1381 lines
34 KiB
C
1381 lines
34 KiB
C
/*
|
|
* ntp_refclock - processing support for reference clocks
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_io.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_tty.h"
|
|
#include "ntp_refclock.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_assert.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
#ifdef HAVE_SYS_IOCTL_H
|
|
# include <sys/ioctl.h>
|
|
#endif /* HAVE_SYS_IOCTL_H */
|
|
|
|
#ifdef REFCLOCK
|
|
|
|
#ifdef KERNEL_PLL
|
|
#include "ntp_syscall.h"
|
|
#endif /* KERNEL_PLL */
|
|
|
|
#ifdef HAVE_PPSAPI
|
|
#include "ppsapi_timepps.h"
|
|
#include "refclock_atom.h"
|
|
#endif /* HAVE_PPSAPI */
|
|
|
|
/*
|
|
* Reference clock support is provided here by maintaining the fiction
|
|
* that the clock is actually a peer. As no packets are exchanged with
|
|
* a reference clock, however, we replace the transmit, receive and
|
|
* packet procedures with separate code to simulate them. Routines
|
|
* refclock_transmit() and refclock_receive() maintain the peer
|
|
* variables in a state analogous to an actual peer and pass reference
|
|
* clock data on through the filters. Routines refclock_peer() and
|
|
* refclock_unpeer() are called to initialize and terminate reference
|
|
* clock associations. A set of utility routines is included to open
|
|
* serial devices, process sample data, and to perform various debugging
|
|
* functions.
|
|
*
|
|
* The main interface used by these routines is the refclockproc
|
|
* structure, which contains for most drivers the decimal equivalants
|
|
* of the year, day, month, hour, second and millisecond/microsecond
|
|
* decoded from the ASCII timecode. Additional information includes
|
|
* the receive timestamp, exception report, statistics tallies, etc.
|
|
* In addition, there may be a driver-specific unit structure used for
|
|
* local control of the device.
|
|
*
|
|
* The support routines are passed a pointer to the peer structure,
|
|
* which is used for all peer-specific processing and contains a
|
|
* pointer to the refclockproc structure, which in turn contains a
|
|
* pointer to the unit structure, if used. The peer structure is
|
|
* identified by an interface address in the dotted quad form
|
|
* 127.127.t.u, where t is the clock type and u the unit.
|
|
*/
|
|
#define FUDGEFAC .1 /* fudge correction factor */
|
|
#define LF 0x0a /* ASCII LF */
|
|
|
|
int cal_enable; /* enable refclock calibrate */
|
|
|
|
/*
|
|
* Forward declarations
|
|
*/
|
|
static int refclock_cmpl_fp (const void *, const void *);
|
|
static int refclock_sample (struct refclockproc *);
|
|
static int refclock_ioctl(int, u_int);
|
|
|
|
|
|
/*
|
|
* refclock_report - note the occurance of an event
|
|
*
|
|
* This routine presently just remembers the report and logs it, but
|
|
* does nothing heroic for the trap handler. It tries to be a good
|
|
* citizen and bothers the system log only if things change.
|
|
*/
|
|
void
|
|
refclock_report(
|
|
struct peer *peer,
|
|
int code
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
|
|
pp = peer->procptr;
|
|
if (pp == NULL)
|
|
return;
|
|
|
|
switch (code) {
|
|
|
|
case CEVNT_TIMEOUT:
|
|
pp->noreply++;
|
|
break;
|
|
|
|
case CEVNT_BADREPLY:
|
|
pp->badformat++;
|
|
break;
|
|
|
|
case CEVNT_FAULT:
|
|
break;
|
|
|
|
case CEVNT_BADDATE:
|
|
case CEVNT_BADTIME:
|
|
pp->baddata++;
|
|
break;
|
|
|
|
default:
|
|
/* ignore others */
|
|
break;
|
|
}
|
|
if (pp->lastevent < 15)
|
|
pp->lastevent++;
|
|
if (pp->currentstatus != code) {
|
|
pp->currentstatus = (u_char)code;
|
|
report_event(PEVNT_CLOCK, peer, ceventstr(code));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* init_refclock - initialize the reference clock drivers
|
|
*
|
|
* This routine calls each of the drivers in turn to initialize internal
|
|
* variables, if necessary. Most drivers have nothing to say at this
|
|
* point.
|
|
*/
|
|
void
|
|
init_refclock(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < (int)num_refclock_conf; i++)
|
|
if (refclock_conf[i]->clock_init != noentry)
|
|
(refclock_conf[i]->clock_init)();
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_newpeer - initialize and start a reference clock
|
|
*
|
|
* This routine allocates and initializes the interface structure which
|
|
* supports a reference clock in the form of an ordinary NTP peer. A
|
|
* driver-specific support routine completes the initialization, if
|
|
* used. Default peer variables which identify the clock and establish
|
|
* its reference ID and stratum are set here. It returns one if success
|
|
* and zero if the clock address is invalid or already running,
|
|
* insufficient resources are available or the driver declares a bum
|
|
* rap.
|
|
*/
|
|
int
|
|
refclock_newpeer(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
u_char clktype;
|
|
int unit;
|
|
|
|
/*
|
|
* Check for valid clock address. If already running, shut it
|
|
* down first.
|
|
*/
|
|
if (!ISREFCLOCKADR(&peer->srcadr)) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_newpeer: clock address %s invalid",
|
|
stoa(&peer->srcadr));
|
|
return (0);
|
|
}
|
|
clktype = (u_char)REFCLOCKTYPE(&peer->srcadr);
|
|
unit = REFCLOCKUNIT(&peer->srcadr);
|
|
if (clktype >= num_refclock_conf ||
|
|
refclock_conf[clktype]->clock_start == noentry) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_newpeer: clock type %d invalid\n",
|
|
clktype);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize interface structure
|
|
*/
|
|
pp = emalloc_zero(sizeof(*pp));
|
|
peer->procptr = pp;
|
|
|
|
/*
|
|
* Initialize structures
|
|
*/
|
|
peer->refclktype = clktype;
|
|
peer->refclkunit = (u_char)unit;
|
|
peer->flags |= FLAG_REFCLOCK;
|
|
peer->leap = LEAP_NOTINSYNC;
|
|
peer->stratum = STRATUM_REFCLOCK;
|
|
peer->ppoll = peer->maxpoll;
|
|
pp->type = clktype;
|
|
pp->conf = refclock_conf[clktype];
|
|
pp->timestarted = current_time;
|
|
pp->io.fd = -1;
|
|
|
|
/*
|
|
* Set peer.pmode based on the hmode. For appearances only.
|
|
*/
|
|
switch (peer->hmode) {
|
|
case MODE_ACTIVE:
|
|
peer->pmode = MODE_PASSIVE;
|
|
break;
|
|
|
|
default:
|
|
peer->pmode = MODE_SERVER;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Do driver dependent initialization. The above defaults
|
|
* can be wiggled, then finish up for consistency.
|
|
*/
|
|
if (!((refclock_conf[clktype]->clock_start)(unit, peer))) {
|
|
refclock_unpeer(peer);
|
|
return (0);
|
|
}
|
|
peer->refid = pp->refid;
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_unpeer - shut down a clock
|
|
*/
|
|
void
|
|
refclock_unpeer(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
u_char clktype;
|
|
int unit;
|
|
|
|
/*
|
|
* Wiggle the driver to release its resources, then give back
|
|
* the interface structure.
|
|
*/
|
|
if (NULL == peer->procptr)
|
|
return;
|
|
|
|
clktype = peer->refclktype;
|
|
unit = peer->refclkunit;
|
|
if (refclock_conf[clktype]->clock_shutdown != noentry)
|
|
(refclock_conf[clktype]->clock_shutdown)(unit, peer);
|
|
free(peer->procptr);
|
|
peer->procptr = NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_timer - called once per second for housekeeping.
|
|
*/
|
|
void
|
|
refclock_timer(
|
|
struct peer *p
|
|
)
|
|
{
|
|
struct refclockproc * pp;
|
|
int unit;
|
|
|
|
unit = p->refclkunit;
|
|
pp = p->procptr;
|
|
if (pp->conf->clock_timer != noentry)
|
|
(*pp->conf->clock_timer)(unit, p);
|
|
if (pp->action != NULL && pp->nextaction <= current_time)
|
|
(*pp->action)(p);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_transmit - simulate the transmit procedure
|
|
*
|
|
* This routine implements the NTP transmit procedure for a reference
|
|
* clock. This provides a mechanism to call the driver at the NTP poll
|
|
* interval, as well as provides a reachability mechanism to detect a
|
|
* broken radio or other madness.
|
|
*/
|
|
void
|
|
refclock_transmit(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
u_char clktype;
|
|
int unit;
|
|
|
|
clktype = peer->refclktype;
|
|
unit = peer->refclkunit;
|
|
peer->sent++;
|
|
get_systime(&peer->xmt);
|
|
|
|
/*
|
|
* This is a ripoff of the peer transmit routine, but
|
|
* specialized for reference clocks. We do a little less
|
|
* protocol here and call the driver-specific transmit routine.
|
|
*/
|
|
if (peer->burst == 0) {
|
|
u_char oreach;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("refclock_transmit: at %ld %s\n",
|
|
current_time, stoa(&(peer->srcadr)));
|
|
#endif
|
|
|
|
/*
|
|
* Update reachability and poll variables like the
|
|
* network code.
|
|
*/
|
|
oreach = peer->reach & 0xfe;
|
|
peer->reach <<= 1;
|
|
if (!(peer->reach & 0x0f))
|
|
clock_filter(peer, 0., 0., MAXDISPERSE);
|
|
peer->outdate = current_time;
|
|
if (!peer->reach) {
|
|
if (oreach) {
|
|
report_event(PEVNT_UNREACH, peer, NULL);
|
|
peer->timereachable = current_time;
|
|
}
|
|
} else {
|
|
if (peer->flags & FLAG_BURST)
|
|
peer->burst = NSTAGE;
|
|
}
|
|
} else {
|
|
peer->burst--;
|
|
}
|
|
if (refclock_conf[clktype]->clock_poll != noentry)
|
|
(refclock_conf[clktype]->clock_poll)(unit, peer);
|
|
poll_update(peer, peer->hpoll);
|
|
}
|
|
|
|
|
|
/*
|
|
* Compare two doubles - used with qsort()
|
|
*/
|
|
static int
|
|
refclock_cmpl_fp(
|
|
const void *p1,
|
|
const void *p2
|
|
)
|
|
{
|
|
const double *dp1 = (const double *)p1;
|
|
const double *dp2 = (const double *)p2;
|
|
|
|
if (*dp1 < *dp2)
|
|
return -1;
|
|
if (*dp1 > *dp2)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_process_offset - update median filter
|
|
*
|
|
* This routine uses the given offset and timestamps to construct a new
|
|
* entry in the median filter circular buffer. Samples that overflow the
|
|
* filter are quietly discarded.
|
|
*/
|
|
void
|
|
refclock_process_offset(
|
|
struct refclockproc *pp, /* refclock structure pointer */
|
|
l_fp lasttim, /* last timecode timestamp */
|
|
l_fp lastrec, /* last receive timestamp */
|
|
double fudge
|
|
)
|
|
{
|
|
l_fp lftemp;
|
|
double doffset;
|
|
|
|
pp->lastrec = lastrec;
|
|
lftemp = lasttim;
|
|
L_SUB(&lftemp, &lastrec);
|
|
LFPTOD(&lftemp, doffset);
|
|
SAMPLE(doffset + fudge);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_process - process a sample from the clock
|
|
* refclock_process_f - refclock_process with other than time1 fudge
|
|
*
|
|
* This routine converts the timecode in the form days, hours, minutes,
|
|
* seconds and milliseconds/microseconds to internal timestamp format,
|
|
* then constructs a new entry in the median filter circular buffer.
|
|
* Return success (1) if the data are correct and consistent with the
|
|
* converntional calendar.
|
|
*
|
|
* Important for PPS users: Normally, the pp->lastrec is set to the
|
|
* system time when the on-time character is received and the pp->year,
|
|
* ..., pp->second decoded and the seconds fraction pp->nsec in
|
|
* nanoseconds). When a PPS offset is available, pp->nsec is forced to
|
|
* zero and the fraction for pp->lastrec is set to the PPS offset.
|
|
*/
|
|
int
|
|
refclock_process_f(
|
|
struct refclockproc *pp, /* refclock structure pointer */
|
|
double fudge
|
|
)
|
|
{
|
|
l_fp offset, ltemp;
|
|
|
|
/*
|
|
* Compute the timecode timestamp from the days, hours, minutes,
|
|
* seconds and milliseconds/microseconds of the timecode. Use
|
|
* clocktime() for the aggregate seconds and the msec/usec for
|
|
* the fraction, when present. Note that this code relies on the
|
|
* filesystem time for the years and does not use the years of
|
|
* the timecode.
|
|
*/
|
|
if (!clocktime(pp->day, pp->hour, pp->minute, pp->second, GMT,
|
|
pp->lastrec.l_ui, &pp->yearstart, &offset.l_ui))
|
|
return (0);
|
|
|
|
offset.l_uf = 0;
|
|
DTOLFP(pp->nsec / 1e9, <emp);
|
|
L_ADD(&offset, <emp);
|
|
refclock_process_offset(pp, offset, pp->lastrec, fudge);
|
|
return (1);
|
|
}
|
|
|
|
|
|
int
|
|
refclock_process(
|
|
struct refclockproc *pp /* refclock structure pointer */
|
|
)
|
|
{
|
|
return refclock_process_f(pp, pp->fudgetime1);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_sample - process a pile of samples from the clock
|
|
*
|
|
* This routine implements a recursive median filter to suppress spikes
|
|
* in the data, as well as determine a performance statistic. It
|
|
* calculates the mean offset and RMS jitter. A time adjustment
|
|
* fudgetime1 can be added to the final offset to compensate for various
|
|
* systematic errors. The routine returns the number of samples
|
|
* processed, which could be zero.
|
|
*/
|
|
static int
|
|
refclock_sample(
|
|
struct refclockproc *pp /* refclock structure pointer */
|
|
)
|
|
{
|
|
size_t i, j, k, m, n;
|
|
double off[MAXSTAGE];
|
|
double offset;
|
|
|
|
/*
|
|
* Copy the raw offsets and sort into ascending order. Don't do
|
|
* anything if the buffer is empty.
|
|
*/
|
|
n = 0;
|
|
while (pp->codeproc != pp->coderecv) {
|
|
pp->codeproc = (pp->codeproc + 1) % MAXSTAGE;
|
|
off[n] = pp->filter[pp->codeproc];
|
|
n++;
|
|
}
|
|
if (n == 0)
|
|
return (0);
|
|
|
|
if (n > 1)
|
|
qsort(off, n, sizeof(off[0]), refclock_cmpl_fp);
|
|
|
|
/*
|
|
* Reject the furthest from the median of the samples until
|
|
* approximately 60 percent of the samples remain.
|
|
*/
|
|
i = 0; j = n;
|
|
m = n - (n * 4) / 10;
|
|
while ((j - i) > m) {
|
|
offset = off[(j + i) / 2];
|
|
if (off[j - 1] - offset < offset - off[i])
|
|
i++; /* reject low end */
|
|
else
|
|
j--; /* reject high end */
|
|
}
|
|
|
|
/*
|
|
* Determine the offset and jitter.
|
|
*/
|
|
pp->offset = 0;
|
|
pp->jitter = 0;
|
|
for (k = i; k < j; k++) {
|
|
pp->offset += off[k];
|
|
if (k > i)
|
|
pp->jitter += SQUARE(off[k] - off[k - 1]);
|
|
}
|
|
pp->offset /= m;
|
|
pp->jitter = max(SQRT(pp->jitter / m), LOGTOD(sys_precision));
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf(
|
|
"refclock_sample: n %d offset %.6f disp %.6f jitter %.6f\n",
|
|
(int)n, pp->offset, pp->disp, pp->jitter);
|
|
#endif
|
|
return (int)n;
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_receive - simulate the receive and packet procedures
|
|
*
|
|
* This routine simulates the NTP receive and packet procedures for a
|
|
* reference clock. This provides a mechanism in which the ordinary NTP
|
|
* filter, selection and combining algorithms can be used to suppress
|
|
* misbehaving radios and to mitigate between them when more than one is
|
|
* available for backup.
|
|
*/
|
|
void
|
|
refclock_receive(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("refclock_receive: at %lu %s\n",
|
|
current_time, stoa(&peer->srcadr));
|
|
#endif
|
|
|
|
/*
|
|
* Do a little sanity dance and update the peer structure. Groom
|
|
* the median filter samples and give the data to the clock
|
|
* filter.
|
|
*/
|
|
pp = peer->procptr;
|
|
peer->leap = pp->leap;
|
|
if (peer->leap == LEAP_NOTINSYNC)
|
|
return;
|
|
|
|
peer->received++;
|
|
peer->timereceived = current_time;
|
|
if (!peer->reach) {
|
|
report_event(PEVNT_REACH, peer, NULL);
|
|
peer->timereachable = current_time;
|
|
}
|
|
peer->reach |= 1;
|
|
peer->reftime = pp->lastref;
|
|
peer->aorg = pp->lastrec;
|
|
peer->rootdisp = pp->disp;
|
|
get_systime(&peer->dst);
|
|
if (!refclock_sample(pp))
|
|
return;
|
|
|
|
clock_filter(peer, pp->offset, 0., pp->jitter);
|
|
if (cal_enable && fabs(last_offset) < sys_mindisp && sys_peer !=
|
|
NULL) {
|
|
if (sys_peer->refclktype == REFCLK_ATOM_PPS &&
|
|
peer->refclktype != REFCLK_ATOM_PPS)
|
|
pp->fudgetime1 -= pp->offset * FUDGEFAC;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_gtlin - groom next input line and extract timestamp
|
|
*
|
|
* This routine processes the timecode received from the clock and
|
|
* strips the parity bit and control characters. It returns the number
|
|
* of characters in the line followed by a NULL character ('\0'), which
|
|
* is not included in the count. In case of an empty line, the previous
|
|
* line is preserved.
|
|
*/
|
|
int
|
|
refclock_gtlin(
|
|
struct recvbuf *rbufp, /* receive buffer pointer */
|
|
char *lineptr, /* current line pointer */
|
|
int bmax, /* remaining characters in line */
|
|
l_fp *tsptr /* pointer to timestamp returned */
|
|
)
|
|
{
|
|
const char *sp, *spend;
|
|
char *dp, *dpend;
|
|
int dlen;
|
|
|
|
if (bmax <= 0)
|
|
return (0);
|
|
|
|
dp = lineptr;
|
|
dpend = dp + bmax - 1; /* leave room for NUL pad */
|
|
sp = (const char *)rbufp->recv_buffer;
|
|
spend = sp + rbufp->recv_length;
|
|
|
|
while (sp != spend && dp != dpend) {
|
|
char c;
|
|
|
|
c = *sp++ & 0x7f;
|
|
if (c >= 0x20 && c < 0x7f)
|
|
*dp++ = c;
|
|
}
|
|
/* Get length of data written to the destination buffer. If
|
|
* zero, do *not* place a NUL byte to preserve the previous
|
|
* buffer content.
|
|
*/
|
|
dlen = dp - lineptr;
|
|
if (dlen)
|
|
*dp = '\0';
|
|
*tsptr = rbufp->recv_time;
|
|
DPRINTF(2, ("refclock_gtlin: fd %d time %s timecode %d %s\n",
|
|
rbufp->fd, ulfptoa(&rbufp->recv_time, 6), dlen,
|
|
(dlen != 0)
|
|
? lineptr
|
|
: ""));
|
|
return (dlen);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_gtraw - get next line/chunk of data
|
|
*
|
|
* This routine returns the raw data received from the clock in both
|
|
* canonical or raw modes. The terminal interface routines map CR to LF.
|
|
* In canonical mode this results in two lines, one containing data
|
|
* followed by LF and another containing only LF. In raw mode the
|
|
* interface routines can deliver arbitraty chunks of data from one
|
|
* character to a maximum specified by the calling routine. In either
|
|
* mode the routine returns the number of characters in the line
|
|
* followed by a NULL character ('\0'), which is not included in the
|
|
* count.
|
|
*
|
|
* *tsptr receives a copy of the buffer timestamp.
|
|
*/
|
|
int
|
|
refclock_gtraw(
|
|
struct recvbuf *rbufp, /* receive buffer pointer */
|
|
char *lineptr, /* current line pointer */
|
|
int bmax, /* remaining characters in line */
|
|
l_fp *tsptr /* pointer to timestamp returned */
|
|
)
|
|
{
|
|
if (bmax <= 0)
|
|
return (0);
|
|
bmax -= 1; /* leave room for trailing NUL */
|
|
if (bmax > rbufp->recv_length)
|
|
bmax = rbufp->recv_length;
|
|
memcpy(lineptr, rbufp->recv_buffer, bmax);
|
|
lineptr[bmax] = '\0';
|
|
|
|
*tsptr = rbufp->recv_time;
|
|
DPRINTF(2, ("refclock_gtraw: fd %d time %s timecode %d %s\n",
|
|
rbufp->fd, ulfptoa(&rbufp->recv_time, 6), bmax,
|
|
lineptr));
|
|
return (bmax);
|
|
}
|
|
|
|
|
|
/*
|
|
* indicate_refclock_packet()
|
|
*
|
|
* Passes a fragment of refclock input read from the device to the
|
|
* driver direct input routine, which may consume it (batch it for
|
|
* queuing once a logical unit is assembled). If it is not so
|
|
* consumed, queue it for the driver's receive entrypoint.
|
|
*
|
|
* The return value is TRUE if the data has been consumed as a fragment
|
|
* and should not be counted as a received packet.
|
|
*/
|
|
int
|
|
indicate_refclock_packet(
|
|
struct refclockio * rio,
|
|
struct recvbuf * rb
|
|
)
|
|
{
|
|
/* Does this refclock use direct input routine? */
|
|
if (rio->io_input != NULL && (*rio->io_input)(rb) == 0) {
|
|
/*
|
|
* data was consumed - nothing to pass up
|
|
* into block input machine
|
|
*/
|
|
freerecvbuf(rb);
|
|
|
|
return TRUE;
|
|
}
|
|
add_full_recv_buffer(rb);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
* process_refclock_packet()
|
|
*
|
|
* Used for deferred processing of 'io_input' on systems where threading
|
|
* is used (notably Windows). This is acting as a trampoline to make the
|
|
* real calls to the refclock functions.
|
|
*/
|
|
#ifdef HAVE_IO_COMPLETION_PORT
|
|
void
|
|
process_refclock_packet(
|
|
struct recvbuf * rb
|
|
)
|
|
{
|
|
struct refclockio * rio;
|
|
|
|
/* get the refclockio structure from the receive buffer */
|
|
rio = &rb->recv_peer->procptr->io;
|
|
|
|
/* call 'clock_recv' if either there is no input function or the
|
|
* raw input function tells us to feed the packet to the
|
|
* receiver.
|
|
*/
|
|
if (rio->io_input == NULL || (*rio->io_input)(rb) != 0) {
|
|
rio->recvcount++;
|
|
packets_received++;
|
|
handler_pkts++;
|
|
(*rio->clock_recv)(rb);
|
|
}
|
|
}
|
|
#endif /* HAVE_IO_COMPLETION_PORT */
|
|
|
|
|
|
/*
|
|
* The following code does not apply to WINNT & VMS ...
|
|
*/
|
|
#if !defined(SYS_VXWORKS) && !defined(SYS_WINNT)
|
|
#if defined(HAVE_TERMIOS) || defined(HAVE_SYSV_TTYS) || defined(HAVE_BSD_TTYS)
|
|
|
|
/*
|
|
* refclock_open - open serial port for reference clock
|
|
*
|
|
* This routine opens a serial port for I/O and sets default options. It
|
|
* returns the file descriptor if successful, or logs an error and
|
|
* returns -1.
|
|
*/
|
|
int
|
|
refclock_open(
|
|
const char *dev, /* device name pointer */
|
|
u_int speed, /* serial port speed (code) */
|
|
u_int lflags /* line discipline flags */
|
|
)
|
|
{
|
|
int fd;
|
|
int omode;
|
|
#ifdef O_NONBLOCK
|
|
char trash[128]; /* litter bin for old input data */
|
|
#endif
|
|
|
|
/*
|
|
* Open serial port and set default options
|
|
*/
|
|
omode = O_RDWR;
|
|
#ifdef O_NONBLOCK
|
|
omode |= O_NONBLOCK;
|
|
#endif
|
|
#ifdef O_NOCTTY
|
|
omode |= O_NOCTTY;
|
|
#endif
|
|
|
|
fd = open(dev, omode, 0777);
|
|
/* refclock_open() long returned 0 on failure, avoid it. */
|
|
if (0 == fd) {
|
|
fd = dup(0);
|
|
SAVE_ERRNO(
|
|
close(0);
|
|
)
|
|
}
|
|
if (fd < 0) {
|
|
SAVE_ERRNO(
|
|
msyslog(LOG_ERR, "refclock_open %s: %m", dev);
|
|
)
|
|
return -1;
|
|
}
|
|
if (!refclock_setup(fd, speed, lflags)) {
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
if (!refclock_ioctl(fd, lflags)) {
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
#ifdef O_NONBLOCK
|
|
/*
|
|
* We want to make sure there is no pending trash in the input
|
|
* buffer. Since we have non-blocking IO available, this is a
|
|
* good moment to read and dump all available outdated stuff
|
|
* that might have become toxic for the driver.
|
|
*/
|
|
while (read(fd, trash, sizeof(trash)) > 0 || errno == EINTR)
|
|
/*NOP*/;
|
|
#endif
|
|
return fd;
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_setup - initialize terminal interface structure
|
|
*/
|
|
int
|
|
refclock_setup(
|
|
int fd, /* file descriptor */
|
|
u_int speed, /* serial port speed (code) */
|
|
u_int lflags /* line discipline flags */
|
|
)
|
|
{
|
|
int i;
|
|
TTY ttyb, *ttyp;
|
|
|
|
/*
|
|
* By default, the serial line port is initialized in canonical
|
|
* (line-oriented) mode at specified line speed, 8 bits and no
|
|
* parity. LF ends the line and CR is mapped to LF. The break,
|
|
* erase and kill functions are disabled. There is a different
|
|
* section for each terminal interface, as selected at compile
|
|
* time. The flag bits can be used to set raw mode and echo.
|
|
*/
|
|
ttyp = &ttyb;
|
|
#ifdef HAVE_TERMIOS
|
|
|
|
/*
|
|
* POSIX serial line parameters (termios interface)
|
|
*/
|
|
if (tcgetattr(fd, ttyp) < 0) {
|
|
SAVE_ERRNO(
|
|
msyslog(LOG_ERR,
|
|
"refclock_setup fd %d tcgetattr: %m",
|
|
fd);
|
|
)
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Set canonical mode and local connection; set specified speed,
|
|
* 8 bits and no parity; map CR to NL; ignore break.
|
|
*/
|
|
if (speed) {
|
|
u_int ltemp = 0;
|
|
|
|
ttyp->c_iflag = IGNBRK | IGNPAR | ICRNL;
|
|
ttyp->c_oflag = 0;
|
|
ttyp->c_cflag = CS8 | CLOCAL | CREAD;
|
|
if (lflags & LDISC_7O1) {
|
|
/* HP Z3801A needs 7-bit, odd parity */
|
|
ttyp->c_cflag = CS7 | PARENB | PARODD | CLOCAL | CREAD;
|
|
}
|
|
cfsetispeed(&ttyb, speed);
|
|
cfsetospeed(&ttyb, speed);
|
|
for (i = 0; i < NCCS; ++i)
|
|
ttyp->c_cc[i] = '\0';
|
|
|
|
#if defined(TIOCMGET) && !defined(SCO5_CLOCK)
|
|
|
|
/*
|
|
* If we have modem control, check to see if modem leads
|
|
* are active; if so, set remote connection. This is
|
|
* necessary for the kernel pps mods to work.
|
|
*/
|
|
if (ioctl(fd, TIOCMGET, (char *)<emp) < 0)
|
|
msyslog(LOG_ERR,
|
|
"refclock_setup fd %d TIOCMGET: %m", fd);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("refclock_setup fd %d modem status: 0x%x\n",
|
|
fd, ltemp);
|
|
#endif
|
|
if (ltemp & TIOCM_DSR && lflags & LDISC_REMOTE)
|
|
ttyp->c_cflag &= ~CLOCAL;
|
|
#endif /* TIOCMGET */
|
|
}
|
|
|
|
/*
|
|
* Set raw and echo modes. These can be changed on-fly.
|
|
*/
|
|
ttyp->c_lflag = ICANON;
|
|
if (lflags & LDISC_RAW) {
|
|
ttyp->c_lflag = 0;
|
|
ttyp->c_iflag = 0;
|
|
ttyp->c_cc[VMIN] = 1;
|
|
}
|
|
if (lflags & LDISC_ECHO)
|
|
ttyp->c_lflag |= ECHO;
|
|
if (tcsetattr(fd, TCSANOW, ttyp) < 0) {
|
|
SAVE_ERRNO(
|
|
msyslog(LOG_ERR,
|
|
"refclock_setup fd %d TCSANOW: %m",
|
|
fd);
|
|
)
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* flush input and output buffers to discard any outdated stuff
|
|
* that might have become toxic for the driver. Failing to do so
|
|
* is logged, but we keep our fingers crossed otherwise.
|
|
*/
|
|
if (tcflush(fd, TCIOFLUSH) < 0)
|
|
msyslog(LOG_ERR, "refclock_setup fd %d tcflush(): %m",
|
|
fd);
|
|
#endif /* HAVE_TERMIOS */
|
|
|
|
#ifdef HAVE_SYSV_TTYS
|
|
|
|
/*
|
|
* System V serial line parameters (termio interface)
|
|
*
|
|
*/
|
|
if (ioctl(fd, TCGETA, ttyp) < 0) {
|
|
SAVE_ERRNO(
|
|
msyslog(LOG_ERR,
|
|
"refclock_setup fd %d TCGETA: %m",
|
|
fd);
|
|
)
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Set canonical mode and local connection; set specified speed,
|
|
* 8 bits and no parity; map CR to NL; ignore break.
|
|
*/
|
|
if (speed) {
|
|
u_int ltemp = 0;
|
|
|
|
ttyp->c_iflag = IGNBRK | IGNPAR | ICRNL;
|
|
ttyp->c_oflag = 0;
|
|
ttyp->c_cflag = speed | CS8 | CLOCAL | CREAD;
|
|
for (i = 0; i < NCCS; ++i)
|
|
ttyp->c_cc[i] = '\0';
|
|
|
|
#if defined(TIOCMGET) && !defined(SCO5_CLOCK)
|
|
|
|
/*
|
|
* If we have modem control, check to see if modem leads
|
|
* are active; if so, set remote connection. This is
|
|
* necessary for the kernel pps mods to work.
|
|
*/
|
|
if (ioctl(fd, TIOCMGET, (char *)<emp) < 0)
|
|
msyslog(LOG_ERR,
|
|
"refclock_setup fd %d TIOCMGET: %m", fd);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("refclock_setup fd %d modem status: %x\n",
|
|
fd, ltemp);
|
|
#endif
|
|
if (ltemp & TIOCM_DSR)
|
|
ttyp->c_cflag &= ~CLOCAL;
|
|
#endif /* TIOCMGET */
|
|
}
|
|
|
|
/*
|
|
* Set raw and echo modes. These can be changed on-fly.
|
|
*/
|
|
ttyp->c_lflag = ICANON;
|
|
if (lflags & LDISC_RAW) {
|
|
ttyp->c_lflag = 0;
|
|
ttyp->c_iflag = 0;
|
|
ttyp->c_cc[VMIN] = 1;
|
|
}
|
|
if (ioctl(fd, TCSETA, ttyp) < 0) {
|
|
SAVE_ERRNO(
|
|
msyslog(LOG_ERR,
|
|
"refclock_setup fd %d TCSETA: %m", fd);
|
|
)
|
|
return FALSE;
|
|
}
|
|
#endif /* HAVE_SYSV_TTYS */
|
|
|
|
#ifdef HAVE_BSD_TTYS
|
|
|
|
/*
|
|
* 4.3bsd serial line parameters (sgttyb interface)
|
|
*/
|
|
if (ioctl(fd, TIOCGETP, (char *)ttyp) < 0) {
|
|
SAVE_ERRNO(
|
|
msyslog(LOG_ERR,
|
|
"refclock_setup fd %d TIOCGETP: %m",
|
|
fd);
|
|
)
|
|
return FALSE;
|
|
}
|
|
if (speed)
|
|
ttyp->sg_ispeed = ttyp->sg_ospeed = speed;
|
|
ttyp->sg_flags = EVENP | ODDP | CRMOD;
|
|
if (ioctl(fd, TIOCSETP, (char *)ttyp) < 0) {
|
|
SAVE_ERRNO(
|
|
msyslog(LOG_ERR, "refclock_setup TIOCSETP: %m");
|
|
)
|
|
return FALSE;
|
|
}
|
|
#endif /* HAVE_BSD_TTYS */
|
|
return(1);
|
|
}
|
|
#endif /* HAVE_TERMIOS || HAVE_SYSV_TTYS || HAVE_BSD_TTYS */
|
|
|
|
|
|
/*
|
|
* refclock_ioctl - set serial port control functions
|
|
*
|
|
* This routine attempts to hide the internal, system-specific details
|
|
* of serial ports. It can handle POSIX (termios), SYSV (termio) and BSD
|
|
* (sgtty) interfaces with varying degrees of success. The routine sets
|
|
* up optional features such as tty_clk. The routine returns TRUE if
|
|
* successful.
|
|
*/
|
|
int
|
|
refclock_ioctl(
|
|
int fd, /* file descriptor */
|
|
u_int lflags /* line discipline flags */
|
|
)
|
|
{
|
|
/*
|
|
* simply return TRUE if no UNIX line discipline is supported
|
|
*/
|
|
DPRINTF(1, ("refclock_ioctl: fd %d flags 0x%x\n", fd, lflags));
|
|
|
|
return TRUE;
|
|
}
|
|
#endif /* !defined(SYS_VXWORKS) && !defined(SYS_WINNT) */
|
|
|
|
|
|
/*
|
|
* refclock_control - set and/or return clock values
|
|
*
|
|
* This routine is used mainly for debugging. It returns designated
|
|
* values from the interface structure that can be displayed using
|
|
* ntpdc and the clockstat command. It can also be used to initialize
|
|
* configuration variables, such as fudgetimes, fudgevalues, reference
|
|
* ID and stratum.
|
|
*/
|
|
void
|
|
refclock_control(
|
|
sockaddr_u *srcadr,
|
|
const struct refclockstat *in,
|
|
struct refclockstat *out
|
|
)
|
|
{
|
|
struct peer *peer;
|
|
struct refclockproc *pp;
|
|
u_char clktype;
|
|
int unit;
|
|
|
|
/*
|
|
* Check for valid address and running peer
|
|
*/
|
|
if (!ISREFCLOCKADR(srcadr))
|
|
return;
|
|
|
|
clktype = (u_char)REFCLOCKTYPE(srcadr);
|
|
unit = REFCLOCKUNIT(srcadr);
|
|
|
|
peer = findexistingpeer(srcadr, NULL, NULL, -1, 0, NULL);
|
|
|
|
if (NULL == peer)
|
|
return;
|
|
|
|
INSIST(peer->procptr != NULL);
|
|
pp = peer->procptr;
|
|
|
|
/*
|
|
* Initialize requested data
|
|
*/
|
|
if (in != NULL) {
|
|
if (in->haveflags & CLK_HAVETIME1)
|
|
pp->fudgetime1 = in->fudgetime1;
|
|
if (in->haveflags & CLK_HAVETIME2)
|
|
pp->fudgetime2 = in->fudgetime2;
|
|
if (in->haveflags & CLK_HAVEVAL1)
|
|
peer->stratum = pp->stratum = (u_char)in->fudgeval1;
|
|
if (in->haveflags & CLK_HAVEVAL2)
|
|
peer->refid = pp->refid = in->fudgeval2;
|
|
if (in->haveflags & CLK_HAVEFLAG1) {
|
|
pp->sloppyclockflag &= ~CLK_FLAG1;
|
|
pp->sloppyclockflag |= in->flags & CLK_FLAG1;
|
|
}
|
|
if (in->haveflags & CLK_HAVEFLAG2) {
|
|
pp->sloppyclockflag &= ~CLK_FLAG2;
|
|
pp->sloppyclockflag |= in->flags & CLK_FLAG2;
|
|
}
|
|
if (in->haveflags & CLK_HAVEFLAG3) {
|
|
pp->sloppyclockflag &= ~CLK_FLAG3;
|
|
pp->sloppyclockflag |= in->flags & CLK_FLAG3;
|
|
}
|
|
if (in->haveflags & CLK_HAVEFLAG4) {
|
|
pp->sloppyclockflag &= ~CLK_FLAG4;
|
|
pp->sloppyclockflag |= in->flags & CLK_FLAG4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Readback requested data
|
|
*/
|
|
if (out != NULL) {
|
|
out->fudgeval1 = pp->stratum;
|
|
out->fudgeval2 = pp->refid;
|
|
out->haveflags = CLK_HAVEVAL1 | CLK_HAVEVAL2;
|
|
out->fudgetime1 = pp->fudgetime1;
|
|
if (0.0 != out->fudgetime1)
|
|
out->haveflags |= CLK_HAVETIME1;
|
|
out->fudgetime2 = pp->fudgetime2;
|
|
if (0.0 != out->fudgetime2)
|
|
out->haveflags |= CLK_HAVETIME2;
|
|
out->flags = (u_char) pp->sloppyclockflag;
|
|
if (CLK_FLAG1 & out->flags)
|
|
out->haveflags |= CLK_HAVEFLAG1;
|
|
if (CLK_FLAG2 & out->flags)
|
|
out->haveflags |= CLK_HAVEFLAG2;
|
|
if (CLK_FLAG3 & out->flags)
|
|
out->haveflags |= CLK_HAVEFLAG3;
|
|
if (CLK_FLAG4 & out->flags)
|
|
out->haveflags |= CLK_HAVEFLAG4;
|
|
|
|
out->timereset = current_time - pp->timestarted;
|
|
out->polls = pp->polls;
|
|
out->noresponse = pp->noreply;
|
|
out->badformat = pp->badformat;
|
|
out->baddata = pp->baddata;
|
|
|
|
out->lastevent = pp->lastevent;
|
|
out->currentstatus = pp->currentstatus;
|
|
out->type = pp->type;
|
|
out->clockdesc = pp->clockdesc;
|
|
out->lencode = (u_short)pp->lencode;
|
|
out->p_lastcode = pp->a_lastcode;
|
|
}
|
|
|
|
/*
|
|
* Give the stuff to the clock
|
|
*/
|
|
if (refclock_conf[clktype]->clock_control != noentry)
|
|
(refclock_conf[clktype]->clock_control)(unit, in, out, peer);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_buginfo - return debugging info
|
|
*
|
|
* This routine is used mainly for debugging. It returns designated
|
|
* values from the interface structure that can be displayed using
|
|
* ntpdc and the clkbug command.
|
|
*/
|
|
void
|
|
refclock_buginfo(
|
|
sockaddr_u *srcadr, /* clock address */
|
|
struct refclockbug *bug /* output structure */
|
|
)
|
|
{
|
|
struct peer *peer;
|
|
struct refclockproc *pp;
|
|
int clktype;
|
|
int unit;
|
|
unsigned u;
|
|
|
|
/*
|
|
* Check for valid address and peer structure
|
|
*/
|
|
if (!ISREFCLOCKADR(srcadr))
|
|
return;
|
|
|
|
clktype = (u_char) REFCLOCKTYPE(srcadr);
|
|
unit = REFCLOCKUNIT(srcadr);
|
|
|
|
peer = findexistingpeer(srcadr, NULL, NULL, -1, 0, NULL);
|
|
|
|
if (NULL == peer || NULL == peer->procptr)
|
|
return;
|
|
|
|
pp = peer->procptr;
|
|
|
|
/*
|
|
* Copy structure values
|
|
*/
|
|
bug->nvalues = 8;
|
|
bug->svalues = 0x0000003f;
|
|
bug->values[0] = pp->year;
|
|
bug->values[1] = pp->day;
|
|
bug->values[2] = pp->hour;
|
|
bug->values[3] = pp->minute;
|
|
bug->values[4] = pp->second;
|
|
bug->values[5] = pp->nsec;
|
|
bug->values[6] = pp->yearstart;
|
|
bug->values[7] = pp->coderecv;
|
|
bug->stimes = 0xfffffffc;
|
|
bug->times[0] = pp->lastref;
|
|
bug->times[1] = pp->lastrec;
|
|
for (u = 2; u < bug->ntimes; u++)
|
|
DTOLFP(pp->filter[u - 2], &bug->times[u]);
|
|
|
|
/*
|
|
* Give the stuff to the clock
|
|
*/
|
|
if (refclock_conf[clktype]->clock_buginfo != noentry)
|
|
(refclock_conf[clktype]->clock_buginfo)(unit, bug, peer);
|
|
}
|
|
|
|
|
|
#ifdef HAVE_PPSAPI
|
|
/*
|
|
* refclock_ppsapi - initialize/update ppsapi
|
|
*
|
|
* This routine is called after the fudge command to open the PPSAPI
|
|
* interface for later parameter setting after the fudge command.
|
|
*/
|
|
int
|
|
refclock_ppsapi(
|
|
int fddev, /* fd device */
|
|
struct refclock_atom *ap /* atom structure pointer */
|
|
)
|
|
{
|
|
if (ap->handle == 0) {
|
|
if (time_pps_create(fddev, &ap->handle) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_ppsapi: time_pps_create: %m");
|
|
return (0);
|
|
}
|
|
ZERO(ap->ts); /* [Bug 2689] defined INIT state */
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_params - set ppsapi parameters
|
|
*
|
|
* This routine is called to set the PPSAPI parameters after the fudge
|
|
* command.
|
|
*/
|
|
int
|
|
refclock_params(
|
|
int mode, /* mode bits */
|
|
struct refclock_atom *ap /* atom structure pointer */
|
|
)
|
|
{
|
|
ZERO(ap->pps_params);
|
|
ap->pps_params.api_version = PPS_API_VERS_1;
|
|
|
|
/*
|
|
* Solaris serial ports provide PPS pulse capture only on the
|
|
* assert edge. FreeBSD serial ports provide capture on the
|
|
* clear edge, while FreeBSD parallel ports provide capture
|
|
* on the assert edge. Your mileage may vary.
|
|
*/
|
|
if (mode & CLK_FLAG2)
|
|
ap->pps_params.mode = PPS_TSFMT_TSPEC | PPS_CAPTURECLEAR;
|
|
else
|
|
ap->pps_params.mode = PPS_TSFMT_TSPEC | PPS_CAPTUREASSERT;
|
|
if (time_pps_setparams(ap->handle, &ap->pps_params) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_params: time_pps_setparams: %m");
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If flag3 is lit, select the kernel PPS if we can.
|
|
*
|
|
* Note: EOPNOTSUPP is the only 'legal' error code we deal with;
|
|
* it is part of the 'if we can' strategy. Any other error
|
|
* indicates something more sinister and makes this function fail.
|
|
*/
|
|
if (mode & CLK_FLAG3) {
|
|
if (time_pps_kcbind(ap->handle, PPS_KC_HARDPPS,
|
|
ap->pps_params.mode & ~PPS_TSFMT_TSPEC,
|
|
PPS_TSFMT_TSPEC) < 0)
|
|
{
|
|
if (errno != EOPNOTSUPP) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_params: time_pps_kcbind: %m");
|
|
return (0);
|
|
}
|
|
} else {
|
|
hardpps_enable = 1;
|
|
}
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_pps - called once per second
|
|
*
|
|
* This routine is called once per second. It snatches the PPS
|
|
* timestamp from the kernel and saves the sign-extended fraction in
|
|
* a circular buffer for processing at the next poll event.
|
|
*/
|
|
int
|
|
refclock_pps(
|
|
struct peer *peer, /* peer structure pointer */
|
|
struct refclock_atom *ap, /* atom structure pointer */
|
|
int mode /* mode bits */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
pps_info_t pps_info;
|
|
struct timespec timeout;
|
|
double dtemp, dcorr, trash;
|
|
|
|
/*
|
|
* We require the clock to be synchronized before setting the
|
|
* parameters. When the parameters have been set, fetch the
|
|
* most recent PPS timestamp.
|
|
*/
|
|
pp = peer->procptr;
|
|
if (ap->handle == 0)
|
|
return (0);
|
|
|
|
if (ap->pps_params.mode == 0 && sys_leap != LEAP_NOTINSYNC) {
|
|
if (refclock_params(pp->sloppyclockflag, ap) < 1)
|
|
return (0);
|
|
}
|
|
ZERO(timeout);
|
|
ZERO(pps_info);
|
|
if (time_pps_fetch(ap->handle, PPS_TSFMT_TSPEC, &pps_info,
|
|
&timeout) < 0) {
|
|
refclock_report(peer, CEVNT_FAULT);
|
|
return (0);
|
|
}
|
|
timeout = ap->ts; /* save old timestamp for check */
|
|
if (ap->pps_params.mode & PPS_CAPTUREASSERT)
|
|
ap->ts = pps_info.assert_timestamp;
|
|
else if (ap->pps_params.mode & PPS_CAPTURECLEAR)
|
|
ap->ts = pps_info.clear_timestamp;
|
|
else
|
|
return (0);
|
|
|
|
/* [Bug 2689] Discard the first sample we read -- if the PPS
|
|
* source is currently down / disconnected, we have read a
|
|
* potentially *very* stale value here. So if our old TS value
|
|
* is all-zero, we consider this sample unrealiable and drop it.
|
|
*
|
|
* Note 1: a better check would compare the PPS time stamp to
|
|
* the current system time and drop it if it's more than say 3s
|
|
* away.
|
|
*
|
|
* Note 2: If we ever again get an all-zero PPS sample, the next
|
|
* one will be discarded. This can happen every 136yrs and is
|
|
* unlikely to be ever observed.
|
|
*/
|
|
if (0 == (timeout.tv_sec | timeout.tv_nsec))
|
|
return (0);
|
|
|
|
/* If the PPS source fails to deliver a new sample between
|
|
* polls, it regurgitates the last sample. We do not want to
|
|
* process the same sample multiple times.
|
|
*/
|
|
if (0 == memcmp(&timeout, &ap->ts, sizeof(timeout)))
|
|
return (0);
|
|
|
|
/*
|
|
* Convert to signed fraction offset, apply fudge and properly
|
|
* fold the correction into the [-0.5s,0.5s] range. Handle
|
|
* excessive fudge times, too.
|
|
*/
|
|
dtemp = ap->ts.tv_nsec / 1e9;
|
|
dcorr = modf((pp->fudgetime1 - dtemp), &trash);
|
|
if (dcorr > 0.5)
|
|
dcorr -= 1.0;
|
|
else if (dcorr < -0.5)
|
|
dcorr += 1.0;
|
|
|
|
/* phase gate check: avoid wobbling by +/-1s when too close to
|
|
* the switch-over point. We allow +/-400ms max phase deviation.
|
|
* The trade-off is clear: The smaller the limit, the less
|
|
* sensitive to sampling noise the clock becomes. OTOH the
|
|
* system must get into phase gate range by other means for the
|
|
* PPS clock to lock in.
|
|
*/
|
|
if (fabs(dcorr) > 0.4)
|
|
return (0);
|
|
|
|
/*
|
|
* record this time stamp and stuff in median filter
|
|
*/
|
|
pp->lastrec.l_ui = (u_int32)ap->ts.tv_sec + JAN_1970;
|
|
pp->lastrec.l_uf = (u_int32)(dtemp * FRAC);
|
|
SAMPLE(dcorr);
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("refclock_pps: %lu %f %f\n", current_time,
|
|
dcorr, pp->fudgetime1);
|
|
#endif
|
|
return (1);
|
|
}
|
|
#endif /* HAVE_PPSAPI */
|
|
#endif /* REFCLOCK */
|