freebsd-nq/contrib/ntp/ntpd/ntp_control.c
2018-02-28 07:59:55 +00:00

5283 lines
123 KiB
C

/*
* ntp_control.c - respond to mode 6 control messages and send async
* traps. Provides service to ntpq and others.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdio.h>
#include <ctype.h>
#include <signal.h>
#include <sys/stat.h>
#ifdef HAVE_NETINET_IN_H
# include <netinet/in.h>
#endif
#include <arpa/inet.h>
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_control.h"
#include "ntp_unixtime.h"
#include "ntp_stdlib.h"
#include "ntp_config.h"
#include "ntp_crypto.h"
#include "ntp_assert.h"
#include "ntp_leapsec.h"
#include "ntp_md5.h" /* provides OpenSSL digest API */
#include "lib_strbuf.h"
#include <rc_cmdlength.h>
#ifdef KERNEL_PLL
# include "ntp_syscall.h"
#endif
/*
* Structure to hold request procedure information
*/
struct ctl_proc {
short control_code; /* defined request code */
#define NO_REQUEST (-1)
u_short flags; /* flags word */
/* Only one flag. Authentication required or not. */
#define NOAUTH 0
#define AUTH 1
void (*handler) (struct recvbuf *, int); /* handle request */
};
/*
* Request processing routines
*/
static void ctl_error (u_char);
#ifdef REFCLOCK
static u_short ctlclkstatus (struct refclockstat *);
#endif
static void ctl_flushpkt (u_char);
static void ctl_putdata (const char *, unsigned int, int);
static void ctl_putstr (const char *, const char *, size_t);
static void ctl_putdblf (const char *, int, int, double);
#define ctl_putdbl(tag, d) ctl_putdblf(tag, 1, 3, d)
#define ctl_putdbl6(tag, d) ctl_putdblf(tag, 1, 6, d)
#define ctl_putsfp(tag, sfp) ctl_putdblf(tag, 0, -1, \
FPTOD(sfp))
static void ctl_putuint (const char *, u_long);
static void ctl_puthex (const char *, u_long);
static void ctl_putint (const char *, long);
static void ctl_putts (const char *, l_fp *);
static void ctl_putadr (const char *, u_int32,
sockaddr_u *);
static void ctl_putrefid (const char *, u_int32);
static void ctl_putarray (const char *, double *, int);
static void ctl_putsys (int);
static void ctl_putpeer (int, struct peer *);
static void ctl_putfs (const char *, tstamp_t);
static void ctl_printf (const char *, ...) NTP_PRINTF(1, 2);
#ifdef REFCLOCK
static void ctl_putclock (int, struct refclockstat *, int);
#endif /* REFCLOCK */
static const struct ctl_var *ctl_getitem(const struct ctl_var *,
char **);
static u_short count_var (const struct ctl_var *);
static void control_unspec (struct recvbuf *, int);
static void read_status (struct recvbuf *, int);
static void read_sysvars (void);
static void read_peervars (void);
static void read_variables (struct recvbuf *, int);
static void write_variables (struct recvbuf *, int);
static void read_clockstatus(struct recvbuf *, int);
static void write_clockstatus(struct recvbuf *, int);
static void set_trap (struct recvbuf *, int);
static void save_config (struct recvbuf *, int);
static void configure (struct recvbuf *, int);
static void send_mru_entry (mon_entry *, int);
static void send_random_tag_value(int);
static void read_mru_list (struct recvbuf *, int);
static void send_ifstats_entry(endpt *, u_int);
static void read_ifstats (struct recvbuf *);
static void sockaddrs_from_restrict_u(sockaddr_u *, sockaddr_u *,
restrict_u *, int);
static void send_restrict_entry(restrict_u *, int, u_int);
static void send_restrict_list(restrict_u *, int, u_int *);
static void read_addr_restrictions(struct recvbuf *);
static void read_ordlist (struct recvbuf *, int);
static u_int32 derive_nonce (sockaddr_u *, u_int32, u_int32);
static void generate_nonce (struct recvbuf *, char *, size_t);
static int validate_nonce (const char *, struct recvbuf *);
static void req_nonce (struct recvbuf *, int);
static void unset_trap (struct recvbuf *, int);
static struct ctl_trap *ctlfindtrap(sockaddr_u *,
struct interface *);
int/*BOOL*/ is_safe_filename(const char * name);
static const struct ctl_proc control_codes[] = {
{ CTL_OP_UNSPEC, NOAUTH, control_unspec },
{ CTL_OP_READSTAT, NOAUTH, read_status },
{ CTL_OP_READVAR, NOAUTH, read_variables },
{ CTL_OP_WRITEVAR, AUTH, write_variables },
{ CTL_OP_READCLOCK, NOAUTH, read_clockstatus },
{ CTL_OP_WRITECLOCK, AUTH, write_clockstatus },
{ CTL_OP_SETTRAP, AUTH, set_trap },
{ CTL_OP_CONFIGURE, AUTH, configure },
{ CTL_OP_SAVECONFIG, AUTH, save_config },
{ CTL_OP_READ_MRU, NOAUTH, read_mru_list },
{ CTL_OP_READ_ORDLIST_A, AUTH, read_ordlist },
{ CTL_OP_REQ_NONCE, NOAUTH, req_nonce },
{ CTL_OP_UNSETTRAP, AUTH, unset_trap },
{ NO_REQUEST, 0, NULL }
};
/*
* System variables we understand
*/
#define CS_LEAP 1
#define CS_STRATUM 2
#define CS_PRECISION 3
#define CS_ROOTDELAY 4
#define CS_ROOTDISPERSION 5
#define CS_REFID 6
#define CS_REFTIME 7
#define CS_POLL 8
#define CS_PEERID 9
#define CS_OFFSET 10
#define CS_DRIFT 11
#define CS_JITTER 12
#define CS_ERROR 13
#define CS_CLOCK 14
#define CS_PROCESSOR 15
#define CS_SYSTEM 16
#define CS_VERSION 17
#define CS_STABIL 18
#define CS_VARLIST 19
#define CS_TAI 20
#define CS_LEAPTAB 21
#define CS_LEAPEND 22
#define CS_RATE 23
#define CS_MRU_ENABLED 24
#define CS_MRU_DEPTH 25
#define CS_MRU_DEEPEST 26
#define CS_MRU_MINDEPTH 27
#define CS_MRU_MAXAGE 28
#define CS_MRU_MAXDEPTH 29
#define CS_MRU_MEM 30
#define CS_MRU_MAXMEM 31
#define CS_SS_UPTIME 32
#define CS_SS_RESET 33
#define CS_SS_RECEIVED 34
#define CS_SS_THISVER 35
#define CS_SS_OLDVER 36
#define CS_SS_BADFORMAT 37
#define CS_SS_BADAUTH 38
#define CS_SS_DECLINED 39
#define CS_SS_RESTRICTED 40
#define CS_SS_LIMITED 41
#define CS_SS_KODSENT 42
#define CS_SS_PROCESSED 43
#define CS_SS_LAMPORT 44
#define CS_SS_TSROUNDING 45
#define CS_PEERADR 46
#define CS_PEERMODE 47
#define CS_BCASTDELAY 48
#define CS_AUTHDELAY 49
#define CS_AUTHKEYS 50
#define CS_AUTHFREEK 51
#define CS_AUTHKLOOKUPS 52
#define CS_AUTHKNOTFOUND 53
#define CS_AUTHKUNCACHED 54
#define CS_AUTHKEXPIRED 55
#define CS_AUTHENCRYPTS 56
#define CS_AUTHDECRYPTS 57
#define CS_AUTHRESET 58
#define CS_K_OFFSET 59
#define CS_K_FREQ 60
#define CS_K_MAXERR 61
#define CS_K_ESTERR 62
#define CS_K_STFLAGS 63
#define CS_K_TIMECONST 64
#define CS_K_PRECISION 65
#define CS_K_FREQTOL 66
#define CS_K_PPS_FREQ 67
#define CS_K_PPS_STABIL 68
#define CS_K_PPS_JITTER 69
#define CS_K_PPS_CALIBDUR 70
#define CS_K_PPS_CALIBS 71
#define CS_K_PPS_CALIBERRS 72
#define CS_K_PPS_JITEXC 73
#define CS_K_PPS_STBEXC 74
#define CS_KERN_FIRST CS_K_OFFSET
#define CS_KERN_LAST CS_K_PPS_STBEXC
#define CS_IOSTATS_RESET 75
#define CS_TOTAL_RBUF 76
#define CS_FREE_RBUF 77
#define CS_USED_RBUF 78
#define CS_RBUF_LOWATER 79
#define CS_IO_DROPPED 80
#define CS_IO_IGNORED 81
#define CS_IO_RECEIVED 82
#define CS_IO_SENT 83
#define CS_IO_SENDFAILED 84
#define CS_IO_WAKEUPS 85
#define CS_IO_GOODWAKEUPS 86
#define CS_TIMERSTATS_RESET 87
#define CS_TIMER_OVERRUNS 88
#define CS_TIMER_XMTS 89
#define CS_FUZZ 90
#define CS_WANDER_THRESH 91
#define CS_LEAPSMEARINTV 92
#define CS_LEAPSMEAROFFS 93
#define CS_MAX_NOAUTOKEY CS_LEAPSMEAROFFS
#ifdef AUTOKEY
#define CS_FLAGS (1 + CS_MAX_NOAUTOKEY)
#define CS_HOST (2 + CS_MAX_NOAUTOKEY)
#define CS_PUBLIC (3 + CS_MAX_NOAUTOKEY)
#define CS_CERTIF (4 + CS_MAX_NOAUTOKEY)
#define CS_SIGNATURE (5 + CS_MAX_NOAUTOKEY)
#define CS_REVTIME (6 + CS_MAX_NOAUTOKEY)
#define CS_IDENT (7 + CS_MAX_NOAUTOKEY)
#define CS_DIGEST (8 + CS_MAX_NOAUTOKEY)
#define CS_MAXCODE CS_DIGEST
#else /* !AUTOKEY follows */
#define CS_MAXCODE CS_MAX_NOAUTOKEY
#endif /* !AUTOKEY */
/*
* Peer variables we understand
*/
#define CP_CONFIG 1
#define CP_AUTHENABLE 2
#define CP_AUTHENTIC 3
#define CP_SRCADR 4
#define CP_SRCPORT 5
#define CP_DSTADR 6
#define CP_DSTPORT 7
#define CP_LEAP 8
#define CP_HMODE 9
#define CP_STRATUM 10
#define CP_PPOLL 11
#define CP_HPOLL 12
#define CP_PRECISION 13
#define CP_ROOTDELAY 14
#define CP_ROOTDISPERSION 15
#define CP_REFID 16
#define CP_REFTIME 17
#define CP_ORG 18
#define CP_REC 19
#define CP_XMT 20
#define CP_REACH 21
#define CP_UNREACH 22
#define CP_TIMER 23
#define CP_DELAY 24
#define CP_OFFSET 25
#define CP_JITTER 26
#define CP_DISPERSION 27
#define CP_KEYID 28
#define CP_FILTDELAY 29
#define CP_FILTOFFSET 30
#define CP_PMODE 31
#define CP_RECEIVED 32
#define CP_SENT 33
#define CP_FILTERROR 34
#define CP_FLASH 35
#define CP_TTL 36
#define CP_VARLIST 37
#define CP_IN 38
#define CP_OUT 39
#define CP_RATE 40
#define CP_BIAS 41
#define CP_SRCHOST 42
#define CP_TIMEREC 43
#define CP_TIMEREACH 44
#define CP_BADAUTH 45
#define CP_BOGUSORG 46
#define CP_OLDPKT 47
#define CP_SELDISP 48
#define CP_SELBROKEN 49
#define CP_CANDIDATE 50
#define CP_MAX_NOAUTOKEY CP_CANDIDATE
#ifdef AUTOKEY
#define CP_FLAGS (1 + CP_MAX_NOAUTOKEY)
#define CP_HOST (2 + CP_MAX_NOAUTOKEY)
#define CP_VALID (3 + CP_MAX_NOAUTOKEY)
#define CP_INITSEQ (4 + CP_MAX_NOAUTOKEY)
#define CP_INITKEY (5 + CP_MAX_NOAUTOKEY)
#define CP_INITTSP (6 + CP_MAX_NOAUTOKEY)
#define CP_SIGNATURE (7 + CP_MAX_NOAUTOKEY)
#define CP_IDENT (8 + CP_MAX_NOAUTOKEY)
#define CP_MAXCODE CP_IDENT
#else /* !AUTOKEY follows */
#define CP_MAXCODE CP_MAX_NOAUTOKEY
#endif /* !AUTOKEY */
/*
* Clock variables we understand
*/
#define CC_TYPE 1
#define CC_TIMECODE 2
#define CC_POLL 3
#define CC_NOREPLY 4
#define CC_BADFORMAT 5
#define CC_BADDATA 6
#define CC_FUDGETIME1 7
#define CC_FUDGETIME2 8
#define CC_FUDGEVAL1 9
#define CC_FUDGEVAL2 10
#define CC_FLAGS 11
#define CC_DEVICE 12
#define CC_VARLIST 13
#define CC_MAXCODE CC_VARLIST
/*
* System variable values. The array can be indexed by the variable
* index to find the textual name.
*/
static const struct ctl_var sys_var[] = {
{ 0, PADDING, "" }, /* 0 */
{ CS_LEAP, RW, "leap" }, /* 1 */
{ CS_STRATUM, RO, "stratum" }, /* 2 */
{ CS_PRECISION, RO, "precision" }, /* 3 */
{ CS_ROOTDELAY, RO, "rootdelay" }, /* 4 */
{ CS_ROOTDISPERSION, RO, "rootdisp" }, /* 5 */
{ CS_REFID, RO, "refid" }, /* 6 */
{ CS_REFTIME, RO, "reftime" }, /* 7 */
{ CS_POLL, RO, "tc" }, /* 8 */
{ CS_PEERID, RO, "peer" }, /* 9 */
{ CS_OFFSET, RO, "offset" }, /* 10 */
{ CS_DRIFT, RO, "frequency" }, /* 11 */
{ CS_JITTER, RO, "sys_jitter" }, /* 12 */
{ CS_ERROR, RO, "clk_jitter" }, /* 13 */
{ CS_CLOCK, RO, "clock" }, /* 14 */
{ CS_PROCESSOR, RO, "processor" }, /* 15 */
{ CS_SYSTEM, RO, "system" }, /* 16 */
{ CS_VERSION, RO, "version" }, /* 17 */
{ CS_STABIL, RO, "clk_wander" }, /* 18 */
{ CS_VARLIST, RO, "sys_var_list" }, /* 19 */
{ CS_TAI, RO, "tai" }, /* 20 */
{ CS_LEAPTAB, RO, "leapsec" }, /* 21 */
{ CS_LEAPEND, RO, "expire" }, /* 22 */
{ CS_RATE, RO, "mintc" }, /* 23 */
{ CS_MRU_ENABLED, RO, "mru_enabled" }, /* 24 */
{ CS_MRU_DEPTH, RO, "mru_depth" }, /* 25 */
{ CS_MRU_DEEPEST, RO, "mru_deepest" }, /* 26 */
{ CS_MRU_MINDEPTH, RO, "mru_mindepth" }, /* 27 */
{ CS_MRU_MAXAGE, RO, "mru_maxage" }, /* 28 */
{ CS_MRU_MAXDEPTH, RO, "mru_maxdepth" }, /* 29 */
{ CS_MRU_MEM, RO, "mru_mem" }, /* 30 */
{ CS_MRU_MAXMEM, RO, "mru_maxmem" }, /* 31 */
{ CS_SS_UPTIME, RO, "ss_uptime" }, /* 32 */
{ CS_SS_RESET, RO, "ss_reset" }, /* 33 */
{ CS_SS_RECEIVED, RO, "ss_received" }, /* 34 */
{ CS_SS_THISVER, RO, "ss_thisver" }, /* 35 */
{ CS_SS_OLDVER, RO, "ss_oldver" }, /* 36 */
{ CS_SS_BADFORMAT, RO, "ss_badformat" }, /* 37 */
{ CS_SS_BADAUTH, RO, "ss_badauth" }, /* 38 */
{ CS_SS_DECLINED, RO, "ss_declined" }, /* 39 */
{ CS_SS_RESTRICTED, RO, "ss_restricted" }, /* 40 */
{ CS_SS_LIMITED, RO, "ss_limited" }, /* 41 */
{ CS_SS_KODSENT, RO, "ss_kodsent" }, /* 42 */
{ CS_SS_PROCESSED, RO, "ss_processed" }, /* 43 */
{ CS_SS_LAMPORT, RO, "ss_lamport" }, /* 44 */
{ CS_SS_TSROUNDING, RO, "ss_tsrounding" }, /* 45 */
{ CS_PEERADR, RO, "peeradr" }, /* 46 */
{ CS_PEERMODE, RO, "peermode" }, /* 47 */
{ CS_BCASTDELAY, RO, "bcastdelay" }, /* 48 */
{ CS_AUTHDELAY, RO, "authdelay" }, /* 49 */
{ CS_AUTHKEYS, RO, "authkeys" }, /* 50 */
{ CS_AUTHFREEK, RO, "authfreek" }, /* 51 */
{ CS_AUTHKLOOKUPS, RO, "authklookups" }, /* 52 */
{ CS_AUTHKNOTFOUND, RO, "authknotfound" }, /* 53 */
{ CS_AUTHKUNCACHED, RO, "authkuncached" }, /* 54 */
{ CS_AUTHKEXPIRED, RO, "authkexpired" }, /* 55 */
{ CS_AUTHENCRYPTS, RO, "authencrypts" }, /* 56 */
{ CS_AUTHDECRYPTS, RO, "authdecrypts" }, /* 57 */
{ CS_AUTHRESET, RO, "authreset" }, /* 58 */
{ CS_K_OFFSET, RO, "koffset" }, /* 59 */
{ CS_K_FREQ, RO, "kfreq" }, /* 60 */
{ CS_K_MAXERR, RO, "kmaxerr" }, /* 61 */
{ CS_K_ESTERR, RO, "kesterr" }, /* 62 */
{ CS_K_STFLAGS, RO, "kstflags" }, /* 63 */
{ CS_K_TIMECONST, RO, "ktimeconst" }, /* 64 */
{ CS_K_PRECISION, RO, "kprecis" }, /* 65 */
{ CS_K_FREQTOL, RO, "kfreqtol" }, /* 66 */
{ CS_K_PPS_FREQ, RO, "kppsfreq" }, /* 67 */
{ CS_K_PPS_STABIL, RO, "kppsstab" }, /* 68 */
{ CS_K_PPS_JITTER, RO, "kppsjitter" }, /* 69 */
{ CS_K_PPS_CALIBDUR, RO, "kppscalibdur" }, /* 70 */
{ CS_K_PPS_CALIBS, RO, "kppscalibs" }, /* 71 */
{ CS_K_PPS_CALIBERRS, RO, "kppscaliberrs" }, /* 72 */
{ CS_K_PPS_JITEXC, RO, "kppsjitexc" }, /* 73 */
{ CS_K_PPS_STBEXC, RO, "kppsstbexc" }, /* 74 */
{ CS_IOSTATS_RESET, RO, "iostats_reset" }, /* 75 */
{ CS_TOTAL_RBUF, RO, "total_rbuf" }, /* 76 */
{ CS_FREE_RBUF, RO, "free_rbuf" }, /* 77 */
{ CS_USED_RBUF, RO, "used_rbuf" }, /* 78 */
{ CS_RBUF_LOWATER, RO, "rbuf_lowater" }, /* 79 */
{ CS_IO_DROPPED, RO, "io_dropped" }, /* 80 */
{ CS_IO_IGNORED, RO, "io_ignored" }, /* 81 */
{ CS_IO_RECEIVED, RO, "io_received" }, /* 82 */
{ CS_IO_SENT, RO, "io_sent" }, /* 83 */
{ CS_IO_SENDFAILED, RO, "io_sendfailed" }, /* 84 */
{ CS_IO_WAKEUPS, RO, "io_wakeups" }, /* 85 */
{ CS_IO_GOODWAKEUPS, RO, "io_goodwakeups" }, /* 86 */
{ CS_TIMERSTATS_RESET, RO, "timerstats_reset" },/* 87 */
{ CS_TIMER_OVERRUNS, RO, "timer_overruns" }, /* 88 */
{ CS_TIMER_XMTS, RO, "timer_xmts" }, /* 89 */
{ CS_FUZZ, RO, "fuzz" }, /* 90 */
{ CS_WANDER_THRESH, RO, "clk_wander_threshold" }, /* 91 */
{ CS_LEAPSMEARINTV, RO, "leapsmearinterval" }, /* 92 */
{ CS_LEAPSMEAROFFS, RO, "leapsmearoffset" }, /* 93 */
#ifdef AUTOKEY
{ CS_FLAGS, RO, "flags" }, /* 1 + CS_MAX_NOAUTOKEY */
{ CS_HOST, RO, "host" }, /* 2 + CS_MAX_NOAUTOKEY */
{ CS_PUBLIC, RO, "update" }, /* 3 + CS_MAX_NOAUTOKEY */
{ CS_CERTIF, RO, "cert" }, /* 4 + CS_MAX_NOAUTOKEY */
{ CS_SIGNATURE, RO, "signature" }, /* 5 + CS_MAX_NOAUTOKEY */
{ CS_REVTIME, RO, "until" }, /* 6 + CS_MAX_NOAUTOKEY */
{ CS_IDENT, RO, "ident" }, /* 7 + CS_MAX_NOAUTOKEY */
{ CS_DIGEST, RO, "digest" }, /* 8 + CS_MAX_NOAUTOKEY */
#endif /* AUTOKEY */
{ 0, EOV, "" } /* 94/102 */
};
static struct ctl_var *ext_sys_var = NULL;
/*
* System variables we print by default (in fuzzball order,
* more-or-less)
*/
static const u_char def_sys_var[] = {
CS_VERSION,
CS_PROCESSOR,
CS_SYSTEM,
CS_LEAP,
CS_STRATUM,
CS_PRECISION,
CS_ROOTDELAY,
CS_ROOTDISPERSION,
CS_REFID,
CS_REFTIME,
CS_CLOCK,
CS_PEERID,
CS_POLL,
CS_RATE,
CS_OFFSET,
CS_DRIFT,
CS_JITTER,
CS_ERROR,
CS_STABIL,
CS_TAI,
CS_LEAPTAB,
CS_LEAPEND,
CS_LEAPSMEARINTV,
CS_LEAPSMEAROFFS,
#ifdef AUTOKEY
CS_HOST,
CS_IDENT,
CS_FLAGS,
CS_DIGEST,
CS_SIGNATURE,
CS_PUBLIC,
CS_CERTIF,
#endif /* AUTOKEY */
0
};
/*
* Peer variable list
*/
static const struct ctl_var peer_var[] = {
{ 0, PADDING, "" }, /* 0 */
{ CP_CONFIG, RO, "config" }, /* 1 */
{ CP_AUTHENABLE, RO, "authenable" }, /* 2 */
{ CP_AUTHENTIC, RO, "authentic" }, /* 3 */
{ CP_SRCADR, RO, "srcadr" }, /* 4 */
{ CP_SRCPORT, RO, "srcport" }, /* 5 */
{ CP_DSTADR, RO, "dstadr" }, /* 6 */
{ CP_DSTPORT, RO, "dstport" }, /* 7 */
{ CP_LEAP, RO, "leap" }, /* 8 */
{ CP_HMODE, RO, "hmode" }, /* 9 */
{ CP_STRATUM, RO, "stratum" }, /* 10 */
{ CP_PPOLL, RO, "ppoll" }, /* 11 */
{ CP_HPOLL, RO, "hpoll" }, /* 12 */
{ CP_PRECISION, RO, "precision" }, /* 13 */
{ CP_ROOTDELAY, RO, "rootdelay" }, /* 14 */
{ CP_ROOTDISPERSION, RO, "rootdisp" }, /* 15 */
{ CP_REFID, RO, "refid" }, /* 16 */
{ CP_REFTIME, RO, "reftime" }, /* 17 */
{ CP_ORG, RO, "org" }, /* 18 */
{ CP_REC, RO, "rec" }, /* 19 */
{ CP_XMT, RO, "xleave" }, /* 20 */
{ CP_REACH, RO, "reach" }, /* 21 */
{ CP_UNREACH, RO, "unreach" }, /* 22 */
{ CP_TIMER, RO, "timer" }, /* 23 */
{ CP_DELAY, RO, "delay" }, /* 24 */
{ CP_OFFSET, RO, "offset" }, /* 25 */
{ CP_JITTER, RO, "jitter" }, /* 26 */
{ CP_DISPERSION, RO, "dispersion" }, /* 27 */
{ CP_KEYID, RO, "keyid" }, /* 28 */
{ CP_FILTDELAY, RO, "filtdelay" }, /* 29 */
{ CP_FILTOFFSET, RO, "filtoffset" }, /* 30 */
{ CP_PMODE, RO, "pmode" }, /* 31 */
{ CP_RECEIVED, RO, "received"}, /* 32 */
{ CP_SENT, RO, "sent" }, /* 33 */
{ CP_FILTERROR, RO, "filtdisp" }, /* 34 */
{ CP_FLASH, RO, "flash" }, /* 35 */
{ CP_TTL, RO, "ttl" }, /* 36 */
{ CP_VARLIST, RO, "peer_var_list" }, /* 37 */
{ CP_IN, RO, "in" }, /* 38 */
{ CP_OUT, RO, "out" }, /* 39 */
{ CP_RATE, RO, "headway" }, /* 40 */
{ CP_BIAS, RO, "bias" }, /* 41 */
{ CP_SRCHOST, RO, "srchost" }, /* 42 */
{ CP_TIMEREC, RO, "timerec" }, /* 43 */
{ CP_TIMEREACH, RO, "timereach" }, /* 44 */
{ CP_BADAUTH, RO, "badauth" }, /* 45 */
{ CP_BOGUSORG, RO, "bogusorg" }, /* 46 */
{ CP_OLDPKT, RO, "oldpkt" }, /* 47 */
{ CP_SELDISP, RO, "seldisp" }, /* 48 */
{ CP_SELBROKEN, RO, "selbroken" }, /* 49 */
{ CP_CANDIDATE, RO, "candidate" }, /* 50 */
#ifdef AUTOKEY
{ CP_FLAGS, RO, "flags" }, /* 1 + CP_MAX_NOAUTOKEY */
{ CP_HOST, RO, "host" }, /* 2 + CP_MAX_NOAUTOKEY */
{ CP_VALID, RO, "valid" }, /* 3 + CP_MAX_NOAUTOKEY */
{ CP_INITSEQ, RO, "initsequence" }, /* 4 + CP_MAX_NOAUTOKEY */
{ CP_INITKEY, RO, "initkey" }, /* 5 + CP_MAX_NOAUTOKEY */
{ CP_INITTSP, RO, "timestamp" }, /* 6 + CP_MAX_NOAUTOKEY */
{ CP_SIGNATURE, RO, "signature" }, /* 7 + CP_MAX_NOAUTOKEY */
{ CP_IDENT, RO, "ident" }, /* 8 + CP_MAX_NOAUTOKEY */
#endif /* AUTOKEY */
{ 0, EOV, "" } /* 50/58 */
};
/*
* Peer variables we print by default
*/
static const u_char def_peer_var[] = {
CP_SRCADR,
CP_SRCPORT,
CP_SRCHOST,
CP_DSTADR,
CP_DSTPORT,
CP_OUT,
CP_IN,
CP_LEAP,
CP_STRATUM,
CP_PRECISION,
CP_ROOTDELAY,
CP_ROOTDISPERSION,
CP_REFID,
CP_REFTIME,
CP_REC,
CP_REACH,
CP_UNREACH,
CP_HMODE,
CP_PMODE,
CP_HPOLL,
CP_PPOLL,
CP_RATE,
CP_FLASH,
CP_KEYID,
CP_TTL,
CP_OFFSET,
CP_DELAY,
CP_DISPERSION,
CP_JITTER,
CP_XMT,
CP_BIAS,
CP_FILTDELAY,
CP_FILTOFFSET,
CP_FILTERROR,
#ifdef AUTOKEY
CP_HOST,
CP_FLAGS,
CP_SIGNATURE,
CP_VALID,
CP_INITSEQ,
CP_IDENT,
#endif /* AUTOKEY */
0
};
#ifdef REFCLOCK
/*
* Clock variable list
*/
static const struct ctl_var clock_var[] = {
{ 0, PADDING, "" }, /* 0 */
{ CC_TYPE, RO, "type" }, /* 1 */
{ CC_TIMECODE, RO, "timecode" }, /* 2 */
{ CC_POLL, RO, "poll" }, /* 3 */
{ CC_NOREPLY, RO, "noreply" }, /* 4 */
{ CC_BADFORMAT, RO, "badformat" }, /* 5 */
{ CC_BADDATA, RO, "baddata" }, /* 6 */
{ CC_FUDGETIME1, RO, "fudgetime1" }, /* 7 */
{ CC_FUDGETIME2, RO, "fudgetime2" }, /* 8 */
{ CC_FUDGEVAL1, RO, "stratum" }, /* 9 */
{ CC_FUDGEVAL2, RO, "refid" }, /* 10 */
{ CC_FLAGS, RO, "flags" }, /* 11 */
{ CC_DEVICE, RO, "device" }, /* 12 */
{ CC_VARLIST, RO, "clock_var_list" }, /* 13 */
{ 0, EOV, "" } /* 14 */
};
/*
* Clock variables printed by default
*/
static const u_char def_clock_var[] = {
CC_DEVICE,
CC_TYPE, /* won't be output if device = known */
CC_TIMECODE,
CC_POLL,
CC_NOREPLY,
CC_BADFORMAT,
CC_BADDATA,
CC_FUDGETIME1,
CC_FUDGETIME2,
CC_FUDGEVAL1,
CC_FUDGEVAL2,
CC_FLAGS,
0
};
#endif
/*
* MRU string constants shared by send_mru_entry() and read_mru_list().
*/
static const char addr_fmt[] = "addr.%d";
static const char last_fmt[] = "last.%d";
/*
* System and processor definitions.
*/
#ifndef HAVE_UNAME
# ifndef STR_SYSTEM
# define STR_SYSTEM "UNIX"
# endif
# ifndef STR_PROCESSOR
# define STR_PROCESSOR "unknown"
# endif
static const char str_system[] = STR_SYSTEM;
static const char str_processor[] = STR_PROCESSOR;
#else
# include <sys/utsname.h>
static struct utsname utsnamebuf;
#endif /* HAVE_UNAME */
/*
* Trap structures. We only allow a few of these, and send a copy of
* each async message to each live one. Traps time out after an hour, it
* is up to the trap receipient to keep resetting it to avoid being
* timed out.
*/
/* ntp_request.c */
struct ctl_trap ctl_traps[CTL_MAXTRAPS];
int num_ctl_traps;
/*
* Type bits, for ctlsettrap() call.
*/
#define TRAP_TYPE_CONFIG 0 /* used by configuration code */
#define TRAP_TYPE_PRIO 1 /* priority trap */
#define TRAP_TYPE_NONPRIO 2 /* nonpriority trap */
/*
* List relating reference clock types to control message time sources.
* Index by the reference clock type. This list will only be used iff
* the reference clock driver doesn't set peer->sstclktype to something
* different than CTL_SST_TS_UNSPEC.
*/
#ifdef REFCLOCK
static const u_char clocktypes[] = {
CTL_SST_TS_NTP, /* REFCLK_NONE (0) */
CTL_SST_TS_LOCAL, /* REFCLK_LOCALCLOCK (1) */
CTL_SST_TS_UHF, /* deprecated REFCLK_GPS_TRAK (2) */
CTL_SST_TS_HF, /* REFCLK_WWV_PST (3) */
CTL_SST_TS_LF, /* REFCLK_WWVB_SPECTRACOM (4) */
CTL_SST_TS_UHF, /* REFCLK_TRUETIME (5) */
CTL_SST_TS_UHF, /* REFCLK_IRIG_AUDIO (6) */
CTL_SST_TS_HF, /* REFCLK_CHU (7) */
CTL_SST_TS_LF, /* REFCLOCK_PARSE (default) (8) */
CTL_SST_TS_LF, /* REFCLK_GPS_MX4200 (9) */
CTL_SST_TS_UHF, /* REFCLK_GPS_AS2201 (10) */
CTL_SST_TS_UHF, /* REFCLK_GPS_ARBITER (11) */
CTL_SST_TS_UHF, /* REFCLK_IRIG_TPRO (12) */
CTL_SST_TS_ATOM, /* REFCLK_ATOM_LEITCH (13) */
CTL_SST_TS_LF, /* deprecated REFCLK_MSF_EES (14) */
CTL_SST_TS_NTP, /* not used (15) */
CTL_SST_TS_UHF, /* REFCLK_IRIG_BANCOMM (16) */
CTL_SST_TS_UHF, /* REFCLK_GPS_DATU (17) */
CTL_SST_TS_TELEPHONE, /* REFCLK_NIST_ACTS (18) */
CTL_SST_TS_HF, /* REFCLK_WWV_HEATH (19) */
CTL_SST_TS_UHF, /* REFCLK_GPS_NMEA (20) */
CTL_SST_TS_UHF, /* REFCLK_GPS_VME (21) */
CTL_SST_TS_ATOM, /* REFCLK_ATOM_PPS (22) */
CTL_SST_TS_NTP, /* not used (23) */
CTL_SST_TS_NTP, /* not used (24) */
CTL_SST_TS_NTP, /* not used (25) */
CTL_SST_TS_UHF, /* REFCLK_GPS_HP (26) */
CTL_SST_TS_LF, /* REFCLK_ARCRON_MSF (27) */
CTL_SST_TS_UHF, /* REFCLK_SHM (28) */
CTL_SST_TS_UHF, /* REFCLK_PALISADE (29) */
CTL_SST_TS_UHF, /* REFCLK_ONCORE (30) */
CTL_SST_TS_UHF, /* REFCLK_JUPITER (31) */
CTL_SST_TS_LF, /* REFCLK_CHRONOLOG (32) */
CTL_SST_TS_LF, /* REFCLK_DUMBCLOCK (33) */
CTL_SST_TS_LF, /* REFCLK_ULINK (34) */
CTL_SST_TS_LF, /* REFCLK_PCF (35) */
CTL_SST_TS_HF, /* REFCLK_WWV (36) */
CTL_SST_TS_LF, /* REFCLK_FG (37) */
CTL_SST_TS_UHF, /* REFCLK_HOPF_SERIAL (38) */
CTL_SST_TS_UHF, /* REFCLK_HOPF_PCI (39) */
CTL_SST_TS_LF, /* REFCLK_JJY (40) */
CTL_SST_TS_UHF, /* REFCLK_TT560 (41) */
CTL_SST_TS_UHF, /* REFCLK_ZYFER (42) */
CTL_SST_TS_UHF, /* REFCLK_RIPENCC (43) */
CTL_SST_TS_UHF, /* REFCLK_NEOCLOCK4X (44) */
CTL_SST_TS_UHF, /* REFCLK_TSYNCPCI (45) */
CTL_SST_TS_UHF /* REFCLK_GPSDJSON (46) */
};
#endif /* REFCLOCK */
/*
* Keyid used for authenticating write requests.
*/
keyid_t ctl_auth_keyid;
/*
* We keep track of the last error reported by the system internally
*/
static u_char ctl_sys_last_event;
static u_char ctl_sys_num_events;
/*
* Statistic counters to keep track of requests and responses.
*/
u_long ctltimereset; /* time stats reset */
u_long numctlreq; /* number of requests we've received */
u_long numctlbadpkts; /* number of bad control packets */
u_long numctlresponses; /* number of resp packets sent with data */
u_long numctlfrags; /* number of fragments sent */
u_long numctlerrors; /* number of error responses sent */
u_long numctltooshort; /* number of too short input packets */
u_long numctlinputresp; /* number of responses on input */
u_long numctlinputfrag; /* number of fragments on input */
u_long numctlinputerr; /* number of input pkts with err bit set */
u_long numctlbadoffset; /* number of input pkts with nonzero offset */
u_long numctlbadversion; /* number of input pkts with unknown version */
u_long numctldatatooshort; /* data too short for count */
u_long numctlbadop; /* bad op code found in packet */
u_long numasyncmsgs; /* number of async messages we've sent */
/*
* Response packet used by these routines. Also some state information
* so that we can handle packet formatting within a common set of
* subroutines. Note we try to enter data in place whenever possible,
* but the need to set the more bit correctly means we occasionally
* use the extra buffer and copy.
*/
static struct ntp_control rpkt;
static u_char res_version;
static u_char res_opcode;
static associd_t res_associd;
static u_short res_frags; /* datagrams in this response */
static int res_offset; /* offset of payload in response */
static u_char * datapt;
static u_char * dataend;
static int datalinelen;
static int datasent; /* flag to avoid initial ", " */
static int datanotbinflag;
static sockaddr_u *rmt_addr;
static struct interface *lcl_inter;
static u_char res_authenticate;
static u_char res_authokay;
static keyid_t res_keyid;
#define MAXDATALINELEN (72)
static u_char res_async; /* sending async trap response? */
/*
* Pointers for saving state when decoding request packets
*/
static char *reqpt;
static char *reqend;
#ifndef MIN
#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
#endif
/*
* init_control - initialize request data
*/
void
init_control(void)
{
size_t i;
#ifdef HAVE_UNAME
uname(&utsnamebuf);
#endif /* HAVE_UNAME */
ctl_clr_stats();
ctl_auth_keyid = 0;
ctl_sys_last_event = EVNT_UNSPEC;
ctl_sys_num_events = 0;
num_ctl_traps = 0;
for (i = 0; i < COUNTOF(ctl_traps); i++)
ctl_traps[i].tr_flags = 0;
}
/*
* ctl_error - send an error response for the current request
*/
static void
ctl_error(
u_char errcode
)
{
size_t maclen;
numctlerrors++;
DPRINTF(3, ("sending control error %u\n", errcode));
/*
* Fill in the fields. We assume rpkt.sequence and rpkt.associd
* have already been filled in.
*/
rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
(res_opcode & CTL_OP_MASK);
rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
rpkt.count = 0;
/*
* send packet and bump counters
*/
if (res_authenticate && sys_authenticate) {
maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
CTL_HEADER_LEN);
sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
CTL_HEADER_LEN + maclen);
} else
sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
CTL_HEADER_LEN);
}
int/*BOOL*/
is_safe_filename(const char * name)
{
/* We need a strict validation of filenames we should write: The
* daemon might run with special permissions and is remote
* controllable, so we better take care what we allow as file
* name!
*
* The first character must be digit or a letter from the ASCII
* base plane or a '_' ([_A-Za-z0-9]), the following characters
* must be from [-._+A-Za-z0-9].
*
* We do not trust the character classification much here: Since
* the NTP protocol makes no provisions for UTF-8 or local code
* pages, we strictly require the 7bit ASCII code page.
*
* The following table is a packed bit field of 128 two-bit
* groups. The LSB in each group tells us if a character is
* acceptable at the first position, the MSB if the character is
* accepted at any other position.
*
* This does not ensure that the file name is syntactically
* correct (multiple dots will not work with VMS...) but it will
* exclude potential globbing bombs and directory traversal. It
* also rules out drive selection. (For systems that have this
* notion, like Windows or VMS.)
*/
static const uint32_t chclass[8] = {
0x00000000, 0x00000000,
0x28800000, 0x000FFFFF,
0xFFFFFFFC, 0xC03FFFFF,
0xFFFFFFFC, 0x003FFFFF
};
u_int widx, bidx, mask;
if ( ! (name && *name))
return FALSE;
mask = 1u;
while (0 != (widx = (u_char)*name++)) {
bidx = (widx & 15) << 1;
widx = widx >> 4;
if (widx >= sizeof(chclass)/sizeof(chclass[0]))
return FALSE;
if (0 == ((chclass[widx] >> bidx) & mask))
return FALSE;
mask = 2u;
}
return TRUE;
}
/*
* save_config - Implements ntpq -c "saveconfig <filename>"
* Writes current configuration including any runtime
* changes by ntpq's :config or config-from-file
*
* Note: There should be no buffer overflow or truncation in the
* processing of file names -- both cause security problems. This is bit
* painful to code but essential here.
*/
void
save_config(
struct recvbuf *rbufp,
int restrict_mask
)
{
/* block directory traversal by searching for characters that
* indicate directory components in a file path.
*
* Conceptually we should be searching for DIRSEP in filename,
* however Windows actually recognizes both forward and
* backslashes as equivalent directory separators at the API
* level. On POSIX systems we could allow '\\' but such
* filenames are tricky to manipulate from a shell, so just
* reject both types of slashes on all platforms.
*/
/* TALOS-CAN-0062: block directory traversal for VMS, too */
static const char * illegal_in_filename =
#if defined(VMS)
":[]" /* do not allow drive and path components here */
#elif defined(SYS_WINNT)
":\\/" /* path and drive separators */
#else
"\\/" /* separator and critical char for POSIX */
#endif
;
char reply[128];
#ifdef SAVECONFIG
static const char savedconfig_eq[] = "savedconfig=";
/* Build a safe open mode from the available mode flags. We want
* to create a new file and write it in text mode (when
* applicable -- only Windows does this...)
*/
static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
# if defined(O_EXCL) /* posix, vms */
| O_EXCL
# elif defined(_O_EXCL) /* windows is alway very special... */
| _O_EXCL
# endif
# if defined(_O_TEXT) /* windows, again */
| _O_TEXT
#endif
;
char filespec[128];
char filename[128];
char fullpath[512];
char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
time_t now;
int fd;
FILE *fptr;
int prc;
size_t reqlen;
#endif
if (RES_NOMODIFY & restrict_mask) {
ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
ctl_flushpkt(0);
NLOG(NLOG_SYSINFO)
msyslog(LOG_NOTICE,
"saveconfig from %s rejected due to nomodify restriction",
stoa(&rbufp->recv_srcadr));
sys_restricted++;
return;
}
#ifdef SAVECONFIG
if (NULL == saveconfigdir) {
ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
ctl_flushpkt(0);
NLOG(NLOG_SYSINFO)
msyslog(LOG_NOTICE,
"saveconfig from %s rejected, no saveconfigdir",
stoa(&rbufp->recv_srcadr));
return;
}
/* The length checking stuff gets serious. Do not assume a NUL
* byte can be found, but if so, use it to calculate the needed
* buffer size. If the available buffer is too short, bail out;
* likewise if there is no file spec. (The latter will not
* happen when using NTPQ, but there are other ways to craft a
* network packet!)
*/
reqlen = (size_t)(reqend - reqpt);
if (0 != reqlen) {
char * nulpos = (char*)memchr(reqpt, 0, reqlen);
if (NULL != nulpos)
reqlen = (size_t)(nulpos - reqpt);
}
if (0 == reqlen)
return;
if (reqlen >= sizeof(filespec)) {
ctl_printf("saveconfig exceeded maximum raw name length (%u)",
(u_int)sizeof(filespec));
ctl_flushpkt(0);
msyslog(LOG_NOTICE,
"saveconfig exceeded maximum raw name length from %s",
stoa(&rbufp->recv_srcadr));
return;
}
/* copy data directly as we exactly know the size */
memcpy(filespec, reqpt, reqlen);
filespec[reqlen] = '\0';
/*
* allow timestamping of the saved config filename with
* strftime() format such as:
* ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
* XXX: Nice feature, but not too safe.
* YYY: The check for permitted characters in file names should
* weed out the worst. Let's hope 'strftime()' does not
* develop pathological problems.
*/
time(&now);
if (0 == strftime(filename, sizeof(filename), filespec,
localtime(&now)))
{
/*
* If we arrive here, 'strftime()' balked; most likely
* the buffer was too short. (Or it encounterd an empty
* format, or just a format that expands to an empty
* string.) We try to use the original name, though this
* is very likely to fail later if there are format
* specs in the string. Note that truncation cannot
* happen here as long as both buffers have the same
* size!
*/
strlcpy(filename, filespec, sizeof(filename));
}
/*
* Check the file name for sanity. This might/will rule out file
* names that would be legal but problematic, and it blocks
* directory traversal.
*/
if (!is_safe_filename(filename)) {
ctl_printf("saveconfig rejects unsafe file name '%s'",
filename);
ctl_flushpkt(0);
msyslog(LOG_NOTICE,
"saveconfig rejects unsafe file name from %s",
stoa(&rbufp->recv_srcadr));
return;
}
/*
* XXX: This next test may not be needed with is_safe_filename()
*/
/* block directory/drive traversal */
/* TALOS-CAN-0062: block directory traversal for VMS, too */
if (NULL != strpbrk(filename, illegal_in_filename)) {
snprintf(reply, sizeof(reply),
"saveconfig does not allow directory in filename");
ctl_putdata(reply, strlen(reply), 0);
ctl_flushpkt(0);
msyslog(LOG_NOTICE,
"saveconfig rejects unsafe file name from %s",
stoa(&rbufp->recv_srcadr));
return;
}
/* concatenation of directory and path can cause another
* truncation...
*/
prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
saveconfigdir, filename);
if (prc < 0 || prc >= sizeof(fullpath)) {
ctl_printf("saveconfig exceeded maximum path length (%u)",
(u_int)sizeof(fullpath));
ctl_flushpkt(0);
msyslog(LOG_NOTICE,
"saveconfig exceeded maximum path length from %s",
stoa(&rbufp->recv_srcadr));
return;
}
fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
if (-1 == fd)
fptr = NULL;
else
fptr = fdopen(fd, "w");
if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
ctl_printf("Unable to save configuration to file '%s': %m",
filename);
msyslog(LOG_ERR,
"saveconfig %s from %s failed", filename,
stoa(&rbufp->recv_srcadr));
} else {
ctl_printf("Configuration saved to '%s'", filename);
msyslog(LOG_NOTICE,
"Configuration saved to '%s' (requested by %s)",
fullpath, stoa(&rbufp->recv_srcadr));
/*
* save the output filename in system variable
* savedconfig, retrieved with:
* ntpq -c "rv 0 savedconfig"
* Note: the way 'savedconfig' is defined makes overflow
* checks unnecessary here.
*/
snprintf(savedconfig, sizeof(savedconfig), "%s%s",
savedconfig_eq, filename);
set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
}
if (NULL != fptr)
fclose(fptr);
#else /* !SAVECONFIG follows */
ctl_printf("%s",
"saveconfig unavailable, configured with --disable-saveconfig");
#endif
ctl_flushpkt(0);
}
/*
* process_control - process an incoming control message
*/
void
process_control(
struct recvbuf *rbufp,
int restrict_mask
)
{
struct ntp_control *pkt;
int req_count;
int req_data;
const struct ctl_proc *cc;
keyid_t *pkid;
int properlen;
size_t maclen;
DPRINTF(3, ("in process_control()\n"));
/*
* Save the addresses for error responses
*/
numctlreq++;
rmt_addr = &rbufp->recv_srcadr;
lcl_inter = rbufp->dstadr;
pkt = (struct ntp_control *)&rbufp->recv_pkt;
/*
* If the length is less than required for the header, or
* it is a response or a fragment, ignore this.
*/
if (rbufp->recv_length < (int)CTL_HEADER_LEN
|| (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
|| pkt->offset != 0) {
DPRINTF(1, ("invalid format in control packet\n"));
if (rbufp->recv_length < (int)CTL_HEADER_LEN)
numctltooshort++;
if (CTL_RESPONSE & pkt->r_m_e_op)
numctlinputresp++;
if (CTL_MORE & pkt->r_m_e_op)
numctlinputfrag++;
if (CTL_ERROR & pkt->r_m_e_op)
numctlinputerr++;
if (pkt->offset != 0)
numctlbadoffset++;
return;
}
res_version = PKT_VERSION(pkt->li_vn_mode);
if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
DPRINTF(1, ("unknown version %d in control packet\n",
res_version));
numctlbadversion++;
return;
}
/*
* Pull enough data from the packet to make intelligent
* responses
*/
rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
MODE_CONTROL);
res_opcode = pkt->r_m_e_op;
rpkt.sequence = pkt->sequence;
rpkt.associd = pkt->associd;
rpkt.status = 0;
res_frags = 1;
res_offset = 0;
res_associd = htons(pkt->associd);
res_async = FALSE;
res_authenticate = FALSE;
res_keyid = 0;
res_authokay = FALSE;
req_count = (int)ntohs(pkt->count);
datanotbinflag = FALSE;
datalinelen = 0;
datasent = 0;
datapt = rpkt.u.data;
dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
if ((rbufp->recv_length & 0x3) != 0)
DPRINTF(3, ("Control packet length %d unrounded\n",
rbufp->recv_length));
/*
* We're set up now. Make sure we've got at least enough
* incoming data space to match the count.
*/
req_data = rbufp->recv_length - CTL_HEADER_LEN;
if (req_data < req_count || rbufp->recv_length & 0x3) {
ctl_error(CERR_BADFMT);
numctldatatooshort++;
return;
}
properlen = req_count + CTL_HEADER_LEN;
/* round up proper len to a 8 octet boundary */
properlen = (properlen + 7) & ~7;
maclen = rbufp->recv_length - properlen;
if ((rbufp->recv_length & 3) == 0 &&
maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
sys_authenticate) {
res_authenticate = TRUE;
pkid = (void *)((char *)pkt + properlen);
res_keyid = ntohl(*pkid);
DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
rbufp->recv_length, properlen, res_keyid,
maclen));
if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
else if (authdecrypt(res_keyid, (u_int32 *)pkt,
rbufp->recv_length - maclen,
maclen)) {
res_authokay = TRUE;
DPRINTF(3, ("authenticated okay\n"));
} else {
res_keyid = 0;
DPRINTF(3, ("authentication failed\n"));
}
}
/*
* Set up translate pointers
*/
reqpt = (char *)pkt->u.data;
reqend = reqpt + req_count;
/*
* Look for the opcode processor
*/
for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
if (cc->control_code == res_opcode) {
DPRINTF(3, ("opcode %d, found command handler\n",
res_opcode));
if (cc->flags == AUTH
&& (!res_authokay
|| res_keyid != ctl_auth_keyid)) {
ctl_error(CERR_PERMISSION);
return;
}
(cc->handler)(rbufp, restrict_mask);
return;
}
}
/*
* Can't find this one, return an error.
*/
numctlbadop++;
ctl_error(CERR_BADOP);
return;
}
/*
* ctlpeerstatus - return a status word for this peer
*/
u_short
ctlpeerstatus(
register struct peer *p
)
{
u_short status;
status = p->status;
if (FLAG_CONFIG & p->flags)
status |= CTL_PST_CONFIG;
if (p->keyid)
status |= CTL_PST_AUTHENABLE;
if (FLAG_AUTHENTIC & p->flags)
status |= CTL_PST_AUTHENTIC;
if (p->reach)
status |= CTL_PST_REACH;
if (MDF_TXONLY_MASK & p->cast_flags)
status |= CTL_PST_BCAST;
return CTL_PEER_STATUS(status, p->num_events, p->last_event);
}
/*
* ctlclkstatus - return a status word for this clock
*/
#ifdef REFCLOCK
static u_short
ctlclkstatus(
struct refclockstat *pcs
)
{
return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
}
#endif
/*
* ctlsysstatus - return the system status word
*/
u_short
ctlsysstatus(void)
{
register u_char this_clock;
this_clock = CTL_SST_TS_UNSPEC;
#ifdef REFCLOCK
if (sys_peer != NULL) {
if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
this_clock = sys_peer->sstclktype;
else if (sys_peer->refclktype < COUNTOF(clocktypes))
this_clock = clocktypes[sys_peer->refclktype];
}
#else /* REFCLOCK */
if (sys_peer != 0)
this_clock = CTL_SST_TS_NTP;
#endif /* REFCLOCK */
return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
ctl_sys_last_event);
}
/*
* ctl_flushpkt - write out the current packet and prepare
* another if necessary.
*/
static void
ctl_flushpkt(
u_char more
)
{
size_t i;
size_t dlen;
size_t sendlen;
size_t maclen;
size_t totlen;
keyid_t keyid;
dlen = datapt - rpkt.u.data;
if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
/*
* Big hack, output a trailing \r\n
*/
*datapt++ = '\r';
*datapt++ = '\n';
dlen += 2;
}
sendlen = dlen + CTL_HEADER_LEN;
/*
* Pad to a multiple of 32 bits
*/
while (sendlen & 0x3) {
*datapt++ = '\0';
sendlen++;
}
/*
* Fill in the packet with the current info
*/
rpkt.r_m_e_op = CTL_RESPONSE | more |
(res_opcode & CTL_OP_MASK);
rpkt.count = htons((u_short)dlen);
rpkt.offset = htons((u_short)res_offset);
if (res_async) {
for (i = 0; i < COUNTOF(ctl_traps); i++) {
if (TRAP_INUSE & ctl_traps[i].tr_flags) {
rpkt.li_vn_mode =
PKT_LI_VN_MODE(
sys_leap,
ctl_traps[i].tr_version,
MODE_CONTROL);
rpkt.sequence =
htons(ctl_traps[i].tr_sequence);
sendpkt(&ctl_traps[i].tr_addr,
ctl_traps[i].tr_localaddr, -4,
(struct pkt *)&rpkt, sendlen);
if (!more)
ctl_traps[i].tr_sequence++;
numasyncmsgs++;
}
}
} else {
if (res_authenticate && sys_authenticate) {
totlen = sendlen;
/*
* If we are going to authenticate, then there
* is an additional requirement that the MAC
* begin on a 64 bit boundary.
*/
while (totlen & 7) {
*datapt++ = '\0';
totlen++;
}
keyid = htonl(res_keyid);
memcpy(datapt, &keyid, sizeof(keyid));
maclen = authencrypt(res_keyid,
(u_int32 *)&rpkt, totlen);
sendpkt(rmt_addr, lcl_inter, -5,
(struct pkt *)&rpkt, totlen + maclen);
} else {
sendpkt(rmt_addr, lcl_inter, -6,
(struct pkt *)&rpkt, sendlen);
}
if (more)
numctlfrags++;
else
numctlresponses++;
}
/*
* Set us up for another go around.
*/
res_frags++;
res_offset += dlen;
datapt = rpkt.u.data;
}
/* --------------------------------------------------------------------
* block transfer API -- stream string/data fragments into xmit buffer
* without additional copying
*/
/* buffer descriptor: address & size of fragment
* 'buf' may only be NULL when 'len' is zero!
*/
typedef struct {
const void *buf;
size_t len;
} CtlMemBufT;
/* put ctl data in a gather-style operation */
static void
ctl_putdata_ex(
const CtlMemBufT * argv,
size_t argc,
int/*BOOL*/ bin /* set to 1 when data is binary */
)
{
const char * src_ptr;
size_t src_len, cur_len, add_len, argi;
/* text / binary preprocessing, possibly create new linefeed */
if (bin) {
add_len = 0;
} else {
datanotbinflag = TRUE;
add_len = 3;
if (datasent) {
*datapt++ = ',';
datalinelen++;
/* sum up total length */
for (argi = 0, src_len = 0; argi < argc; ++argi)
src_len += argv[argi].len;
/* possibly start a new line, assume no size_t overflow */
if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
*datapt++ = '\r';
*datapt++ = '\n';
datalinelen = 0;
} else {
*datapt++ = ' ';
datalinelen++;
}
}
}
/* now stream out all buffers */
for (argi = 0; argi < argc; ++argi) {
src_ptr = argv[argi].buf;
src_len = argv[argi].len;
if ( ! (src_ptr && src_len))
continue;
cur_len = (size_t)(dataend - datapt);
while ((src_len + add_len) > cur_len) {
/* Not enough room in this one, flush it out. */
if (src_len < cur_len)
cur_len = src_len;
memcpy(datapt, src_ptr, cur_len);
datapt += cur_len;
datalinelen += cur_len;
src_ptr += cur_len;
src_len -= cur_len;
ctl_flushpkt(CTL_MORE);
cur_len = (size_t)(dataend - datapt);
}
memcpy(datapt, src_ptr, src_len);
datapt += src_len;
datalinelen += src_len;
datasent = TRUE;
}
}
/*
* ctl_putdata - write data into the packet, fragmenting and starting
* another if this one is full.
*/
static void
ctl_putdata(
const char *dp,
unsigned int dlen,
int bin /* set to 1 when data is binary */
)
{
CtlMemBufT args[1];
args[0].buf = dp;
args[0].len = dlen;
ctl_putdata_ex(args, 1, bin);
}
/*
* ctl_putstr - write a tagged string into the response packet
* in the form:
*
* tag="data"
*
* len is the data length excluding the NUL terminator,
* as in ctl_putstr("var", "value", strlen("value"));
*/
static void
ctl_putstr(
const char * tag,
const char * data,
size_t len
)
{
CtlMemBufT args[4];
args[0].buf = tag;
args[0].len = strlen(tag);
if (data && len) {
args[1].buf = "=\"";
args[1].len = 2;
args[2].buf = data;
args[2].len = len;
args[3].buf = "\"";
args[3].len = 1;
ctl_putdata_ex(args, 4, FALSE);
} else {
ctl_putdata_ex(args, 1, FALSE);
}
}
/*
* ctl_putunqstr - write a tagged string into the response packet
* in the form:
*
* tag=data
*
* len is the data length excluding the NUL terminator.
* data must not contain a comma or whitespace.
*/
static void
ctl_putunqstr(
const char * tag,
const char * data,
size_t len
)
{
CtlMemBufT args[3];
args[0].buf = tag;
args[0].len = strlen(tag);
if (data && len) {
args[1].buf = "=";
args[1].len = 1;
args[2].buf = data;
args[2].len = len;
ctl_putdata_ex(args, 3, FALSE);
} else {
ctl_putdata_ex(args, 1, FALSE);
}
}
/*
* ctl_putdblf - write a tagged, signed double into the response packet
*/
static void
ctl_putdblf(
const char * tag,
int use_f,
int precision,
double d
)
{
char buffer[40];
int rc;
rc = snprintf(buffer, sizeof(buffer),
(use_f ? "%.*f" : "%.*g"),
precision, d);
INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
ctl_putunqstr(tag, buffer, rc);
}
/*
* ctl_putuint - write a tagged unsigned integer into the response
*/
static void
ctl_putuint(
const char *tag,
u_long uval
)
{
char buffer[24]; /* needs to fit for 64 bits! */
int rc;
rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
INSIST(rc >= 0 && rc < sizeof(buffer));
ctl_putunqstr(tag, buffer, rc);
}
/*
* ctl_putcal - write a decoded calendar data into the response.
* only used with AUTOKEY currently, so compiled conditional
*/
#ifdef AUTOKEY
static void
ctl_putcal(
const char *tag,
const struct calendar *pcal
)
{
char buffer[16];
int rc;
rc = snprintf(buffer, sizeof(buffer),
"%04d%02d%02d%02d%02d",
pcal->year, pcal->month, pcal->monthday,
pcal->hour, pcal->minute
);
INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
ctl_putunqstr(tag, buffer, rc);
}
#endif
/*
* ctl_putfs - write a decoded filestamp into the response
*/
static void
ctl_putfs(
const char *tag,
tstamp_t uval
)
{
char buffer[16];
int rc;
time_t fstamp = (time_t)uval - JAN_1970;
struct tm *tm = gmtime(&fstamp);
if (NULL == tm)
return;
rc = snprintf(buffer, sizeof(buffer),
"%04d%02d%02d%02d%02d",
tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min);
INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
ctl_putunqstr(tag, buffer, rc);
}
/*
* ctl_puthex - write a tagged unsigned integer, in hex, into the
* response
*/
static void
ctl_puthex(
const char *tag,
u_long uval
)
{
char buffer[24]; /* must fit 64bit int! */
int rc;
rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
ctl_putunqstr(tag, buffer, rc);
}
/*
* ctl_putint - write a tagged signed integer into the response
*/
static void
ctl_putint(
const char *tag,
long ival
)
{
char buffer[24]; /*must fit 64bit int */
int rc;
rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
INSIST(rc >= 0 && rc < sizeof(buffer));
ctl_putunqstr(tag, buffer, rc);
}
/*
* ctl_putts - write a tagged timestamp, in hex, into the response
*/
static void
ctl_putts(
const char *tag,
l_fp *ts
)
{
char buffer[24];
int rc;
rc = snprintf(buffer, sizeof(buffer),
"0x%08lx.%08lx",
(u_long)ts->l_ui, (u_long)ts->l_uf);
INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
ctl_putunqstr(tag, buffer, rc);
}
/*
* ctl_putadr - write an IP address into the response
*/
static void
ctl_putadr(
const char *tag,
u_int32 addr32,
sockaddr_u *addr
)
{
const char *cq;
if (NULL == addr)
cq = numtoa(addr32);
else
cq = stoa(addr);
ctl_putunqstr(tag, cq, strlen(cq));
}
/*
* ctl_putrefid - send a u_int32 refid as printable text
*/
static void
ctl_putrefid(
const char * tag,
u_int32 refid
)
{
size_t nc;
union {
uint32_t w;
uint8_t b[sizeof(uint32_t)];
} bytes;
bytes.w = refid;
for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
if (!isprint(bytes.b[nc]))
bytes.b[nc] = '.';
ctl_putunqstr(tag, (const char*)bytes.b, nc);
}
/*
* ctl_putarray - write a tagged eight element double array into the response
*/
static void
ctl_putarray(
const char *tag,
double *arr,
int start
)
{
char *cp, *ep;
char buffer[200];
int i, rc;
cp = buffer;
ep = buffer + sizeof(buffer);
i = start;
do {
if (i == 0)
i = NTP_SHIFT;
i--;
rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
cp += rc;
} while (i != start);
ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
}
/*
* ctl_printf - put a formatted string into the data buffer
*/
static void
ctl_printf(
const char * fmt,
...
)
{
static const char * ellipsis = "[...]";
va_list va;
char fmtbuf[128];
int rc;
va_start(va, fmt);
rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
va_end(va);
if (rc < 0 || rc >= sizeof(fmtbuf))
strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
ellipsis);
ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
}
/*
* ctl_putsys - output a system variable
*/
static void
ctl_putsys(
int varid
)
{
l_fp tmp;
char str[256];
u_int u;
double kb;
double dtemp;
const char *ss;
#ifdef AUTOKEY
struct cert_info *cp;
#endif /* AUTOKEY */
#ifdef KERNEL_PLL
static struct timex ntx;
static u_long ntp_adjtime_time;
static const double to_ms =
# ifdef STA_NANO
1.0e-6; /* nsec to msec */
# else
1.0e-3; /* usec to msec */
# endif
/*
* CS_K_* variables depend on up-to-date output of ntp_adjtime()
*/
if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
current_time != ntp_adjtime_time) {
ZERO(ntx);
if (ntp_adjtime(&ntx) < 0)
msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
else
ntp_adjtime_time = current_time;
}
#endif /* KERNEL_PLL */
switch (varid) {
case CS_LEAP:
ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
break;
case CS_STRATUM:
ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
break;
case CS_PRECISION:
ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
break;
case CS_ROOTDELAY:
ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1e3);
break;
case CS_ROOTDISPERSION:
ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
sys_rootdisp * 1e3);
break;
case CS_REFID:
if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
ctl_putadr(sys_var[varid].text, sys_refid, NULL);
else
ctl_putrefid(sys_var[varid].text, sys_refid);
break;
case CS_REFTIME:
ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
break;
case CS_POLL:
ctl_putuint(sys_var[CS_POLL].text, sys_poll);
break;
case CS_PEERID:
if (sys_peer == NULL)
ctl_putuint(sys_var[CS_PEERID].text, 0);
else
ctl_putuint(sys_var[CS_PEERID].text,
sys_peer->associd);
break;
case CS_PEERADR:
if (sys_peer != NULL && sys_peer->dstadr != NULL)
ss = sptoa(&sys_peer->srcadr);
else
ss = "0.0.0.0:0";
ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
break;
case CS_PEERMODE:
u = (sys_peer != NULL)
? sys_peer->hmode
: MODE_UNSPEC;
ctl_putuint(sys_var[CS_PEERMODE].text, u);
break;
case CS_OFFSET:
ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
break;
case CS_DRIFT:
ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
break;
case CS_JITTER:
ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
break;
case CS_ERROR:
ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
break;
case CS_CLOCK:
get_systime(&tmp);
ctl_putts(sys_var[CS_CLOCK].text, &tmp);
break;
case CS_PROCESSOR:
#ifndef HAVE_UNAME
ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
sizeof(str_processor) - 1);
#else
ctl_putstr(sys_var[CS_PROCESSOR].text,
utsnamebuf.machine, strlen(utsnamebuf.machine));
#endif /* HAVE_UNAME */
break;
case CS_SYSTEM:
#ifndef HAVE_UNAME
ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
sizeof(str_system) - 1);
#else
snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
utsnamebuf.release);
ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
#endif /* HAVE_UNAME */
break;
case CS_VERSION:
ctl_putstr(sys_var[CS_VERSION].text, Version,
strlen(Version));
break;
case CS_STABIL:
ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1e6);
break;
case CS_VARLIST:
{
char buf[CTL_MAX_DATA_LEN];
//buffPointer, firstElementPointer, buffEndPointer
char *buffp, *buffend;
int firstVarName;
const char *ss1;
int len;
const struct ctl_var *k;
buffp = buf;
buffend = buf + sizeof(buf);
if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
break; /* really long var name */
snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
buffp += strlen(buffp);
firstVarName = TRUE;
for (k = sys_var; !(k->flags & EOV); k++) {
if (k->flags & PADDING)
continue;
len = strlen(k->text);
if (len + 1 >= buffend - buffp)
break;
if (!firstVarName)
*buffp++ = ',';
else
firstVarName = FALSE;
memcpy(buffp, k->text, len);
buffp += len;
}
for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
if (k->flags & PADDING)
continue;
if (NULL == k->text)
continue;
ss1 = strchr(k->text, '=');
if (NULL == ss1)
len = strlen(k->text);
else
len = ss1 - k->text;
if (len + 1 >= buffend - buffp)
break;
if (firstVarName) {
*buffp++ = ',';
firstVarName = FALSE;
}
memcpy(buffp, k->text,(unsigned)len);
buffp += len;
}
if (2 >= buffend - buffp)
break;
*buffp++ = '"';
*buffp = '\0';
ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
break;
}
case CS_TAI:
if (sys_tai > 0)
ctl_putuint(sys_var[CS_TAI].text, sys_tai);
break;
case CS_LEAPTAB:
{
leap_signature_t lsig;
leapsec_getsig(&lsig);
if (lsig.ttime > 0)
ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
break;
}
case CS_LEAPEND:
{
leap_signature_t lsig;
leapsec_getsig(&lsig);
if (lsig.etime > 0)
ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
break;
}
#ifdef LEAP_SMEAR
case CS_LEAPSMEARINTV:
if (leap_smear_intv > 0)
ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
break;
case CS_LEAPSMEAROFFS:
if (leap_smear_intv > 0)
ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
leap_smear.doffset * 1e3);
break;
#endif /* LEAP_SMEAR */
case CS_RATE:
ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
break;
case CS_MRU_ENABLED:
ctl_puthex(sys_var[varid].text, mon_enabled);
break;
case CS_MRU_DEPTH:
ctl_putuint(sys_var[varid].text, mru_entries);
break;
case CS_MRU_MEM:
kb = mru_entries * (sizeof(mon_entry) / 1024.);
u = (u_int)kb;
if (kb - u >= 0.5)
u++;
ctl_putuint(sys_var[varid].text, u);
break;
case CS_MRU_DEEPEST:
ctl_putuint(sys_var[varid].text, mru_peakentries);
break;
case CS_MRU_MINDEPTH:
ctl_putuint(sys_var[varid].text, mru_mindepth);
break;
case CS_MRU_MAXAGE:
ctl_putint(sys_var[varid].text, mru_maxage);
break;
case CS_MRU_MAXDEPTH:
ctl_putuint(sys_var[varid].text, mru_maxdepth);
break;
case CS_MRU_MAXMEM:
kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
u = (u_int)kb;
if (kb - u >= 0.5)
u++;
ctl_putuint(sys_var[varid].text, u);
break;
case CS_SS_UPTIME:
ctl_putuint(sys_var[varid].text, current_time);
break;
case CS_SS_RESET:
ctl_putuint(sys_var[varid].text,
current_time - sys_stattime);
break;
case CS_SS_RECEIVED:
ctl_putuint(sys_var[varid].text, sys_received);
break;
case CS_SS_THISVER:
ctl_putuint(sys_var[varid].text, sys_newversion);
break;
case CS_SS_OLDVER:
ctl_putuint(sys_var[varid].text, sys_oldversion);
break;
case CS_SS_BADFORMAT:
ctl_putuint(sys_var[varid].text, sys_badlength);
break;
case CS_SS_BADAUTH:
ctl_putuint(sys_var[varid].text, sys_badauth);
break;
case CS_SS_DECLINED:
ctl_putuint(sys_var[varid].text, sys_declined);
break;
case CS_SS_RESTRICTED:
ctl_putuint(sys_var[varid].text, sys_restricted);
break;
case CS_SS_LIMITED:
ctl_putuint(sys_var[varid].text, sys_limitrejected);
break;
case CS_SS_LAMPORT:
ctl_putuint(sys_var[varid].text, sys_lamport);
break;
case CS_SS_TSROUNDING:
ctl_putuint(sys_var[varid].text, sys_tsrounding);
break;
case CS_SS_KODSENT:
ctl_putuint(sys_var[varid].text, sys_kodsent);
break;
case CS_SS_PROCESSED:
ctl_putuint(sys_var[varid].text, sys_processed);
break;
case CS_BCASTDELAY:
ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
break;
case CS_AUTHDELAY:
LFPTOD(&sys_authdelay, dtemp);
ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
break;
case CS_AUTHKEYS:
ctl_putuint(sys_var[varid].text, authnumkeys);
break;
case CS_AUTHFREEK:
ctl_putuint(sys_var[varid].text, authnumfreekeys);
break;
case CS_AUTHKLOOKUPS:
ctl_putuint(sys_var[varid].text, authkeylookups);
break;
case CS_AUTHKNOTFOUND:
ctl_putuint(sys_var[varid].text, authkeynotfound);
break;
case CS_AUTHKUNCACHED:
ctl_putuint(sys_var[varid].text, authkeyuncached);
break;
case CS_AUTHKEXPIRED:
ctl_putuint(sys_var[varid].text, authkeyexpired);
break;
case CS_AUTHENCRYPTS:
ctl_putuint(sys_var[varid].text, authencryptions);
break;
case CS_AUTHDECRYPTS:
ctl_putuint(sys_var[varid].text, authdecryptions);
break;
case CS_AUTHRESET:
ctl_putuint(sys_var[varid].text,
current_time - auth_timereset);
break;
/*
* CTL_IF_KERNLOOP() puts a zero if the kernel loop is
* unavailable, otherwise calls putfunc with args.
*/
#ifndef KERNEL_PLL
# define CTL_IF_KERNLOOP(putfunc, args) \
ctl_putint(sys_var[varid].text, 0)
#else
# define CTL_IF_KERNLOOP(putfunc, args) \
putfunc args
#endif
/*
* CTL_IF_KERNPPS() puts a zero if either the kernel
* loop is unavailable, or kernel hard PPS is not
* active, otherwise calls putfunc with args.
*/
#ifndef KERNEL_PLL
# define CTL_IF_KERNPPS(putfunc, args) \
ctl_putint(sys_var[varid].text, 0)
#else
# define CTL_IF_KERNPPS(putfunc, args) \
if (0 == ntx.shift) \
ctl_putint(sys_var[varid].text, 0); \
else \
putfunc args /* no trailing ; */
#endif
case CS_K_OFFSET:
CTL_IF_KERNLOOP(
ctl_putdblf,
(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
);
break;
case CS_K_FREQ:
CTL_IF_KERNLOOP(
ctl_putsfp,
(sys_var[varid].text, ntx.freq)
);
break;
case CS_K_MAXERR:
CTL_IF_KERNLOOP(
ctl_putdblf,
(sys_var[varid].text, 0, 6,
to_ms * ntx.maxerror)
);
break;
case CS_K_ESTERR:
CTL_IF_KERNLOOP(
ctl_putdblf,
(sys_var[varid].text, 0, 6,
to_ms * ntx.esterror)
);
break;
case CS_K_STFLAGS:
#ifndef KERNEL_PLL
ss = "";
#else
ss = k_st_flags(ntx.status);
#endif
ctl_putstr(sys_var[varid].text, ss, strlen(ss));
break;
case CS_K_TIMECONST:
CTL_IF_KERNLOOP(
ctl_putint,
(sys_var[varid].text, ntx.constant)
);
break;
case CS_K_PRECISION:
CTL_IF_KERNLOOP(
ctl_putdblf,
(sys_var[varid].text, 0, 6,
to_ms * ntx.precision)
);
break;
case CS_K_FREQTOL:
CTL_IF_KERNLOOP(
ctl_putsfp,
(sys_var[varid].text, ntx.tolerance)
);
break;
case CS_K_PPS_FREQ:
CTL_IF_KERNPPS(
ctl_putsfp,
(sys_var[varid].text, ntx.ppsfreq)
);
break;
case CS_K_PPS_STABIL:
CTL_IF_KERNPPS(
ctl_putsfp,
(sys_var[varid].text, ntx.stabil)
);
break;
case CS_K_PPS_JITTER:
CTL_IF_KERNPPS(
ctl_putdbl,
(sys_var[varid].text, to_ms * ntx.jitter)
);
break;
case CS_K_PPS_CALIBDUR:
CTL_IF_KERNPPS(
ctl_putint,
(sys_var[varid].text, 1 << ntx.shift)
);
break;
case CS_K_PPS_CALIBS:
CTL_IF_KERNPPS(
ctl_putint,
(sys_var[varid].text, ntx.calcnt)
);
break;
case CS_K_PPS_CALIBERRS:
CTL_IF_KERNPPS(
ctl_putint,
(sys_var[varid].text, ntx.errcnt)
);
break;
case CS_K_PPS_JITEXC:
CTL_IF_KERNPPS(
ctl_putint,
(sys_var[varid].text, ntx.jitcnt)
);
break;
case CS_K_PPS_STBEXC:
CTL_IF_KERNPPS(
ctl_putint,
(sys_var[varid].text, ntx.stbcnt)
);
break;
case CS_IOSTATS_RESET:
ctl_putuint(sys_var[varid].text,
current_time - io_timereset);
break;
case CS_TOTAL_RBUF:
ctl_putuint(sys_var[varid].text, total_recvbuffs());
break;
case CS_FREE_RBUF:
ctl_putuint(sys_var[varid].text, free_recvbuffs());
break;
case CS_USED_RBUF:
ctl_putuint(sys_var[varid].text, full_recvbuffs());
break;
case CS_RBUF_LOWATER:
ctl_putuint(sys_var[varid].text, lowater_additions());
break;
case CS_IO_DROPPED:
ctl_putuint(sys_var[varid].text, packets_dropped);
break;
case CS_IO_IGNORED:
ctl_putuint(sys_var[varid].text, packets_ignored);
break;
case CS_IO_RECEIVED:
ctl_putuint(sys_var[varid].text, packets_received);
break;
case CS_IO_SENT:
ctl_putuint(sys_var[varid].text, packets_sent);
break;
case CS_IO_SENDFAILED:
ctl_putuint(sys_var[varid].text, packets_notsent);
break;
case CS_IO_WAKEUPS:
ctl_putuint(sys_var[varid].text, handler_calls);
break;
case CS_IO_GOODWAKEUPS:
ctl_putuint(sys_var[varid].text, handler_pkts);
break;
case CS_TIMERSTATS_RESET:
ctl_putuint(sys_var[varid].text,
current_time - timer_timereset);
break;
case CS_TIMER_OVERRUNS:
ctl_putuint(sys_var[varid].text, alarm_overflow);
break;
case CS_TIMER_XMTS:
ctl_putuint(sys_var[varid].text, timer_xmtcalls);
break;
case CS_FUZZ:
ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
break;
case CS_WANDER_THRESH:
ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
break;
#ifdef AUTOKEY
case CS_FLAGS:
if (crypto_flags)
ctl_puthex(sys_var[CS_FLAGS].text,
crypto_flags);
break;
case CS_DIGEST:
if (crypto_flags) {
strlcpy(str, OBJ_nid2ln(crypto_nid),
COUNTOF(str));
ctl_putstr(sys_var[CS_DIGEST].text, str,
strlen(str));
}
break;
case CS_SIGNATURE:
if (crypto_flags) {
const EVP_MD *dp;
dp = EVP_get_digestbynid(crypto_flags >> 16);
strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
COUNTOF(str));
ctl_putstr(sys_var[CS_SIGNATURE].text, str,
strlen(str));
}
break;
case CS_HOST:
if (hostval.ptr != NULL)
ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
strlen(hostval.ptr));
break;
case CS_IDENT:
if (sys_ident != NULL)
ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
strlen(sys_ident));
break;
case CS_CERTIF:
for (cp = cinfo; cp != NULL; cp = cp->link) {
snprintf(str, sizeof(str), "%s %s 0x%x",
cp->subject, cp->issuer, cp->flags);
ctl_putstr(sys_var[CS_CERTIF].text, str,
strlen(str));
ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
}
break;
case CS_PUBLIC:
if (hostval.tstamp != 0)
ctl_putfs(sys_var[CS_PUBLIC].text,
ntohl(hostval.tstamp));
break;
#endif /* AUTOKEY */
default:
break;
}
}
/*
* ctl_putpeer - output a peer variable
*/
static void
ctl_putpeer(
int id,
struct peer *p
)
{
char buf[CTL_MAX_DATA_LEN];
char *s;
char *t;
char *be;
int i;
const struct ctl_var *k;
#ifdef AUTOKEY
struct autokey *ap;
const EVP_MD *dp;
const char *str;
#endif /* AUTOKEY */
switch (id) {
case CP_CONFIG:
ctl_putuint(peer_var[id].text,
!(FLAG_PREEMPT & p->flags));
break;
case CP_AUTHENABLE:
ctl_putuint(peer_var[id].text, !(p->keyid));
break;
case CP_AUTHENTIC:
ctl_putuint(peer_var[id].text,
!!(FLAG_AUTHENTIC & p->flags));
break;
case CP_SRCADR:
ctl_putadr(peer_var[id].text, 0, &p->srcadr);
break;
case CP_SRCPORT:
ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
break;
case CP_SRCHOST:
if (p->hostname != NULL)
ctl_putstr(peer_var[id].text, p->hostname,
strlen(p->hostname));
break;
case CP_DSTADR:
ctl_putadr(peer_var[id].text, 0,
(p->dstadr != NULL)
? &p->dstadr->sin
: NULL);
break;
case CP_DSTPORT:
ctl_putuint(peer_var[id].text,
(p->dstadr != NULL)
? SRCPORT(&p->dstadr->sin)
: 0);
break;
case CP_IN:
if (p->r21 > 0.)
ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
break;
case CP_OUT:
if (p->r34 > 0.)
ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
break;
case CP_RATE:
ctl_putuint(peer_var[id].text, p->throttle);
break;
case CP_LEAP:
ctl_putuint(peer_var[id].text, p->leap);
break;
case CP_HMODE:
ctl_putuint(peer_var[id].text, p->hmode);
break;
case CP_STRATUM:
ctl_putuint(peer_var[id].text, p->stratum);
break;
case CP_PPOLL:
ctl_putuint(peer_var[id].text, p->ppoll);
break;
case CP_HPOLL:
ctl_putuint(peer_var[id].text, p->hpoll);
break;
case CP_PRECISION:
ctl_putint(peer_var[id].text, p->precision);
break;
case CP_ROOTDELAY:
ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
break;
case CP_ROOTDISPERSION:
ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
break;
case CP_REFID:
#ifdef REFCLOCK
if (p->flags & FLAG_REFCLOCK) {
ctl_putrefid(peer_var[id].text, p->refid);
break;
}
#endif
if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
ctl_putadr(peer_var[id].text, p->refid,
NULL);
else
ctl_putrefid(peer_var[id].text, p->refid);
break;
case CP_REFTIME:
ctl_putts(peer_var[id].text, &p->reftime);
break;
case CP_ORG:
ctl_putts(peer_var[id].text, &p->aorg);
break;
case CP_REC:
ctl_putts(peer_var[id].text, &p->dst);
break;
case CP_XMT:
if (p->xleave)
ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
break;
case CP_BIAS:
if (p->bias != 0.)
ctl_putdbl(peer_var[id].text, p->bias * 1e3);
break;
case CP_REACH:
ctl_puthex(peer_var[id].text, p->reach);
break;
case CP_FLASH:
ctl_puthex(peer_var[id].text, p->flash);
break;
case CP_TTL:
#ifdef REFCLOCK
if (p->flags & FLAG_REFCLOCK) {
ctl_putuint(peer_var[id].text, p->ttl);
break;
}
#endif
if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
ctl_putint(peer_var[id].text,
sys_ttl[p->ttl]);
break;
case CP_UNREACH:
ctl_putuint(peer_var[id].text, p->unreach);
break;
case CP_TIMER:
ctl_putuint(peer_var[id].text,
p->nextdate - current_time);
break;
case CP_DELAY:
ctl_putdbl(peer_var[id].text, p->delay * 1e3);
break;
case CP_OFFSET:
ctl_putdbl(peer_var[id].text, p->offset * 1e3);
break;
case CP_JITTER:
ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
break;
case CP_DISPERSION:
ctl_putdbl(peer_var[id].text, p->disp * 1e3);
break;
case CP_KEYID:
if (p->keyid > NTP_MAXKEY)
ctl_puthex(peer_var[id].text, p->keyid);
else
ctl_putuint(peer_var[id].text, p->keyid);
break;
case CP_FILTDELAY:
ctl_putarray(peer_var[id].text, p->filter_delay,
p->filter_nextpt);
break;
case CP_FILTOFFSET:
ctl_putarray(peer_var[id].text, p->filter_offset,
p->filter_nextpt);
break;
case CP_FILTERROR:
ctl_putarray(peer_var[id].text, p->filter_disp,
p->filter_nextpt);
break;
case CP_PMODE:
ctl_putuint(peer_var[id].text, p->pmode);
break;
case CP_RECEIVED:
ctl_putuint(peer_var[id].text, p->received);
break;
case CP_SENT:
ctl_putuint(peer_var[id].text, p->sent);
break;
case CP_VARLIST:
s = buf;
be = buf + sizeof(buf);
if (strlen(peer_var[id].text) + 4 > sizeof(buf))
break; /* really long var name */
snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
s += strlen(s);
t = s;
for (k = peer_var; !(EOV & k->flags); k++) {
if (PADDING & k->flags)
continue;
i = strlen(k->text);
if (s + i + 1 >= be)
break;
if (s != t)
*s++ = ',';
memcpy(s, k->text, i);
s += i;
}
if (s + 2 < be) {
*s++ = '"';
*s = '\0';
ctl_putdata(buf, (u_int)(s - buf), 0);
}
break;
case CP_TIMEREC:
ctl_putuint(peer_var[id].text,
current_time - p->timereceived);
break;
case CP_TIMEREACH:
ctl_putuint(peer_var[id].text,
current_time - p->timereachable);
break;
case CP_BADAUTH:
ctl_putuint(peer_var[id].text, p->badauth);
break;
case CP_BOGUSORG:
ctl_putuint(peer_var[id].text, p->bogusorg);
break;
case CP_OLDPKT:
ctl_putuint(peer_var[id].text, p->oldpkt);
break;
case CP_SELDISP:
ctl_putuint(peer_var[id].text, p->seldisptoolarge);
break;
case CP_SELBROKEN:
ctl_putuint(peer_var[id].text, p->selbroken);
break;
case CP_CANDIDATE:
ctl_putuint(peer_var[id].text, p->status);
break;
#ifdef AUTOKEY
case CP_FLAGS:
if (p->crypto)
ctl_puthex(peer_var[id].text, p->crypto);
break;
case CP_SIGNATURE:
if (p->crypto) {
dp = EVP_get_digestbynid(p->crypto >> 16);
str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
ctl_putstr(peer_var[id].text, str, strlen(str));
}
break;
case CP_HOST:
if (p->subject != NULL)
ctl_putstr(peer_var[id].text, p->subject,
strlen(p->subject));
break;
case CP_VALID: /* not used */
break;
case CP_INITSEQ:
if (NULL == (ap = p->recval.ptr))
break;
ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
ctl_putfs(peer_var[CP_INITTSP].text,
ntohl(p->recval.tstamp));
break;
case CP_IDENT:
if (p->ident != NULL)
ctl_putstr(peer_var[id].text, p->ident,
strlen(p->ident));
break;
#endif /* AUTOKEY */
}
}
#ifdef REFCLOCK
/*
* ctl_putclock - output clock variables
*/
static void
ctl_putclock(
int id,
struct refclockstat *pcs,
int mustput
)
{
char buf[CTL_MAX_DATA_LEN];
char *s, *t, *be;
const char *ss;
int i;
const struct ctl_var *k;
switch (id) {
case CC_TYPE:
if (mustput || pcs->clockdesc == NULL
|| *(pcs->clockdesc) == '\0') {
ctl_putuint(clock_var[id].text, pcs->type);
}
break;
case CC_TIMECODE:
ctl_putstr(clock_var[id].text,
pcs->p_lastcode,
(unsigned)pcs->lencode);
break;
case CC_POLL:
ctl_putuint(clock_var[id].text, pcs->polls);
break;
case CC_NOREPLY:
ctl_putuint(clock_var[id].text,
pcs->noresponse);
break;
case CC_BADFORMAT:
ctl_putuint(clock_var[id].text,
pcs->badformat);
break;
case CC_BADDATA:
ctl_putuint(clock_var[id].text,
pcs->baddata);
break;
case CC_FUDGETIME1:
if (mustput || (pcs->haveflags & CLK_HAVETIME1))
ctl_putdbl(clock_var[id].text,
pcs->fudgetime1 * 1e3);
break;
case CC_FUDGETIME2:
if (mustput || (pcs->haveflags & CLK_HAVETIME2))
ctl_putdbl(clock_var[id].text,
pcs->fudgetime2 * 1e3);
break;
case CC_FUDGEVAL1:
if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
ctl_putint(clock_var[id].text,
pcs->fudgeval1);
break;
case CC_FUDGEVAL2:
if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
if (pcs->fudgeval1 > 1)
ctl_putadr(clock_var[id].text,
pcs->fudgeval2, NULL);
else
ctl_putrefid(clock_var[id].text,
pcs->fudgeval2);
}
break;
case CC_FLAGS:
ctl_putuint(clock_var[id].text, pcs->flags);
break;
case CC_DEVICE:
if (pcs->clockdesc == NULL ||
*(pcs->clockdesc) == '\0') {
if (mustput)
ctl_putstr(clock_var[id].text,
"", 0);
} else {
ctl_putstr(clock_var[id].text,
pcs->clockdesc,
strlen(pcs->clockdesc));
}
break;
case CC_VARLIST:
s = buf;
be = buf + sizeof(buf);
if (strlen(clock_var[CC_VARLIST].text) + 4 >
sizeof(buf))
break; /* really long var name */
snprintf(s, sizeof(buf), "%s=\"",
clock_var[CC_VARLIST].text);
s += strlen(s);
t = s;
for (k = clock_var; !(EOV & k->flags); k++) {
if (PADDING & k->flags)
continue;
i = strlen(k->text);
if (s + i + 1 >= be)
break;
if (s != t)
*s++ = ',';
memcpy(s, k->text, i);
s += i;
}
for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
if (PADDING & k->flags)
continue;
ss = k->text;
if (NULL == ss)
continue;
while (*ss && *ss != '=')
ss++;
i = ss - k->text;
if (s + i + 1 >= be)
break;
if (s != t)
*s++ = ',';
memcpy(s, k->text, (unsigned)i);
s += i;
*s = '\0';
}
if (s + 2 >= be)
break;
*s++ = '"';
*s = '\0';
ctl_putdata(buf, (unsigned)(s - buf), 0);
break;
}
}
#endif
/*
* ctl_getitem - get the next data item from the incoming packet
*/
static const struct ctl_var *
ctl_getitem(
const struct ctl_var *var_list,
char **data
)
{
/* [Bug 3008] First check the packet data sanity, then search
* the key. This improves the consistency of result values: If
* the result is NULL once, it will never be EOV again for this
* packet; If it's EOV, it will never be NULL again until the
* variable is found and processed in a given 'var_list'. (That
* is, a result is returned that is neither NULL nor EOV).
*/
static const struct ctl_var eol = { 0, EOV, NULL };
static char buf[128];
static u_long quiet_until;
const struct ctl_var *v;
char *cp;
char *tp;
/*
* Part One: Validate the packet state
*/
/* Delete leading commas and white space */
while (reqpt < reqend && (*reqpt == ',' ||
isspace((unsigned char)*reqpt)))
reqpt++;
if (reqpt >= reqend)
return NULL;
/* Scan the string in the packet until we hit comma or
* EoB. Register position of first '=' on the fly. */
for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
if (*cp == '=' && tp == NULL)
tp = cp;
if (*cp == ',')
break;
}
/* Process payload, if any. */
*data = NULL;
if (NULL != tp) {
/* eventually strip white space from argument. */
const char *plhead = tp + 1; /* skip the '=' */
const char *pltail = cp;
size_t plsize;
while (plhead != pltail && isspace((u_char)plhead[0]))
++plhead;
while (plhead != pltail && isspace((u_char)pltail[-1]))
--pltail;
/* check payload size, terminate packet on overflow */
plsize = (size_t)(pltail - plhead);
if (plsize >= sizeof(buf))
goto badpacket;
/* copy data, NUL terminate, and set result data ptr */
memcpy(buf, plhead, plsize);
buf[plsize] = '\0';
*data = buf;
} else {
/* no payload, current end --> current name termination */
tp = cp;
}
/* Part Two
*
* Now we're sure that the packet data itself is sane. Scan the
* list now. Make sure a NULL list is properly treated by
* returning a synthetic End-Of-Values record. We must not
* return NULL pointers after this point, or the behaviour would
* become inconsistent if called several times with different
* variable lists after an EoV was returned. (Such a behavior
* actually caused Bug 3008.)
*/
if (NULL == var_list)
return &eol;
for (v = var_list; !(EOV & v->flags); ++v)
if (!(PADDING & v->flags)) {
/* Check if the var name matches the buffer. The
* name is bracketed by [reqpt..tp] and not NUL
* terminated, and it contains no '=' char. The
* lookup value IS NUL-terminated but might
* include a '='... We have to look out for
* that!
*/
const char *sp1 = reqpt;
const char *sp2 = v->text;
/* [Bug 3412] do not compare past NUL byte in name */
while ( (sp1 != tp)
&& ('\0' != *sp2) && (*sp1 == *sp2)) {
++sp1;
++sp2;
}
if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
break;
}
/* See if we have found a valid entry or not. If found, advance
* the request pointer for the next round; if not, clear the
* data pointer so we have no dangling garbage here.
*/
if (EOV & v->flags)
*data = NULL;
else
reqpt = cp + (cp != reqend);
return v;
badpacket:
/*TODO? somehow indicate this packet was bad, apart from syslog? */
numctlbadpkts++;
NLOG(NLOG_SYSEVENT)
if (quiet_until <= current_time) {
quiet_until = current_time + 300;
msyslog(LOG_WARNING,
"Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
stoa(rmt_addr), SRCPORT(rmt_addr));
}
reqpt = reqend; /* never again for this packet! */
return NULL;
}
/*
* control_unspec - response to an unspecified op-code
*/
/*ARGSUSED*/
static void
control_unspec(
struct recvbuf *rbufp,
int restrict_mask
)
{
struct peer *peer;
/*
* What is an appropriate response to an unspecified op-code?
* I return no errors and no data, unless a specified assocation
* doesn't exist.
*/
if (res_associd) {
peer = findpeerbyassoc(res_associd);
if (NULL == peer) {
ctl_error(CERR_BADASSOC);
return;
}
rpkt.status = htons(ctlpeerstatus(peer));
} else
rpkt.status = htons(ctlsysstatus());
ctl_flushpkt(0);
}
/*
* read_status - return either a list of associd's, or a particular
* peer's status.
*/
/*ARGSUSED*/
static void
read_status(
struct recvbuf *rbufp,
int restrict_mask
)
{
struct peer *peer;
const u_char *cp;
size_t n;
/* a_st holds association ID, status pairs alternating */
u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
#ifdef DEBUG
if (debug > 2)
printf("read_status: ID %d\n", res_associd);
#endif
/*
* Two choices here. If the specified association ID is
* zero we return all known assocation ID's. Otherwise
* we return a bunch of stuff about the particular peer.
*/
if (res_associd) {
peer = findpeerbyassoc(res_associd);
if (NULL == peer) {
ctl_error(CERR_BADASSOC);
return;
}
rpkt.status = htons(ctlpeerstatus(peer));
if (res_authokay)
peer->num_events = 0;
/*
* For now, output everything we know about the
* peer. May be more selective later.
*/
for (cp = def_peer_var; *cp != 0; cp++)
ctl_putpeer((int)*cp, peer);
ctl_flushpkt(0);
return;
}
n = 0;
rpkt.status = htons(ctlsysstatus());
for (peer = peer_list; peer != NULL; peer = peer->p_link) {
a_st[n++] = htons(peer->associd);
a_st[n++] = htons(ctlpeerstatus(peer));
/* two entries each loop iteration, so n + 1 */
if (n + 1 >= COUNTOF(a_st)) {
ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
1);
n = 0;
}
}
if (n)
ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
ctl_flushpkt(0);
}
/*
* read_peervars - half of read_variables() implementation
*/
static void
read_peervars(void)
{
const struct ctl_var *v;
struct peer *peer;
const u_char *cp;
size_t i;
char * valuep;
u_char wants[CP_MAXCODE + 1];
u_int gotvar;
/*
* Wants info for a particular peer. See if we know
* the guy.
*/
peer = findpeerbyassoc(res_associd);
if (NULL == peer) {
ctl_error(CERR_BADASSOC);
return;
}
rpkt.status = htons(ctlpeerstatus(peer));
if (res_authokay)
peer->num_events = 0;
ZERO(wants);
gotvar = 0;
while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
if (v->flags & EOV) {
ctl_error(CERR_UNKNOWNVAR);
return;
}
INSIST(v->code < COUNTOF(wants));
wants[v->code] = 1;
gotvar = 1;
}
if (gotvar) {
for (i = 1; i < COUNTOF(wants); i++)
if (wants[i])
ctl_putpeer(i, peer);
} else
for (cp = def_peer_var; *cp != 0; cp++)
ctl_putpeer((int)*cp, peer);
ctl_flushpkt(0);
}
/*
* read_sysvars - half of read_variables() implementation
*/
static void
read_sysvars(void)
{
const struct ctl_var *v;
struct ctl_var *kv;
u_int n;
u_int gotvar;
const u_char *cs;
char * valuep;
const char * pch;
u_char *wants;
size_t wants_count;
/*
* Wants system variables. Figure out which he wants
* and give them to him.
*/
rpkt.status = htons(ctlsysstatus());
if (res_authokay)
ctl_sys_num_events = 0;
wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
wants = emalloc_zero(wants_count);
gotvar = 0;
while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
if (!(EOV & v->flags)) {
INSIST(v->code < wants_count);
wants[v->code] = 1;
gotvar = 1;
} else {
v = ctl_getitem(ext_sys_var, &valuep);
if (NULL == v) {
ctl_error(CERR_BADVALUE);
free(wants);
return;
}
if (EOV & v->flags) {
ctl_error(CERR_UNKNOWNVAR);
free(wants);
return;
}
n = v->code + CS_MAXCODE + 1;
INSIST(n < wants_count);
wants[n] = 1;
gotvar = 1;
}
}
if (gotvar) {
for (n = 1; n <= CS_MAXCODE; n++)
if (wants[n])
ctl_putsys(n);
for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
if (wants[n + CS_MAXCODE + 1]) {
pch = ext_sys_var[n].text;
ctl_putdata(pch, strlen(pch), 0);
}
} else {
for (cs = def_sys_var; *cs != 0; cs++)
ctl_putsys((int)*cs);
for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
if (DEF & kv->flags)
ctl_putdata(kv->text, strlen(kv->text),
0);
}
free(wants);
ctl_flushpkt(0);
}
/*
* read_variables - return the variables the caller asks for
*/
/*ARGSUSED*/
static void
read_variables(
struct recvbuf *rbufp,
int restrict_mask
)
{
if (res_associd)
read_peervars();
else
read_sysvars();
}
/*
* write_variables - write into variables. We only allow leap bit
* writing this way.
*/
/*ARGSUSED*/
static void
write_variables(
struct recvbuf *rbufp,
int restrict_mask
)
{
const struct ctl_var *v;
int ext_var;
char *valuep;
long val;
size_t octets;
char *vareqv;
const char *t;
char *tt;
val = 0;
/*
* If he's trying to write into a peer tell him no way
*/
if (res_associd != 0) {
ctl_error(CERR_PERMISSION);
return;
}
/*
* Set status
*/
rpkt.status = htons(ctlsysstatus());
/*
* Look through the variables. Dump out at the first sign of
* trouble.
*/
while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
ext_var = 0;
if (v->flags & EOV) {
if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
0) {
if (v->flags & EOV) {
ctl_error(CERR_UNKNOWNVAR);
return;
}
ext_var = 1;
} else {
break;
}
}
if (!(v->flags & CAN_WRITE)) {
ctl_error(CERR_PERMISSION);
return;
}
if (!ext_var && (*valuep == '\0' || !atoint(valuep,
&val))) {
ctl_error(CERR_BADFMT);
return;
}
if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
ctl_error(CERR_BADVALUE);
return;
}
if (ext_var) {
octets = strlen(v->text) + strlen(valuep) + 2;
vareqv = emalloc(octets);
tt = vareqv;
t = v->text;
while (*t && *t != '=')
*tt++ = *t++;
*tt++ = '=';
memcpy(tt, valuep, 1 + strlen(valuep));
set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
free(vareqv);
} else {
ctl_error(CERR_UNSPEC); /* really */
return;
}
}
/*
* If we got anything, do it. xxx nothing to do ***
*/
/*
if (leapind != ~0 || leapwarn != ~0) {
if (!leap_setleap((int)leapind, (int)leapwarn)) {
ctl_error(CERR_PERMISSION);
return;
}
}
*/
ctl_flushpkt(0);
}
/*
* configure() processes ntpq :config/config-from-file, allowing
* generic runtime reconfiguration.
*/
static void configure(
struct recvbuf *rbufp,
int restrict_mask
)
{
size_t data_count;
int retval;
/* I haven't yet implemented changes to an existing association.
* Hence check if the association id is 0
*/
if (res_associd != 0) {
ctl_error(CERR_BADVALUE);
return;
}
if (RES_NOMODIFY & restrict_mask) {
snprintf(remote_config.err_msg,
sizeof(remote_config.err_msg),
"runtime configuration prohibited by restrict ... nomodify");
ctl_putdata(remote_config.err_msg,
strlen(remote_config.err_msg), 0);
ctl_flushpkt(0);
NLOG(NLOG_SYSINFO)
msyslog(LOG_NOTICE,
"runtime config from %s rejected due to nomodify restriction",
stoa(&rbufp->recv_srcadr));
sys_restricted++;
return;
}
/* Initialize the remote config buffer */
data_count = remoteconfig_cmdlength(reqpt, reqend);
if (data_count > sizeof(remote_config.buffer) - 2) {
snprintf(remote_config.err_msg,
sizeof(remote_config.err_msg),
"runtime configuration failed: request too long");
ctl_putdata(remote_config.err_msg,
strlen(remote_config.err_msg), 0);
ctl_flushpkt(0);
msyslog(LOG_NOTICE,
"runtime config from %s rejected: request too long",
stoa(&rbufp->recv_srcadr));
return;
}
/* Bug 2853 -- check if all characters were acceptable */
if (data_count != (size_t)(reqend - reqpt)) {
snprintf(remote_config.err_msg,
sizeof(remote_config.err_msg),
"runtime configuration failed: request contains an unprintable character");
ctl_putdata(remote_config.err_msg,
strlen(remote_config.err_msg), 0);
ctl_flushpkt(0);
msyslog(LOG_NOTICE,
"runtime config from %s rejected: request contains an unprintable character: %0x",
stoa(&rbufp->recv_srcadr),
reqpt[data_count]);
return;
}
memcpy(remote_config.buffer, reqpt, data_count);
/* The buffer has no trailing linefeed or NUL right now. For
* logging, we do not want a newline, so we do that first after
* adding the necessary NUL byte.
*/
remote_config.buffer[data_count] = '\0';
DPRINTF(1, ("Got Remote Configuration Command: %s\n",
remote_config.buffer));
msyslog(LOG_NOTICE, "%s config: %s",
stoa(&rbufp->recv_srcadr),
remote_config.buffer);
/* Now we have to make sure there is a NL/NUL sequence at the
* end of the buffer before we parse it.
*/
remote_config.buffer[data_count++] = '\n';
remote_config.buffer[data_count] = '\0';
remote_config.pos = 0;
remote_config.err_pos = 0;
remote_config.no_errors = 0;
config_remotely(&rbufp->recv_srcadr);
/*
* Check if errors were reported. If not, output 'Config
* Succeeded'. Else output the error count. It would be nice
* to output any parser error messages.
*/
if (0 == remote_config.no_errors) {
retval = snprintf(remote_config.err_msg,
sizeof(remote_config.err_msg),
"Config Succeeded");
if (retval > 0)
remote_config.err_pos += retval;
}
ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
ctl_flushpkt(0);
DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
if (remote_config.no_errors > 0)
msyslog(LOG_NOTICE, "%d error in %s config",
remote_config.no_errors,
stoa(&rbufp->recv_srcadr));
}
/*
* derive_nonce - generate client-address-specific nonce value
* associated with a given timestamp.
*/
static u_int32 derive_nonce(
sockaddr_u * addr,
u_int32 ts_i,
u_int32 ts_f
)
{
static u_int32 salt[4];
static u_long last_salt_update;
union d_tag {
u_char digest[EVP_MAX_MD_SIZE];
u_int32 extract;
} d;
EVP_MD_CTX *ctx;
u_int len;
while (!salt[0] || current_time - last_salt_update >= 3600) {
salt[0] = ntp_random();
salt[1] = ntp_random();
salt[2] = ntp_random();
salt[3] = ntp_random();
last_salt_update = current_time;
}
ctx = EVP_MD_CTX_new();
# if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
/* [Bug 3457] set flags and don't kill them again */
EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
# else
EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
# endif
EVP_DigestUpdate(ctx, salt, sizeof(salt));
EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
if (IS_IPV4(addr))
EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
sizeof(SOCK_ADDR4(addr)));
else
EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
sizeof(SOCK_ADDR6(addr)));
EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
EVP_DigestUpdate(ctx, salt, sizeof(salt));
EVP_DigestFinal(ctx, d.digest, &len);
EVP_MD_CTX_free(ctx);
return d.extract;
}
/*
* generate_nonce - generate client-address-specific nonce string.
*/
static void generate_nonce(
struct recvbuf * rbufp,
char * nonce,
size_t nonce_octets
)
{
u_int32 derived;
derived = derive_nonce(&rbufp->recv_srcadr,
rbufp->recv_time.l_ui,
rbufp->recv_time.l_uf);
snprintf(nonce, nonce_octets, "%08x%08x%08x",
rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
}
/*
* validate_nonce - validate client-address-specific nonce string.
*
* Returns TRUE if the local calculation of the nonce matches the
* client-provided value and the timestamp is recent enough.
*/
static int validate_nonce(
const char * pnonce,
struct recvbuf * rbufp
)
{
u_int ts_i;
u_int ts_f;
l_fp ts;
l_fp now_delta;
u_int supposed;
u_int derived;
if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
return FALSE;
ts.l_ui = (u_int32)ts_i;
ts.l_uf = (u_int32)ts_f;
derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
get_systime(&now_delta);
L_SUB(&now_delta, &ts);
return (supposed == derived && now_delta.l_ui < 16);
}
/*
* send_random_tag_value - send a randomly-generated three character
* tag prefix, a '.', an index, a '=' and a
* random integer value.
*
* To try to force clients to ignore unrecognized tags in mrulist,
* reslist, and ifstats responses, the first and last rows are spiced
* with randomly-generated tag names with correct .# index. Make it
* three characters knowing that none of the currently-used subscripted
* tags have that length, avoiding the need to test for
* tag collision.
*/
static void
send_random_tag_value(
int indx
)
{
int noise;
char buf[32];
noise = rand() ^ (rand() << 16);
buf[0] = 'a' + noise % 26;
noise >>= 5;
buf[1] = 'a' + noise % 26;
noise >>= 5;
buf[2] = 'a' + noise % 26;
noise >>= 5;
buf[3] = '.';
snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
ctl_putuint(buf, noise);
}
/*
* Send a MRU list entry in response to a "ntpq -c mrulist" operation.
*
* To keep clients honest about not depending on the order of values,
* and thereby avoid being locked into ugly workarounds to maintain
* backward compatibility later as new fields are added to the response,
* the order is random.
*/
static void
send_mru_entry(
mon_entry * mon,
int count
)
{
const char first_fmt[] = "first.%d";
const char ct_fmt[] = "ct.%d";
const char mv_fmt[] = "mv.%d";
const char rs_fmt[] = "rs.%d";
char tag[32];
u_char sent[6]; /* 6 tag=value pairs */
u_int32 noise;
u_int which;
u_int remaining;
const char * pch;
remaining = COUNTOF(sent);
ZERO(sent);
noise = (u_int32)(rand() ^ (rand() << 16));
while (remaining > 0) {
which = (noise & 7) % COUNTOF(sent);
noise >>= 3;
while (sent[which])
which = (which + 1) % COUNTOF(sent);
switch (which) {
case 0:
snprintf(tag, sizeof(tag), addr_fmt, count);
pch = sptoa(&mon->rmtadr);
ctl_putunqstr(tag, pch, strlen(pch));
break;
case 1:
snprintf(tag, sizeof(tag), last_fmt, count);
ctl_putts(tag, &mon->last);
break;
case 2:
snprintf(tag, sizeof(tag), first_fmt, count);
ctl_putts(tag, &mon->first);
break;
case 3:
snprintf(tag, sizeof(tag), ct_fmt, count);
ctl_putint(tag, mon->count);
break;
case 4:
snprintf(tag, sizeof(tag), mv_fmt, count);
ctl_putuint(tag, mon->vn_mode);
break;
case 5:
snprintf(tag, sizeof(tag), rs_fmt, count);
ctl_puthex(tag, mon->flags);
break;
}
sent[which] = TRUE;
remaining--;
}
}
/*
* read_mru_list - supports ntpq's mrulist command.
*
* The challenge here is to match ntpdc's monlist functionality without
* being limited to hundreds of entries returned total, and without
* requiring state on the server. If state were required, ntpq's
* mrulist command would require authentication.
*
* The approach was suggested by Ry Jones. A finite and variable number
* of entries are retrieved per request, to avoid having responses with
* such large numbers of packets that socket buffers are overflowed and
* packets lost. The entries are retrieved oldest-first, taking into
* account that the MRU list will be changing between each request. We
* can expect to see duplicate entries for addresses updated in the MRU
* list during the fetch operation. In the end, the client can assemble
* a close approximation of the MRU list at the point in time the last
* response was sent by ntpd. The only difference is it may be longer,
* containing some number of oldest entries which have since been
* reclaimed. If necessary, the protocol could be extended to zap those
* from the client snapshot at the end, but so far that doesn't seem
* useful.
*
* To accomodate the changing MRU list, the starting point for requests
* after the first request is supplied as a series of last seen
* timestamps and associated addresses, the newest ones the client has
* received. As long as at least one of those entries hasn't been
* bumped to the head of the MRU list, ntpd can pick up at that point.
* Otherwise, the request is failed and it is up to ntpq to back up and
* provide the next newest entry's timestamps and addresses, conceivably
* backing up all the way to the starting point.
*
* input parameters:
* nonce= Regurgitated nonce retrieved by the client
* previously using CTL_OP_REQ_NONCE, demonstrating
* ability to receive traffic sent to its address.
* frags= Limit on datagrams (fragments) in response. Used
* by newer ntpq versions instead of limit= when
* retrieving multiple entries.
* limit= Limit on MRU entries returned. One of frags= or
* limit= must be provided.
* limit=1 is a special case: Instead of fetching
* beginning with the supplied starting point's
* newer neighbor, fetch the supplied entry, and
* in that case the #.last timestamp can be zero.
* This enables fetching a single entry by IP
* address. When limit is not one and frags= is
* provided, the fragment limit controls.
* mincount= (decimal) Return entries with count >= mincount.
* laddr= Return entries associated with the server's IP
* address given. No port specification is needed,
* and any supplied is ignored.
* resall= 0x-prefixed hex restrict bits which must all be
* lit for an MRU entry to be included.
* Has precedence over any resany=.
* resany= 0x-prefixed hex restrict bits, at least one of
* which must be list for an MRU entry to be
* included.
* last.0= 0x-prefixed hex l_fp timestamp of newest entry
* which client previously received.
* addr.0= text of newest entry's IP address and port,
* IPv6 addresses in bracketed form: [::]:123
* last.1= timestamp of 2nd newest entry client has.
* addr.1= address of 2nd newest entry.
* [...]
*
* ntpq provides as many last/addr pairs as will fit in a single request
* packet, except for the first request in a MRU fetch operation.
*
* The response begins with a new nonce value to be used for any
* followup request. Following the nonce is the next newer entry than
* referred to by last.0 and addr.0, if the "0" entry has not been
* bumped to the front. If it has, the first entry returned will be the
* next entry newer than referred to by last.1 and addr.1, and so on.
* If none of the referenced entries remain unchanged, the request fails
* and ntpq backs up to the next earlier set of entries to resync.
*
* Except for the first response, the response begins with confirmation
* of the entry that precedes the first additional entry provided:
*
* last.older= hex l_fp timestamp matching one of the input
* .last timestamps, which entry now precedes the
* response 0. entry in the MRU list.
* addr.older= text of address corresponding to older.last.
*
* And in any case, a successful response contains sets of values
* comprising entries, with the oldest numbered 0 and incrementing from
* there:
*
* addr.# text of IPv4 or IPv6 address and port
* last.# hex l_fp timestamp of last receipt
* first.# hex l_fp timestamp of first receipt
* ct.# count of packets received
* mv.# mode and version
* rs.# restriction mask (RES_* bits)
*
* Note the code currently assumes there are no valid three letter
* tags sent with each row, and needs to be adjusted if that changes.
*
* The client should accept the values in any order, and ignore .#
* values which it does not understand, to allow a smooth path to
* future changes without requiring a new opcode. Clients can rely
* on all *.0 values preceding any *.1 values, that is all values for
* a given index number are together in the response.
*
* The end of the response list is noted with one or two tag=value
* pairs. Unconditionally:
*
* now= 0x-prefixed l_fp timestamp at the server marking
* the end of the operation.
*
* If any entries were returned, now= is followed by:
*
* last.newest= hex l_fp identical to last.# of the prior
* entry.
*/
static void read_mru_list(
struct recvbuf *rbufp,
int restrict_mask
)
{
static const char nulltxt[1] = { '\0' };
static const char nonce_text[] = "nonce";
static const char frags_text[] = "frags";
static const char limit_text[] = "limit";
static const char mincount_text[] = "mincount";
static const char resall_text[] = "resall";
static const char resany_text[] = "resany";
static const char maxlstint_text[] = "maxlstint";
static const char laddr_text[] = "laddr";
static const char resaxx_fmt[] = "0x%hx";
u_int limit;
u_short frags;
u_short resall;
u_short resany;
int mincount;
u_int maxlstint;
sockaddr_u laddr;
struct interface * lcladr;
u_int count;
u_int ui;
u_int uf;
l_fp last[16];
sockaddr_u addr[COUNTOF(last)];
char buf[128];
struct ctl_var * in_parms;
const struct ctl_var * v;
const char * val;
const char * pch;
char * pnonce;
int nonce_valid;
size_t i;
int priors;
u_short hash;
mon_entry * mon;
mon_entry * prior_mon;
l_fp now;
if (RES_NOMRULIST & restrict_mask) {
ctl_error(CERR_PERMISSION);
NLOG(NLOG_SYSINFO)
msyslog(LOG_NOTICE,
"mrulist from %s rejected due to nomrulist restriction",
stoa(&rbufp->recv_srcadr));
sys_restricted++;
return;
}
/*
* fill in_parms var list with all possible input parameters.
*/
in_parms = NULL;
set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
set_var(&in_parms, frags_text, sizeof(frags_text), 0);
set_var(&in_parms, limit_text, sizeof(limit_text), 0);
set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
set_var(&in_parms, resall_text, sizeof(resall_text), 0);
set_var(&in_parms, resany_text, sizeof(resany_text), 0);
set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
for (i = 0; i < COUNTOF(last); i++) {
snprintf(buf, sizeof(buf), last_fmt, (int)i);
set_var(&in_parms, buf, strlen(buf) + 1, 0);
snprintf(buf, sizeof(buf), addr_fmt, (int)i);
set_var(&in_parms, buf, strlen(buf) + 1, 0);
}
/* decode input parms */
pnonce = NULL;
frags = 0;
limit = 0;
mincount = 0;
resall = 0;
resany = 0;
maxlstint = 0;
lcladr = NULL;
priors = 0;
ZERO(last);
ZERO(addr);
/* have to go through '(void*)' to drop 'const' property from pointer.
* ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
*/
while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
!(EOV & v->flags)) {
int si;
if (NULL == val)
val = nulltxt;
if (!strcmp(nonce_text, v->text)) {
free(pnonce);
pnonce = (*val) ? estrdup(val) : NULL;
} else if (!strcmp(frags_text, v->text)) {
if (1 != sscanf(val, "%hu", &frags))
goto blooper;
} else if (!strcmp(limit_text, v->text)) {
if (1 != sscanf(val, "%u", &limit))
goto blooper;
} else if (!strcmp(mincount_text, v->text)) {
if (1 != sscanf(val, "%d", &mincount))
goto blooper;
if (mincount < 0)
mincount = 0;
} else if (!strcmp(resall_text, v->text)) {
if (1 != sscanf(val, resaxx_fmt, &resall))
goto blooper;
} else if (!strcmp(resany_text, v->text)) {
if (1 != sscanf(val, resaxx_fmt, &resany))
goto blooper;
} else if (!strcmp(maxlstint_text, v->text)) {
if (1 != sscanf(val, "%u", &maxlstint))
goto blooper;
} else if (!strcmp(laddr_text, v->text)) {
if (!decodenetnum(val, &laddr))
goto blooper;
lcladr = getinterface(&laddr, 0);
} else if (1 == sscanf(v->text, last_fmt, &si) &&
(size_t)si < COUNTOF(last)) {
if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
goto blooper;
last[si].l_ui = ui;
last[si].l_uf = uf;
if (!SOCK_UNSPEC(&addr[si]) && si == priors)
priors++;
} else if (1 == sscanf(v->text, addr_fmt, &si) &&
(size_t)si < COUNTOF(addr)) {
if (!decodenetnum(val, &addr[si]))
goto blooper;
if (last[si].l_ui && last[si].l_uf && si == priors)
priors++;
} else {
DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
v->text));
continue;
blooper:
DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
v->text, val));
free(pnonce);
pnonce = NULL;
break;
}
}
free_varlist(in_parms);
in_parms = NULL;
/* return no responses until the nonce is validated */
if (NULL == pnonce)
return;
nonce_valid = validate_nonce(pnonce, rbufp);
free(pnonce);
if (!nonce_valid)
return;
if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
frags > MRU_FRAGS_LIMIT) {
ctl_error(CERR_BADVALUE);
return;
}
/*
* If either frags or limit is not given, use the max.
*/
if (0 != frags && 0 == limit)
limit = UINT_MAX;
else if (0 != limit && 0 == frags)
frags = MRU_FRAGS_LIMIT;
/*
* Find the starting point if one was provided.
*/
mon = NULL;
for (i = 0; i < (size_t)priors; i++) {
hash = MON_HASH(&addr[i]);
for (mon = mon_hash[hash];
mon != NULL;
mon = mon->hash_next)
if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
break;
if (mon != NULL) {
if (L_ISEQU(&mon->last, &last[i]))
break;
mon = NULL;
}
}
/* If a starting point was provided... */
if (priors) {
/* and none could be found unmodified... */
if (NULL == mon) {
/* tell ntpq to try again with older entries */
ctl_error(CERR_UNKNOWNVAR);
return;
}
/* confirm the prior entry used as starting point */
ctl_putts("last.older", &mon->last);
pch = sptoa(&mon->rmtadr);
ctl_putunqstr("addr.older", pch, strlen(pch));
/*
* Move on to the first entry the client doesn't have,
* except in the special case of a limit of one. In
* that case return the starting point entry.
*/
if (limit > 1)
mon = PREV_DLIST(mon_mru_list, mon, mru);
} else { /* start with the oldest */
mon = TAIL_DLIST(mon_mru_list, mru);
}
/*
* send up to limit= entries in up to frags= datagrams
*/
get_systime(&now);
generate_nonce(rbufp, buf, sizeof(buf));
ctl_putunqstr("nonce", buf, strlen(buf));
prior_mon = NULL;
for (count = 0;
mon != NULL && res_frags < frags && count < limit;
mon = PREV_DLIST(mon_mru_list, mon, mru)) {
if (mon->count < mincount)
continue;
if (resall && resall != (resall & mon->flags))
continue;
if (resany && !(resany & mon->flags))
continue;
if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
maxlstint)
continue;
if (lcladr != NULL && mon->lcladr != lcladr)
continue;
send_mru_entry(mon, count);
if (!count)
send_random_tag_value(0);
count++;
prior_mon = mon;
}
/*
* If this batch completes the MRU list, say so explicitly with
* a now= l_fp timestamp.
*/
if (NULL == mon) {
if (count > 1)
send_random_tag_value(count - 1);
ctl_putts("now", &now);
/* if any entries were returned confirm the last */
if (prior_mon != NULL)
ctl_putts("last.newest", &prior_mon->last);
}
ctl_flushpkt(0);
}
/*
* Send a ifstats entry in response to a "ntpq -c ifstats" request.
*
* To keep clients honest about not depending on the order of values,
* and thereby avoid being locked into ugly workarounds to maintain
* backward compatibility later as new fields are added to the response,
* the order is random.
*/
static void
send_ifstats_entry(
endpt * la,
u_int ifnum
)
{
const char addr_fmtu[] = "addr.%u";
const char bcast_fmt[] = "bcast.%u";
const char en_fmt[] = "en.%u"; /* enabled */
const char name_fmt[] = "name.%u";
const char flags_fmt[] = "flags.%u";
const char tl_fmt[] = "tl.%u"; /* ttl */
const char mc_fmt[] = "mc.%u"; /* mcast count */
const char rx_fmt[] = "rx.%u";
const char tx_fmt[] = "tx.%u";
const char txerr_fmt[] = "txerr.%u";
const char pc_fmt[] = "pc.%u"; /* peer count */
const char up_fmt[] = "up.%u"; /* uptime */
char tag[32];
u_char sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
int noisebits;
u_int32 noise;
u_int which;
u_int remaining;
const char *pch;
remaining = COUNTOF(sent);
ZERO(sent);
noise = 0;
noisebits = 0;
while (remaining > 0) {
if (noisebits < 4) {
noise = rand() ^ (rand() << 16);
noisebits = 31;
}
which = (noise & 0xf) % COUNTOF(sent);
noise >>= 4;
noisebits -= 4;
while (sent[which])
which = (which + 1) % COUNTOF(sent);
switch (which) {
case 0:
snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
pch = sptoa(&la->sin);
ctl_putunqstr(tag, pch, strlen(pch));
break;
case 1:
snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
if (INT_BCASTOPEN & la->flags)
pch = sptoa(&la->bcast);
else
pch = "";
ctl_putunqstr(tag, pch, strlen(pch));
break;
case 2:
snprintf(tag, sizeof(tag), en_fmt, ifnum);
ctl_putint(tag, !la->ignore_packets);
break;
case 3:
snprintf(tag, sizeof(tag), name_fmt, ifnum);
ctl_putstr(tag, la->name, strlen(la->name));
break;
case 4:
snprintf(tag, sizeof(tag), flags_fmt, ifnum);
ctl_puthex(tag, (u_int)la->flags);
break;
case 5:
snprintf(tag, sizeof(tag), tl_fmt, ifnum);
ctl_putint(tag, la->last_ttl);
break;
case 6:
snprintf(tag, sizeof(tag), mc_fmt, ifnum);
ctl_putint(tag, la->num_mcast);
break;
case 7:
snprintf(tag, sizeof(tag), rx_fmt, ifnum);
ctl_putint(tag, la->received);
break;
case 8:
snprintf(tag, sizeof(tag), tx_fmt, ifnum);
ctl_putint(tag, la->sent);
break;
case 9:
snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
ctl_putint(tag, la->notsent);
break;
case 10:
snprintf(tag, sizeof(tag), pc_fmt, ifnum);
ctl_putuint(tag, la->peercnt);
break;
case 11:
snprintf(tag, sizeof(tag), up_fmt, ifnum);
ctl_putuint(tag, current_time - la->starttime);
break;
}
sent[which] = TRUE;
remaining--;
}
send_random_tag_value((int)ifnum);
}
/*
* read_ifstats - send statistics for each local address, exposed by
* ntpq -c ifstats
*/
static void
read_ifstats(
struct recvbuf * rbufp
)
{
u_int ifidx;
endpt * la;
/*
* loop over [0..sys_ifnum] searching ep_list for each
* ifnum in turn.
*/
for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
for (la = ep_list; la != NULL; la = la->elink)
if (ifidx == la->ifnum)
break;
if (NULL == la)
continue;
/* return stats for one local address */
send_ifstats_entry(la, ifidx);
}
ctl_flushpkt(0);
}
static void
sockaddrs_from_restrict_u(
sockaddr_u * psaA,
sockaddr_u * psaM,
restrict_u * pres,
int ipv6
)
{
ZERO(*psaA);
ZERO(*psaM);
if (!ipv6) {
psaA->sa.sa_family = AF_INET;
psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
psaM->sa.sa_family = AF_INET;
psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
} else {
psaA->sa.sa_family = AF_INET6;
memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
sizeof(psaA->sa6.sin6_addr));
psaM->sa.sa_family = AF_INET6;
memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
sizeof(psaA->sa6.sin6_addr));
}
}
/*
* Send a restrict entry in response to a "ntpq -c reslist" request.
*
* To keep clients honest about not depending on the order of values,
* and thereby avoid being locked into ugly workarounds to maintain
* backward compatibility later as new fields are added to the response,
* the order is random.
*/
static void
send_restrict_entry(
restrict_u * pres,
int ipv6,
u_int idx
)
{
const char addr_fmtu[] = "addr.%u";
const char mask_fmtu[] = "mask.%u";
const char hits_fmt[] = "hits.%u";
const char flags_fmt[] = "flags.%u";
char tag[32];
u_char sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
int noisebits;
u_int32 noise;
u_int which;
u_int remaining;
sockaddr_u addr;
sockaddr_u mask;
const char * pch;
char * buf;
const char * match_str;
const char * access_str;
sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
remaining = COUNTOF(sent);
ZERO(sent);
noise = 0;
noisebits = 0;
while (remaining > 0) {
if (noisebits < 2) {
noise = rand() ^ (rand() << 16);
noisebits = 31;
}
which = (noise & 0x3) % COUNTOF(sent);
noise >>= 2;
noisebits -= 2;
while (sent[which])
which = (which + 1) % COUNTOF(sent);
/* XXX: Numbers? Really? */
switch (which) {
case 0:
snprintf(tag, sizeof(tag), addr_fmtu, idx);
pch = stoa(&addr);
ctl_putunqstr(tag, pch, strlen(pch));
break;
case 1:
snprintf(tag, sizeof(tag), mask_fmtu, idx);
pch = stoa(&mask);
ctl_putunqstr(tag, pch, strlen(pch));
break;
case 2:
snprintf(tag, sizeof(tag), hits_fmt, idx);
ctl_putuint(tag, pres->count);
break;
case 3:
snprintf(tag, sizeof(tag), flags_fmt, idx);
match_str = res_match_flags(pres->mflags);
access_str = res_access_flags(pres->rflags);
if ('\0' == match_str[0]) {
pch = access_str;
} else {
LIB_GETBUF(buf);
snprintf(buf, LIB_BUFLENGTH, "%s %s",
match_str, access_str);
pch = buf;
}
ctl_putunqstr(tag, pch, strlen(pch));
break;
}
sent[which] = TRUE;
remaining--;
}
send_random_tag_value((int)idx);
}
static void
send_restrict_list(
restrict_u * pres,
int ipv6,
u_int * pidx
)
{
for ( ; pres != NULL; pres = pres->link) {
send_restrict_entry(pres, ipv6, *pidx);
(*pidx)++;
}
}
/*
* read_addr_restrictions - returns IPv4 and IPv6 access control lists
*/
static void
read_addr_restrictions(
struct recvbuf * rbufp
)
{
u_int idx;
idx = 0;
send_restrict_list(restrictlist4, FALSE, &idx);
send_restrict_list(restrictlist6, TRUE, &idx);
ctl_flushpkt(0);
}
/*
* read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
*/
static void
read_ordlist(
struct recvbuf * rbufp,
int restrict_mask
)
{
const char ifstats_s[] = "ifstats";
const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
const char addr_rst_s[] = "addr_restrictions";
const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
struct ntp_control * cpkt;
u_short qdata_octets;
/*
* CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
* used only for ntpq -c ifstats. With the addition of reslist
* the same opcode was generalized to retrieve ordered lists
* which require authentication. The request data is empty or
* contains "ifstats" (not null terminated) to retrieve local
* addresses and associated stats. It is "addr_restrictions"
* to retrieve the IPv4 then IPv6 remote address restrictions,
* which are access control lists. Other request data return
* CERR_UNKNOWNVAR.
*/
cpkt = (struct ntp_control *)&rbufp->recv_pkt;
qdata_octets = ntohs(cpkt->count);
if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
!memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
read_ifstats(rbufp);
return;
}
if (a_r_chars == qdata_octets &&
!memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
read_addr_restrictions(rbufp);
return;
}
ctl_error(CERR_UNKNOWNVAR);
}
/*
* req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
*/
static void req_nonce(
struct recvbuf * rbufp,
int restrict_mask
)
{
char buf[64];
generate_nonce(rbufp, buf, sizeof(buf));
ctl_putunqstr("nonce", buf, strlen(buf));
ctl_flushpkt(0);
}
/*
* read_clockstatus - return clock radio status
*/
/*ARGSUSED*/
static void
read_clockstatus(
struct recvbuf *rbufp,
int restrict_mask
)
{
#ifndef REFCLOCK
/*
* If no refclock support, no data to return
*/
ctl_error(CERR_BADASSOC);
#else
const struct ctl_var * v;
int i;
struct peer * peer;
char * valuep;
u_char * wants;
size_t wants_alloc;
int gotvar;
const u_char * cc;
struct ctl_var * kv;
struct refclockstat cs;
if (res_associd != 0) {
peer = findpeerbyassoc(res_associd);
} else {
/*
* Find a clock for this jerk. If the system peer
* is a clock use it, else search peer_list for one.
*/
if (sys_peer != NULL && (FLAG_REFCLOCK &
sys_peer->flags))
peer = sys_peer;
else
for (peer = peer_list;
peer != NULL;
peer = peer->p_link)
if (FLAG_REFCLOCK & peer->flags)
break;
}
if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
ctl_error(CERR_BADASSOC);
return;
}
/*
* If we got here we have a peer which is a clock. Get his
* status.
*/
cs.kv_list = NULL;
refclock_control(&peer->srcadr, NULL, &cs);
kv = cs.kv_list;
/*
* Look for variables in the packet.
*/
rpkt.status = htons(ctlclkstatus(&cs));
wants_alloc = CC_MAXCODE + 1 + count_var(kv);
wants = emalloc_zero(wants_alloc);
gotvar = FALSE;
while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
if (!(EOV & v->flags)) {
wants[v->code] = TRUE;
gotvar = TRUE;
} else {
v = ctl_getitem(kv, &valuep);
if (NULL == v) {
ctl_error(CERR_BADVALUE);
free(wants);
free_varlist(cs.kv_list);
return;
}
if (EOV & v->flags) {
ctl_error(CERR_UNKNOWNVAR);
free(wants);
free_varlist(cs.kv_list);
return;
}
wants[CC_MAXCODE + 1 + v->code] = TRUE;
gotvar = TRUE;
}
}
if (gotvar) {
for (i = 1; i <= CC_MAXCODE; i++)
if (wants[i])
ctl_putclock(i, &cs, TRUE);
if (kv != NULL)
for (i = 0; !(EOV & kv[i].flags); i++)
if (wants[i + CC_MAXCODE + 1])
ctl_putdata(kv[i].text,
strlen(kv[i].text),
FALSE);
} else {
for (cc = def_clock_var; *cc != 0; cc++)
ctl_putclock((int)*cc, &cs, FALSE);
for ( ; kv != NULL && !(EOV & kv->flags); kv++)
if (DEF & kv->flags)
ctl_putdata(kv->text, strlen(kv->text),
FALSE);
}
free(wants);
free_varlist(cs.kv_list);
ctl_flushpkt(0);
#endif
}
/*
* write_clockstatus - we don't do this
*/
/*ARGSUSED*/
static void
write_clockstatus(
struct recvbuf *rbufp,
int restrict_mask
)
{
ctl_error(CERR_PERMISSION);
}
/*
* Trap support from here on down. We send async trap messages when the
* upper levels report trouble. Traps can by set either by control
* messages or by configuration.
*/
/*
* set_trap - set a trap in response to a control message
*/
static void
set_trap(
struct recvbuf *rbufp,
int restrict_mask
)
{
int traptype;
/*
* See if this guy is allowed
*/
if (restrict_mask & RES_NOTRAP) {
ctl_error(CERR_PERMISSION);
return;
}
/*
* Determine his allowed trap type.
*/
traptype = TRAP_TYPE_PRIO;
if (restrict_mask & RES_LPTRAP)
traptype = TRAP_TYPE_NONPRIO;
/*
* Call ctlsettrap() to do the work. Return
* an error if it can't assign the trap.
*/
if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
(int)res_version))
ctl_error(CERR_NORESOURCE);
ctl_flushpkt(0);
}
/*
* unset_trap - unset a trap in response to a control message
*/
static void
unset_trap(
struct recvbuf *rbufp,
int restrict_mask
)
{
int traptype;
/*
* We don't prevent anyone from removing his own trap unless the
* trap is configured. Note we also must be aware of the
* possibility that restriction flags were changed since this
* guy last set his trap. Set the trap type based on this.
*/
traptype = TRAP_TYPE_PRIO;
if (restrict_mask & RES_LPTRAP)
traptype = TRAP_TYPE_NONPRIO;
/*
* Call ctlclrtrap() to clear this out.
*/
if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
ctl_error(CERR_BADASSOC);
ctl_flushpkt(0);
}
/*
* ctlsettrap - called to set a trap
*/
int
ctlsettrap(
sockaddr_u *raddr,
struct interface *linter,
int traptype,
int version
)
{
size_t n;
struct ctl_trap *tp;
struct ctl_trap *tptouse;
/*
* See if we can find this trap. If so, we only need update
* the flags and the time.
*/
if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
switch (traptype) {
case TRAP_TYPE_CONFIG:
tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
break;
case TRAP_TYPE_PRIO:
if (tp->tr_flags & TRAP_CONFIGURED)
return (1); /* don't change anything */
tp->tr_flags = TRAP_INUSE;
break;
case TRAP_TYPE_NONPRIO:
if (tp->tr_flags & TRAP_CONFIGURED)
return (1); /* don't change anything */
tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
break;
}
tp->tr_settime = current_time;
tp->tr_resets++;
return (1);
}
/*
* First we heard of this guy. Try to find a trap structure
* for him to use, clearing out lesser priority guys if we
* have to. Clear out anyone who's expired while we're at it.
*/
tptouse = NULL;
for (n = 0; n < COUNTOF(ctl_traps); n++) {
tp = &ctl_traps[n];
if ((TRAP_INUSE & tp->tr_flags) &&
!(TRAP_CONFIGURED & tp->tr_flags) &&
((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
tp->tr_flags = 0;
num_ctl_traps--;
}
if (!(TRAP_INUSE & tp->tr_flags)) {
tptouse = tp;
} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
switch (traptype) {
case TRAP_TYPE_CONFIG:
if (tptouse == NULL) {
tptouse = tp;
break;
}
if ((TRAP_NONPRIO & tptouse->tr_flags) &&
!(TRAP_NONPRIO & tp->tr_flags))
break;
if (!(TRAP_NONPRIO & tptouse->tr_flags)
&& (TRAP_NONPRIO & tp->tr_flags)) {
tptouse = tp;
break;
}
if (tptouse->tr_origtime <
tp->tr_origtime)
tptouse = tp;
break;
case TRAP_TYPE_PRIO:
if ( TRAP_NONPRIO & tp->tr_flags) {
if (tptouse == NULL ||
((TRAP_INUSE &
tptouse->tr_flags) &&
tptouse->tr_origtime <
tp->tr_origtime))
tptouse = tp;
}
break;
case TRAP_TYPE_NONPRIO:
break;
}
}
}
/*
* If we don't have room for him return an error.
*/
if (tptouse == NULL)
return (0);
/*
* Set up this structure for him.
*/
tptouse->tr_settime = tptouse->tr_origtime = current_time;
tptouse->tr_count = tptouse->tr_resets = 0;
tptouse->tr_sequence = 1;
tptouse->tr_addr = *raddr;
tptouse->tr_localaddr = linter;
tptouse->tr_version = (u_char) version;
tptouse->tr_flags = TRAP_INUSE;
if (traptype == TRAP_TYPE_CONFIG)
tptouse->tr_flags |= TRAP_CONFIGURED;
else if (traptype == TRAP_TYPE_NONPRIO)
tptouse->tr_flags |= TRAP_NONPRIO;
num_ctl_traps++;
return (1);
}
/*
* ctlclrtrap - called to clear a trap
*/
int
ctlclrtrap(
sockaddr_u *raddr,
struct interface *linter,
int traptype
)
{
register struct ctl_trap *tp;
if ((tp = ctlfindtrap(raddr, linter)) == NULL)
return (0);
if (tp->tr_flags & TRAP_CONFIGURED
&& traptype != TRAP_TYPE_CONFIG)
return (0);
tp->tr_flags = 0;
num_ctl_traps--;
return (1);
}
/*
* ctlfindtrap - find a trap given the remote and local addresses
*/
static struct ctl_trap *
ctlfindtrap(
sockaddr_u *raddr,
struct interface *linter
)
{
size_t n;
for (n = 0; n < COUNTOF(ctl_traps); n++)
if ((ctl_traps[n].tr_flags & TRAP_INUSE)
&& ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
&& (linter == ctl_traps[n].tr_localaddr))
return &ctl_traps[n];
return NULL;
}
/*
* report_event - report an event to the trappers
*/
void
report_event(
int err, /* error code */
struct peer *peer, /* peer structure pointer */
const char *str /* protostats string */
)
{
char statstr[NTP_MAXSTRLEN];
int i;
size_t len;
/*
* Report the error to the protostats file, system log and
* trappers.
*/
if (peer == NULL) {
/*
* Discard a system report if the number of reports of
* the same type exceeds the maximum.
*/
if (ctl_sys_last_event != (u_char)err)
ctl_sys_num_events= 0;
if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
return;
ctl_sys_last_event = (u_char)err;
ctl_sys_num_events++;
snprintf(statstr, sizeof(statstr),
"0.0.0.0 %04x %02x %s",
ctlsysstatus(), err, eventstr(err));
if (str != NULL) {
len = strlen(statstr);
snprintf(statstr + len, sizeof(statstr) - len,
" %s", str);
}
NLOG(NLOG_SYSEVENT)
msyslog(LOG_INFO, "%s", statstr);
} else {
/*
* Discard a peer report if the number of reports of
* the same type exceeds the maximum for that peer.
*/
const char * src;
u_char errlast;
errlast = (u_char)err & ~PEER_EVENT;
if (peer->last_event != errlast)
peer->num_events = 0;
if (peer->num_events >= CTL_PEER_MAXEVENTS)
return;
peer->last_event = errlast;
peer->num_events++;
if (ISREFCLOCKADR(&peer->srcadr))
src = refnumtoa(&peer->srcadr);
else
src = stoa(&peer->srcadr);
snprintf(statstr, sizeof(statstr),
"%s %04x %02x %s", src,
ctlpeerstatus(peer), err, eventstr(err));
if (str != NULL) {
len = strlen(statstr);
snprintf(statstr + len, sizeof(statstr) - len,
" %s", str);
}
NLOG(NLOG_PEEREVENT)
msyslog(LOG_INFO, "%s", statstr);
}
record_proto_stats(statstr);
#if DEBUG
if (debug)
printf("event at %lu %s\n", current_time, statstr);
#endif
/*
* If no trappers, return.
*/
if (num_ctl_traps <= 0)
return;
/* [Bug 3119]
* Peer Events should be associated with a peer -- hence the
* name. But there are instances where this function is called
* *without* a valid peer. This happens e.g. with an unsolicited
* CryptoNAK, or when a leap second alarm is going off while
* currently without a system peer.
*
* The most sensible approach to this seems to bail out here if
* this happens. Avoiding to call this function would also
* bypass the log reporting in the first part of this function,
* and this is probably not the best of all options.
* -*-perlinger@ntp.org-*-
*/
if ((err & PEER_EVENT) && !peer)
return;
/*
* Set up the outgoing packet variables
*/
res_opcode = CTL_OP_ASYNCMSG;
res_offset = 0;
res_async = TRUE;
res_authenticate = FALSE;
datapt = rpkt.u.data;
dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
if (!(err & PEER_EVENT)) {
rpkt.associd = 0;
rpkt.status = htons(ctlsysstatus());
/* Include the core system variables and the list. */
for (i = 1; i <= CS_VARLIST; i++)
ctl_putsys(i);
} else if (NULL != peer) { /* paranoia -- skip output */
rpkt.associd = htons(peer->associd);
rpkt.status = htons(ctlpeerstatus(peer));
/* Dump it all. Later, maybe less. */
for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
ctl_putpeer(i, peer);
# ifdef REFCLOCK
/*
* for clock exception events: add clock variables to
* reflect info on exception
*/
if (err == PEVNT_CLOCK) {
struct refclockstat cs;
struct ctl_var *kv;
cs.kv_list = NULL;
refclock_control(&peer->srcadr, NULL, &cs);
ctl_puthex("refclockstatus",
ctlclkstatus(&cs));
for (i = 1; i <= CC_MAXCODE; i++)
ctl_putclock(i, &cs, FALSE);
for (kv = cs.kv_list;
kv != NULL && !(EOV & kv->flags);
kv++)
if (DEF & kv->flags)
ctl_putdata(kv->text,
strlen(kv->text),
FALSE);
free_varlist(cs.kv_list);
}
# endif /* REFCLOCK */
}
/*
* We're done, return.
*/
ctl_flushpkt(0);
}
/*
* mprintf_event - printf-style varargs variant of report_event()
*/
int
mprintf_event(
int evcode, /* event code */
struct peer * p, /* may be NULL */
const char * fmt, /* msnprintf format */
...
)
{
va_list ap;
int rc;
char msg[512];
va_start(ap, fmt);
rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
va_end(ap);
report_event(evcode, p, msg);
return rc;
}
/*
* ctl_clr_stats - clear stat counters
*/
void
ctl_clr_stats(void)
{
ctltimereset = current_time;
numctlreq = 0;
numctlbadpkts = 0;
numctlresponses = 0;
numctlfrags = 0;
numctlerrors = 0;
numctlfrags = 0;
numctltooshort = 0;
numctlinputresp = 0;
numctlinputfrag = 0;
numctlinputerr = 0;
numctlbadoffset = 0;
numctlbadversion = 0;
numctldatatooshort = 0;
numctlbadop = 0;
numasyncmsgs = 0;
}
static u_short
count_var(
const struct ctl_var *k
)
{
u_int c;
if (NULL == k)
return 0;
c = 0;
while (!(EOV & (k++)->flags))
c++;
ENSURE(c <= USHRT_MAX);
return (u_short)c;
}
char *
add_var(
struct ctl_var **kv,
u_long size,
u_short def
)
{
u_short c;
struct ctl_var *k;
char * buf;
c = count_var(*kv);
*kv = erealloc(*kv, (c + 2) * sizeof(**kv));
k = *kv;
buf = emalloc(size);
k[c].code = c;
k[c].text = buf;
k[c].flags = def;
k[c + 1].code = 0;
k[c + 1].text = NULL;
k[c + 1].flags = EOV;
return buf;
}
void
set_var(
struct ctl_var **kv,
const char *data,
u_long size,
u_short def
)
{
struct ctl_var *k;
const char *s;
const char *t;
char *td;
if (NULL == data || !size)
return;
k = *kv;
if (k != NULL) {
while (!(EOV & k->flags)) {
if (NULL == k->text) {
td = emalloc(size);
memcpy(td, data, size);
k->text = td;
k->flags = def;
return;
} else {
s = data;
t = k->text;
while (*t != '=' && *s == *t) {
s++;
t++;
}
if (*s == *t && ((*t == '=') || !*t)) {
td = erealloc((void *)(intptr_t)k->text, size);
memcpy(td, data, size);
k->text = td;
k->flags = def;
return;
}
}
k++;
}
}
td = add_var(kv, size, def);
memcpy(td, data, size);
}
void
set_sys_var(
const char *data,
u_long size,
u_short def
)
{
set_var(&ext_sys_var, data, size, def);
}
/*
* get_ext_sys_var() retrieves the value of a user-defined variable or
* NULL if the variable has not been setvar'd.
*/
const char *
get_ext_sys_var(const char *tag)
{
struct ctl_var * v;
size_t c;
const char * val;
val = NULL;
c = strlen(tag);
for (v = ext_sys_var; !(EOV & v->flags); v++) {
if (NULL != v->text && !memcmp(tag, v->text, c)) {
if ('=' == v->text[c]) {
val = v->text + c + 1;
break;
} else if ('\0' == v->text[c]) {
val = "";
break;
}
}
}
return val;
}
void
free_varlist(
struct ctl_var *kv
)
{
struct ctl_var *k;
if (kv) {
for (k = kv; !(k->flags & EOV); k++)
free((void *)(intptr_t)k->text);
free((void *)kv);
}
}