407b687dfe
Else use-after-free may happen.
This change also partially cherry picks support for the
taskqgroup_drain_all() function.
Sponsored by: Mellanox Technologies // NVIDIA Networking
(cherry picked from commit 209d4919c5
)
833 lines
20 KiB
C
833 lines
20 KiB
C
/*-
|
|
* Copyright (c) 2000 Doug Rabson
|
|
* Copyright (c) 2014 Jeff Roberson
|
|
* Copyright (c) 2016 Matthew Macy
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpuset.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/epoch.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/gtaskqueue.h>
|
|
#include <sys/unistd.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
|
|
static void gtaskqueue_thread_enqueue(void *);
|
|
static void gtaskqueue_thread_loop(void *arg);
|
|
static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
|
|
static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
|
|
|
|
TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
|
|
|
|
struct gtaskqueue_busy {
|
|
struct gtask *tb_running;
|
|
u_int tb_seq;
|
|
LIST_ENTRY(gtaskqueue_busy) tb_link;
|
|
};
|
|
|
|
typedef void (*gtaskqueue_enqueue_fn)(void *context);
|
|
|
|
struct gtaskqueue {
|
|
STAILQ_HEAD(, gtask) tq_queue;
|
|
LIST_HEAD(, gtaskqueue_busy) tq_active;
|
|
u_int tq_seq;
|
|
int tq_callouts;
|
|
struct mtx_padalign tq_mutex;
|
|
gtaskqueue_enqueue_fn tq_enqueue;
|
|
void *tq_context;
|
|
char *tq_name;
|
|
struct thread **tq_threads;
|
|
int tq_tcount;
|
|
int tq_spin;
|
|
int tq_flags;
|
|
taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
|
|
void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
|
|
};
|
|
|
|
#define TQ_FLAGS_ACTIVE (1 << 0)
|
|
#define TQ_FLAGS_BLOCKED (1 << 1)
|
|
#define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
|
|
|
|
#define DT_CALLOUT_ARMED (1 << 0)
|
|
|
|
#define TQ_LOCK(tq) \
|
|
do { \
|
|
if ((tq)->tq_spin) \
|
|
mtx_lock_spin(&(tq)->tq_mutex); \
|
|
else \
|
|
mtx_lock(&(tq)->tq_mutex); \
|
|
} while (0)
|
|
#define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
|
|
|
|
#define TQ_UNLOCK(tq) \
|
|
do { \
|
|
if ((tq)->tq_spin) \
|
|
mtx_unlock_spin(&(tq)->tq_mutex); \
|
|
else \
|
|
mtx_unlock(&(tq)->tq_mutex); \
|
|
} while (0)
|
|
#define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
|
|
|
|
#ifdef INVARIANTS
|
|
static void
|
|
gtask_dump(struct gtask *gtask)
|
|
{
|
|
printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
|
|
gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
|
|
}
|
|
#endif
|
|
|
|
static __inline int
|
|
TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
|
|
{
|
|
if (tq->tq_spin)
|
|
return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
|
|
return (msleep(p, &tq->tq_mutex, 0, wm, 0));
|
|
}
|
|
|
|
static struct gtaskqueue *
|
|
_gtaskqueue_create(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context,
|
|
int mtxflags, const char *mtxname __unused)
|
|
{
|
|
struct gtaskqueue *queue;
|
|
char *tq_name;
|
|
|
|
tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
|
|
if (!tq_name)
|
|
return (NULL);
|
|
|
|
snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
|
|
|
|
queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
|
|
if (!queue) {
|
|
free(tq_name, M_GTASKQUEUE);
|
|
return (NULL);
|
|
}
|
|
|
|
STAILQ_INIT(&queue->tq_queue);
|
|
LIST_INIT(&queue->tq_active);
|
|
queue->tq_enqueue = enqueue;
|
|
queue->tq_context = context;
|
|
queue->tq_name = tq_name;
|
|
queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
|
|
queue->tq_flags |= TQ_FLAGS_ACTIVE;
|
|
if (enqueue == gtaskqueue_thread_enqueue)
|
|
queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
|
|
mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
|
|
|
|
return (queue);
|
|
}
|
|
|
|
/*
|
|
* Signal a taskqueue thread to terminate.
|
|
*/
|
|
static void
|
|
gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
|
|
{
|
|
|
|
while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
|
|
wakeup(tq);
|
|
TQ_SLEEP(tq, pp, "gtq_destroy");
|
|
}
|
|
}
|
|
|
|
static void __unused
|
|
gtaskqueue_free(struct gtaskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
|
|
gtaskqueue_terminate(queue->tq_threads, queue);
|
|
KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
|
|
KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
|
|
mtx_destroy(&queue->tq_mutex);
|
|
free(queue->tq_threads, M_GTASKQUEUE);
|
|
free(queue->tq_name, M_GTASKQUEUE);
|
|
free(queue, M_GTASKQUEUE);
|
|
}
|
|
|
|
/*
|
|
* Wait for all to complete, then prevent it from being enqueued
|
|
*/
|
|
void
|
|
grouptask_block(struct grouptask *grouptask)
|
|
{
|
|
struct gtaskqueue *queue = grouptask->gt_taskqueue;
|
|
struct gtask *gtask = &grouptask->gt_task;
|
|
|
|
#ifdef INVARIANTS
|
|
if (queue == NULL) {
|
|
gtask_dump(gtask);
|
|
panic("queue == NULL");
|
|
}
|
|
#endif
|
|
TQ_LOCK(queue);
|
|
gtask->ta_flags |= TASK_NOENQUEUE;
|
|
gtaskqueue_drain_locked(queue, gtask);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
grouptask_unblock(struct grouptask *grouptask)
|
|
{
|
|
struct gtaskqueue *queue = grouptask->gt_taskqueue;
|
|
struct gtask *gtask = &grouptask->gt_task;
|
|
|
|
#ifdef INVARIANTS
|
|
if (queue == NULL) {
|
|
gtask_dump(gtask);
|
|
panic("queue == NULL");
|
|
}
|
|
#endif
|
|
TQ_LOCK(queue);
|
|
gtask->ta_flags &= ~TASK_NOENQUEUE;
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
int
|
|
grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
#ifdef INVARIANTS
|
|
if (queue == NULL) {
|
|
gtask_dump(gtask);
|
|
panic("queue == NULL");
|
|
}
|
|
#endif
|
|
TQ_LOCK(queue);
|
|
if (gtask->ta_flags & TASK_ENQUEUED) {
|
|
TQ_UNLOCK(queue);
|
|
return (0);
|
|
}
|
|
if (gtask->ta_flags & TASK_NOENQUEUE) {
|
|
TQ_UNLOCK(queue);
|
|
return (EAGAIN);
|
|
}
|
|
STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
|
|
gtask->ta_flags |= TASK_ENQUEUED;
|
|
TQ_UNLOCK(queue);
|
|
if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
|
|
queue->tq_enqueue(queue->tq_context);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_task_nop_fn(void *context)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Block until all currently queued tasks in this taskqueue
|
|
* have begun execution. Tasks queued during execution of
|
|
* this function are ignored.
|
|
*/
|
|
static void
|
|
gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
|
|
{
|
|
struct gtask t_barrier;
|
|
|
|
if (STAILQ_EMPTY(&queue->tq_queue))
|
|
return;
|
|
|
|
/*
|
|
* Enqueue our barrier after all current tasks, but with
|
|
* the highest priority so that newly queued tasks cannot
|
|
* pass it. Because of the high priority, we can not use
|
|
* taskqueue_enqueue_locked directly (which drops the lock
|
|
* anyway) so just insert it at tail while we have the
|
|
* queue lock.
|
|
*/
|
|
GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
|
|
STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
|
|
t_barrier.ta_flags |= TASK_ENQUEUED;
|
|
|
|
/*
|
|
* Once the barrier has executed, all previously queued tasks
|
|
* have completed or are currently executing.
|
|
*/
|
|
while (t_barrier.ta_flags & TASK_ENQUEUED)
|
|
TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
|
|
}
|
|
|
|
/*
|
|
* Block until all currently executing tasks for this taskqueue
|
|
* complete. Tasks that begin execution during the execution
|
|
* of this function are ignored.
|
|
*/
|
|
static void
|
|
gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
|
|
{
|
|
struct gtaskqueue_busy *tb;
|
|
u_int seq;
|
|
|
|
if (LIST_EMPTY(&queue->tq_active))
|
|
return;
|
|
|
|
/* Block taskq_terminate().*/
|
|
queue->tq_callouts++;
|
|
|
|
/* Wait for any active task with sequence from the past. */
|
|
seq = queue->tq_seq;
|
|
restart:
|
|
LIST_FOREACH(tb, &queue->tq_active, tb_link) {
|
|
if ((int)(tb->tb_seq - seq) <= 0) {
|
|
TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
/* Release taskqueue_terminate(). */
|
|
queue->tq_callouts--;
|
|
if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
|
|
wakeup_one(queue->tq_threads);
|
|
}
|
|
|
|
void
|
|
gtaskqueue_block(struct gtaskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags |= TQ_FLAGS_BLOCKED;
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
gtaskqueue_unblock(struct gtaskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
|
|
if (!STAILQ_EMPTY(&queue->tq_queue))
|
|
queue->tq_enqueue(queue->tq_context);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_run_locked(struct gtaskqueue *queue)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct gtaskqueue_busy tb;
|
|
struct gtask *gtask;
|
|
bool in_net_epoch;
|
|
|
|
KASSERT(queue != NULL, ("tq is NULL"));
|
|
TQ_ASSERT_LOCKED(queue);
|
|
tb.tb_running = NULL;
|
|
LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
|
|
in_net_epoch = false;
|
|
|
|
while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
|
|
STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
|
|
gtask->ta_flags &= ~TASK_ENQUEUED;
|
|
tb.tb_running = gtask;
|
|
tb.tb_seq = ++queue->tq_seq;
|
|
TQ_UNLOCK(queue);
|
|
|
|
KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
|
|
if (!in_net_epoch && TASK_IS_NET(gtask)) {
|
|
in_net_epoch = true;
|
|
NET_EPOCH_ENTER(et);
|
|
} else if (in_net_epoch && !TASK_IS_NET(gtask)) {
|
|
NET_EPOCH_EXIT(et);
|
|
in_net_epoch = false;
|
|
}
|
|
gtask->ta_func(gtask->ta_context);
|
|
|
|
TQ_LOCK(queue);
|
|
wakeup(gtask);
|
|
}
|
|
if (in_net_epoch)
|
|
NET_EPOCH_EXIT(et);
|
|
LIST_REMOVE(&tb, tb_link);
|
|
}
|
|
|
|
static int
|
|
task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
struct gtaskqueue_busy *tb;
|
|
|
|
TQ_ASSERT_LOCKED(queue);
|
|
LIST_FOREACH(tb, &queue->tq_active, tb_link) {
|
|
if (tb->tb_running == gtask)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
|
|
if (gtask->ta_flags & TASK_ENQUEUED)
|
|
STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
|
|
gtask->ta_flags &= ~TASK_ENQUEUED;
|
|
return (task_is_running(queue, gtask) ? EBUSY : 0);
|
|
}
|
|
|
|
int
|
|
gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
int error;
|
|
|
|
TQ_LOCK(queue);
|
|
error = gtaskqueue_cancel_locked(queue, gtask);
|
|
TQ_UNLOCK(queue);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
|
|
TQ_SLEEP(queue, gtask, "gtq_drain");
|
|
}
|
|
|
|
void
|
|
gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
|
|
if (!queue->tq_spin)
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
|
|
|
|
TQ_LOCK(queue);
|
|
gtaskqueue_drain_locked(queue, gtask);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
gtaskqueue_drain_all(struct gtaskqueue *queue)
|
|
{
|
|
|
|
if (!queue->tq_spin)
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
|
|
|
|
TQ_LOCK(queue);
|
|
gtaskqueue_drain_tq_queue(queue);
|
|
gtaskqueue_drain_tq_active(queue);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static int
|
|
_gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
|
|
cpuset_t *mask, const char *name, va_list ap)
|
|
{
|
|
char ktname[MAXCOMLEN + 1];
|
|
struct thread *td;
|
|
struct gtaskqueue *tq;
|
|
int i, error;
|
|
|
|
if (count <= 0)
|
|
return (EINVAL);
|
|
|
|
vsnprintf(ktname, sizeof(ktname), name, ap);
|
|
tq = *tqp;
|
|
|
|
tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
|
|
M_NOWAIT | M_ZERO);
|
|
if (tq->tq_threads == NULL) {
|
|
printf("%s: no memory for %s threads\n", __func__, ktname);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (count == 1)
|
|
error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
|
|
&tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
|
|
else
|
|
error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
|
|
&tq->tq_threads[i], RFSTOPPED, 0,
|
|
"%s_%d", ktname, i);
|
|
if (error) {
|
|
/* should be ok to continue, taskqueue_free will dtrt */
|
|
printf("%s: kthread_add(%s): error %d", __func__,
|
|
ktname, error);
|
|
tq->tq_threads[i] = NULL; /* paranoid */
|
|
} else
|
|
tq->tq_tcount++;
|
|
}
|
|
for (i = 0; i < count; i++) {
|
|
if (tq->tq_threads[i] == NULL)
|
|
continue;
|
|
td = tq->tq_threads[i];
|
|
if (mask) {
|
|
error = cpuset_setthread(td->td_tid, mask);
|
|
/*
|
|
* Failing to pin is rarely an actual fatal error;
|
|
* it'll just affect performance.
|
|
*/
|
|
if (error)
|
|
printf("%s: curthread=%llu: can't pin; "
|
|
"error=%d\n",
|
|
__func__,
|
|
(unsigned long long) td->td_tid,
|
|
error);
|
|
}
|
|
thread_lock(td);
|
|
sched_prio(td, pri);
|
|
sched_add(td, SRQ_BORING);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
|
|
const char *name, ...)
|
|
{
|
|
va_list ap;
|
|
int error;
|
|
|
|
va_start(ap, name);
|
|
error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
|
|
va_end(ap);
|
|
return (error);
|
|
}
|
|
|
|
static inline void
|
|
gtaskqueue_run_callback(struct gtaskqueue *tq,
|
|
enum taskqueue_callback_type cb_type)
|
|
{
|
|
taskqueue_callback_fn tq_callback;
|
|
|
|
TQ_ASSERT_UNLOCKED(tq);
|
|
tq_callback = tq->tq_callbacks[cb_type];
|
|
if (tq_callback != NULL)
|
|
tq_callback(tq->tq_cb_contexts[cb_type]);
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_thread_loop(void *arg)
|
|
{
|
|
struct gtaskqueue **tqp, *tq;
|
|
|
|
tqp = arg;
|
|
tq = *tqp;
|
|
gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
|
|
TQ_LOCK(tq);
|
|
while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
|
|
/* XXX ? */
|
|
gtaskqueue_run_locked(tq);
|
|
/*
|
|
* Because taskqueue_run() can drop tq_mutex, we need to
|
|
* check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
|
|
* meantime, which means we missed a wakeup.
|
|
*/
|
|
if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
|
|
break;
|
|
TQ_SLEEP(tq, tq, "-");
|
|
}
|
|
gtaskqueue_run_locked(tq);
|
|
/*
|
|
* This thread is on its way out, so just drop the lock temporarily
|
|
* in order to call the shutdown callback. This allows the callback
|
|
* to look at the taskqueue, even just before it dies.
|
|
*/
|
|
TQ_UNLOCK(tq);
|
|
gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
|
|
TQ_LOCK(tq);
|
|
|
|
/* rendezvous with thread that asked us to terminate */
|
|
tq->tq_tcount--;
|
|
wakeup_one(tq->tq_threads);
|
|
TQ_UNLOCK(tq);
|
|
kthread_exit();
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_thread_enqueue(void *context)
|
|
{
|
|
struct gtaskqueue **tqp, *tq;
|
|
|
|
tqp = context;
|
|
tq = *tqp;
|
|
wakeup_any(tq);
|
|
}
|
|
|
|
static struct gtaskqueue *
|
|
gtaskqueue_create_fast(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context)
|
|
{
|
|
return _gtaskqueue_create(name, mflags, enqueue, context,
|
|
MTX_SPIN, "fast_taskqueue");
|
|
}
|
|
|
|
struct taskqgroup_cpu {
|
|
LIST_HEAD(, grouptask) tgc_tasks;
|
|
struct gtaskqueue *tgc_taskq;
|
|
int tgc_cnt;
|
|
int tgc_cpu;
|
|
};
|
|
|
|
struct taskqgroup {
|
|
struct taskqgroup_cpu tqg_queue[MAXCPU];
|
|
struct mtx tqg_lock;
|
|
const char * tqg_name;
|
|
int tqg_cnt;
|
|
};
|
|
|
|
struct taskq_bind_task {
|
|
struct gtask bt_task;
|
|
int bt_cpuid;
|
|
};
|
|
|
|
static void
|
|
taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
|
|
{
|
|
struct taskqgroup_cpu *qcpu;
|
|
|
|
qcpu = &qgroup->tqg_queue[idx];
|
|
LIST_INIT(&qcpu->tgc_tasks);
|
|
qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
|
|
taskqueue_thread_enqueue, &qcpu->tgc_taskq);
|
|
gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
|
|
"%s_%d", qgroup->tqg_name, idx);
|
|
qcpu->tgc_cpu = cpu;
|
|
}
|
|
|
|
/*
|
|
* Find the taskq with least # of tasks that doesn't currently have any
|
|
* other queues from the uniq identifier.
|
|
*/
|
|
static int
|
|
taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
|
|
{
|
|
struct grouptask *n;
|
|
int i, idx, mincnt;
|
|
int strict;
|
|
|
|
mtx_assert(&qgroup->tqg_lock, MA_OWNED);
|
|
KASSERT(qgroup->tqg_cnt != 0,
|
|
("qgroup %s has no queues", qgroup->tqg_name));
|
|
|
|
/*
|
|
* Two passes: first scan for a queue with the least tasks that
|
|
* does not already service this uniq id. If that fails simply find
|
|
* the queue with the least total tasks.
|
|
*/
|
|
for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX;
|
|
strict = 0) {
|
|
for (i = 0; i < qgroup->tqg_cnt; i++) {
|
|
if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
|
|
continue;
|
|
if (strict) {
|
|
LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks,
|
|
gt_list)
|
|
if (n->gt_uniq == uniq)
|
|
break;
|
|
if (n != NULL)
|
|
continue;
|
|
}
|
|
mincnt = qgroup->tqg_queue[i].tgc_cnt;
|
|
idx = i;
|
|
}
|
|
}
|
|
if (idx == -1)
|
|
panic("%s: failed to pick a qid.", __func__);
|
|
|
|
return (idx);
|
|
}
|
|
|
|
void
|
|
taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
|
|
void *uniq, device_t dev, struct resource *irq, const char *name)
|
|
{
|
|
int cpu, qid, error;
|
|
|
|
KASSERT(qgroup->tqg_cnt > 0,
|
|
("qgroup %s has no queues", qgroup->tqg_name));
|
|
|
|
gtask->gt_uniq = uniq;
|
|
snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
|
|
gtask->gt_dev = dev;
|
|
gtask->gt_irq = irq;
|
|
gtask->gt_cpu = -1;
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
qid = taskqgroup_find(qgroup, uniq);
|
|
qgroup->tqg_queue[qid].tgc_cnt++;
|
|
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
|
|
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
|
|
if (dev != NULL && irq != NULL) {
|
|
cpu = qgroup->tqg_queue[qid].tgc_cpu;
|
|
gtask->gt_cpu = cpu;
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
error = bus_bind_intr(dev, irq, cpu);
|
|
if (error)
|
|
printf("%s: binding interrupt failed for %s: %d\n",
|
|
__func__, gtask->gt_name, error);
|
|
} else
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
}
|
|
|
|
int
|
|
taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
|
|
void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
|
|
{
|
|
int i, qid, error;
|
|
|
|
gtask->gt_uniq = uniq;
|
|
snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
|
|
gtask->gt_dev = dev;
|
|
gtask->gt_irq = irq;
|
|
gtask->gt_cpu = cpu;
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++)
|
|
if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
|
|
qid = i;
|
|
break;
|
|
}
|
|
if (qid == -1) {
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
|
|
return (EINVAL);
|
|
}
|
|
qgroup->tqg_queue[qid].tgc_cnt++;
|
|
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
|
|
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
|
|
cpu = qgroup->tqg_queue[qid].tgc_cpu;
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
|
|
if (dev != NULL && irq != NULL) {
|
|
error = bus_bind_intr(dev, irq, cpu);
|
|
if (error)
|
|
printf("%s: binding interrupt failed for %s: %d\n",
|
|
__func__, gtask->gt_name, error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
|
|
{
|
|
int i;
|
|
|
|
grouptask_block(gtask);
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
for (i = 0; i < qgroup->tqg_cnt; i++)
|
|
if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
|
|
break;
|
|
if (i == qgroup->tqg_cnt)
|
|
panic("%s: task %s not in group", __func__, gtask->gt_name);
|
|
qgroup->tqg_queue[i].tgc_cnt--;
|
|
LIST_REMOVE(gtask, gt_list);
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
gtask->gt_taskqueue = NULL;
|
|
gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
|
|
}
|
|
|
|
static void
|
|
taskqgroup_binder(void *ctx)
|
|
{
|
|
struct taskq_bind_task *gtask;
|
|
cpuset_t mask;
|
|
int error;
|
|
|
|
gtask = ctx;
|
|
CPU_ZERO(&mask);
|
|
CPU_SET(gtask->bt_cpuid, &mask);
|
|
error = cpuset_setthread(curthread->td_tid, &mask);
|
|
thread_lock(curthread);
|
|
sched_bind(curthread, gtask->bt_cpuid);
|
|
thread_unlock(curthread);
|
|
|
|
if (error)
|
|
printf("%s: binding curthread failed: %d\n", __func__, error);
|
|
free(gtask, M_DEVBUF);
|
|
}
|
|
|
|
void
|
|
taskqgroup_bind(struct taskqgroup *qgroup)
|
|
{
|
|
struct taskq_bind_task *gtask;
|
|
int i;
|
|
|
|
/*
|
|
* Bind taskqueue threads to specific CPUs, if they have been assigned
|
|
* one.
|
|
*/
|
|
if (qgroup->tqg_cnt == 1)
|
|
return;
|
|
|
|
for (i = 0; i < qgroup->tqg_cnt; i++) {
|
|
gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK);
|
|
GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask);
|
|
gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
|
|
grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
|
|
>ask->bt_task);
|
|
}
|
|
}
|
|
|
|
struct taskqgroup *
|
|
taskqgroup_create(const char *name, int cnt, int stride)
|
|
{
|
|
struct taskqgroup *qgroup;
|
|
int cpu, i, j;
|
|
|
|
qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
|
|
mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
|
|
qgroup->tqg_name = name;
|
|
qgroup->tqg_cnt = cnt;
|
|
|
|
for (cpu = i = 0; i < cnt; i++) {
|
|
taskqgroup_cpu_create(qgroup, i, cpu);
|
|
for (j = 0; j < stride; j++)
|
|
cpu = CPU_NEXT(cpu);
|
|
}
|
|
return (qgroup);
|
|
}
|
|
|
|
void
|
|
taskqgroup_destroy(struct taskqgroup *qgroup)
|
|
{
|
|
}
|
|
|
|
void
|
|
taskqgroup_drain_all(struct taskqgroup *tqg)
|
|
{
|
|
struct gtaskqueue *q;
|
|
|
|
for (int i = 0; i < mp_ncpus; i++) {
|
|
q = tqg->tqg_queue[i].tgc_taskq;
|
|
if (q == NULL)
|
|
continue;
|
|
gtaskqueue_drain_all(q);
|
|
}
|
|
}
|