.to_flags & TOF_MSS)
|
|
mss = to.to_mss;
|
|
else
|
|
if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
|
|
mss = TCP6_MSS;
|
|
else
|
|
mss = TCP_MSS;
|
|
tcp_fastopen_update_cache(tp, mss,
|
|
to.to_tfo_len, to.to_tfo_cookie);
|
|
} else
|
|
tcp_fastopen_disable_path(tp);
|
|
}
|
|
}
|
|
/*
|
|
* At this point we are at the initial call. Here we decide
|
|
* if we are doing RACK or not. We do this by seeing if
|
|
* TF_SACK_PERMIT is set, if not rack is *not* possible and
|
|
* we switch to the default code.
|
|
*/
|
|
if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
|
|
/* Bail */
|
|
tcp_switch_back_to_default(tp);
|
|
(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
|
|
tlen, iptos);
|
|
return (1);
|
|
}
|
|
/* Set the flag */
|
|
bbr->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
|
|
tcp_set_hpts(tp->t_inpcb);
|
|
sack_filter_clear(&bbr->r_ctl.bbr_sf, th->th_ack);
|
|
}
|
|
if (thflags & TH_ACK) {
|
|
/* Track ack types */
|
|
if (to.to_flags & TOF_SACK)
|
|
BBR_STAT_INC(bbr_acks_with_sacks);
|
|
else
|
|
BBR_STAT_INC(bbr_plain_acks);
|
|
}
|
|
/*
|
|
* This is the one exception case where we set the rack state
|
|
* always. All other times (timers etc) we must have a rack-state
|
|
* set (so we assure we have done the checks above for SACK).
|
|
*/
|
|
if (bbr->r_state != tp->t_state)
|
|
bbr_set_state(tp, bbr, tiwin);
|
|
|
|
if (SEQ_GT(th->th_ack, tp->snd_una) && (rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map)) != NULL)
|
|
kern_prefetch(rsm, &prev_state);
|
|
prev_state = bbr->r_state;
|
|
bbr->rc_ack_was_delayed = 0;
|
|
lost = bbr->r_ctl.rc_lost;
|
|
bbr->rc_is_pkt_epoch_now = 0;
|
|
if (m->m_flags & (M_TSTMP|M_TSTMP_LRO)) {
|
|
/* Get the real time into lcts and figure the real delay */
|
|
lcts = tcp_get_usecs(<v);
|
|
if (TSTMP_GT(lcts, cts)) {
|
|
bbr->r_ctl.rc_ack_hdwr_delay = lcts - cts;
|
|
bbr->rc_ack_was_delayed = 1;
|
|
if (TSTMP_GT(bbr->r_ctl.rc_ack_hdwr_delay,
|
|
bbr->r_ctl.highest_hdwr_delay))
|
|
bbr->r_ctl.highest_hdwr_delay = bbr->r_ctl.rc_ack_hdwr_delay;
|
|
} else {
|
|
bbr->r_ctl.rc_ack_hdwr_delay = 0;
|
|
bbr->rc_ack_was_delayed = 0;
|
|
}
|
|
} else {
|
|
bbr->r_ctl.rc_ack_hdwr_delay = 0;
|
|
bbr->rc_ack_was_delayed = 0;
|
|
}
|
|
bbr_log_ack_event(bbr, th, &to, tlen, nsegs, cts, nxt_pkt, m);
|
|
if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
|
|
retval = 0;
|
|
m_freem(m);
|
|
goto done_with_input;
|
|
}
|
|
/*
|
|
* If a segment with the ACK-bit set arrives in the SYN-SENT state
|
|
* check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
|
|
*/
|
|
if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
|
|
(SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
|
|
ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
in_recovery = IN_RECOVERY(tp->t_flags);
|
|
if (tiwin > bbr->r_ctl.rc_high_rwnd)
|
|
bbr->r_ctl.rc_high_rwnd = tiwin;
|
|
#ifdef BBR_INVARIANTS
|
|
if ((tp->t_inpcb->inp_flags & INP_DROPPED) ||
|
|
(tp->t_inpcb->inp_flags2 & INP_FREED)) {
|
|
panic("tp:%p bbr:%p given a dropped inp:%p",
|
|
tp, bbr, tp->t_inpcb);
|
|
}
|
|
#endif
|
|
bbr->r_ctl.rc_flight_at_input = ctf_flight_size(tp,
|
|
(bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
bbr->rtt_valid = 0;
|
|
if (to.to_flags & TOF_TS) {
|
|
bbr->rc_ts_valid = 1;
|
|
bbr->r_ctl.last_inbound_ts = to.to_tsval;
|
|
} else {
|
|
bbr->rc_ts_valid = 0;
|
|
bbr->r_ctl.last_inbound_ts = 0;
|
|
}
|
|
retval = (*bbr->r_substate) (m, th, so,
|
|
tp, &to, drop_hdrlen,
|
|
tlen, tiwin, thflags, nxt_pkt);
|
|
#ifdef BBR_INVARIANTS
|
|
if ((retval == 0) &&
|
|
(tp->t_inpcb == NULL)) {
|
|
panic("retval:%d tp:%p t_inpcb:NULL state:%d",
|
|
retval, tp, prev_state);
|
|
}
|
|
#endif
|
|
if (nxt_pkt == 0)
|
|
BBR_STAT_INC(bbr_rlock_left_ret0);
|
|
else
|
|
BBR_STAT_INC(bbr_rlock_left_ret1);
|
|
if (retval == 0) {
|
|
/*
|
|
* If retval is 1 the tcb is unlocked and most likely the tp
|
|
* is gone.
|
|
*/
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
tcp_bbr_xmit_timer_commit(bbr, tp, cts);
|
|
if (bbr->rc_is_pkt_epoch_now)
|
|
bbr_set_pktepoch(bbr, cts, __LINE__);
|
|
bbr_check_bbr_for_state(bbr, cts, __LINE__, (bbr->r_ctl.rc_lost - lost));
|
|
if (nxt_pkt == 0) {
|
|
if (bbr->r_wanted_output != 0) {
|
|
bbr->rc_output_starts_timer = 0;
|
|
did_out = 1;
|
|
(void)tp->t_fb->tfb_tcp_output(tp);
|
|
} else
|
|
bbr_start_hpts_timer(bbr, tp, cts, 6, 0, 0);
|
|
}
|
|
if ((nxt_pkt == 0) &&
|
|
((bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
|
|
(SEQ_GT(tp->snd_max, tp->snd_una) ||
|
|
(tp->t_flags & TF_DELACK) ||
|
|
((V_tcp_always_keepalive || bbr->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
|
|
(tp->t_state <= TCPS_CLOSING)))) {
|
|
/*
|
|
* We could not send (probably in the hpts but
|
|
* stopped the timer)?
|
|
*/
|
|
if ((tp->snd_max == tp->snd_una) &&
|
|
((tp->t_flags & TF_DELACK) == 0) &&
|
|
(bbr->rc_inp->inp_in_hpts) &&
|
|
(bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
|
|
/*
|
|
* keep alive not needed if we are hptsi
|
|
* output yet
|
|
*/
|
|
;
|
|
} else {
|
|
if (bbr->rc_inp->inp_in_hpts) {
|
|
tcp_hpts_remove(bbr->rc_inp, HPTS_REMOVE_OUTPUT);
|
|
if ((bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
|
|
(TSTMP_GT(lcts, bbr->rc_pacer_started))) {
|
|
uint32_t del;
|
|
|
|
del = lcts - bbr->rc_pacer_started;
|
|
if (bbr->r_ctl.rc_last_delay_val > del) {
|
|
BBR_STAT_INC(bbr_force_timer_start);
|
|
bbr->r_ctl.rc_last_delay_val -= del;
|
|
bbr->rc_pacer_started = lcts;
|
|
} else {
|
|
/* We are late */
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
BBR_STAT_INC(bbr_force_output);
|
|
(void)tp->t_fb->tfb_tcp_output(tp);
|
|
}
|
|
}
|
|
}
|
|
bbr_start_hpts_timer(bbr, tp, cts, 8, bbr->r_ctl.rc_last_delay_val,
|
|
0);
|
|
}
|
|
} else if ((bbr->rc_output_starts_timer == 0) && (nxt_pkt == 0)) {
|
|
/* Do we have the correct timer running? */
|
|
bbr_timer_audit(tp, bbr, lcts, &so->so_snd);
|
|
}
|
|
/* Do we have a new state */
|
|
if (bbr->r_state != tp->t_state)
|
|
bbr_set_state(tp, bbr, tiwin);
|
|
done_with_input:
|
|
bbr_log_doseg_done(bbr, cts, nxt_pkt, did_out);
|
|
if (did_out)
|
|
bbr->r_wanted_output = 0;
|
|
#ifdef BBR_INVARIANTS
|
|
if (tp->t_inpcb == NULL) {
|
|
panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
|
|
did_out,
|
|
retval, tp, prev_state);
|
|
}
|
|
#endif
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
static void
|
|
bbr_log_type_hrdwtso(struct tcpcb *tp, struct tcp_bbr *bbr, int len, int mod, int what_we_can_send)
|
|
{
|
|
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
uint32_t cts;
|
|
|
|
cts = tcp_get_usecs(&tv);
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
log.u_bbr.flex1 = bbr->r_ctl.rc_pace_min_segs;
|
|
log.u_bbr.flex2 = what_we_can_send;
|
|
log.u_bbr.flex3 = bbr->r_ctl.rc_pace_max_segs;
|
|
log.u_bbr.flex4 = len;
|
|
log.u_bbr.flex5 = 0;
|
|
log.u_bbr.flex7 = mod;
|
|
log.u_bbr.flex8 = 1;
|
|
TCP_LOG_EVENTP(tp, NULL,
|
|
&tp->t_inpcb->inp_socket->so_rcv,
|
|
&tp->t_inpcb->inp_socket->so_snd,
|
|
TCP_HDWR_TLS, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
|
|
{
|
|
struct timeval tv;
|
|
int retval;
|
|
|
|
/* First lets see if we have old packets */
|
|
if (tp->t_in_pkt) {
|
|
if (ctf_do_queued_segments(so, tp, 1)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
}
|
|
if (m->m_flags & M_TSTMP_LRO) {
|
|
tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
|
|
tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
|
|
} else {
|
|
/* Should not be should we kassert instead? */
|
|
tcp_get_usecs(&tv);
|
|
}
|
|
retval = bbr_do_segment_nounlock(m, th, so, tp,
|
|
drop_hdrlen, tlen, iptos, 0, &tv);
|
|
if (retval == 0)
|
|
INP_WUNLOCK(tp->t_inpcb);
|
|
}
|
|
|
|
/*
|
|
* Return how much data can be sent without violating the
|
|
* cwnd or rwnd.
|
|
*/
|
|
|
|
static inline uint32_t
|
|
bbr_what_can_we_send(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t sendwin,
|
|
uint32_t avail, int32_t sb_offset, uint32_t cts)
|
|
{
|
|
uint32_t len;
|
|
|
|
if (ctf_outstanding(tp) >= tp->snd_wnd) {
|
|
/* We never want to go over our peers rcv-window */
|
|
len = 0;
|
|
} else {
|
|
uint32_t flight;
|
|
|
|
flight = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes));
|
|
if (flight >= sendwin) {
|
|
/*
|
|
* We have in flight what we are allowed by cwnd (if
|
|
* it was rwnd blocking it would have hit above out
|
|
* >= tp->snd_wnd).
|
|
*/
|
|
return (0);
|
|
}
|
|
len = sendwin - flight;
|
|
if ((len + ctf_outstanding(tp)) > tp->snd_wnd) {
|
|
/* We would send too much (beyond the rwnd) */
|
|
len = tp->snd_wnd - ctf_outstanding(tp);
|
|
}
|
|
if ((len + sb_offset) > avail) {
|
|
/*
|
|
* We don't have that much in the SB, how much is
|
|
* there?
|
|
*/
|
|
len = avail - sb_offset;
|
|
}
|
|
}
|
|
return (len);
|
|
}
|
|
|
|
static inline void
|
|
bbr_do_error_accounting(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, int32_t len, int32_t error)
|
|
{
|
|
#ifdef NETFLIX_STATS
|
|
TCPSTAT_INC(tcps_sndpack_error);
|
|
TCPSTAT_ADD(tcps_sndbyte_error, len);
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
bbr_do_send_accounting(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, int32_t len, int32_t error)
|
|
{
|
|
if (error) {
|
|
bbr_do_error_accounting(tp, bbr, rsm, len, error);
|
|
return;
|
|
}
|
|
if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
|
|
/* Window probe */
|
|
TCPSTAT_INC(tcps_sndprobe);
|
|
#ifdef STATS
|
|
stats_voi_update_abs_u32(tp->t_stats,
|
|
VOI_TCP_RETXPB, len);
|
|
#endif
|
|
} else if (rsm) {
|
|
if (rsm->r_flags & BBR_TLP) {
|
|
/*
|
|
* TLP should not count in retran count, but in its
|
|
* own bin
|
|
*/
|
|
#ifdef NETFLIX_STATS
|
|
tp->t_sndtlppack++;
|
|
tp->t_sndtlpbyte += len;
|
|
TCPSTAT_INC(tcps_tlpresends);
|
|
TCPSTAT_ADD(tcps_tlpresend_bytes, len);
|
|
#endif
|
|
} else {
|
|
/* Retransmit */
|
|
tp->t_sndrexmitpack++;
|
|
TCPSTAT_INC(tcps_sndrexmitpack);
|
|
TCPSTAT_ADD(tcps_sndrexmitbyte, len);
|
|
#ifdef STATS
|
|
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
|
|
len);
|
|
#endif
|
|
}
|
|
/*
|
|
* Logs in 0 - 8, 8 is all non probe_bw states 0-7 is
|
|
* sub-state
|
|
*/
|
|
counter_u64_add(bbr_state_lost[rsm->r_bbr_state], len);
|
|
if (bbr->rc_bbr_state != BBR_STATE_PROBE_BW) {
|
|
/* Non probe_bw log in 1, 2, or 4. */
|
|
counter_u64_add(bbr_state_resend[bbr->rc_bbr_state], len);
|
|
} else {
|
|
/*
|
|
* Log our probe state 3, and log also 5-13 to show
|
|
* us the recovery sub-state for the send. This
|
|
* means that 3 == (5+6+7+8+9+10+11+12+13)
|
|
*/
|
|
counter_u64_add(bbr_state_resend[BBR_STATE_PROBE_BW], len);
|
|
counter_u64_add(bbr_state_resend[(bbr_state_val(bbr) + 5)], len);
|
|
}
|
|
/* Place in both 16's the totals of retransmitted */
|
|
counter_u64_add(bbr_state_lost[16], len);
|
|
counter_u64_add(bbr_state_resend[16], len);
|
|
/* Place in 17's the total sent */
|
|
counter_u64_add(bbr_state_resend[17], len);
|
|
counter_u64_add(bbr_state_lost[17], len);
|
|
|
|
} else {
|
|
/* New sends */
|
|
TCPSTAT_INC(tcps_sndpack);
|
|
TCPSTAT_ADD(tcps_sndbyte, len);
|
|
/* Place in 17's the total sent */
|
|
counter_u64_add(bbr_state_resend[17], len);
|
|
counter_u64_add(bbr_state_lost[17], len);
|
|
#ifdef STATS
|
|
stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
|
|
len);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
bbr_cwnd_limiting(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t in_level)
|
|
{
|
|
if (bbr->rc_filled_pipe && bbr_target_cwnd_mult_limit && (bbr->rc_use_google == 0)) {
|
|
/*
|
|
* Limit the cwnd to not be above N x the target plus whats
|
|
* is outstanding. The target is based on the current b/w
|
|
* estimate.
|
|
*/
|
|
uint32_t target;
|
|
|
|
target = bbr_get_target_cwnd(bbr, bbr_get_bw(bbr), BBR_UNIT);
|
|
target += ctf_outstanding(tp);
|
|
target *= bbr_target_cwnd_mult_limit;
|
|
if (tp->snd_cwnd > target)
|
|
tp->snd_cwnd = target;
|
|
bbr_log_type_cwndupd(bbr, 0, 0, 0, 10, 0, 0, __LINE__);
|
|
}
|
|
}
|
|
|
|
static int
|
|
bbr_window_update_needed(struct tcpcb *tp, struct socket *so, uint32_t recwin, int32_t maxseg)
|
|
{
|
|
/*
|
|
* "adv" is the amount we could increase the window, taking into
|
|
* account that we are limited by TCP_MAXWIN << tp->rcv_scale.
|
|
*/
|
|
uint32_t adv;
|
|
int32_t oldwin;
|
|
|
|
adv = min(recwin, TCP_MAXWIN << tp->rcv_scale);
|
|
if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
|
|
oldwin = (tp->rcv_adv - tp->rcv_nxt);
|
|
adv -= oldwin;
|
|
} else
|
|
oldwin = 0;
|
|
|
|
/*
|
|
* If the new window size ends up being the same as the old size
|
|
* when it is scaled, then don't force a window update.
|
|
*/
|
|
if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
|
|
return (0);
|
|
|
|
if (adv >= (2 * maxseg) &&
|
|
(adv >= (so->so_rcv.sb_hiwat / 4) ||
|
|
recwin <= (so->so_rcv.sb_hiwat / 8) ||
|
|
so->so_rcv.sb_hiwat <= 8 * maxseg)) {
|
|
return (1);
|
|
}
|
|
if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return 0 on success and a errno on failure to send.
|
|
* Note that a 0 return may not mean we sent anything
|
|
* if the TCB was on the hpts. A non-zero return
|
|
* does indicate the error we got from ip[6]_output.
|
|
*/
|
|
static int
|
|
bbr_output_wtime(struct tcpcb *tp, const struct timeval *tv)
|
|
{
|
|
struct socket *so;
|
|
int32_t len;
|
|
uint32_t cts;
|
|
uint32_t recwin, sendwin;
|
|
int32_t sb_offset;
|
|
int32_t flags, abandon, error = 0;
|
|
struct tcp_log_buffer *lgb = NULL;
|
|
struct mbuf *m;
|
|
struct mbuf *mb;
|
|
uint32_t if_hw_tsomaxsegcount = 0;
|
|
uint32_t if_hw_tsomaxsegsize = 0;
|
|
uint32_t if_hw_tsomax = 0;
|
|
struct ip *ip = NULL;
|
|
#ifdef TCPDEBUG
|
|
struct ipovly *ipov = NULL;
|
|
#endif
|
|
struct tcp_bbr *bbr;
|
|
struct tcphdr *th;
|
|
#ifdef NETFLIX_TCPOUDP
|
|
struct udphdr *udp = NULL;
|
|
#endif
|
|
u_char opt[TCP_MAXOLEN];
|
|
unsigned ipoptlen, optlen, hdrlen;
|
|
#ifdef NETFLIX_TCPOUDP
|
|
unsigned ulen;
|
|
#endif
|
|
uint32_t bbr_seq;
|
|
uint32_t delay_calc=0;
|
|
uint8_t doing_tlp = 0;
|
|
uint8_t local_options;
|
|
#ifdef BBR_INVARIANTS
|
|
uint8_t doing_retran_from = 0;
|
|
uint8_t picked_up_retran = 0;
|
|
#endif
|
|
uint8_t wanted_cookie = 0;
|
|
uint8_t more_to_rxt=0;
|
|
int32_t prefetch_so_done = 0;
|
|
int32_t prefetch_rsm = 0;
|
|
uint32_t what_we_can = 0;
|
|
uint32_t tot_len = 0;
|
|
uint32_t rtr_cnt = 0;
|
|
uint32_t maxseg, pace_max_segs, p_maxseg;
|
|
int32_t csum_flags;
|
|
int32_t hw_tls;
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
unsigned ipsec_optlen = 0;
|
|
|
|
#endif
|
|
volatile int32_t sack_rxmit;
|
|
struct bbr_sendmap *rsm = NULL;
|
|
int32_t tso, mtu;
|
|
int force_tso = 0;
|
|
struct tcpopt to;
|
|
int32_t slot = 0;
|
|
struct inpcb *inp;
|
|
struct sockbuf *sb;
|
|
uint32_t hpts_calling;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6 = NULL;
|
|
int32_t isipv6;
|
|
#endif
|
|
uint8_t app_limited = BBR_JR_SENT_DATA;
|
|
uint8_t filled_all = 0;
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
/* We take a cache hit here */
|
|
memcpy(&bbr->rc_tv, tv, sizeof(struct timeval));
|
|
cts = tcp_tv_to_usectick(&bbr->rc_tv);
|
|
inp = bbr->rc_inp;
|
|
so = inp->inp_socket;
|
|
sb = &so->so_snd;
|
|
#ifdef KERN_TLS
|
|
if (sb->sb_flags & SB_TLS_IFNET)
|
|
hw_tls = 1;
|
|
else
|
|
#endif
|
|
hw_tls = 0;
|
|
kern_prefetch(sb, &maxseg);
|
|
maxseg = tp->t_maxseg - bbr->rc_last_options;
|
|
if (bbr_minseg(bbr) < maxseg) {
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
}
|
|
/* Remove any flags that indicate we are pacing on the inp */
|
|
pace_max_segs = bbr->r_ctl.rc_pace_max_segs;
|
|
p_maxseg = min(maxseg, pace_max_segs);
|
|
INP_WLOCK_ASSERT(inp);
|
|
#ifdef TCP_OFFLOAD
|
|
if (tp->t_flags & TF_TOE)
|
|
return (tcp_offload_output(tp));
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
if (bbr->r_state) {
|
|
/* Use the cache line loaded if possible */
|
|
isipv6 = bbr->r_is_v6;
|
|
} else {
|
|
isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
|
|
}
|
|
#endif
|
|
if (((bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
|
|
inp->inp_in_hpts) {
|
|
/*
|
|
* We are on the hpts for some timer but not hptsi output.
|
|
* Possibly remove from the hpts so we can send/recv etc.
|
|
*/
|
|
if ((tp->t_flags & TF_ACKNOW) == 0) {
|
|
/*
|
|
* No immediate demand right now to send an ack, but
|
|
* the user may have read, making room for new data
|
|
* (a window update). If so we may want to cancel
|
|
* whatever timer is running (KEEP/DEL-ACK?) and
|
|
* continue to send out a window update. Or we may
|
|
* have gotten more data into the socket buffer to
|
|
* send.
|
|
*/
|
|
recwin = min(max(sbspace(&so->so_rcv), 0),
|
|
TCP_MAXWIN << tp->rcv_scale);
|
|
if ((bbr_window_update_needed(tp, so, recwin, maxseg) == 0) &&
|
|
((sbavail(sb) + ((tcp_outflags[tp->t_state] & TH_FIN) ? 1 : 0)) <=
|
|
(tp->snd_max - tp->snd_una))) {
|
|
/*
|
|
* Nothing new to send and no window update
|
|
* is needed to send. Lets just return and
|
|
* let the timer-run off.
|
|
*/
|
|
return (0);
|
|
}
|
|
}
|
|
tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT);
|
|
bbr_timer_cancel(bbr, __LINE__, cts);
|
|
}
|
|
if (bbr->r_ctl.rc_last_delay_val) {
|
|
/* Calculate a rough delay for early escape to sending */
|
|
if (SEQ_GT(cts, bbr->rc_pacer_started))
|
|
delay_calc = cts - bbr->rc_pacer_started;
|
|
if (delay_calc >= bbr->r_ctl.rc_last_delay_val)
|
|
delay_calc -= bbr->r_ctl.rc_last_delay_val;
|
|
else
|
|
delay_calc = 0;
|
|
}
|
|
/* Mark that we have called bbr_output(). */
|
|
if ((bbr->r_timer_override) ||
|
|
(tp->t_flags & TF_FORCEDATA) ||
|
|
(tp->t_state < TCPS_ESTABLISHED)) {
|
|
/* Timeouts or early states are exempt */
|
|
if (inp->inp_in_hpts)
|
|
tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT);
|
|
} else if (inp->inp_in_hpts) {
|
|
if ((bbr->r_ctl.rc_last_delay_val) &&
|
|
(bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
|
|
delay_calc) {
|
|
/*
|
|
* We were being paced for output and the delay has
|
|
* already exceeded when we were supposed to be
|
|
* called, lets go ahead and pull out of the hpts
|
|
* and call output.
|
|
*/
|
|
counter_u64_add(bbr_out_size[TCP_MSS_ACCT_LATE], 1);
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT);
|
|
} else if (tp->t_state == TCPS_CLOSED) {
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT);
|
|
} else {
|
|
/*
|
|
* On the hpts, you shall not pass! even if ACKNOW
|
|
* is on, we will when the hpts fires, unless of
|
|
* course we are overdue.
|
|
*/
|
|
counter_u64_add(bbr_out_size[TCP_MSS_ACCT_INPACE], 1);
|
|
return (0);
|
|
}
|
|
}
|
|
bbr->rc_cwnd_limited = 0;
|
|
if (bbr->r_ctl.rc_last_delay_val) {
|
|
/* recalculate the real delay and deal with over/under */
|
|
if (SEQ_GT(cts, bbr->rc_pacer_started))
|
|
delay_calc = cts - bbr->rc_pacer_started;
|
|
else
|
|
delay_calc = 0;
|
|
if (delay_calc >= bbr->r_ctl.rc_last_delay_val)
|
|
/* Setup the delay which will be added in */
|
|
delay_calc -= bbr->r_ctl.rc_last_delay_val;
|
|
else {
|
|
/*
|
|
* We are early setup to adjust
|
|
* our slot time.
|
|
*/
|
|
uint64_t merged_val;
|
|
|
|
bbr->r_ctl.rc_agg_early += (bbr->r_ctl.rc_last_delay_val - delay_calc);
|
|
bbr->r_agg_early_set = 1;
|
|
if (bbr->r_ctl.rc_hptsi_agg_delay) {
|
|
if (bbr->r_ctl.rc_hptsi_agg_delay >= bbr->r_ctl.rc_agg_early) {
|
|
/* Nope our previous late cancels out the early */
|
|
bbr->r_ctl.rc_hptsi_agg_delay -= bbr->r_ctl.rc_agg_early;
|
|
bbr->r_agg_early_set = 0;
|
|
bbr->r_ctl.rc_agg_early = 0;
|
|
} else {
|
|
bbr->r_ctl.rc_agg_early -= bbr->r_ctl.rc_hptsi_agg_delay;
|
|
bbr->r_ctl.rc_hptsi_agg_delay = 0;
|
|
}
|
|
}
|
|
merged_val = bbr->rc_pacer_started;
|
|
merged_val <<= 32;
|
|
merged_val |= bbr->r_ctl.rc_last_delay_val;
|
|
bbr_log_pacing_delay_calc(bbr, inp->inp_hpts_calls,
|
|
bbr->r_ctl.rc_agg_early, cts, delay_calc, merged_val,
|
|
bbr->r_agg_early_set, 3);
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
BBR_STAT_INC(bbr_early);
|
|
delay_calc = 0;
|
|
}
|
|
} else {
|
|
/* We were not delayed due to hptsi */
|
|
if (bbr->r_agg_early_set)
|
|
bbr->r_ctl.rc_agg_early = 0;
|
|
bbr->r_agg_early_set = 0;
|
|
delay_calc = 0;
|
|
}
|
|
if (delay_calc) {
|
|
/*
|
|
* We had a hptsi delay which means we are falling behind on
|
|
* sending at the expected rate. Calculate an extra amount
|
|
* of data we can send, if any, to put us back on track.
|
|
*/
|
|
if ((bbr->r_ctl.rc_hptsi_agg_delay + delay_calc) < bbr->r_ctl.rc_hptsi_agg_delay)
|
|
bbr->r_ctl.rc_hptsi_agg_delay = 0xffffffff;
|
|
else
|
|
bbr->r_ctl.rc_hptsi_agg_delay += delay_calc;
|
|
}
|
|
sendwin = min(tp->snd_wnd, tp->snd_cwnd);
|
|
if ((tp->snd_una == tp->snd_max) &&
|
|
(bbr->rc_bbr_state != BBR_STATE_IDLE_EXIT) &&
|
|
(sbavail(sb))) {
|
|
/*
|
|
* Ok we have been idle with nothing outstanding
|
|
* we possibly need to start fresh with either a new
|
|
* suite of states or a fast-ramp up.
|
|
*/
|
|
bbr_restart_after_idle(bbr,
|
|
cts, bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time));
|
|
}
|
|
/*
|
|
* Now was there a hptsi delay where we are behind? We only count
|
|
* being behind if: a) We are not in recovery. b) There was a delay.
|
|
* <and> c) We had room to send something.
|
|
*
|
|
*/
|
|
hpts_calling = inp->inp_hpts_calls;
|
|
inp->inp_hpts_calls = 0;
|
|
if (bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
|
|
if (bbr_process_timers(tp, bbr, cts, hpts_calling)) {
|
|
counter_u64_add(bbr_out_size[TCP_MSS_ACCT_ATIMER], 1);
|
|
return (0);
|
|
}
|
|
}
|
|
bbr->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
|
|
if (hpts_calling &&
|
|
(bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
}
|
|
bbr->r_timer_override = 0;
|
|
bbr->r_wanted_output = 0;
|
|
/*
|
|
* For TFO connections in SYN_RECEIVED, only allow the initial
|
|
* SYN|ACK and those sent by the retransmit timer.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
((tp->t_state == TCPS_SYN_RECEIVED) ||
|
|
(tp->t_state == TCPS_SYN_SENT)) &&
|
|
SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
|
|
(tp->t_rxtshift == 0)) { /* not a retransmit */
|
|
return (0);
|
|
}
|
|
/*
|
|
* Before sending anything check for a state update. For hpts
|
|
* calling without input this is important. If its input calling
|
|
* then this was already done.
|
|
*/
|
|
if (bbr->rc_use_google == 0)
|
|
bbr_check_bbr_for_state(bbr, cts, __LINE__, 0);
|
|
again:
|
|
/*
|
|
* If we've recently taken a timeout, snd_max will be greater than
|
|
* snd_max. BBR in general does not pay much attention to snd_nxt
|
|
* for historic reasons the persist timer still uses it. This means
|
|
* we have to look at it. All retransmissions that are not persits
|
|
* use the rsm that needs to be sent so snd_nxt is ignored. At the
|
|
* end of this routine we pull snd_nxt always up to snd_max.
|
|
*/
|
|
doing_tlp = 0;
|
|
#ifdef BBR_INVARIANTS
|
|
doing_retran_from = picked_up_retran = 0;
|
|
#endif
|
|
error = 0;
|
|
tso = 0;
|
|
slot = 0;
|
|
mtu = 0;
|
|
sendwin = min(tp->snd_wnd, tp->snd_cwnd);
|
|
sb_offset = tp->snd_max - tp->snd_una;
|
|
flags = tcp_outflags[tp->t_state];
|
|
sack_rxmit = 0;
|
|
len = 0;
|
|
rsm = NULL;
|
|
if (flags & TH_RST) {
|
|
SOCKBUF_LOCK(sb);
|
|
goto send;
|
|
}
|
|
recheck_resend:
|
|
while (bbr->r_ctl.rc_free_cnt < bbr_min_req_free) {
|
|
/* We need to always have one in reserve */
|
|
rsm = bbr_alloc(bbr);
|
|
if (rsm == NULL) {
|
|
error = ENOMEM;
|
|
/* Lie to get on the hpts */
|
|
tot_len = tp->t_maxseg;
|
|
if (hpts_calling)
|
|
/* Retry in a ms */
|
|
slot = 1001;
|
|
goto just_return_nolock;
|
|
}
|
|
TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_free, rsm, r_next);
|
|
bbr->r_ctl.rc_free_cnt++;
|
|
rsm = NULL;
|
|
}
|
|
/* What do we send, a resend? */
|
|
if (bbr->r_ctl.rc_resend == NULL) {
|
|
/* Check for rack timeout */
|
|
bbr->r_ctl.rc_resend = bbr_check_recovery_mode(tp, bbr, cts);
|
|
if (bbr->r_ctl.rc_resend) {
|
|
#ifdef BBR_INVARIANTS
|
|
picked_up_retran = 1;
|
|
#endif
|
|
bbr_cong_signal(tp, NULL, CC_NDUPACK, bbr->r_ctl.rc_resend);
|
|
}
|
|
}
|
|
if (bbr->r_ctl.rc_resend) {
|
|
rsm = bbr->r_ctl.rc_resend;
|
|
#ifdef BBR_INVARIANTS
|
|
doing_retran_from = 1;
|
|
#endif
|
|
/* Remove any TLP flags its a RACK or T-O */
|
|
rsm->r_flags &= ~BBR_TLP;
|
|
bbr->r_ctl.rc_resend = NULL;
|
|
if (SEQ_LT(rsm->r_start, tp->snd_una)) {
|
|
#ifdef BBR_INVARIANTS
|
|
panic("Huh, tp:%p bbr:%p rsm:%p start:%u < snd_una:%u\n",
|
|
tp, bbr, rsm, rsm->r_start, tp->snd_una);
|
|
goto recheck_resend;
|
|
#else
|
|
/* TSNH */
|
|
rsm = NULL;
|
|
goto recheck_resend;
|
|
#endif
|
|
}
|
|
rtr_cnt++;
|
|
if (rsm->r_flags & BBR_HAS_SYN) {
|
|
/* Only retransmit a SYN by itself */
|
|
len = 0;
|
|
if ((flags & TH_SYN) == 0) {
|
|
/* Huh something is wrong */
|
|
rsm->r_start++;
|
|
if (rsm->r_start == rsm->r_end) {
|
|
/* Clean it up, somehow we missed the ack? */
|
|
bbr_log_syn(tp, NULL);
|
|
} else {
|
|
/* TFO with data? */
|
|
rsm->r_flags &= ~BBR_HAS_SYN;
|
|
len = rsm->r_end - rsm->r_start;
|
|
}
|
|
} else {
|
|
/* Retransmitting SYN */
|
|
rsm = NULL;
|
|
SOCKBUF_LOCK(sb);
|
|
goto send;
|
|
}
|
|
} else
|
|
len = rsm->r_end - rsm->r_start;
|
|
if ((bbr->rc_resends_use_tso == 0) &&
|
|
#ifdef KERN_TLS
|
|
((sb->sb_flags & SB_TLS_IFNET) == 0) &&
|
|
#endif
|
|
(len > maxseg)) {
|
|
len = maxseg;
|
|
more_to_rxt = 1;
|
|
}
|
|
sb_offset = rsm->r_start - tp->snd_una;
|
|
if (len > 0) {
|
|
sack_rxmit = 1;
|
|
TCPSTAT_INC(tcps_sack_rexmits);
|
|
TCPSTAT_ADD(tcps_sack_rexmit_bytes,
|
|
min(len, maxseg));
|
|
} else {
|
|
/* I dont think this can happen */
|
|
rsm = NULL;
|
|
goto recheck_resend;
|
|
}
|
|
BBR_STAT_INC(bbr_resends_set);
|
|
} else if (bbr->r_ctl.rc_tlp_send) {
|
|
/*
|
|
* Tail loss probe
|
|
*/
|
|
doing_tlp = 1;
|
|
rsm = bbr->r_ctl.rc_tlp_send;
|
|
bbr->r_ctl.rc_tlp_send = NULL;
|
|
sack_rxmit = 1;
|
|
len = rsm->r_end - rsm->r_start;
|
|
rtr_cnt++;
|
|
if ((bbr->rc_resends_use_tso == 0) && (len > maxseg))
|
|
len = maxseg;
|
|
|
|
if (SEQ_GT(tp->snd_una, rsm->r_start)) {
|
|
#ifdef BBR_INVARIANTS
|
|
panic("tp:%p bbc:%p snd_una:%u rsm:%p r_start:%u",
|
|
tp, bbr, tp->snd_una, rsm, rsm->r_start);
|
|
#else
|
|
/* TSNH */
|
|
rsm = NULL;
|
|
goto recheck_resend;
|
|
#endif
|
|
}
|
|
sb_offset = rsm->r_start - tp->snd_una;
|
|
BBR_STAT_INC(bbr_tlp_set);
|
|
}
|
|
/*
|
|
* Enforce a connection sendmap count limit if set
|
|
* as long as we are not retransmiting.
|
|
*/
|
|
if ((rsm == NULL) &&
|
|
(V_tcp_map_entries_limit > 0) &&
|
|
(bbr->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
|
|
BBR_STAT_INC(bbr_alloc_limited);
|
|
if (!bbr->alloc_limit_reported) {
|
|
bbr->alloc_limit_reported = 1;
|
|
BBR_STAT_INC(bbr_alloc_limited_conns);
|
|
}
|
|
goto just_return_nolock;
|
|
}
|
|
#ifdef BBR_INVARIANTS
|
|
if (rsm && SEQ_LT(rsm->r_start, tp->snd_una)) {
|
|
panic("tp:%p bbr:%p rsm:%p sb_offset:%u len:%u",
|
|
tp, bbr, rsm, sb_offset, len);
|
|
}
|
|
#endif
|
|
/*
|
|
* Get standard flags, and add SYN or FIN if requested by 'hidden'
|
|
* state flags.
|
|
*/
|
|
if (tp->t_flags & TF_NEEDFIN && (rsm == NULL))
|
|
flags |= TH_FIN;
|
|
if (tp->t_flags & TF_NEEDSYN)
|
|
flags |= TH_SYN;
|
|
|
|
if (rsm && (rsm->r_flags & BBR_HAS_FIN)) {
|
|
/* we are retransmitting the fin */
|
|
len--;
|
|
if (len) {
|
|
/*
|
|
* When retransmitting data do *not* include the
|
|
* FIN. This could happen from a TLP probe if we
|
|
* allowed data with a FIN.
|
|
*/
|
|
flags &= ~TH_FIN;
|
|
}
|
|
} else if (rsm) {
|
|
if (flags & TH_FIN)
|
|
flags &= ~TH_FIN;
|
|
}
|
|
if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
|
|
void *end_rsm;
|
|
|
|
end_rsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_tmap, bbr_sendmap, r_tnext);
|
|
if (end_rsm)
|
|
kern_prefetch(end_rsm, &prefetch_rsm);
|
|
prefetch_rsm = 1;
|
|
}
|
|
SOCKBUF_LOCK(sb);
|
|
/*
|
|
* If in persist timeout with window of 0, send 1 byte. Otherwise,
|
|
* if window is small but nonzero and time TF_SENTFIN expired, we
|
|
* will send what we can and go to transmit state.
|
|
*/
|
|
if (tp->t_flags & TF_FORCEDATA) {
|
|
if ((sendwin == 0) || (sendwin <= (tp->snd_max - tp->snd_una))) {
|
|
/*
|
|
* If we still have some data to send, then clear
|
|
* the FIN bit. Usually this would happen below
|
|
* when it realizes that we aren't sending all the
|
|
* data. However, if we have exactly 1 byte of
|
|
* unsent data, then it won't clear the FIN bit
|
|
* below, and if we are in persist state, we wind up
|
|
* sending the packet without recording that we sent
|
|
* the FIN bit.
|
|
*
|
|
* We can't just blindly clear the FIN bit, because
|
|
* if we don't have any more data to send then the
|
|
* probe will be the FIN itself.
|
|
*/
|
|
if (sb_offset < sbused(sb))
|
|
flags &= ~TH_FIN;
|
|
sendwin = 1;
|
|
} else {
|
|
if ((bbr->rc_in_persist != 0) &&
|
|
(tp->snd_wnd >= min((bbr->r_ctl.rc_high_rwnd/2),
|
|
bbr_minseg(bbr)))) {
|
|
/* Exit persists if there is space */
|
|
bbr_exit_persist(tp, bbr, cts, __LINE__);
|
|
}
|
|
if (rsm == NULL) {
|
|
/*
|
|
* If we are dropping persist mode then we
|
|
* need to correct sb_offset if not a
|
|
* retransmit.
|
|
*/
|
|
sb_offset = tp->snd_max - tp->snd_una;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* If snd_nxt == snd_max and we have transmitted a FIN, the
|
|
* sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
|
|
* negative length. This can also occur when TCP opens up its
|
|
* congestion window while receiving additional duplicate acks after
|
|
* fast-retransmit because TCP will reset snd_nxt to snd_max after
|
|
* the fast-retransmit.
|
|
*
|
|
* In the normal retransmit-FIN-only case, however, snd_nxt will be
|
|
* set to snd_una, the sb_offset will be 0, and the length may wind
|
|
* up 0.
|
|
*
|
|
* If sack_rxmit is true we are retransmitting from the scoreboard
|
|
* in which case len is already set.
|
|
*/
|
|
if (sack_rxmit == 0) {
|
|
uint32_t avail;
|
|
|
|
avail = sbavail(sb);
|
|
if (SEQ_GT(tp->snd_max, tp->snd_una))
|
|
sb_offset = tp->snd_max - tp->snd_una;
|
|
else
|
|
sb_offset = 0;
|
|
if (bbr->rc_tlp_new_data) {
|
|
/* TLP is forcing out new data */
|
|
uint32_t tlplen;
|
|
|
|
doing_tlp = 1;
|
|
tlplen = maxseg;
|
|
|
|
if (tlplen > (uint32_t)(avail - sb_offset)) {
|
|
tlplen = (uint32_t)(avail - sb_offset);
|
|
}
|
|
if (tlplen > tp->snd_wnd) {
|
|
len = tp->snd_wnd;
|
|
} else {
|
|
len = tlplen;
|
|
}
|
|
bbr->rc_tlp_new_data = 0;
|
|
} else {
|
|
what_we_can = len = bbr_what_can_we_send(tp, bbr, sendwin, avail, sb_offset, cts);
|
|
if ((len < p_maxseg) &&
|
|
(bbr->rc_in_persist == 0) &&
|
|
(ctf_outstanding(tp) >= (2 * p_maxseg)) &&
|
|
((avail - sb_offset) >= p_maxseg)) {
|
|
/*
|
|
* We are not completing whats in the socket
|
|
* buffer (i.e. there is at least a segment
|
|
* waiting to send) and we have 2 or more
|
|
* segments outstanding. There is no sense
|
|
* of sending a little piece. Lets defer and
|
|
* and wait until we can send a whole
|
|
* segment.
|
|
*/
|
|
len = 0;
|
|
}
|
|
if ((tp->t_flags & TF_FORCEDATA) && (bbr->rc_in_persist)) {
|
|
/*
|
|
* We are in persists, figure out if
|
|
* a retransmit is available (maybe the previous
|
|
* persists we sent) or if we have to send new
|
|
* data.
|
|
*/
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
if (rsm) {
|
|
len = rsm->r_end - rsm->r_start;
|
|
if (rsm->r_flags & BBR_HAS_FIN)
|
|
len--;
|
|
if ((bbr->rc_resends_use_tso == 0) && (len > maxseg))
|
|
len = maxseg;
|
|
if (len > 1)
|
|
BBR_STAT_INC(bbr_persist_reneg);
|
|
/*
|
|
* XXXrrs we could force the len to
|
|
* 1 byte here to cause the chunk to
|
|
* split apart.. but that would then
|
|
* mean we always retransmit it as
|
|
* one byte even after the window
|
|
* opens.
|
|
*/
|
|
sack_rxmit = 1;
|
|
sb_offset = rsm->r_start - tp->snd_una;
|
|
} else {
|
|
/*
|
|
* First time through in persists or peer
|
|
* acked our one byte. Though we do have
|
|
* to have something in the sb.
|
|
*/
|
|
len = 1;
|
|
sb_offset = 0;
|
|
if (avail == 0)
|
|
len = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (prefetch_so_done == 0) {
|
|
kern_prefetch(so, &prefetch_so_done);
|
|
prefetch_so_done = 1;
|
|
}
|
|
/*
|
|
* Lop off SYN bit if it has already been sent. However, if this is
|
|
* SYN-SENT state and if segment contains data and if we don't know
|
|
* that foreign host supports TAO, suppress sending segment.
|
|
*/
|
|
if ((flags & TH_SYN) && (rsm == NULL) &&
|
|
SEQ_GT(tp->snd_max, tp->snd_una)) {
|
|
if (tp->t_state != TCPS_SYN_RECEIVED)
|
|
flags &= ~TH_SYN;
|
|
/*
|
|
* When sending additional segments following a TFO SYN|ACK,
|
|
* do not include the SYN bit.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
(tp->t_state == TCPS_SYN_RECEIVED))
|
|
flags &= ~TH_SYN;
|
|
sb_offset--, len++;
|
|
if (sbavail(sb) == 0)
|
|
len = 0;
|
|
} else if ((flags & TH_SYN) && rsm) {
|
|
/*
|
|
* Subtract one from the len for the SYN being
|
|
* retransmitted.
|
|
*/
|
|
len--;
|
|
}
|
|
/*
|
|
* Be careful not to send data and/or FIN on SYN segments. This
|
|
* measure is needed to prevent interoperability problems with not
|
|
* fully conformant TCP implementations.
|
|
*/
|
|
if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
|
|
len = 0;
|
|
flags &= ~TH_FIN;
|
|
}
|
|
/*
|
|
* On TFO sockets, ensure no data is sent in the following cases:
|
|
*
|
|
* - When retransmitting SYN|ACK on a passively-created socket
|
|
* - When retransmitting SYN on an actively created socket
|
|
* - When sending a zero-length cookie (cookie request) on an
|
|
* actively created socket
|
|
* - When the socket is in the CLOSED state (RST is being sent)
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
(((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
|
|
((tp->t_state == TCPS_SYN_SENT) &&
|
|
(tp->t_tfo_client_cookie_len == 0)) ||
|
|
(flags & TH_RST))) {
|
|
len = 0;
|
|
sack_rxmit = 0;
|
|
rsm = NULL;
|
|
}
|
|
/* Without fast-open there should never be data sent on a SYN */
|
|
if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags)))
|
|
len = 0;
|
|
if (len <= 0) {
|
|
/*
|
|
* If FIN has been sent but not acked, but we haven't been
|
|
* called to retransmit, len will be < 0. Otherwise, window
|
|
* shrank after we sent into it. If window shrank to 0,
|
|
* cancel pending retransmit, pull snd_nxt back to (closed)
|
|
* window, and set the persist timer if it isn't already
|
|
* going. If the window didn't close completely, just wait
|
|
* for an ACK.
|
|
*
|
|
* We also do a general check here to ensure that we will
|
|
* set the persist timer when we have data to send, but a
|
|
* 0-byte window. This makes sure the persist timer is set
|
|
* even if the packet hits one of the "goto send" lines
|
|
* below.
|
|
*/
|
|
len = 0;
|
|
if ((tp->snd_wnd == 0) &&
|
|
(TCPS_HAVEESTABLISHED(tp->t_state)) &&
|
|
(tp->snd_una == tp->snd_max) &&
|
|
(sb_offset < (int)sbavail(sb))) {
|
|
/*
|
|
* Not enough room in the rwnd to send
|
|
* a paced segment out.
|
|
*/
|
|
bbr_enter_persist(tp, bbr, cts, __LINE__);
|
|
}
|
|
} else if ((rsm == NULL) &&
|
|
(doing_tlp == 0) &&
|
|
(len < bbr->r_ctl.rc_pace_max_segs)) {
|
|
/*
|
|
* We are not sending a full segment for
|
|
* some reason. Should we not send anything (think
|
|
* sws or persists)?
|
|
*/
|
|
if ((tp->snd_wnd < min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) &&
|
|
(TCPS_HAVEESTABLISHED(tp->t_state)) &&
|
|
(len < (int)(sbavail(sb) - sb_offset))) {
|
|
/*
|
|
* Here the rwnd is less than
|
|
* the pacing size, this is not a retransmit,
|
|
* we are established and
|
|
* the send is not the last in the socket buffer
|
|
* lets not send, and possibly enter persists.
|
|
*/
|
|
len = 0;
|
|
if (tp->snd_max == tp->snd_una)
|
|
bbr_enter_persist(tp, bbr, cts, __LINE__);
|
|
} else if ((tp->snd_cwnd >= bbr->r_ctl.rc_pace_max_segs) &&
|
|
(ctf_flight_size(tp, (bbr->r_ctl.rc_sacked +
|
|
bbr->r_ctl.rc_lost_bytes)) > (2 * maxseg)) &&
|
|
(len < (int)(sbavail(sb) - sb_offset)) &&
|
|
(len < bbr_minseg(bbr))) {
|
|
/*
|
|
* Here we are not retransmitting, and
|
|
* the cwnd is not so small that we could
|
|
* not send at least a min size (rxt timer
|
|
* not having gone off), We have 2 segments or
|
|
* more already in flight, its not the tail end
|
|
* of the socket buffer and the cwnd is blocking
|
|
* us from sending out minimum pacing segment size.
|
|
* Lets not send anything.
|
|
*/
|
|
bbr->rc_cwnd_limited = 1;
|
|
len = 0;
|
|
} else if (((tp->snd_wnd - ctf_outstanding(tp)) <
|
|
min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) &&
|
|
(ctf_flight_size(tp, (bbr->r_ctl.rc_sacked +
|
|
bbr->r_ctl.rc_lost_bytes)) > (2 * maxseg)) &&
|
|
(len < (int)(sbavail(sb) - sb_offset)) &&
|
|
(TCPS_HAVEESTABLISHED(tp->t_state))) {
|
|
/*
|
|
* Here we have a send window but we have
|
|
* filled it up and we can't send another pacing segment.
|
|
* We also have in flight more than 2 segments
|
|
* and we are not completing the sb i.e. we allow
|
|
* the last bytes of the sb to go out even if
|
|
* its not a full pacing segment.
|
|
*/
|
|
len = 0;
|
|
}
|
|
}
|
|
/* len will be >= 0 after this point. */
|
|
KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
|
|
tcp_sndbuf_autoscale(tp, so, sendwin);
|
|
/*
|
|
*
|
|
*/
|
|
if (bbr->rc_in_persist &&
|
|
len &&
|
|
(rsm == NULL) &&
|
|
(len < min((bbr->r_ctl.rc_high_rwnd/2), bbr->r_ctl.rc_pace_max_segs))) {
|
|
/*
|
|
* We are in persist, not doing a retransmit and don't have enough space
|
|
* yet to send a full TSO. So is it at the end of the sb
|
|
* if so we need to send else nuke to 0 and don't send.
|
|
*/
|
|
int sbleft;
|
|
if (sbavail(sb) > sb_offset)
|
|
sbleft = sbavail(sb) - sb_offset;
|
|
else
|
|
sbleft = 0;
|
|
if (sbleft >= min((bbr->r_ctl.rc_high_rwnd/2), bbr->r_ctl.rc_pace_max_segs)) {
|
|
/* not at end of sb lets not send */
|
|
len = 0;
|
|
}
|
|
}
|
|
/*
|
|
* Decide if we can use TCP Segmentation Offloading (if supported by
|
|
* hardware).
|
|
*
|
|
* TSO may only be used if we are in a pure bulk sending state. The
|
|
* presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
|
|
* options prevent using TSO. With TSO the TCP header is the same
|
|
* (except for the sequence number) for all generated packets. This
|
|
* makes it impossible to transmit any options which vary per
|
|
* generated segment or packet.
|
|
*
|
|
* IPv4 handling has a clear separation of ip options and ip header
|
|
* flags while IPv6 combines both in in6p_outputopts. ip6_optlen()
|
|
* does the right thing below to provide length of just ip options
|
|
* and thus checking for ipoptlen is enough to decide if ip options
|
|
* are present.
|
|
*/
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
ipoptlen = ip6_optlen(inp);
|
|
else
|
|
#endif
|
|
if (inp->inp_options)
|
|
ipoptlen = inp->inp_options->m_len -
|
|
offsetof(struct ipoption, ipopt_list);
|
|
else
|
|
ipoptlen = 0;
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
/*
|
|
* Pre-calculate here as we save another lookup into the darknesses
|
|
* of IPsec that way and can actually decide if TSO is ok.
|
|
*/
|
|
#ifdef INET6
|
|
if (isipv6 && IPSEC_ENABLED(ipv6))
|
|
ipsec_optlen = IPSEC_HDRSIZE(ipv6, inp);
|
|
#ifdef INET
|
|
else
|
|
#endif
|
|
#endif /* INET6 */
|
|
#ifdef INET
|
|
if (IPSEC_ENABLED(ipv4))
|
|
ipsec_optlen = IPSEC_HDRSIZE(ipv4, inp);
|
|
#endif /* INET */
|
|
#endif /* IPSEC */
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
ipoptlen += ipsec_optlen;
|
|
#endif
|
|
if ((tp->t_flags & TF_TSO) && V_tcp_do_tso &&
|
|
(len > maxseg) &&
|
|
(tp->t_port == 0) &&
|
|
((tp->t_flags & TF_SIGNATURE) == 0) &&
|
|
tp->rcv_numsacks == 0 &&
|
|
ipoptlen == 0)
|
|
tso = 1;
|
|
|
|
recwin = min(max(sbspace(&so->so_rcv), 0),
|
|
TCP_MAXWIN << tp->rcv_scale);
|
|
/*
|
|
* Sender silly window avoidance. We transmit under the following
|
|
* conditions when len is non-zero:
|
|
*
|
|
* - We have a full segment (or more with TSO) - This is the last
|
|
* buffer in a write()/send() and we are either idle or running
|
|
* NODELAY - we've timed out (e.g. persist timer) - we have more
|
|
* then 1/2 the maximum send window's worth of data (receiver may be
|
|
* limited the window size) - we need to retransmit
|
|
*/
|
|
if (rsm)
|
|
goto send;
|
|
if (len) {
|
|
if (sack_rxmit)
|
|
goto send;
|
|
if (len >= p_maxseg)
|
|
goto send;
|
|
/*
|
|
* NOTE! on localhost connections an 'ack' from the remote
|
|
* end may occur synchronously with the output and cause us
|
|
* to flush a buffer queued with moretocome. XXX
|
|
*
|
|
*/
|
|
if (((tp->t_flags & TF_MORETOCOME) == 0) && /* normal case */
|
|
((tp->t_flags & TF_NODELAY) ||
|
|
((uint32_t)len + (uint32_t)sb_offset) >= sbavail(&so->so_snd)) &&
|
|
(tp->t_flags & TF_NOPUSH) == 0) {
|
|
goto send;
|
|
}
|
|
if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */
|
|
goto send;
|
|
}
|
|
if (tp->t_flags & TF_FORCEDATA) { /* typ. timeout case */
|
|
goto send;
|
|
}
|
|
if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
|
|
goto send;
|
|
}
|
|
}
|
|
/*
|
|
* Sending of standalone window updates.
|
|
*
|
|
* Window updates are important when we close our window due to a
|
|
* full socket buffer and are opening it again after the application
|
|
* reads data from it. Once the window has opened again and the
|
|
* remote end starts to send again the ACK clock takes over and
|
|
* provides the most current window information.
|
|
*
|
|
* We must avoid the silly window syndrome whereas every read from
|
|
* the receive buffer, no matter how small, causes a window update
|
|
* to be sent. We also should avoid sending a flurry of window
|
|
* updates when the socket buffer had queued a lot of data and the
|
|
* application is doing small reads.
|
|
*
|
|
* Prevent a flurry of pointless window updates by only sending an
|
|
* update when we can increase the advertized window by more than
|
|
* 1/4th of the socket buffer capacity. When the buffer is getting
|
|
* full or is very small be more aggressive and send an update
|
|
* whenever we can increase by two mss sized segments. In all other
|
|
* situations the ACK's to new incoming data will carry further
|
|
* window increases.
|
|
*
|
|
* Don't send an independent window update if a delayed ACK is
|
|
* pending (it will get piggy-backed on it) or the remote side
|
|
* already has done a half-close and won't send more data. Skip
|
|
* this if the connection is in T/TCP half-open state.
|
|
*/
|
|
if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
|
|
!(tp->t_flags & TF_DELACK) &&
|
|
!TCPS_HAVERCVDFIN(tp->t_state)) {
|
|
/* Check to see if we should do a window update */
|
|
if (bbr_window_update_needed(tp, so, recwin, maxseg))
|
|
goto send;
|
|
}
|
|
/*
|
|
* Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW
|
|
* is also a catch-all for the retransmit timer timeout case.
|
|
*/
|
|
if (tp->t_flags & TF_ACKNOW) {
|
|
goto send;
|
|
}
|
|
if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
|
|
goto send;
|
|
}
|
|
if (SEQ_GT(tp->snd_up, tp->snd_una)) {
|
|
goto send;
|
|
}
|
|
/*
|
|
* If our state indicates that FIN should be sent and we have not
|
|
* yet done so, then we need to send.
|
|
*/
|
|
if (flags & TH_FIN &&
|
|
((tp->t_flags & TF_SENTFIN) == 0)) {
|
|
goto send;
|
|
}
|
|
/*
|
|
* No reason to send a segment, just return.
|
|
*/
|
|
just_return:
|
|
SOCKBUF_UNLOCK(sb);
|
|
just_return_nolock:
|
|
if (tot_len)
|
|
slot = bbr_get_pacing_delay(bbr, bbr->r_ctl.rc_bbr_hptsi_gain, tot_len, cts, 0);
|
|
if (bbr->rc_no_pacing)
|
|
slot = 0;
|
|
if (tot_len == 0) {
|
|
if ((ctf_outstanding(tp) + min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) >=
|
|
tp->snd_wnd) {
|
|
BBR_STAT_INC(bbr_rwnd_limited);
|
|
app_limited = BBR_JR_RWND_LIMITED;
|
|
bbr_cwnd_limiting(tp, bbr, ctf_outstanding(tp));
|
|
if ((bbr->rc_in_persist == 0) &&
|
|
TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->snd_max == tp->snd_una) &&
|
|
sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
|
|
/* No send window.. we must enter persist */
|
|
bbr_enter_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__);
|
|
}
|
|
} else if (ctf_outstanding(tp) >= sbavail(sb)) {
|
|
BBR_STAT_INC(bbr_app_limited);
|
|
app_limited = BBR_JR_APP_LIMITED;
|
|
bbr_cwnd_limiting(tp, bbr, ctf_outstanding(tp));
|
|
} else if ((ctf_flight_size(tp, (bbr->r_ctl.rc_sacked +
|
|
bbr->r_ctl.rc_lost_bytes)) + p_maxseg) >= tp->snd_cwnd) {
|
|
BBR_STAT_INC(bbr_cwnd_limited);
|
|
app_limited = BBR_JR_CWND_LIMITED;
|
|
bbr_cwnd_limiting(tp, bbr, ctf_flight_size(tp, (bbr->r_ctl.rc_sacked +
|
|
bbr->r_ctl.rc_lost_bytes)));
|
|
bbr->rc_cwnd_limited = 1;
|
|
} else {
|
|
BBR_STAT_INC(bbr_app_limited);
|
|
app_limited = BBR_JR_APP_LIMITED;
|
|
bbr_cwnd_limiting(tp, bbr, ctf_outstanding(tp));
|
|
}
|
|
bbr->r_ctl.rc_hptsi_agg_delay = 0;
|
|
bbr->r_agg_early_set = 0;
|
|
bbr->r_ctl.rc_agg_early = 0;
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
} else if (bbr->rc_use_google == 0)
|
|
bbr_check_bbr_for_state(bbr, cts, __LINE__, 0);
|
|
/* Are we app limited? */
|
|
if ((app_limited == BBR_JR_APP_LIMITED) ||
|
|
(app_limited == BBR_JR_RWND_LIMITED)) {
|
|
/**
|
|
* We are application limited.
|
|
*/
|
|
bbr->r_ctl.r_app_limited_until = (ctf_flight_size(tp, (bbr->r_ctl.rc_sacked +
|
|
bbr->r_ctl.rc_lost_bytes)) + bbr->r_ctl.rc_delivered);
|
|
}
|
|
if (tot_len == 0)
|
|
counter_u64_add(bbr_out_size[TCP_MSS_ACCT_JUSTRET], 1);
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
/* Dont update the time if we did not send */
|
|
bbr->r_ctl.rc_last_delay_val = 0;
|
|
bbr->rc_output_starts_timer = 1;
|
|
bbr_start_hpts_timer(bbr, tp, cts, 9, slot, tot_len);
|
|
bbr_log_type_just_return(bbr, cts, tot_len, hpts_calling, app_limited, p_maxseg, len);
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {
|
|
/* Make sure snd_nxt is drug up */
|
|
tp->snd_nxt = tp->snd_max;
|
|
}
|
|
return (error);
|
|
|
|
send:
|
|
if (doing_tlp == 0) {
|
|
/*
|
|
* Data not a TLP, and its not the rxt firing. If it is the
|
|
* rxt firing, we want to leave the tlp_in_progress flag on
|
|
* so we don't send another TLP. It has to be a rack timer
|
|
* or normal send (response to acked data) to clear the tlp
|
|
* in progress flag.
|
|
*/
|
|
bbr->rc_tlp_in_progress = 0;
|
|
bbr->rc_tlp_rtx_out = 0;
|
|
} else {
|
|
/*
|
|
* Its a TLP.
|
|
*/
|
|
bbr->rc_tlp_in_progress = 1;
|
|
}
|
|
bbr_timer_cancel(bbr, __LINE__, cts);
|
|
if (rsm == NULL) {
|
|
if (sbused(sb) > 0) {
|
|
/*
|
|
* This is sub-optimal. We only send a stand alone
|
|
* FIN on its own segment.
|
|
*/
|
|
if (flags & TH_FIN) {
|
|
flags &= ~TH_FIN;
|
|
if ((len == 0) && ((tp->t_flags & TF_ACKNOW) == 0)) {
|
|
/* Lets not send this */
|
|
slot = 0;
|
|
goto just_return;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* We do *not* send a FIN on a retransmit if it has data.
|
|
* The if clause here where len > 1 should never come true.
|
|
*/
|
|
if ((len > 0) &&
|
|
(((rsm->r_flags & BBR_HAS_FIN) == 0) &&
|
|
(flags & TH_FIN))) {
|
|
flags &= ~TH_FIN;
|
|
len--;
|
|
}
|
|
}
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
if (len > 0) {
|
|
if ((tp->snd_una == tp->snd_max) &&
|
|
(bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time) >= bbr_rtt_probe_time)) {
|
|
/*
|
|
* This qualifies as a RTT_PROBE session since we
|
|
* drop the data outstanding to nothing and waited
|
|
* more than bbr_rtt_probe_time.
|
|
*/
|
|
bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_WASIDLE, 0);
|
|
bbr_set_reduced_rtt(bbr, cts, __LINE__);
|
|
}
|
|
if (len >= maxseg)
|
|
tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
|
|
else
|
|
tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
|
|
}
|
|
/*
|
|
* Before ESTABLISHED, force sending of initial options unless TCP
|
|
* set not to do any options. NOTE: we assume that the IP/TCP header
|
|
* plus TCP options always fit in a single mbuf, leaving room for a
|
|
* maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
|
|
* + optlen <= MCLBYTES
|
|
*/
|
|
optlen = 0;
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
|
|
else
|
|
#endif
|
|
hdrlen = sizeof(struct tcpiphdr);
|
|
|
|
/*
|
|
* Compute options for segment. We only have to care about SYN and
|
|
* established connection segments. Options for SYN-ACK segments
|
|
* are handled in TCP syncache.
|
|
*/
|
|
to.to_flags = 0;
|
|
local_options = 0;
|
|
if ((tp->t_flags & TF_NOOPT) == 0) {
|
|
/* Maximum segment size. */
|
|
if (flags & TH_SYN) {
|
|
to.to_mss = tcp_mssopt(&inp->inp_inc);
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port)
|
|
to.to_mss -= V_tcp_udp_tunneling_overhead;
|
|
#endif
|
|
to.to_flags |= TOF_MSS;
|
|
/*
|
|
* On SYN or SYN|ACK transmits on TFO connections,
|
|
* only include the TFO option if it is not a
|
|
* retransmit, as the presence of the TFO option may
|
|
* have caused the original SYN or SYN|ACK to have
|
|
* been dropped by a middlebox.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
(tp->t_rxtshift == 0)) {
|
|
if (tp->t_state == TCPS_SYN_RECEIVED) {
|
|
to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
|
|
to.to_tfo_cookie =
|
|
(u_int8_t *)&tp->t_tfo_cookie.server;
|
|
to.to_flags |= TOF_FASTOPEN;
|
|
wanted_cookie = 1;
|
|
} else if (tp->t_state == TCPS_SYN_SENT) {
|
|
to.to_tfo_len =
|
|
tp->t_tfo_client_cookie_len;
|
|
to.to_tfo_cookie =
|
|
tp->t_tfo_cookie.client;
|
|
to.to_flags |= TOF_FASTOPEN;
|
|
wanted_cookie = 1;
|
|
}
|
|
}
|
|
}
|
|
/* Window scaling. */
|
|
if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
|
|
to.to_wscale = tp->request_r_scale;
|
|
to.to_flags |= TOF_SCALE;
|
|
}
|
|
/* Timestamps. */
|
|
if ((tp->t_flags & TF_RCVD_TSTMP) ||
|
|
((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
|
|
to.to_tsval = tcp_tv_to_mssectick(&bbr->rc_tv) + tp->ts_offset;
|
|
to.to_tsecr = tp->ts_recent;
|
|
to.to_flags |= TOF_TS;
|
|
local_options += TCPOLEN_TIMESTAMP + 2;
|
|
}
|
|
/* Set receive buffer autosizing timestamp. */
|
|
if (tp->rfbuf_ts == 0 &&
|
|
(so->so_rcv.sb_flags & SB_AUTOSIZE))
|
|
tp->rfbuf_ts = tcp_tv_to_mssectick(&bbr->rc_tv);
|
|
/* Selective ACK's. */
|
|
if (flags & TH_SYN)
|
|
to.to_flags |= TOF_SACKPERM;
|
|
else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
tp->rcv_numsacks > 0) {
|
|
to.to_flags |= TOF_SACK;
|
|
to.to_nsacks = tp->rcv_numsacks;
|
|
to.to_sacks = (u_char *)tp->sackblks;
|
|
}
|
|
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
|
|
/* TCP-MD5 (RFC2385). */
|
|
if (tp->t_flags & TF_SIGNATURE)
|
|
to.to_flags |= TOF_SIGNATURE;
|
|
#endif /* TCP_SIGNATURE */
|
|
|
|
/* Processing the options. */
|
|
hdrlen += (optlen = tcp_addoptions(&to, opt));
|
|
/*
|
|
* If we wanted a TFO option to be added, but it was unable
|
|
* to fit, ensure no data is sent.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
|
|
!(to.to_flags & TOF_FASTOPEN))
|
|
len = 0;
|
|
}
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port) {
|
|
if (V_tcp_udp_tunneling_port == 0) {
|
|
/* The port was removed?? */
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (EHOSTUNREACH);
|
|
}
|
|
hdrlen += sizeof(struct udphdr);
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
ipoptlen = ip6_optlen(tp->t_inpcb);
|
|
else
|
|
#endif
|
|
if (tp->t_inpcb->inp_options)
|
|
ipoptlen = tp->t_inpcb->inp_options->m_len -
|
|
offsetof(struct ipoption, ipopt_list);
|
|
else
|
|
ipoptlen = 0;
|
|
ipoptlen = 0;
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
ipoptlen += ipsec_optlen;
|
|
#endif
|
|
if (bbr->rc_last_options != local_options) {
|
|
/*
|
|
* Cache the options length this generally does not change
|
|
* on a connection. We use this to calculate TSO.
|
|
*/
|
|
bbr->rc_last_options = local_options;
|
|
}
|
|
maxseg = tp->t_maxseg - (ipoptlen + optlen);
|
|
p_maxseg = min(maxseg, pace_max_segs);
|
|
/*
|
|
* Adjust data length if insertion of options will bump the packet
|
|
* length beyond the t_maxseg length. Clear the FIN bit because we
|
|
* cut off the tail of the segment.
|
|
*/
|
|
#ifdef KERN_TLS
|
|
/* force TSO for so TLS offload can get mss */
|
|
if (sb->sb_flags & SB_TLS_IFNET) {
|
|
force_tso = 1;
|
|
}
|
|
#endif
|
|
|
|
if (len > maxseg) {
|
|
if (len != 0 && (flags & TH_FIN)) {
|
|
flags &= ~TH_FIN;
|
|
}
|
|
if (tso) {
|
|
uint32_t moff;
|
|
int32_t max_len;
|
|
|
|
/* extract TSO information */
|
|
if_hw_tsomax = tp->t_tsomax;
|
|
if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
|
|
if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
|
|
KASSERT(ipoptlen == 0,
|
|
("%s: TSO can't do IP options", __func__));
|
|
|
|
/*
|
|
* Check if we should limit by maximum payload
|
|
* length:
|
|
*/
|
|
if (if_hw_tsomax != 0) {
|
|
/* compute maximum TSO length */
|
|
max_len = (if_hw_tsomax - hdrlen -
|
|
max_linkhdr);
|
|
if (max_len <= 0) {
|
|
len = 0;
|
|
} else if (len > max_len) {
|
|
len = max_len;
|
|
}
|
|
}
|
|
/*
|
|
* Prevent the last segment from being fractional
|
|
* unless the send sockbuf can be emptied:
|
|
*/
|
|
if (((sb_offset + len) < sbavail(sb)) &&
|
|
(hw_tls == 0)) {
|
|
moff = len % (uint32_t)maxseg;
|
|
if (moff != 0) {
|
|
len -= moff;
|
|
}
|
|
}
|
|
/*
|
|
* In case there are too many small fragments don't
|
|
* use TSO:
|
|
*/
|
|
if (len <= maxseg) {
|
|
len = maxseg;
|
|
tso = 0;
|
|
}
|
|
} else {
|
|
/* Not doing TSO */
|
|
if (optlen + ipoptlen >= tp->t_maxseg) {
|
|
/*
|
|
* Since we don't have enough space to put
|
|
* the IP header chain and the TCP header in
|
|
* one packet as required by RFC 7112, don't
|
|
* send it. Also ensure that at least one
|
|
* byte of the payload can be put into the
|
|
* TCP segment.
|
|
*/
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
error = EMSGSIZE;
|
|
sack_rxmit = 0;
|
|
goto out;
|
|
}
|
|
len = maxseg;
|
|
}
|
|
} else {
|
|
/* Not doing TSO */
|
|
if_hw_tsomaxsegcount = 0;
|
|
tso = 0;
|
|
}
|
|
KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
|
|
("%s: len > IP_MAXPACKET", __func__));
|
|
#ifdef DIAGNOSTIC
|
|
#ifdef INET6
|
|
if (max_linkhdr + hdrlen > MCLBYTES)
|
|
#else
|
|
if (max_linkhdr + hdrlen > MHLEN)
|
|
#endif
|
|
panic("tcphdr too big");
|
|
#endif
|
|
/*
|
|
* This KASSERT is here to catch edge cases at a well defined place.
|
|
* Before, those had triggered (random) panic conditions further
|
|
* down.
|
|
*/
|
|
#ifdef BBR_INVARIANTS
|
|
if (sack_rxmit) {
|
|
if (SEQ_LT(rsm->r_start, tp->snd_una)) {
|
|
panic("RSM:%p TP:%p bbr:%p start:%u is < snd_una:%u",
|
|
rsm, tp, bbr, rsm->r_start, tp->snd_una);
|
|
}
|
|
}
|
|
#endif
|
|
KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
|
|
if ((len == 0) &&
|
|
(flags & TH_FIN) &&
|
|
(sbused(sb))) {
|
|
/*
|
|
* We have outstanding data, don't send a fin by itself!.
|
|
*/
|
|
slot = 0;
|
|
goto just_return;
|
|
}
|
|
/*
|
|
* Grab a header mbuf, attaching a copy of data to be transmitted,
|
|
* and initialize the header from the template for sends on this
|
|
* connection.
|
|
*/
|
|
if (len) {
|
|
uint32_t moff;
|
|
uint32_t orig_len;
|
|
|
|
/*
|
|
* We place a limit on sending with hptsi.
|
|
*/
|
|
if ((rsm == NULL) && len > pace_max_segs)
|
|
len = pace_max_segs;
|
|
if (len <= maxseg)
|
|
tso = 0;
|
|
#ifdef INET6
|
|
if (MHLEN < hdrlen + max_linkhdr)
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
else
|
|
#endif
|
|
m = m_gethdr(M_NOWAIT, MT_DATA);
|
|
|
|
if (m == NULL) {
|
|
BBR_STAT_INC(bbr_failed_mbuf_aloc);
|
|
bbr_log_enobuf_jmp(bbr, len, cts, __LINE__, len, 0, 0);
|
|
SOCKBUF_UNLOCK(sb);
|
|
error = ENOBUFS;
|
|
sack_rxmit = 0;
|
|
goto out;
|
|
}
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = hdrlen;
|
|
/*
|
|
* Start the m_copy functions from the closest mbuf to the
|
|
* sb_offset in the socket buffer chain.
|
|
*/
|
|
if ((sb_offset > sbavail(sb)) || ((len + sb_offset) > sbavail(sb))) {
|
|
#ifdef BBR_INVARIANTS
|
|
if ((len + sb_offset) > (sbavail(sb) + ((flags & (TH_FIN | TH_SYN)) ? 1 : 0)))
|
|
panic("tp:%p bbr:%p len:%u sb_offset:%u sbavail:%u rsm:%p %u:%u:%u",
|
|
tp, bbr, len, sb_offset, sbavail(sb), rsm,
|
|
doing_retran_from,
|
|
picked_up_retran,
|
|
doing_tlp);
|
|
|
|
#endif
|
|
/*
|
|
* In this messed up situation we have two choices,
|
|
* a) pretend the send worked, and just start timers
|
|
* and what not (not good since that may lead us
|
|
* back here a lot). <or> b) Send the lowest segment
|
|
* in the map. <or> c) Drop the connection. Lets do
|
|
* <b> which if it continues to happen will lead to
|
|
* <c> via timeouts.
|
|
*/
|
|
BBR_STAT_INC(bbr_offset_recovery);
|
|
rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map);
|
|
sb_offset = 0;
|
|
if (rsm == NULL) {
|
|
sack_rxmit = 0;
|
|
len = sbavail(sb);
|
|
} else {
|
|
sack_rxmit = 1;
|
|
if (rsm->r_start != tp->snd_una) {
|
|
/*
|
|
* Things are really messed up, <c>
|
|
* is the only thing to do.
|
|
*/
|
|
BBR_STAT_INC(bbr_offset_drop);
|
|
tcp_set_inp_to_drop(inp, EFAULT);
|
|
return (0);
|
|
}
|
|
len = rsm->r_end - rsm->r_start;
|
|
}
|
|
if (len > sbavail(sb))
|
|
len = sbavail(sb);
|
|
if (len > maxseg)
|
|
len = maxseg;
|
|
}
|
|
mb = sbsndptr_noadv(sb, sb_offset, &moff);
|
|
if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
|
|
m_copydata(mb, moff, (int)len,
|
|
mtod(m, caddr_t)+hdrlen);
|
|
if (rsm == NULL)
|
|
sbsndptr_adv(sb, mb, len);
|
|
m->m_len += len;
|
|
} else {
|
|
struct sockbuf *msb;
|
|
|
|
if (rsm)
|
|
msb = NULL;
|
|
else
|
|
msb = sb;
|
|
#ifdef BBR_INVARIANTS
|
|
if ((len + moff) > (sbavail(sb) + ((flags & (TH_FIN | TH_SYN)) ? 1 : 0))) {
|
|
if (rsm) {
|
|
panic("tp:%p bbr:%p len:%u moff:%u sbavail:%u rsm:%p snd_una:%u rsm_start:%u flg:%x %u:%u:%u sr:%d ",
|
|
tp, bbr, len, moff,
|
|
sbavail(sb), rsm,
|
|
tp->snd_una, rsm->r_flags, rsm->r_start,
|
|
doing_retran_from,
|
|
picked_up_retran,
|
|
doing_tlp, sack_rxmit);
|
|
} else {
|
|
panic("tp:%p bbr:%p len:%u moff:%u sbavail:%u sb_offset:%u snd_una:%u",
|
|
tp, bbr, len, moff, sbavail(sb), sb_offset, tp->snd_una);
|
|
}
|
|
}
|
|
#endif
|
|
orig_len = len;
|
|
m->m_next = tcp_m_copym(
|
|
#ifdef NETFLIX_COPY_ARGS
|
|
tp,
|
|
#endif
|
|
mb, moff, &len,
|
|
if_hw_tsomaxsegcount,
|
|
if_hw_tsomaxsegsize, msb,
|
|
((rsm == NULL) ? hw_tls : 0)
|
|
#ifdef NETFLIX_COPY_ARGS
|
|
, &filled_all
|
|
#endif
|
|
);
|
|
if (len <= maxseg && !force_tso) {
|
|
/*
|
|
* Must have ran out of mbufs for the copy
|
|
* shorten it to no longer need tso. Lets
|
|
* not put on sendalot since we are low on
|
|
* mbufs.
|
|
*/
|
|
tso = 0;
|
|
}
|
|
if (m->m_next == NULL) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
(void)m_free(m);
|
|
error = ENOBUFS;
|
|
sack_rxmit = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
#ifdef BBR_INVARIANTS
|
|
if (tso && len < maxseg) {
|
|
panic("tp:%p tso on, but len:%d < maxseg:%d",
|
|
tp, len, maxseg);
|
|
}
|
|
if (tso && if_hw_tsomaxsegcount) {
|
|
int32_t seg_cnt = 0;
|
|
struct mbuf *foo;
|
|
|
|
foo = m;
|
|
while (foo) {
|
|
seg_cnt++;
|
|
foo = foo->m_next;
|
|
}
|
|
if (seg_cnt > if_hw_tsomaxsegcount) {
|
|
panic("seg_cnt:%d > max:%d", seg_cnt, if_hw_tsomaxsegcount);
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* If we're sending everything we've got, set PUSH. (This
|
|
* will keep happy those implementations which only give
|
|
* data to the user when a buffer fills or a PUSH comes in.)
|
|
*/
|
|
if (sb_offset + len == sbused(sb) &&
|
|
sbused(sb) &&
|
|
!(flags & TH_SYN)) {
|
|
flags |= TH_PUSH;
|
|
}
|
|
SOCKBUF_UNLOCK(sb);
|
|
} else {
|
|
SOCKBUF_UNLOCK(sb);
|
|
if (tp->t_flags & TF_ACKNOW)
|
|
TCPSTAT_INC(tcps_sndacks);
|
|
else if (flags & (TH_SYN | TH_FIN | TH_RST))
|
|
TCPSTAT_INC(tcps_sndctrl);
|
|
else if (SEQ_GT(tp->snd_up, tp->snd_una))
|
|
TCPSTAT_INC(tcps_sndurg);
|
|
else
|
|
TCPSTAT_INC(tcps_sndwinup);
|
|
|
|
m = m_gethdr(M_NOWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
BBR_STAT_INC(bbr_failed_mbuf_aloc);
|
|
bbr_log_enobuf_jmp(bbr, len, cts, __LINE__, len, 0, 0);
|
|
error = ENOBUFS;
|
|
/* Fudge the send time since we could not send */
|
|
sack_rxmit = 0;
|
|
goto out;
|
|
}
|
|
#ifdef INET6
|
|
if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
|
|
MHLEN >= hdrlen) {
|
|
M_ALIGN(m, hdrlen);
|
|
} else
|
|
#endif
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = hdrlen;
|
|
}
|
|
SOCKBUF_UNLOCK_ASSERT(sb);
|
|
m->m_pkthdr.rcvif = (struct ifnet *)0;
|
|
#ifdef MAC
|
|
mac_inpcb_create_mbuf(inp, m);
|
|
#endif
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port) {
|
|
udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
|
|
udp->uh_sport = htons(V_tcp_udp_tunneling_port);
|
|
udp->uh_dport = tp->t_port;
|
|
ulen = hdrlen + len - sizeof(struct ip6_hdr);
|
|
udp->uh_ulen = htons(ulen);
|
|
th = (struct tcphdr *)(udp + 1);
|
|
} else {
|
|
#endif
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
|
|
#ifdef NETFLIX_TCPOUDP
|
|
}
|
|
#endif
|
|
tcpip_fillheaders(inp,
|
|
#ifdef NETFLIX_TCPOUDP
|
|
tp->t_port,
|
|
#endif
|
|
ip6, th);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
ip = mtod(m, struct ip *);
|
|
#ifdef TCPDEBUG
|
|
ipov = (struct ipovly *)ip;
|
|
#endif
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port) {
|
|
udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
|
|
udp->uh_sport = htons(V_tcp_udp_tunneling_port);
|
|
udp->uh_dport = tp->t_port;
|
|
ulen = hdrlen + len - sizeof(struct ip);
|
|
udp->uh_ulen = htons(ulen);
|
|
th = (struct tcphdr *)(udp + 1);
|
|
} else
|
|
#endif
|
|
th = (struct tcphdr *)(ip + 1);
|
|
tcpip_fillheaders(inp,
|
|
#ifdef NETFLIX_TCPOUDP
|
|
tp->t_port,
|
|
#endif
|
|
ip, th);
|
|
}
|
|
/*
|
|
* If we are doing retransmissions, then snd_nxt will not reflect
|
|
* the first unsent octet. For ACK only packets, we do not want the
|
|
* sequence number of the retransmitted packet, we want the sequence
|
|
* number of the next unsent octet. So, if there is no data (and no
|
|
* SYN or FIN), use snd_max instead of snd_nxt when filling in
|
|
* ti_seq. But if we are in persist state, snd_max might reflect
|
|
* one byte beyond the right edge of the window, so use snd_nxt in
|
|
* that case, since we know we aren't doing a retransmission.
|
|
* (retransmit and persist are mutually exclusive...)
|
|
*/
|
|
if (sack_rxmit == 0) {
|
|
if (len && ((flags & (TH_FIN | TH_SYN | TH_RST)) == 0)) {
|
|
/* New data (including new persists) */
|
|
th->th_seq = htonl(tp->snd_max);
|
|
bbr_seq = tp->snd_max;
|
|
} else if (flags & TH_SYN) {
|
|
/* Syn's always send from iss */
|
|
th->th_seq = htonl(tp->iss);
|
|
bbr_seq = tp->iss;
|
|
} else if (flags & TH_FIN) {
|
|
if (flags & TH_FIN && tp->t_flags & TF_SENTFIN) {
|
|
/*
|
|
* If we sent the fin already its 1 minus
|
|
* snd_max
|
|
*/
|
|
th->th_seq = (htonl(tp->snd_max - 1));
|
|
bbr_seq = (tp->snd_max - 1);
|
|
} else {
|
|
/* First time FIN use snd_max */
|
|
th->th_seq = htonl(tp->snd_max);
|
|
bbr_seq = tp->snd_max;
|
|
}
|
|
} else if (flags & TH_RST) {
|
|
/*
|
|
* For a Reset send the last cum ack in sequence
|
|
* (this like any other choice may still generate a
|
|
* challenge ack, if a ack-update packet is in
|
|
* flight).
|
|
*/
|
|
th->th_seq = htonl(tp->snd_una);
|
|
bbr_seq = tp->snd_una;
|
|
} else {
|
|
/*
|
|
* len == 0 and not persist we use snd_max, sending
|
|
* an ack unless we have sent the fin then its 1
|
|
* minus.
|
|
*/
|
|
/*
|
|
* XXXRRS Question if we are in persists and we have
|
|
* nothing outstanding to send and we have not sent
|
|
* a FIN, we will send an ACK. In such a case it
|
|
* might be better to send (tp->snd_una - 1) which
|
|
* would force the peer to ack.
|
|
*/
|
|
if (tp->t_flags & TF_SENTFIN) {
|
|
th->th_seq = htonl(tp->snd_max - 1);
|
|
bbr_seq = (tp->snd_max - 1);
|
|
} else {
|
|
th->th_seq = htonl(tp->snd_max);
|
|
bbr_seq = tp->snd_max;
|
|
}
|
|
}
|
|
} else {
|
|
/* All retransmits use the rsm to guide the send */
|
|
th->th_seq = htonl(rsm->r_start);
|
|
bbr_seq = rsm->r_start;
|
|
}
|
|
th->th_ack = htonl(tp->rcv_nxt);
|
|
if (optlen) {
|
|
bcopy(opt, th + 1, optlen);
|
|
th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
|
|
}
|
|
th->th_flags = flags;
|
|
/*
|
|
* Calculate receive window. Don't shrink window, but avoid silly
|
|
* window syndrome.
|
|
*/
|
|
if ((flags & TH_RST) || ((recwin < (so->so_rcv.sb_hiwat / 4) &&
|
|
recwin < maxseg)))
|
|
recwin = 0;
|
|
if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
|
|
recwin < (tp->rcv_adv - tp->rcv_nxt))
|
|
recwin = (tp->rcv_adv - tp->rcv_nxt);
|
|
if (recwin > TCP_MAXWIN << tp->rcv_scale)
|
|
recwin = TCP_MAXWIN << tp->rcv_scale;
|
|
|
|
/*
|
|
* According to RFC1323 the window field in a SYN (i.e., a <SYN> or
|
|
* <SYN,ACK>) segment itself is never scaled. The <SYN,ACK> case is
|
|
* handled in syncache.
|
|
*/
|
|
if (flags & TH_SYN)
|
|
th->th_win = htons((u_short)
|
|
(min(sbspace(&so->so_rcv), TCP_MAXWIN)));
|
|
else
|
|
th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
|
|
/*
|
|
* Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
|
|
* window. This may cause the remote transmitter to stall. This
|
|
* flag tells soreceive() to disable delayed acknowledgements when
|
|
* draining the buffer. This can occur if the receiver is
|
|
* attempting to read more data than can be buffered prior to
|
|
* transmitting on the connection.
|
|
*/
|
|
if (th->th_win == 0) {
|
|
tp->t_sndzerowin++;
|
|
tp->t_flags |= TF_RXWIN0SENT;
|
|
} else
|
|
tp->t_flags &= ~TF_RXWIN0SENT;
|
|
if (SEQ_GT(tp->snd_up, tp->snd_max)) {
|
|
th->th_urp = htons((u_short)(tp->snd_up - tp->snd_max));
|
|
th->th_flags |= TH_URG;
|
|
} else
|
|
/*
|
|
* If no urgent pointer to send, then we pull the urgent
|
|
* pointer to the left edge of the send window so that it
|
|
* doesn't drift into the send window on sequence number
|
|
* wraparound.
|
|
*/
|
|
tp->snd_up = tp->snd_una; /* drag it along */
|
|
|
|
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
|
|
if (to.to_flags & TOF_SIGNATURE) {
|
|
/*
|
|
* Calculate MD5 signature and put it into the place
|
|
* determined before. NOTE: since TCP options buffer doesn't
|
|
* point into mbuf's data, calculate offset and use it.
|
|
*/
|
|
if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
|
|
(u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
|
|
/*
|
|
* Do not send segment if the calculation of MD5
|
|
* digest has failed.
|
|
*/
|
|
goto out;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Put TCP length in extended header, and then checksum extended
|
|
* header and data.
|
|
*/
|
|
m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
/*
|
|
* ip6_plen is not need to be filled now, and will be filled
|
|
* in ip6_output.
|
|
*/
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port) {
|
|
m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
|
|
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
|
|
udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
|
|
th->th_sum = htons(0);
|
|
UDPSTAT_INC(udps_opackets);
|
|
} else {
|
|
#endif
|
|
csum_flags = m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
|
|
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
|
|
th->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr) +
|
|
optlen + len, IPPROTO_TCP, 0);
|
|
#ifdef NETFLIX_TCPOUDP
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
#if defined(INET6) && defined(INET)
|
|
else
|
|
#endif
|
|
#ifdef INET
|
|
{
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port) {
|
|
m->m_pkthdr.csum_flags = CSUM_UDP;
|
|
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
|
|
udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
|
|
th->th_sum = htons(0);
|
|
UDPSTAT_INC(udps_opackets);
|
|
} else {
|
|
#endif
|
|
csum_flags = m->m_pkthdr.csum_flags = CSUM_TCP;
|
|
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
|
|
IPPROTO_TCP + len + optlen));
|
|
#ifdef NETFLIX_TCPOUDP
|
|
}
|
|
#endif
|
|
/* IP version must be set here for ipv4/ipv6 checking later */
|
|
KASSERT(ip->ip_v == IPVERSION,
|
|
("%s: IP version incorrect: %d", __func__, ip->ip_v));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Enable TSO and specify the size of the segments. The TCP pseudo
|
|
* header checksum is always provided. XXX: Fixme: This is currently
|
|
* not the case for IPv6.
|
|
*/
|
|
if (tso || force_tso) {
|
|
KASSERT(force_tso || len > maxseg,
|
|
("%s: len:%d <= tso_segsz:%d", __func__, len, maxseg));
|
|
m->m_pkthdr.csum_flags |= CSUM_TSO;
|
|
csum_flags |= CSUM_TSO;
|
|
m->m_pkthdr.tso_segsz = maxseg;
|
|
}
|
|
KASSERT(len + hdrlen == m_length(m, NULL),
|
|
("%s: mbuf chain different than expected: %d + %u != %u",
|
|
__func__, len, hdrlen, m_length(m, NULL)));
|
|
|
|
#ifdef TCP_HHOOK
|
|
/* Run HHOOK_TC_ESTABLISHED_OUT helper hooks. */
|
|
hhook_run_tcp_est_out(tp, th, &to, len, tso);
|
|
#endif
|
|
#ifdef TCPDEBUG
|
|
/*
|
|
* Trace.
|
|
*/
|
|
if (so->so_options & SO_DEBUG) {
|
|
u_short save = 0;
|
|
|
|
#ifdef INET6
|
|
if (!isipv6)
|
|
#endif
|
|
{
|
|
save = ipov->ih_len;
|
|
ipov->ih_len = htons(m->m_pkthdr.len /* - hdrlen +
|
|
* (th->th_off << 2) */ );
|
|
}
|
|
tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
|
|
#ifdef INET6
|
|
if (!isipv6)
|
|
#endif
|
|
ipov->ih_len = save;
|
|
}
|
|
#endif /* TCPDEBUG */
|
|
|
|
/* Log to the black box */
|
|
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
|
|
bbr_fill_in_logging_data(bbr, &log.u_bbr, cts);
|
|
/* Record info on type of transmission */
|
|
log.u_bbr.flex1 = bbr->r_ctl.rc_hptsi_agg_delay;
|
|
log.u_bbr.flex2 = (bbr->r_recovery_bw << 3);
|
|
log.u_bbr.flex3 = maxseg;
|
|
log.u_bbr.flex4 = delay_calc;
|
|
/* Encode filled_all into the upper flex5 bit */
|
|
log.u_bbr.flex5 = bbr->rc_past_init_win;
|
|
log.u_bbr.flex5 <<= 1;
|
|
log.u_bbr.flex5 |= bbr->rc_no_pacing;
|
|
log.u_bbr.flex5 <<= 29;
|
|
if (filled_all)
|
|
log.u_bbr.flex5 |= 0x80000000;
|
|
log.u_bbr.flex5 |= tp->t_maxseg;
|
|
log.u_bbr.flex6 = bbr->r_ctl.rc_pace_max_segs;
|
|
log.u_bbr.flex7 = (bbr->rc_bbr_state << 8) | bbr_state_val(bbr);
|
|
/* lets poke in the low and the high here for debugging */
|
|
log.u_bbr.pkts_out = bbr->rc_tp->t_maxseg;
|
|
if (rsm || sack_rxmit) {
|
|
if (doing_tlp)
|
|
log.u_bbr.flex8 = 2;
|
|
else
|
|
log.u_bbr.flex8 = 1;
|
|
} else {
|
|
log.u_bbr.flex8 = 0;
|
|
}
|
|
lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
|
|
len, &log, false, NULL, NULL, 0, tv);
|
|
} else {
|
|
lgb = NULL;
|
|
}
|
|
/*
|
|
* Fill in IP length and desired time to live and send to IP level.
|
|
* There should be a better way to handle ttl and tos; we could keep
|
|
* them in the template, but need a way to checksum without them.
|
|
*/
|
|
/*
|
|
* m->m_pkthdr.len should have been set before cksum calcuration,
|
|
* because in6_cksum() need it.
|
|
*/
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
/*
|
|
* we separately set hoplimit for every segment, since the
|
|
* user might want to change the value via setsockopt. Also,
|
|
* desired default hop limit might be changed via Neighbor
|
|
* Discovery.
|
|
*/
|
|
ip6->ip6_hlim = in6_selecthlim(inp, NULL);
|
|
|
|
/*
|
|
* Set the packet size here for the benefit of DTrace
|
|
* probes. ip6_output() will set it properly; it's supposed
|
|
* to include the option header lengths as well.
|
|
*/
|
|
ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
|
|
|
|
if (V_path_mtu_discovery && maxseg > V_tcp_minmss)
|
|
tp->t_flags2 |= TF2_PLPMTU_PMTUD;
|
|
else
|
|
tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
|
|
|
|
if (tp->t_state == TCPS_SYN_SENT)
|
|
TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
|
|
|
|
TCP_PROBE5(send, NULL, tp, ip6, tp, th);
|
|
/* TODO: IPv6 IP6TOS_ECT bit on */
|
|
error = ip6_output(m, inp->in6p_outputopts,
|
|
&inp->inp_route6,
|
|
((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0),
|
|
NULL, NULL, inp);
|
|
|
|
if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL)
|
|
mtu = inp->inp_route6.ro_rt->rt_mtu;
|
|
}
|
|
#endif /* INET6 */
|
|
#if defined(INET) && defined(INET6)
|
|
else
|
|
#endif
|
|
#ifdef INET
|
|
{
|
|
ip->ip_len = htons(m->m_pkthdr.len);
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
ip->ip_ttl = in6_selecthlim(inp, NULL);
|
|
#endif /* INET6 */
|
|
/*
|
|
* If we do path MTU discovery, then we set DF on every
|
|
* packet. This might not be the best thing to do according
|
|
* to RFC3390 Section 2. However the tcp hostcache migitates
|
|
* the problem so it affects only the first tcp connection
|
|
* with a host.
|
|
*
|
|
* NB: Don't set DF on small MTU/MSS to have a safe
|
|
* fallback.
|
|
*/
|
|
if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
|
|
tp->t_flags2 |= TF2_PLPMTU_PMTUD;
|
|
if (tp->t_port == 0 || len < V_tcp_minmss) {
|
|
ip->ip_off |= htons(IP_DF);
|
|
}
|
|
} else {
|
|
tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
|
|
}
|
|
|
|
if (tp->t_state == TCPS_SYN_SENT)
|
|
TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
|
|
|
|
TCP_PROBE5(send, NULL, tp, ip, tp, th);
|
|
|
|
error = ip_output(m, inp->inp_options, &inp->inp_route,
|
|
((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0,
|
|
inp);
|
|
if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL)
|
|
mtu = inp->inp_route.ro_rt->rt_mtu;
|
|
}
|
|
#endif /* INET */
|
|
out:
|
|
|
|
if (lgb) {
|
|
lgb->tlb_errno = error;
|
|
lgb = NULL;
|
|
}
|
|
/*
|
|
* In transmit state, time the transmission and arrange for the
|
|
* retransmit. In persist state, just set snd_max.
|
|
*/
|
|
if (error == 0) {
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->t_flags & TF_SACK_PERMIT) &&
|
|
tp->rcv_numsacks > 0)
|
|
tcp_clean_dsack_blocks(tp);
|
|
/* We sent an ack clear the bbr_segs_rcvd count */
|
|
bbr->output_error_seen = 0;
|
|
bbr->oerror_cnt = 0;
|
|
bbr->bbr_segs_rcvd = 0;
|
|
if (len == 0)
|
|
counter_u64_add(bbr_out_size[TCP_MSS_ACCT_SNDACK], 1);
|
|
else if (hw_tls) {
|
|
if (filled_all ||
|
|
(len >= bbr->r_ctl.rc_pace_max_segs))
|
|
BBR_STAT_INC(bbr_meets_tso_thresh);
|
|
else {
|
|
if (doing_tlp) {
|
|
BBR_STAT_INC(bbr_miss_tlp);
|
|
bbr_log_type_hrdwtso(tp, bbr, len, 1, what_we_can);
|
|
|
|
|
|
} else if (rsm) {
|
|
BBR_STAT_INC(bbr_miss_retran);
|
|
bbr_log_type_hrdwtso(tp, bbr, len, 2, what_we_can);
|
|
} else if ((ctf_outstanding(tp) + bbr->r_ctl.rc_pace_max_segs) > sbavail(sb)) {
|
|
BBR_STAT_INC(bbr_miss_tso_app);
|
|
bbr_log_type_hrdwtso(tp, bbr, len, 3, what_we_can);
|
|
} else if ((ctf_flight_size(tp, (bbr->r_ctl.rc_sacked +
|
|
bbr->r_ctl.rc_lost_bytes)) + bbr->r_ctl.rc_pace_max_segs) > tp->snd_cwnd) {
|
|
BBR_STAT_INC(bbr_miss_tso_cwnd);
|
|
bbr_log_type_hrdwtso(tp, bbr, len, 4, what_we_can);
|
|
} else if ((ctf_outstanding(tp) + bbr->r_ctl.rc_pace_max_segs) > tp->snd_wnd) {
|
|
BBR_STAT_INC(bbr_miss_tso_rwnd);
|
|
bbr_log_type_hrdwtso(tp, bbr, len, 5, what_we_can);
|
|
} else {
|
|
BBR_STAT_INC(bbr_miss_unknown);
|
|
bbr_log_type_hrdwtso(tp, bbr, len, 6, what_we_can);
|
|
}
|
|
}
|
|
}
|
|
/* Do accounting for new sends */
|
|
if ((len > 0) && (rsm == NULL)) {
|
|
int idx;
|
|
if (tp->snd_una == tp->snd_max) {
|
|
/*
|
|
* Special case to match google, when
|
|
* nothing is in flight the delivered
|
|
* time does get updated to the current
|
|
* time (see tcp_rate_bsd.c).
|
|
*/
|
|
bbr->r_ctl.rc_del_time = cts;
|
|
}
|
|
if (len >= maxseg) {
|
|
idx = (len / maxseg) + 3;
|
|
if (idx >= TCP_MSS_ACCT_ATIMER)
|
|
counter_u64_add(bbr_out_size[(TCP_MSS_ACCT_ATIMER - 1)], 1);
|
|
else
|
|
counter_u64_add(bbr_out_size[idx], 1);
|
|
} else {
|
|
/* smaller than a MSS */
|
|
idx = len / (bbr_hptsi_bytes_min - bbr->rc_last_options);
|
|
if (idx >= TCP_MSS_SMALL_MAX_SIZE_DIV)
|
|
idx = (TCP_MSS_SMALL_MAX_SIZE_DIV - 1);
|
|
counter_u64_add(bbr_out_size[(idx + TCP_MSS_SMALL_SIZE_OFF)], 1);
|
|
}
|
|
}
|
|
}
|
|
abandon = 0;
|
|
/*
|
|
* We must do the send accounting before we log the output,
|
|
* otherwise the state of the rsm could change and we account to the
|
|
* wrong bucket.
|
|
*/
|
|
if (len > 0) {
|
|
bbr_do_send_accounting(tp, bbr, rsm, len, error);
|
|
if (error == 0) {
|
|
if (tp->snd_una == tp->snd_max)
|
|
bbr->r_ctl.rc_tlp_rxt_last_time = cts;
|
|
}
|
|
}
|
|
bbr_log_output(bbr, tp, &to, len, bbr_seq, (uint8_t) flags, error,
|
|
cts, mb, &abandon, rsm, 0, sb);
|
|
if (abandon) {
|
|
/*
|
|
* If bbr_log_output destroys the TCB or sees a TH_RST being
|
|
* sent we should hit this condition.
|
|
*/
|
|
return (0);
|
|
}
|
|
if (((tp->t_flags & TF_FORCEDATA) == 0) ||
|
|
(bbr->rc_in_persist == 0)) {
|
|
/*
|
|
* Advance snd_nxt over sequence space of this segment.
|
|
*/
|
|
if (error)
|
|
/* We don't log or do anything with errors */
|
|
goto skip_upd;
|
|
|
|
if (tp->snd_una == tp->snd_max &&
|
|
(len || (flags & (TH_SYN | TH_FIN)))) {
|
|
/*
|
|
* Update the time we just added data since none was
|
|
* outstanding.
|
|
*/
|
|
bbr_log_progress_event(bbr, tp, ticks, PROGRESS_START, __LINE__);
|
|
bbr->rc_tp->t_acktime = ticks;
|
|
}
|
|
if (flags & (TH_SYN | TH_FIN) && (rsm == NULL)) {
|
|
if (flags & TH_SYN) {
|
|
tp->snd_max++;
|
|
}
|
|
if ((flags & TH_FIN) && ((tp->t_flags & TF_SENTFIN) == 0)) {
|
|
tp->snd_max++;
|
|
tp->t_flags |= TF_SENTFIN;
|
|
}
|
|
}
|
|
if (sack_rxmit == 0)
|
|
tp->snd_max += len;
|
|
skip_upd:
|
|
if ((error == 0) && len)
|
|
tot_len += len;
|
|
} else {
|
|
/* Persists case */
|
|
int32_t xlen = len;
|
|
|
|
if (error)
|
|
goto nomore;
|
|
|
|
if (flags & TH_SYN)
|
|
++xlen;
|
|
if ((flags & TH_FIN) && ((tp->t_flags & TF_SENTFIN) == 0)) {
|
|
++xlen;
|
|
tp->t_flags |= TF_SENTFIN;
|
|
}
|
|
if (xlen && (tp->snd_una == tp->snd_max)) {
|
|
/*
|
|
* Update the time we just added data since none was
|
|
* outstanding.
|
|
*/
|
|
bbr_log_progress_event(bbr, tp, ticks, PROGRESS_START, __LINE__);
|
|
bbr->rc_tp->t_acktime = ticks;
|
|
}
|
|
if (sack_rxmit == 0)
|
|
tp->snd_max += xlen;
|
|
tot_len += (len + optlen + ipoptlen);
|
|
}
|
|
nomore:
|
|
if (error) {
|
|
/*
|
|
* Failures do not advance the seq counter above. For the
|
|
* case of ENOBUFS we will fall out and become ack-clocked.
|
|
* capping the cwnd at the current flight.
|
|
* Everything else will just have to retransmit with the timer
|
|
* (no pacer).
|
|
*/
|
|
SOCKBUF_UNLOCK_ASSERT(sb);
|
|
BBR_STAT_INC(bbr_saw_oerr);
|
|
/* Clear all delay/early tracks */
|
|
bbr->r_ctl.rc_hptsi_agg_delay = 0;
|
|
bbr->r_ctl.rc_agg_early = 0;
|
|
bbr->r_agg_early_set = 0;
|
|
bbr->output_error_seen = 1;
|
|
if (bbr->oerror_cnt < 0xf)
|
|
bbr->oerror_cnt++;
|
|
if (bbr_max_net_error_cnt && (bbr->oerror_cnt >= bbr_max_net_error_cnt)) {
|
|
/* drop the session */
|
|
tcp_set_inp_to_drop(inp, ENETDOWN);
|
|
}
|
|
switch (error) {
|
|
case ENOBUFS:
|
|
/*
|
|
* Make this guy have to get ack's to send
|
|
* more but lets make sure we don't
|
|
* slam him below a T-O (1MSS).
|
|
*/
|
|
if (bbr->rc_bbr_state != BBR_STATE_PROBE_RTT) {
|
|
tp->snd_cwnd = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked +
|
|
bbr->r_ctl.rc_lost_bytes)) - maxseg;
|
|
if (tp->snd_cwnd < maxseg)
|
|
tp->snd_cwnd = maxseg;
|
|
}
|
|
slot = (bbr_error_base_paceout + 1) << bbr->oerror_cnt;
|
|
BBR_STAT_INC(bbr_saw_enobuf);
|
|
if (bbr->bbr_hdrw_pacing)
|
|
counter_u64_add(bbr_hdwr_pacing_enobuf, 1);
|
|
else
|
|
counter_u64_add(bbr_nohdwr_pacing_enobuf, 1);
|
|
/*
|
|
* Here even in the enobuf's case we want to do our
|
|
* state update. The reason being we may have been
|
|
* called by the input function. If so we have had
|
|
* things change.
|
|
*/
|
|
error = 0;
|
|
goto enobufs;
|
|
case EMSGSIZE:
|
|
/*
|
|
* For some reason the interface we used initially
|
|
* to send segments changed to another or lowered
|
|
* its MTU. If TSO was active we either got an
|
|
* interface without TSO capabilits or TSO was
|
|
* turned off. If we obtained mtu from ip_output()
|
|
* then update it and try again.
|
|
*/
|
|
/* Turn on tracing (or try to) */
|
|
{
|
|
int old_maxseg;
|
|
|
|
old_maxseg = tp->t_maxseg;
|
|
BBR_STAT_INC(bbr_saw_emsgsiz);
|
|
bbr_log_msgsize_fail(bbr, tp, len, maxseg, mtu, csum_flags, tso, cts);
|
|
if (mtu != 0)
|
|
tcp_mss_update(tp, -1, mtu, NULL, NULL);
|
|
if (old_maxseg <= tp->t_maxseg) {
|
|
/* Huh it did not shrink? */
|
|
tp->t_maxseg = old_maxseg - 40;
|
|
bbr_log_msgsize_fail(bbr, tp, len, maxseg, mtu, 0, tso, cts);
|
|
}
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
/*
|
|
* Nuke all other things that can interfere
|
|
* with slot
|
|
*/
|
|
if ((tot_len + len) && (len >= tp->t_maxseg)) {
|
|
slot = bbr_get_pacing_delay(bbr,
|
|
bbr->r_ctl.rc_bbr_hptsi_gain,
|
|
(tot_len + len), cts, 0);
|
|
if (slot < bbr_error_base_paceout)
|
|
slot = (bbr_error_base_paceout + 2) << bbr->oerror_cnt;
|
|
} else
|
|
slot = (bbr_error_base_paceout + 2) << bbr->oerror_cnt;
|
|
bbr->rc_output_starts_timer = 1;
|
|
bbr_start_hpts_timer(bbr, tp, cts, 10, slot,
|
|
tot_len);
|
|
return (error);
|
|
}
|
|
case EPERM:
|
|
tp->t_softerror = error;
|
|
/* Fall through */
|
|
case EHOSTDOWN:
|
|
case EHOSTUNREACH:
|
|
case ENETDOWN:
|
|
case ENETUNREACH:
|
|
if (TCPS_HAVERCVDSYN(tp->t_state)) {
|
|
tp->t_softerror = error;
|
|
}
|
|
/* FALLTHROUGH */
|
|
default:
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
slot = (bbr_error_base_paceout + 3) << bbr->oerror_cnt;
|
|
bbr->rc_output_starts_timer = 1;
|
|
bbr_start_hpts_timer(bbr, tp, cts, 11, slot, 0);
|
|
return (error);
|
|
}
|
|
#ifdef STATS
|
|
} else if (((tp->t_flags & TF_GPUTINPROG) == 0) &&
|
|
len &&
|
|
(rsm == NULL) &&
|
|
(bbr->rc_in_persist == 0)) {
|
|
tp->gput_seq = bbr_seq;
|
|
tp->gput_ack = bbr_seq +
|
|
min(sbavail(&so->so_snd) - sb_offset, sendwin);
|
|
tp->gput_ts = cts;
|
|
tp->t_flags |= TF_GPUTINPROG;
|
|
#endif
|
|
}
|
|
TCPSTAT_INC(tcps_sndtotal);
|
|
if ((bbr->bbr_hdw_pace_ena) &&
|
|
(bbr->bbr_attempt_hdwr_pace == 0) &&
|
|
(bbr->rc_past_init_win) &&
|
|
(bbr->rc_bbr_state != BBR_STATE_STARTUP) &&
|
|
(get_filter_value(&bbr->r_ctl.rc_delrate)) &&
|
|
(inp->inp_route.ro_rt &&
|
|
inp->inp_route.ro_rt->rt_ifp)) {
|
|
/*
|
|
* We are past the initial window and
|
|
* have at least one measurement so we
|
|
* could use hardware pacing if its available.
|
|
* We have an interface and we have not attempted
|
|
* to setup hardware pacing, lets try to now.
|
|
*/
|
|
uint64_t rate_wanted;
|
|
int err = 0;
|
|
|
|
rate_wanted = bbr_get_hardware_rate(bbr);
|
|
bbr->bbr_attempt_hdwr_pace = 1;
|
|
bbr->r_ctl.crte = tcp_set_pacing_rate(bbr->rc_tp,
|
|
inp->inp_route.ro_rt->rt_ifp,
|
|
rate_wanted,
|
|
(RS_PACING_GEQ|RS_PACING_SUB_OK),
|
|
&err);
|
|
if (bbr->r_ctl.crte) {
|
|
bbr_type_log_hdwr_pacing(bbr,
|
|
bbr->r_ctl.crte->ptbl->rs_ifp,
|
|
rate_wanted,
|
|
bbr->r_ctl.crte->rate,
|
|
__LINE__, cts, err);
|
|
BBR_STAT_INC(bbr_hdwr_rl_add_ok);
|
|
counter_u64_add(bbr_flows_nohdwr_pacing, -1);
|
|
counter_u64_add(bbr_flows_whdwr_pacing, 1);
|
|
bbr->bbr_hdrw_pacing = 1;
|
|
/* Now what is our gain status? */
|
|
if (bbr->r_ctl.crte->rate < rate_wanted) {
|
|
/* We have a problem */
|
|
bbr_setup_less_of_rate(bbr, cts,
|
|
bbr->r_ctl.crte->rate, rate_wanted);
|
|
} else {
|
|
/* We are good */
|
|
bbr->gain_is_limited = 0;
|
|
bbr->skip_gain = 0;
|
|
}
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
} else {
|
|
bbr_type_log_hdwr_pacing(bbr,
|
|
inp->inp_route.ro_rt->rt_ifp,
|
|
rate_wanted,
|
|
0,
|
|
__LINE__, cts, err);
|
|
BBR_STAT_INC(bbr_hdwr_rl_add_fail);
|
|
}
|
|
}
|
|
if (bbr->bbr_hdrw_pacing) {
|
|
/*
|
|
* Worry about cases where the route
|
|
* changes or something happened that we
|
|
* lost our hardware pacing possibly during
|
|
* the last ip_output call.
|
|
*/
|
|
if (inp->inp_snd_tag == NULL) {
|
|
/* A change during ip output disabled hw pacing? */
|
|
bbr->bbr_hdrw_pacing = 0;
|
|
} else if ((inp->inp_route.ro_rt == NULL) ||
|
|
(inp->inp_route.ro_rt->rt_ifp != inp->inp_snd_tag->ifp)) {
|
|
/*
|
|
* We had an interface or route change,
|
|
* detach from the current hdwr pacing
|
|
* and setup to re-attempt next go
|
|
* round.
|
|
*/
|
|
bbr->bbr_hdrw_pacing = 0;
|
|
bbr->bbr_attempt_hdwr_pace = 0;
|
|
tcp_rel_pacing_rate(bbr->r_ctl.crte, bbr->rc_tp);
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
}
|
|
}
|
|
/*
|
|
* Data sent (as far as we can tell). If this advertises a larger
|
|
* window than any other segment, then remember the size of the
|
|
* advertised window. Any pending ACK has now been sent.
|
|
*/
|
|
if (SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
|
|
tp->rcv_adv = tp->rcv_nxt + recwin;
|
|
|
|
tp->last_ack_sent = tp->rcv_nxt;
|
|
if ((error == 0) &&
|
|
(bbr->r_ctl.rc_pace_max_segs > tp->t_maxseg) &&
|
|
(doing_tlp == 0) &&
|
|
(tso == 0) &&
|
|
(hw_tls == 0) &&
|
|
(len > 0) &&
|
|
((flags & TH_RST) == 0) &&
|
|
(IN_RECOVERY(tp->t_flags) == 0) &&
|
|
(bbr->rc_in_persist == 0) &&
|
|
((tp->t_flags & TF_FORCEDATA) == 0) &&
|
|
(tot_len < bbr->r_ctl.rc_pace_max_segs)) {
|
|
/*
|
|
* For non-tso we need to goto again until we have sent out
|
|
* enough data to match what we are hptsi out every hptsi
|
|
* interval.
|
|
*/
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {
|
|
/* Make sure snd_nxt is drug up */
|
|
tp->snd_nxt = tp->snd_max;
|
|
}
|
|
if (rsm != NULL) {
|
|
rsm = NULL;
|
|
goto skip_again;
|
|
}
|
|
rsm = NULL;
|
|
sack_rxmit = 0;
|
|
tp->t_flags &= ~(TF_ACKNOW | TF_DELACK | TF_FORCEDATA);
|
|
goto again;
|
|
}
|
|
skip_again:
|
|
if (((flags & (TH_RST | TH_SYN | TH_FIN)) == 0) && tot_len) {
|
|
/*
|
|
* Calculate/Re-Calculate the hptsi slot in usecs based on
|
|
* what we have sent so far
|
|
*/
|
|
slot = bbr_get_pacing_delay(bbr, bbr->r_ctl.rc_bbr_hptsi_gain, tot_len, cts, 0);
|
|
if (bbr->rc_no_pacing)
|
|
slot = 0;
|
|
}
|
|
tp->t_flags &= ~(TF_ACKNOW | TF_DELACK | TF_FORCEDATA);
|
|
enobufs:
|
|
if (bbr->rc_use_google == 0)
|
|
bbr_check_bbr_for_state(bbr, cts, __LINE__, 0);
|
|
bbr_cwnd_limiting(tp, bbr, ctf_flight_size(tp, (bbr->r_ctl.rc_sacked +
|
|
bbr->r_ctl.rc_lost_bytes)));
|
|
bbr->rc_output_starts_timer = 1;
|
|
if (bbr->bbr_use_rack_cheat &&
|
|
(more_to_rxt ||
|
|
((bbr->r_ctl.rc_resend = bbr_check_recovery_mode(tp, bbr, cts)) != NULL))) {
|
|
/* Rack cheats and shotguns out all rxt's 1ms apart */
|
|
if (slot > 1000)
|
|
slot = 1000;
|
|
}
|
|
if (bbr->bbr_hdrw_pacing && (bbr->hw_pacing_set == 0)) {
|
|
/*
|
|
* We don't change the tso size until some number of sends
|
|
* to give the hardware commands time to get down
|
|
* to the interface.
|
|
*/
|
|
bbr->r_ctl.bbr_hdwr_cnt_noset_snt++;
|
|
if (bbr->r_ctl.bbr_hdwr_cnt_noset_snt >= bbr_hdwr_pacing_delay_cnt) {
|
|
bbr->hw_pacing_set = 1;
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
}
|
|
}
|
|
bbr_start_hpts_timer(bbr, tp, cts, 12, slot, tot_len);
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {
|
|
/* Make sure snd_nxt is drug up */
|
|
tp->snd_nxt = tp->snd_max;
|
|
}
|
|
return (error);
|
|
|
|
}
|
|
|
|
/*
|
|
* See bbr_output_wtime() for return values.
|
|
*/
|
|
static int
|
|
bbr_output(struct tcpcb *tp)
|
|
{
|
|
int32_t ret;
|
|
struct timeval tv;
|
|
struct tcp_bbr *bbr;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
(void)tcp_get_usecs(&tv);
|
|
ret = bbr_output_wtime(tp, &tv);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
bbr_mtu_chg(struct tcpcb *tp)
|
|
{
|
|
struct tcp_bbr *bbr;
|
|
struct bbr_sendmap *rsm, *frsm = NULL;
|
|
uint32_t maxseg;
|
|
|
|
/*
|
|
* The MTU has changed. a) Clear the sack filter. b) Mark everything
|
|
* over the current size as SACK_PASS so a retransmit will occur.
|
|
*/
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
maxseg = tp->t_maxseg - bbr->rc_last_options;
|
|
sack_filter_clear(&bbr->r_ctl.bbr_sf, tp->snd_una);
|
|
TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) {
|
|
/* Don't mess with ones acked (by sack?) */
|
|
if (rsm->r_flags & BBR_ACKED)
|
|
continue;
|
|
if ((rsm->r_end - rsm->r_start) > maxseg) {
|
|
/*
|
|
* We mark sack-passed on all the previous large
|
|
* sends we did. This will force them to retransmit.
|
|
*/
|
|
rsm->r_flags |= BBR_SACK_PASSED;
|
|
if (((rsm->r_flags & BBR_MARKED_LOST) == 0) &&
|
|
bbr_is_lost(bbr, rsm, bbr->r_ctl.rc_rcvtime)) {
|
|
bbr->r_ctl.rc_lost_bytes += rsm->r_end - rsm->r_start;
|
|
bbr->r_ctl.rc_lost += rsm->r_end - rsm->r_start;
|
|
rsm->r_flags |= BBR_MARKED_LOST;
|
|
}
|
|
if (frsm == NULL)
|
|
frsm = rsm;
|
|
}
|
|
}
|
|
if (frsm) {
|
|
bbr->r_ctl.rc_resend = frsm;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bbr_ctloutput() must drop the inpcb lock before performing copyin on
|
|
* socket option arguments. When it re-acquires the lock after the copy, it
|
|
* has to revalidate that the connection is still valid for the socket
|
|
* option.
|
|
*/
|
|
static int
|
|
bbr_set_sockopt(struct socket *so, struct sockopt *sopt,
|
|
struct inpcb *inp, struct tcpcb *tp, struct tcp_bbr *bbr)
|
|
{
|
|
int32_t error = 0, optval;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case TCP_RACK_PACE_MAX_SEG:
|
|
case TCP_RACK_MIN_TO:
|
|
case TCP_RACK_REORD_THRESH:
|
|
case TCP_RACK_REORD_FADE:
|
|
case TCP_RACK_TLP_THRESH:
|
|
case TCP_RACK_PKT_DELAY:
|
|
case TCP_BBR_ALGORITHM:
|
|
case TCP_BBR_TSLIMITS:
|
|
case TCP_BBR_IWINTSO:
|
|
case TCP_BBR_RECFORCE:
|
|
case TCP_BBR_STARTUP_PG:
|
|
case TCP_BBR_DRAIN_PG:
|
|
case TCP_BBR_RWND_IS_APP:
|
|
case TCP_BBR_PROBE_RTT_INT:
|
|
case TCP_BBR_PROBE_RTT_GAIN:
|
|
case TCP_BBR_PROBE_RTT_LEN:
|
|
case TCP_BBR_STARTUP_LOSS_EXIT:
|
|
case TCP_BBR_USEDEL_RATE:
|
|
case TCP_BBR_MIN_RTO:
|
|
case TCP_BBR_MAX_RTO:
|
|
case TCP_BBR_PACE_PER_SEC:
|
|
case TCP_DELACK:
|
|
case TCP_BBR_PACE_DEL_TAR:
|
|
case TCP_BBR_SEND_IWND_IN_TSO:
|
|
case TCP_BBR_EXTRA_STATE:
|
|
case TCP_BBR_UTTER_MAX_TSO:
|
|
case TCP_BBR_MIN_TOPACEOUT:
|
|
case TCP_BBR_FLOOR_MIN_TSO:
|
|
case TCP_BBR_TSTMP_RAISES:
|
|
case TCP_BBR_POLICER_DETECT:
|
|
case TCP_BBR_USE_RACK_CHEAT:
|
|
case TCP_DATA_AFTER_CLOSE:
|
|
case TCP_BBR_HDWR_PACE:
|
|
case TCP_BBR_PACE_SEG_MAX:
|
|
case TCP_BBR_PACE_SEG_MIN:
|
|
case TCP_BBR_PACE_CROSS:
|
|
case TCP_BBR_PACE_OH:
|
|
#ifdef NETFLIX_PEAKRATE
|
|
case TCP_MAXPEAKRATE:
|
|
#endif
|
|
case TCP_BBR_TMR_PACE_OH:
|
|
case TCP_BBR_RACK_RTT_USE:
|
|
case TCP_BBR_RETRAN_WTSO:
|
|
break;
|
|
default:
|
|
return (tcp_default_ctloutput(so, sopt, inp, tp));
|
|
break;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
|
|
if (error)
|
|
return (error);
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
tp = intotcpcb(inp);
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
switch (sopt->sopt_name) {
|
|
case TCP_BBR_PACE_PER_SEC:
|
|
BBR_OPTS_INC(tcp_bbr_pace_per_sec);
|
|
bbr->r_ctl.bbr_hptsi_per_second = optval;
|
|
break;
|
|
case TCP_BBR_PACE_DEL_TAR:
|
|
BBR_OPTS_INC(tcp_bbr_pace_del_tar);
|
|
bbr->r_ctl.bbr_hptsi_segments_delay_tar = optval;
|
|
break;
|
|
case TCP_BBR_PACE_SEG_MAX:
|
|
BBR_OPTS_INC(tcp_bbr_pace_seg_max);
|
|
bbr->r_ctl.bbr_hptsi_segments_max = optval;
|
|
break;
|
|
case TCP_BBR_PACE_SEG_MIN:
|
|
BBR_OPTS_INC(tcp_bbr_pace_seg_min);
|
|
bbr->r_ctl.bbr_hptsi_bytes_min = optval;
|
|
break;
|
|
case TCP_BBR_PACE_CROSS:
|
|
BBR_OPTS_INC(tcp_bbr_pace_cross);
|
|
bbr->r_ctl.bbr_cross_over = optval;
|
|
break;
|
|
case TCP_BBR_ALGORITHM:
|
|
BBR_OPTS_INC(tcp_bbr_algorithm);
|
|
if (optval && (bbr->rc_use_google == 0)) {
|
|
/* Turn on the google mode */
|
|
bbr_google_mode_on(bbr);
|
|
if ((optval > 3) && (optval < 500)) {
|
|
/*
|
|
* Must be at least greater than .3%
|
|
* and must be less than 50.0%.
|
|
*/
|
|
bbr->r_ctl.bbr_google_discount = optval;
|
|
}
|
|
} else if ((optval == 0) && (bbr->rc_use_google == 1)) {
|
|
/* Turn off the google mode */
|
|
bbr_google_mode_off(bbr);
|
|
}
|
|
break;
|
|
case TCP_BBR_TSLIMITS:
|
|
BBR_OPTS_INC(tcp_bbr_tslimits);
|
|
if (optval == 1)
|
|
bbr->rc_use_ts_limit = 1;
|
|
else if (optval == 0)
|
|
bbr->rc_use_ts_limit = 0;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case TCP_BBR_IWINTSO:
|
|
BBR_OPTS_INC(tcp_bbr_iwintso);
|
|
if ((optval >= 0) && (optval < 128)) {
|
|
uint32_t twin;
|
|
|
|
bbr->rc_init_win = optval;
|
|
twin = bbr_initial_cwnd(bbr, tp);
|
|
if ((bbr->rc_past_init_win == 0) && (twin > tp->snd_cwnd))
|
|
tp->snd_cwnd = twin;
|
|
else
|
|
error = EBUSY;
|
|
} else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_STARTUP_PG:
|
|
BBR_OPTS_INC(tcp_bbr_startup_pg);
|
|
if ((optval > 0) && (optval < BBR_MAX_GAIN_VALUE)) {
|
|
bbr->r_ctl.rc_startup_pg = optval;
|
|
if (bbr->rc_bbr_state == BBR_STATE_STARTUP) {
|
|
bbr->r_ctl.rc_bbr_hptsi_gain = optval;
|
|
}
|
|
} else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_DRAIN_PG:
|
|
BBR_OPTS_INC(tcp_bbr_drain_pg);
|
|
if ((optval > 0) && (optval < BBR_MAX_GAIN_VALUE))
|
|
bbr->r_ctl.rc_drain_pg = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_PROBE_RTT_LEN:
|
|
BBR_OPTS_INC(tcp_bbr_probertt_len);
|
|
if (optval <= 1)
|
|
reset_time_small(&bbr->r_ctl.rc_rttprop, (optval * USECS_IN_SECOND));
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_PROBE_RTT_GAIN:
|
|
BBR_OPTS_INC(tcp_bbr_probertt_gain);
|
|
if (optval <= BBR_UNIT)
|
|
bbr->r_ctl.bbr_rttprobe_gain_val = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_PROBE_RTT_INT:
|
|
BBR_OPTS_INC(tcp_bbr_probe_rtt_int);
|
|
if (optval > 1000)
|
|
bbr->r_ctl.rc_probertt_int = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_MIN_TOPACEOUT:
|
|
BBR_OPTS_INC(tcp_bbr_topaceout);
|
|
if (optval == 0) {
|
|
bbr->no_pacing_until = 0;
|
|
bbr->rc_no_pacing = 0;
|
|
} else if (optval <= 0x00ff) {
|
|
bbr->no_pacing_until = optval;
|
|
if ((bbr->r_ctl.rc_pkt_epoch < bbr->no_pacing_until) &&
|
|
(bbr->rc_bbr_state == BBR_STATE_STARTUP)){
|
|
/* Turn on no pacing */
|
|
bbr->rc_no_pacing = 1;
|
|
}
|
|
} else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_STARTUP_LOSS_EXIT:
|
|
BBR_OPTS_INC(tcp_bbr_startup_loss_exit);
|
|
bbr->rc_loss_exit = optval;
|
|
break;
|
|
case TCP_BBR_USEDEL_RATE:
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_MIN_RTO:
|
|
BBR_OPTS_INC(tcp_bbr_min_rto);
|
|
bbr->r_ctl.rc_min_rto_ms = optval;
|
|
break;
|
|
case TCP_BBR_MAX_RTO:
|
|
BBR_OPTS_INC(tcp_bbr_max_rto);
|
|
bbr->rc_max_rto_sec = optval;
|
|
break;
|
|
case TCP_RACK_MIN_TO:
|
|
/* Minimum time between rack t-o's in ms */
|
|
BBR_OPTS_INC(tcp_rack_min_to);
|
|
bbr->r_ctl.rc_min_to = optval;
|
|
break;
|
|
case TCP_RACK_REORD_THRESH:
|
|
/* RACK reorder threshold (shift amount) */
|
|
BBR_OPTS_INC(tcp_rack_reord_thresh);
|
|
if ((optval > 0) && (optval < 31))
|
|
bbr->r_ctl.rc_reorder_shift = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_RACK_REORD_FADE:
|
|
/* Does reordering fade after ms time */
|
|
BBR_OPTS_INC(tcp_rack_reord_fade);
|
|
bbr->r_ctl.rc_reorder_fade = optval;
|
|
break;
|
|
case TCP_RACK_TLP_THRESH:
|
|
/* RACK TLP theshold i.e. srtt+(srtt/N) */
|
|
BBR_OPTS_INC(tcp_rack_tlp_thresh);
|
|
if (optval)
|
|
bbr->rc_tlp_threshold = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_USE_RACK_CHEAT:
|
|
BBR_OPTS_INC(tcp_use_rackcheat);
|
|
if (bbr->rc_use_google) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
BBR_OPTS_INC(tcp_rack_cheat);
|
|
if (optval)
|
|
bbr->bbr_use_rack_cheat = 1;
|
|
else
|
|
bbr->bbr_use_rack_cheat = 0;
|
|
break;
|
|
case TCP_BBR_FLOOR_MIN_TSO:
|
|
BBR_OPTS_INC(tcp_utter_max_tso);
|
|
if ((optval >= 0) && (optval < 40))
|
|
bbr->r_ctl.bbr_hptsi_segments_floor = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_UTTER_MAX_TSO:
|
|
BBR_OPTS_INC(tcp_utter_max_tso);
|
|
if ((optval >= 0) && (optval < 0xffff))
|
|
bbr->r_ctl.bbr_utter_max = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case TCP_BBR_EXTRA_STATE:
|
|
BBR_OPTS_INC(tcp_extra_state);
|
|
if (optval)
|
|
bbr->rc_use_idle_restart = 1;
|
|
else
|
|
bbr->rc_use_idle_restart = 0;
|
|
break;
|
|
case TCP_BBR_SEND_IWND_IN_TSO:
|
|
BBR_OPTS_INC(tcp_iwnd_tso);
|
|
if (optval) {
|
|
bbr->bbr_init_win_cheat = 1;
|
|
if (bbr->rc_past_init_win == 0) {
|
|
uint32_t cts;
|
|
cts = tcp_get_usecs(&bbr->rc_tv);
|
|
tcp_bbr_tso_size_check(bbr, cts);
|
|
}
|
|
} else
|
|
bbr->bbr_init_win_cheat = 0;
|
|
break;
|
|
case TCP_BBR_HDWR_PACE:
|
|
BBR_OPTS_INC(tcp_hdwr_pacing);
|
|
if (optval){
|
|
bbr->bbr_hdw_pace_ena = 1;
|
|
bbr->bbr_attempt_hdwr_pace = 0;
|
|
} else {
|
|
bbr->bbr_hdw_pace_ena = 0;
|
|
#ifdef RATELIMIT
|
|
if (bbr->bbr_hdrw_pacing) {
|
|
bbr->bbr_hdrw_pacing = 0;
|
|
in_pcbdetach_txrtlmt(bbr->rc_inp);
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case TCP_DELACK:
|
|
BBR_OPTS_INC(tcp_delack);
|
|
if (optval < 100) {
|
|
if (optval == 0) /* off */
|
|
tp->t_delayed_ack = 0;
|
|
else if (optval == 1) /* on which is 2 */
|
|
tp->t_delayed_ack = 2;
|
|
else /* higher than 2 and less than 100 */
|
|
tp->t_delayed_ack = optval;
|
|
if (tp->t_flags & TF_DELACK) {
|
|
tp->t_flags &= ~TF_DELACK;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
bbr_output(tp);
|
|
}
|
|
} else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_RACK_PKT_DELAY:
|
|
/* RACK added ms i.e. rack-rtt + reord + N */
|
|
BBR_OPTS_INC(tcp_rack_pkt_delay);
|
|
bbr->r_ctl.rc_pkt_delay = optval;
|
|
break;
|
|
#ifdef NETFLIX_PEAKRATE
|
|
case TCP_MAXPEAKRATE:
|
|
BBR_OPTS_INC(tcp_maxpeak);
|
|
error = tcp_set_maxpeakrate(tp, optval);
|
|
if (!error)
|
|
tp->t_peakrate_thr = tp->t_maxpeakrate;
|
|
break;
|
|
#endif
|
|
case TCP_BBR_RETRAN_WTSO:
|
|
BBR_OPTS_INC(tcp_retran_wtso);
|
|
if (optval)
|
|
bbr->rc_resends_use_tso = 1;
|
|
else
|
|
bbr->rc_resends_use_tso = 0;
|
|
break;
|
|
case TCP_DATA_AFTER_CLOSE:
|
|
BBR_OPTS_INC(tcp_data_ac);
|
|
if (optval)
|
|
bbr->rc_allow_data_af_clo = 1;
|
|
else
|
|
bbr->rc_allow_data_af_clo = 0;
|
|
break;
|
|
case TCP_BBR_POLICER_DETECT:
|
|
BBR_OPTS_INC(tcp_policer_det);
|
|
if (bbr->rc_use_google == 0)
|
|
error = EINVAL;
|
|
else if (optval)
|
|
bbr->r_use_policer = 1;
|
|
else
|
|
bbr->r_use_policer = 0;
|
|
break;
|
|
|
|
case TCP_BBR_TSTMP_RAISES:
|
|
BBR_OPTS_INC(tcp_ts_raises);
|
|
if (optval)
|
|
bbr->ts_can_raise = 1;
|
|
else
|
|
bbr->ts_can_raise = 0;
|
|
break;
|
|
case TCP_BBR_TMR_PACE_OH:
|
|
BBR_OPTS_INC(tcp_pacing_oh_tmr);
|
|
if (bbr->rc_use_google) {
|
|
error = EINVAL;
|
|
} else {
|
|
if (optval)
|
|
bbr->r_ctl.rc_incr_tmrs = 1;
|
|
else
|
|
bbr->r_ctl.rc_incr_tmrs = 0;
|
|
}
|
|
break;
|
|
case TCP_BBR_PACE_OH:
|
|
BBR_OPTS_INC(tcp_pacing_oh);
|
|
if (bbr->rc_use_google) {
|
|
error = EINVAL;
|
|
} else {
|
|
if (optval > (BBR_INCL_TCP_OH|
|
|
BBR_INCL_IP_OH|
|
|
BBR_INCL_ENET_OH)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (optval & BBR_INCL_TCP_OH)
|
|
bbr->r_ctl.rc_inc_tcp_oh = 1;
|
|
else
|
|
bbr->r_ctl.rc_inc_tcp_oh = 0;
|
|
if (optval & BBR_INCL_IP_OH)
|
|
bbr->r_ctl.rc_inc_ip_oh = 1;
|
|
else
|
|
bbr->r_ctl.rc_inc_ip_oh = 0;
|
|
if (optval & BBR_INCL_ENET_OH)
|
|
bbr->r_ctl.rc_inc_enet_oh = 1;
|
|
else
|
|
bbr->r_ctl.rc_inc_enet_oh = 0;
|
|
}
|
|
break;
|
|
default:
|
|
return (tcp_default_ctloutput(so, sopt, inp, tp));
|
|
break;
|
|
}
|
|
#ifdef NETFLIX_STATS
|
|
tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
|
|
#endif
|
|
INP_WUNLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* return 0 on success, error-num on failure
|
|
*/
|
|
static int
|
|
bbr_get_sockopt(struct socket *so, struct sockopt *sopt,
|
|
struct inpcb *inp, struct tcpcb *tp, struct tcp_bbr *bbr)
|
|
{
|
|
int32_t error, optval;
|
|
|
|
/*
|
|
* Because all our options are either boolean or an int, we can just
|
|
* pull everything into optval and then unlock and copy. If we ever
|
|
* add a option that is not a int, then this will have quite an
|
|
* impact to this routine.
|
|
*/
|
|
switch (sopt->sopt_name) {
|
|
case TCP_BBR_PACE_PER_SEC:
|
|
optval = bbr->r_ctl.bbr_hptsi_per_second;
|
|
break;
|
|
case TCP_BBR_PACE_DEL_TAR:
|
|
optval = bbr->r_ctl.bbr_hptsi_segments_delay_tar;
|
|
break;
|
|
case TCP_BBR_PACE_SEG_MAX:
|
|
optval = bbr->r_ctl.bbr_hptsi_segments_max;
|
|
break;
|
|
case TCP_BBR_MIN_TOPACEOUT:
|
|
optval = bbr->no_pacing_until;
|
|
break;
|
|
case TCP_BBR_PACE_SEG_MIN:
|
|
optval = bbr->r_ctl.bbr_hptsi_bytes_min;
|
|
break;
|
|
case TCP_BBR_PACE_CROSS:
|
|
optval = bbr->r_ctl.bbr_cross_over;
|
|
break;
|
|
case TCP_BBR_ALGORITHM:
|
|
optval = bbr->rc_use_google;
|
|
break;
|
|
case TCP_BBR_TSLIMITS:
|
|
optval = bbr->rc_use_ts_limit;
|
|
break;
|
|
case TCP_BBR_IWINTSO:
|
|
optval = bbr->rc_init_win;
|
|
break;
|
|
case TCP_BBR_STARTUP_PG:
|
|
optval = bbr->r_ctl.rc_startup_pg;
|
|
break;
|
|
case TCP_BBR_DRAIN_PG:
|
|
optval = bbr->r_ctl.rc_drain_pg;
|
|
break;
|
|
case TCP_BBR_PROBE_RTT_INT:
|
|
optval = bbr->r_ctl.rc_probertt_int;
|
|
break;
|
|
case TCP_BBR_PROBE_RTT_LEN:
|
|
optval = (bbr->r_ctl.rc_rttprop.cur_time_limit / USECS_IN_SECOND);
|
|
break;
|
|
case TCP_BBR_PROBE_RTT_GAIN:
|
|
optval = bbr->r_ctl.bbr_rttprobe_gain_val;
|
|
break;
|
|
case TCP_BBR_STARTUP_LOSS_EXIT:
|
|
optval = bbr->rc_loss_exit;
|
|
break;
|
|
case TCP_BBR_USEDEL_RATE:
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_MIN_RTO:
|
|
optval = bbr->r_ctl.rc_min_rto_ms;
|
|
break;
|
|
case TCP_BBR_MAX_RTO:
|
|
optval = bbr->rc_max_rto_sec;
|
|
break;
|
|
case TCP_RACK_PACE_MAX_SEG:
|
|
/* Max segments in a pace */
|
|
optval = bbr->r_ctl.rc_pace_max_segs;
|
|
break;
|
|
case TCP_RACK_MIN_TO:
|
|
/* Minimum time between rack t-o's in ms */
|
|
optval = bbr->r_ctl.rc_min_to;
|
|
break;
|
|
case TCP_RACK_REORD_THRESH:
|
|
/* RACK reorder threshold (shift amount) */
|
|
optval = bbr->r_ctl.rc_reorder_shift;
|
|
break;
|
|
case TCP_RACK_REORD_FADE:
|
|
/* Does reordering fade after ms time */
|
|
optval = bbr->r_ctl.rc_reorder_fade;
|
|
break;
|
|
case TCP_BBR_USE_RACK_CHEAT:
|
|
/* Do we use the rack cheat for rxt */
|
|
optval = bbr->bbr_use_rack_cheat;
|
|
break;
|
|
case TCP_BBR_FLOOR_MIN_TSO:
|
|
optval = bbr->r_ctl.bbr_hptsi_segments_floor;
|
|
break;
|
|
case TCP_BBR_UTTER_MAX_TSO:
|
|
optval = bbr->r_ctl.bbr_utter_max;
|
|
break;
|
|
case TCP_BBR_SEND_IWND_IN_TSO:
|
|
/* Do we send TSO size segments initially */
|
|
optval = bbr->bbr_init_win_cheat;
|
|
break;
|
|
case TCP_BBR_EXTRA_STATE:
|
|
optval = bbr->rc_use_idle_restart;
|
|
break;
|
|
case TCP_RACK_TLP_THRESH:
|
|
/* RACK TLP theshold i.e. srtt+(srtt/N) */
|
|
optval = bbr->rc_tlp_threshold;
|
|
break;
|
|
case TCP_RACK_PKT_DELAY:
|
|
/* RACK added ms i.e. rack-rtt + reord + N */
|
|
optval = bbr->r_ctl.rc_pkt_delay;
|
|
break;
|
|
case TCP_BBR_RETRAN_WTSO:
|
|
optval = bbr->rc_resends_use_tso;
|
|
break;
|
|
case TCP_DATA_AFTER_CLOSE:
|
|
optval = bbr->rc_allow_data_af_clo;
|
|
break;
|
|
case TCP_DELACK:
|
|
optval = tp->t_delayed_ack;
|
|
break;
|
|
case TCP_BBR_HDWR_PACE:
|
|
optval = bbr->bbr_hdw_pace_ena;
|
|
break;
|
|
case TCP_BBR_POLICER_DETECT:
|
|
optval = bbr->r_use_policer;
|
|
break;
|
|
case TCP_BBR_TSTMP_RAISES:
|
|
optval = bbr->ts_can_raise;
|
|
break;
|
|
case TCP_BBR_TMR_PACE_OH:
|
|
optval = bbr->r_ctl.rc_incr_tmrs;
|
|
break;
|
|
case TCP_BBR_PACE_OH:
|
|
optval = 0;
|
|
if (bbr->r_ctl.rc_inc_tcp_oh)
|
|
optval |= BBR_INCL_TCP_OH;
|
|
if (bbr->r_ctl.rc_inc_ip_oh)
|
|
optval |= BBR_INCL_IP_OH;
|
|
if (bbr->r_ctl.rc_inc_enet_oh)
|
|
optval |= BBR_INCL_ENET_OH;
|
|
break;
|
|
default:
|
|
return (tcp_default_ctloutput(so, sopt, inp, tp));
|
|
break;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
error = sooptcopyout(sopt, &optval, sizeof optval);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* return 0 on success, error-num on failure
|
|
*/
|
|
static int
|
|
bbr_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
|
|
{
|
|
int32_t error = EINVAL;
|
|
struct tcp_bbr *bbr;
|
|
|
|
bbr = (struct tcp_bbr *)tp->t_fb_ptr;
|
|
if (bbr == NULL) {
|
|
/* Huh? */
|
|
goto out;
|
|
}
|
|
if (sopt->sopt_dir == SOPT_SET) {
|
|
return (bbr_set_sockopt(so, sopt, inp, tp, bbr));
|
|
} else if (sopt->sopt_dir == SOPT_GET) {
|
|
return (bbr_get_sockopt(so, sopt, inp, tp, bbr));
|
|
}
|
|
out:
|
|
INP_WUNLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
|
|
struct tcp_function_block __tcp_bbr = {
|
|
.tfb_tcp_block_name = __XSTRING(STACKNAME),
|
|
.tfb_tcp_output = bbr_output,
|
|
.tfb_do_queued_segments = ctf_do_queued_segments,
|
|
.tfb_do_segment_nounlock = bbr_do_segment_nounlock,
|
|
.tfb_tcp_do_segment = bbr_do_segment,
|
|
.tfb_tcp_ctloutput = bbr_ctloutput,
|
|
.tfb_tcp_fb_init = bbr_init,
|
|
.tfb_tcp_fb_fini = bbr_fini,
|
|
.tfb_tcp_timer_stop_all = bbr_stopall,
|
|
.tfb_tcp_timer_activate = bbr_timer_activate,
|
|
.tfb_tcp_timer_active = bbr_timer_active,
|
|
.tfb_tcp_timer_stop = bbr_timer_stop,
|
|
.tfb_tcp_rexmit_tmr = bbr_remxt_tmr,
|
|
.tfb_tcp_handoff_ok = bbr_handoff_ok,
|
|
.tfb_tcp_mtu_chg = bbr_mtu_chg
|
|
};
|
|
|
|
static const char *bbr_stack_names[] = {
|
|
__XSTRING(STACKNAME),
|
|
#ifdef STACKALIAS
|
|
__XSTRING(STACKALIAS),
|
|
#endif
|
|
};
|
|
|
|
static bool bbr_mod_inited = false;
|
|
|
|
static int
|
|
tcp_addbbr(module_t mod, int32_t type, void *data)
|
|
{
|
|
int32_t err = 0;
|
|
int num_stacks;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
printf("Attempting to load " __XSTRING(MODNAME) "\n");
|
|
bbr_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
|
|
sizeof(struct bbr_sendmap),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
bbr_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
|
|
sizeof(struct tcp_bbr),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
|
|
sysctl_ctx_init(&bbr_sysctl_ctx);
|
|
bbr_sysctl_root = SYSCTL_ADD_NODE(&bbr_sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
|
|
OID_AUTO,
|
|
#ifdef STACKALIAS
|
|
__XSTRING(STACKALIAS),
|
|
#else
|
|
__XSTRING(STACKNAME),
|
|
#endif
|
|
CTLFLAG_RW, 0,
|
|
"");
|
|
if (bbr_sysctl_root == NULL) {
|
|
printf("Failed to add sysctl node\n");
|
|
err = EFAULT;
|
|
goto free_uma;
|
|
}
|
|
bbr_init_sysctls();
|
|
num_stacks = nitems(bbr_stack_names);
|
|
err = register_tcp_functions_as_names(&__tcp_bbr, M_WAITOK,
|
|
bbr_stack_names, &num_stacks);
|
|
if (err) {
|
|
printf("Failed to register %s stack name for "
|
|
"%s module\n", bbr_stack_names[num_stacks],
|
|
__XSTRING(MODNAME));
|
|
sysctl_ctx_free(&bbr_sysctl_ctx);
|
|
free_uma:
|
|
uma_zdestroy(bbr_zone);
|
|
uma_zdestroy(bbr_pcb_zone);
|
|
bbr_counter_destroy();
|
|
printf("Failed to register " __XSTRING(MODNAME)
|
|
" module err:%d\n", err);
|
|
return (err);
|
|
}
|
|
tcp_lro_reg_mbufq();
|
|
bbr_mod_inited = true;
|
|
printf(__XSTRING(MODNAME) " is now available\n");
|
|
break;
|
|
case MOD_QUIESCE:
|
|
err = deregister_tcp_functions(&__tcp_bbr, true, false);
|
|
break;
|
|
case MOD_UNLOAD:
|
|
err = deregister_tcp_functions(&__tcp_bbr, false, true);
|
|
if (err == EBUSY)
|
|
break;
|
|
if (bbr_mod_inited) {
|
|
uma_zdestroy(bbr_zone);
|
|
uma_zdestroy(bbr_pcb_zone);
|
|
sysctl_ctx_free(&bbr_sysctl_ctx);
|
|
bbr_counter_destroy();
|
|
printf(__XSTRING(MODNAME)
|
|
" is now no longer available\n");
|
|
bbr_mod_inited = false;
|
|
}
|
|
tcp_lro_dereg_mbufq();
|
|
err = 0;
|
|
break;
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
static moduledata_t tcp_bbr = {
|
|
.name = __XSTRING(MODNAME),
|
|
.evhand = tcp_addbbr,
|
|
.priv = 0
|
|
};
|
|
|
|
MODULE_VERSION(MODNAME, 1);
|
|
DECLARE_MODULE(MODNAME, tcp_bbr, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
|
|
MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
|