freebsd-nq/usr.sbin/bhyve/block_if.c
Neel Natu 4e43c1e8b5 Allow configuration of the sector size advertised to the guest.
The default behavior is to infer the logical and physical sector sizes from
the block device backend. However older versions of Windows only work with
specific logical/physical combinations:
- Vista and Windows 7:	512/512
- Windows 7 SP1:	512/512 or 512/4096

For this reason allow the sector size to be specified using the following
block device option: sectorsize=logical[/physical]

Reported by:	Leon Dang (ldang@nahannisys.com)
Reviewed by:	grehan
MFC after:	2 weeks
2015-05-12 00:30:39 +00:00

823 lines
17 KiB
C

/*-
* Copyright (c) 2013 Peter Grehan <grehan@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/disk.h>
#include <assert.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <pthread_np.h>
#include <signal.h>
#include <unistd.h>
#include <machine/atomic.h>
#include "bhyverun.h"
#include "mevent.h"
#include "block_if.h"
#define BLOCKIF_SIG 0xb109b109
#define BLOCKIF_NUMTHR 8
#define BLOCKIF_MAXREQ (64 + BLOCKIF_NUMTHR)
enum blockop {
BOP_READ,
BOP_WRITE,
BOP_FLUSH,
BOP_DELETE
};
enum blockstat {
BST_FREE,
BST_BLOCK,
BST_PEND,
BST_BUSY,
BST_DONE
};
struct blockif_elem {
TAILQ_ENTRY(blockif_elem) be_link;
struct blockif_req *be_req;
enum blockop be_op;
enum blockstat be_status;
pthread_t be_tid;
off_t be_block;
};
struct blockif_ctxt {
int bc_magic;
int bc_fd;
int bc_ischr;
int bc_isgeom;
int bc_candelete;
int bc_rdonly;
off_t bc_size;
int bc_sectsz;
int bc_psectsz;
int bc_psectoff;
int bc_closing;
pthread_t bc_btid[BLOCKIF_NUMTHR];
pthread_mutex_t bc_mtx;
pthread_cond_t bc_cond;
/* Request elements and free/pending/busy queues */
TAILQ_HEAD(, blockif_elem) bc_freeq;
TAILQ_HEAD(, blockif_elem) bc_pendq;
TAILQ_HEAD(, blockif_elem) bc_busyq;
struct blockif_elem bc_reqs[BLOCKIF_MAXREQ];
};
static pthread_once_t blockif_once = PTHREAD_ONCE_INIT;
struct blockif_sig_elem {
pthread_mutex_t bse_mtx;
pthread_cond_t bse_cond;
int bse_pending;
struct blockif_sig_elem *bse_next;
};
static struct blockif_sig_elem *blockif_bse_head;
static int
blockif_enqueue(struct blockif_ctxt *bc, struct blockif_req *breq,
enum blockop op)
{
struct blockif_elem *be, *tbe;
off_t off;
int i;
be = TAILQ_FIRST(&bc->bc_freeq);
assert(be != NULL);
assert(be->be_status == BST_FREE);
TAILQ_REMOVE(&bc->bc_freeq, be, be_link);
be->be_req = breq;
be->be_op = op;
switch (op) {
case BOP_READ:
case BOP_WRITE:
case BOP_DELETE:
off = breq->br_offset;
for (i = 0; i < breq->br_iovcnt; i++)
off += breq->br_iov[i].iov_len;
break;
default:
off = OFF_MAX;
}
be->be_block = off;
TAILQ_FOREACH(tbe, &bc->bc_pendq, be_link) {
if (tbe->be_block == breq->br_offset)
break;
}
if (tbe == NULL) {
TAILQ_FOREACH(tbe, &bc->bc_busyq, be_link) {
if (tbe->be_block == breq->br_offset)
break;
}
}
if (tbe == NULL)
be->be_status = BST_PEND;
else
be->be_status = BST_BLOCK;
TAILQ_INSERT_TAIL(&bc->bc_pendq, be, be_link);
return (be->be_status == BST_PEND);
}
static int
blockif_dequeue(struct blockif_ctxt *bc, pthread_t t, struct blockif_elem **bep)
{
struct blockif_elem *be;
TAILQ_FOREACH(be, &bc->bc_pendq, be_link) {
if (be->be_status == BST_PEND)
break;
assert(be->be_status == BST_BLOCK);
}
if (be == NULL)
return (0);
TAILQ_REMOVE(&bc->bc_pendq, be, be_link);
be->be_status = BST_BUSY;
be->be_tid = t;
TAILQ_INSERT_TAIL(&bc->bc_busyq, be, be_link);
*bep = be;
return (1);
}
static void
blockif_complete(struct blockif_ctxt *bc, struct blockif_elem *be)
{
struct blockif_elem *tbe;
if (be->be_status == BST_DONE || be->be_status == BST_BUSY)
TAILQ_REMOVE(&bc->bc_busyq, be, be_link);
else
TAILQ_REMOVE(&bc->bc_pendq, be, be_link);
TAILQ_FOREACH(tbe, &bc->bc_pendq, be_link) {
if (tbe->be_req->br_offset == be->be_block)
tbe->be_status = BST_PEND;
}
be->be_tid = 0;
be->be_status = BST_FREE;
be->be_req = NULL;
TAILQ_INSERT_TAIL(&bc->bc_freeq, be, be_link);
}
static void
blockif_proc(struct blockif_ctxt *bc, struct blockif_elem *be, uint8_t *buf)
{
struct blockif_req *br;
off_t arg[2];
ssize_t clen, len, off, boff, voff;
int i, err;
br = be->be_req;
if (br->br_iovcnt <= 1)
buf = NULL;
err = 0;
switch (be->be_op) {
case BOP_READ:
if (buf == NULL) {
if ((len = preadv(bc->bc_fd, br->br_iov, br->br_iovcnt,
br->br_offset)) < 0)
err = errno;
else
br->br_resid -= len;
break;
}
i = 0;
off = voff = 0;
while (br->br_resid > 0) {
len = MIN(br->br_resid, MAXPHYS);
if (pread(bc->bc_fd, buf, len, br->br_offset +
off) < 0) {
err = errno;
break;
}
boff = 0;
do {
clen = MIN(len - boff, br->br_iov[i].iov_len -
voff);
memcpy(br->br_iov[i].iov_base + voff,
buf + boff, clen);
if (clen < br->br_iov[i].iov_len - voff)
voff += clen;
else {
i++;
voff = 0;
}
boff += clen;
} while (boff < len);
off += len;
br->br_resid -= len;
}
break;
case BOP_WRITE:
if (bc->bc_rdonly) {
err = EROFS;
break;
}
if (buf == NULL) {
if ((len = pwritev(bc->bc_fd, br->br_iov, br->br_iovcnt,
br->br_offset)) < 0)
err = errno;
else
br->br_resid -= len;
break;
}
i = 0;
off = voff = 0;
while (br->br_resid > 0) {
len = MIN(br->br_resid, MAXPHYS);
boff = 0;
do {
clen = MIN(len - boff, br->br_iov[i].iov_len -
voff);
memcpy(buf + boff,
br->br_iov[i].iov_base + voff, clen);
if (clen < br->br_iov[i].iov_len - voff)
voff += clen;
else {
i++;
voff = 0;
}
boff += clen;
} while (boff < len);
if (pwrite(bc->bc_fd, buf, len, br->br_offset +
off) < 0) {
err = errno;
break;
}
off += len;
br->br_resid -= len;
}
break;
case BOP_FLUSH:
if (bc->bc_ischr) {
if (ioctl(bc->bc_fd, DIOCGFLUSH))
err = errno;
} else if (fsync(bc->bc_fd))
err = errno;
break;
case BOP_DELETE:
if (!bc->bc_candelete)
err = EOPNOTSUPP;
else if (bc->bc_rdonly)
err = EROFS;
else if (bc->bc_ischr) {
arg[0] = br->br_offset;
arg[1] = br->br_resid;
if (ioctl(bc->bc_fd, DIOCGDELETE, arg))
err = errno;
else
br->br_resid = 0;
} else
err = EOPNOTSUPP;
break;
default:
err = EINVAL;
break;
}
be->be_status = BST_DONE;
(*br->br_callback)(br, err);
}
static void *
blockif_thr(void *arg)
{
struct blockif_ctxt *bc;
struct blockif_elem *be;
pthread_t t;
uint8_t *buf;
bc = arg;
if (bc->bc_isgeom)
buf = malloc(MAXPHYS);
else
buf = NULL;
t = pthread_self();
pthread_mutex_lock(&bc->bc_mtx);
for (;;) {
while (blockif_dequeue(bc, t, &be)) {
pthread_mutex_unlock(&bc->bc_mtx);
blockif_proc(bc, be, buf);
pthread_mutex_lock(&bc->bc_mtx);
blockif_complete(bc, be);
}
/* Check ctxt status here to see if exit requested */
if (bc->bc_closing)
break;
pthread_cond_wait(&bc->bc_cond, &bc->bc_mtx);
}
pthread_mutex_unlock(&bc->bc_mtx);
if (buf)
free(buf);
pthread_exit(NULL);
return (NULL);
}
static void
blockif_sigcont_handler(int signal, enum ev_type type, void *arg)
{
struct blockif_sig_elem *bse;
for (;;) {
/*
* Process the entire list even if not intended for
* this thread.
*/
do {
bse = blockif_bse_head;
if (bse == NULL)
return;
} while (!atomic_cmpset_ptr((uintptr_t *)&blockif_bse_head,
(uintptr_t)bse,
(uintptr_t)bse->bse_next));
pthread_mutex_lock(&bse->bse_mtx);
bse->bse_pending = 0;
pthread_cond_signal(&bse->bse_cond);
pthread_mutex_unlock(&bse->bse_mtx);
}
}
static void
blockif_init(void)
{
mevent_add(SIGCONT, EVF_SIGNAL, blockif_sigcont_handler, NULL);
(void) signal(SIGCONT, SIG_IGN);
}
struct blockif_ctxt *
blockif_open(const char *optstr, const char *ident)
{
char tname[MAXCOMLEN + 1];
char name[MAXPATHLEN];
char *nopt, *xopts, *cp;
struct blockif_ctxt *bc;
struct stat sbuf;
struct diocgattr_arg arg;
off_t size, psectsz, psectoff;
int extra, fd, i, sectsz;
int nocache, sync, ro, candelete, geom, ssopt, pssopt;
pthread_once(&blockif_once, blockif_init);
fd = -1;
ssopt = 0;
nocache = 0;
sync = 0;
ro = 0;
/*
* The first element in the optstring is always a pathname.
* Optional elements follow
*/
nopt = xopts = strdup(optstr);
while (xopts != NULL) {
cp = strsep(&xopts, ",");
if (cp == nopt) /* file or device pathname */
continue;
else if (!strcmp(cp, "nocache"))
nocache = 1;
else if (!strcmp(cp, "sync") || !strcmp(cp, "direct"))
sync = 1;
else if (!strcmp(cp, "ro"))
ro = 1;
else if (sscanf(cp, "sectorsize=%d/%d", &ssopt, &pssopt) == 2)
;
else if (sscanf(cp, "sectorsize=%d", &ssopt) == 1)
pssopt = ssopt;
else {
fprintf(stderr, "Invalid device option \"%s\"\n", cp);
goto err;
}
}
extra = 0;
if (nocache)
extra |= O_DIRECT;
if (sync)
extra |= O_SYNC;
fd = open(nopt, (ro ? O_RDONLY : O_RDWR) | extra);
if (fd < 0 && !ro) {
/* Attempt a r/w fail with a r/o open */
fd = open(nopt, O_RDONLY | extra);
ro = 1;
}
if (fd < 0) {
perror("Could not open backing file");
goto err;
}
if (fstat(fd, &sbuf) < 0) {
perror("Could not stat backing file");
goto err;
}
/*
* Deal with raw devices
*/
size = sbuf.st_size;
sectsz = DEV_BSIZE;
psectsz = psectoff = 0;
candelete = geom = 0;
if (S_ISCHR(sbuf.st_mode)) {
if (ioctl(fd, DIOCGMEDIASIZE, &size) < 0 ||
ioctl(fd, DIOCGSECTORSIZE, &sectsz)) {
perror("Could not fetch dev blk/sector size");
goto err;
}
assert(size != 0);
assert(sectsz != 0);
if (ioctl(fd, DIOCGSTRIPESIZE, &psectsz) == 0 && psectsz > 0)
ioctl(fd, DIOCGSTRIPEOFFSET, &psectoff);
strlcpy(arg.name, "GEOM::candelete", sizeof(arg.name));
arg.len = sizeof(arg.value.i);
if (ioctl(fd, DIOCGATTR, &arg) == 0)
candelete = arg.value.i;
if (ioctl(fd, DIOCGPROVIDERNAME, name) == 0)
geom = 1;
} else
psectsz = sbuf.st_blksize;
if (ssopt != 0) {
if (!powerof2(ssopt) || !powerof2(pssopt) || ssopt < 512 ||
ssopt > pssopt) {
fprintf(stderr, "Invalid sector size %d/%d\n",
ssopt, pssopt);
goto err;
}
/*
* Some backend drivers (e.g. cd0, ada0) require that the I/O
* size be a multiple of the device's sector size.
*
* Validate that the emulated sector size complies with this
* requirement.
*/
if (S_ISCHR(sbuf.st_mode)) {
if (ssopt < sectsz || (ssopt % sectsz) != 0) {
fprintf(stderr, "Sector size %d incompatible "
"with underlying device sector size %d\n",
ssopt, sectsz);
goto err;
}
}
sectsz = ssopt;
psectsz = pssopt;
psectoff = 0;
}
bc = calloc(1, sizeof(struct blockif_ctxt));
if (bc == NULL) {
perror("calloc");
goto err;
}
bc->bc_magic = BLOCKIF_SIG;
bc->bc_fd = fd;
bc->bc_ischr = S_ISCHR(sbuf.st_mode);
bc->bc_isgeom = geom;
bc->bc_candelete = candelete;
bc->bc_rdonly = ro;
bc->bc_size = size;
bc->bc_sectsz = sectsz;
bc->bc_psectsz = psectsz;
bc->bc_psectoff = psectoff;
pthread_mutex_init(&bc->bc_mtx, NULL);
pthread_cond_init(&bc->bc_cond, NULL);
TAILQ_INIT(&bc->bc_freeq);
TAILQ_INIT(&bc->bc_pendq);
TAILQ_INIT(&bc->bc_busyq);
for (i = 0; i < BLOCKIF_MAXREQ; i++) {
bc->bc_reqs[i].be_status = BST_FREE;
TAILQ_INSERT_HEAD(&bc->bc_freeq, &bc->bc_reqs[i], be_link);
}
for (i = 0; i < BLOCKIF_NUMTHR; i++) {
pthread_create(&bc->bc_btid[i], NULL, blockif_thr, bc);
snprintf(tname, sizeof(tname), "blk-%s-%d", ident, i);
pthread_set_name_np(bc->bc_btid[i], tname);
}
return (bc);
err:
if (fd >= 0)
close(fd);
return (NULL);
}
static int
blockif_request(struct blockif_ctxt *bc, struct blockif_req *breq,
enum blockop op)
{
int err;
err = 0;
pthread_mutex_lock(&bc->bc_mtx);
if (!TAILQ_EMPTY(&bc->bc_freeq)) {
/*
* Enqueue and inform the block i/o thread
* that there is work available
*/
if (blockif_enqueue(bc, breq, op))
pthread_cond_signal(&bc->bc_cond);
} else {
/*
* Callers are not allowed to enqueue more than
* the specified blockif queue limit. Return an
* error to indicate that the queue length has been
* exceeded.
*/
err = E2BIG;
}
pthread_mutex_unlock(&bc->bc_mtx);
return (err);
}
int
blockif_read(struct blockif_ctxt *bc, struct blockif_req *breq)
{
assert(bc->bc_magic == BLOCKIF_SIG);
return (blockif_request(bc, breq, BOP_READ));
}
int
blockif_write(struct blockif_ctxt *bc, struct blockif_req *breq)
{
assert(bc->bc_magic == BLOCKIF_SIG);
return (blockif_request(bc, breq, BOP_WRITE));
}
int
blockif_flush(struct blockif_ctxt *bc, struct blockif_req *breq)
{
assert(bc->bc_magic == BLOCKIF_SIG);
return (blockif_request(bc, breq, BOP_FLUSH));
}
int
blockif_delete(struct blockif_ctxt *bc, struct blockif_req *breq)
{
assert(bc->bc_magic == BLOCKIF_SIG);
return (blockif_request(bc, breq, BOP_DELETE));
}
int
blockif_cancel(struct blockif_ctxt *bc, struct blockif_req *breq)
{
struct blockif_elem *be;
assert(bc->bc_magic == BLOCKIF_SIG);
pthread_mutex_lock(&bc->bc_mtx);
/*
* Check pending requests.
*/
TAILQ_FOREACH(be, &bc->bc_pendq, be_link) {
if (be->be_req == breq)
break;
}
if (be != NULL) {
/*
* Found it.
*/
blockif_complete(bc, be);
pthread_mutex_unlock(&bc->bc_mtx);
return (0);
}
/*
* Check in-flight requests.
*/
TAILQ_FOREACH(be, &bc->bc_busyq, be_link) {
if (be->be_req == breq)
break;
}
if (be == NULL) {
/*
* Didn't find it.
*/
pthread_mutex_unlock(&bc->bc_mtx);
return (EINVAL);
}
/*
* Interrupt the processing thread to force it return
* prematurely via it's normal callback path.
*/
while (be->be_status == BST_BUSY) {
struct blockif_sig_elem bse, *old_head;
pthread_mutex_init(&bse.bse_mtx, NULL);
pthread_cond_init(&bse.bse_cond, NULL);
bse.bse_pending = 1;
do {
old_head = blockif_bse_head;
bse.bse_next = old_head;
} while (!atomic_cmpset_ptr((uintptr_t *)&blockif_bse_head,
(uintptr_t)old_head,
(uintptr_t)&bse));
pthread_kill(be->be_tid, SIGCONT);
pthread_mutex_lock(&bse.bse_mtx);
while (bse.bse_pending)
pthread_cond_wait(&bse.bse_cond, &bse.bse_mtx);
pthread_mutex_unlock(&bse.bse_mtx);
}
pthread_mutex_unlock(&bc->bc_mtx);
/*
* The processing thread has been interrupted. Since it's not
* clear if the callback has been invoked yet, return EBUSY.
*/
return (EBUSY);
}
int
blockif_close(struct blockif_ctxt *bc)
{
void *jval;
int err, i;
err = 0;
assert(bc->bc_magic == BLOCKIF_SIG);
/*
* Stop the block i/o thread
*/
pthread_mutex_lock(&bc->bc_mtx);
bc->bc_closing = 1;
pthread_mutex_unlock(&bc->bc_mtx);
pthread_cond_broadcast(&bc->bc_cond);
for (i = 0; i < BLOCKIF_NUMTHR; i++)
pthread_join(bc->bc_btid[i], &jval);
/* XXX Cancel queued i/o's ??? */
/*
* Release resources
*/
bc->bc_magic = 0;
close(bc->bc_fd);
free(bc);
return (0);
}
/*
* Return virtual C/H/S values for a given block. Use the algorithm
* outlined in the VHD specification to calculate values.
*/
void
blockif_chs(struct blockif_ctxt *bc, uint16_t *c, uint8_t *h, uint8_t *s)
{
off_t sectors; /* total sectors of the block dev */
off_t hcyl; /* cylinders times heads */
uint16_t secpt; /* sectors per track */
uint8_t heads;
assert(bc->bc_magic == BLOCKIF_SIG);
sectors = bc->bc_size / bc->bc_sectsz;
/* Clamp the size to the largest possible with CHS */
if (sectors > 65535UL*16*255)
sectors = 65535UL*16*255;
if (sectors >= 65536UL*16*63) {
secpt = 255;
heads = 16;
hcyl = sectors / secpt;
} else {
secpt = 17;
hcyl = sectors / secpt;
heads = (hcyl + 1023) / 1024;
if (heads < 4)
heads = 4;
if (hcyl >= (heads * 1024) || heads > 16) {
secpt = 31;
heads = 16;
hcyl = sectors / secpt;
}
if (hcyl >= (heads * 1024)) {
secpt = 63;
heads = 16;
hcyl = sectors / secpt;
}
}
*c = hcyl / heads;
*h = heads;
*s = secpt;
}
/*
* Accessors
*/
off_t
blockif_size(struct blockif_ctxt *bc)
{
assert(bc->bc_magic == BLOCKIF_SIG);
return (bc->bc_size);
}
int
blockif_sectsz(struct blockif_ctxt *bc)
{
assert(bc->bc_magic == BLOCKIF_SIG);
return (bc->bc_sectsz);
}
void
blockif_psectsz(struct blockif_ctxt *bc, int *size, int *off)
{
assert(bc->bc_magic == BLOCKIF_SIG);
*size = bc->bc_psectsz;
*off = bc->bc_psectoff;
}
int
blockif_queuesz(struct blockif_ctxt *bc)
{
assert(bc->bc_magic == BLOCKIF_SIG);
return (BLOCKIF_MAXREQ - 1);
}
int
blockif_is_ro(struct blockif_ctxt *bc)
{
assert(bc->bc_magic == BLOCKIF_SIG);
return (bc->bc_rdonly);
}
int
blockif_candelete(struct blockif_ctxt *bc)
{
assert(bc->bc_magic == BLOCKIF_SIG);
return (bc->bc_candelete);
}