freebsd-nq/sys/contrib/dev/acpica/exprep.c
2002-03-16 02:18:13 +00:00

517 lines
19 KiB
C

/******************************************************************************
*
* Module Name: exprep - ACPI AML (p-code) execution - field prep utilities
* $Revision: 114 $
*
*****************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999 - 2002, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#define __EXPREP_C__
#include "acpi.h"
#include "acinterp.h"
#include "amlcode.h"
#include "acnamesp.h"
#include "acparser.h"
#define _COMPONENT ACPI_EXECUTER
ACPI_MODULE_NAME ("exprep")
/*******************************************************************************
*
* FUNCTION: AcpiExDecodeFieldAccess
*
* PARAMETERS: Access - Encoded field access bits
* Length - Field length.
*
* RETURN: Field granularity (8, 16, 32 or 64) and
* ByteAlignment (1, 2, 3, or 4)
*
* DESCRIPTION: Decode the AccessType bits of a field definition.
*
******************************************************************************/
static UINT32
AcpiExDecodeFieldAccess (
ACPI_OPERAND_OBJECT *ObjDesc,
UINT8 FieldFlags,
UINT32 *ReturnByteAlignment)
{
UINT32 Access;
UINT32 Length;
UINT8 ByteAlignment;
UINT8 BitLength;
ACPI_FUNCTION_NAME ("ExDecodeFieldAccess");
Access = (FieldFlags & AML_FIELD_ACCESS_TYPE_MASK);
Length = ObjDesc->CommonField.BitLength;
switch (Access)
{
case AML_FIELD_ACCESS_ANY:
ByteAlignment = 1;
BitLength = 8;
#if 0
/*
* TBD: optimize
*
* Any attempt to optimize the access size to the size of the field
* must take into consideration the length of the region and take
* care that an access to the field will not attempt to access
* beyond the end of the region.
*/
/* Use the length to set the access type */
if (Length <= 8)
{
BitLength = 8;
}
else if (Length <= 16)
{
BitLength = 16;
}
else if (Length <= 32)
{
BitLength = 32;
}
else if (Length <= 64)
{
BitLength = 64;
}
else
{
/* Larger than Qword - just use byte-size chunks */
BitLength = 8;
}
#endif
break;
case AML_FIELD_ACCESS_BYTE:
ByteAlignment = 1;
BitLength = 8;
break;
case AML_FIELD_ACCESS_WORD:
ByteAlignment = 2;
BitLength = 16;
break;
case AML_FIELD_ACCESS_DWORD:
ByteAlignment = 4;
BitLength = 32;
break;
case AML_FIELD_ACCESS_QWORD: /* ACPI 2.0 */
ByteAlignment = 8;
BitLength = 64;
break;
case AML_FIELD_ACCESS_BUFFER: /* ACPI 2.0 */
ByteAlignment = 8;
BitLength = 8;
break;
default:
/* Invalid field access type */
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"Unknown field access type %x\n",
Access));
return (0);
}
if (ObjDesc->Common.Type == ACPI_TYPE_BUFFER_FIELD)
{
/*
* BufferField access can be on any byte boundary, so the
* ByteAlignment is always 1 byte -- regardless of any ByteAlignment
* implied by the field access type.
*/
ByteAlignment = 1;
}
*ReturnByteAlignment = ByteAlignment;
return (BitLength);
}
/*******************************************************************************
*
* FUNCTION: AcpiExPrepCommonFieldObject
*
* PARAMETERS: ObjDesc - The field object
* FieldFlags - Access, LockRule, and UpdateRule.
* The format of a FieldFlag is described
* in the ACPI specification
* FieldBitPosition - Field start position
* FieldBitLength - Field length in number of bits
*
* RETURN: Status
*
* DESCRIPTION: Initialize the areas of the field object that are common
* to the various types of fields. Note: This is very "sensitive"
* code because we are solving the general case for field
* alignment.
*
******************************************************************************/
ACPI_STATUS
AcpiExPrepCommonFieldObject (
ACPI_OPERAND_OBJECT *ObjDesc,
UINT8 FieldFlags,
UINT8 FieldAttribute,
UINT32 FieldBitPosition,
UINT32 FieldBitLength)
{
UINT32 AccessBitWidth;
UINT32 ByteAlignment;
UINT32 NearestByteAddress;
ACPI_FUNCTION_TRACE ("ExPrepCommonFieldObject");
/*
* Note: the structure being initialized is the
* ACPI_COMMON_FIELD_INFO; No structure fields outside of the common
* area are initialized by this procedure.
*/
ObjDesc->CommonField.FieldFlags = FieldFlags;
ObjDesc->CommonField.Attribute = FieldAttribute;
ObjDesc->CommonField.BitLength = FieldBitLength;
/*
* Decode the access type so we can compute offsets. The access type gives
* two pieces of information - the width of each field access and the
* necessary ByteAlignment (address granularity) of the access.
*
* For AnyAcc, the AccessBitWidth is the largest width that is both necessary
* and possible in an attempt to access the whole field in one
* I/O operation. However, for AnyAcc, the ByteAlignment is always one byte.
*
* For all Buffer Fields, the ByteAlignment is always one byte.
*
* For all other access types (Byte, Word, Dword, Qword), the Bitwidth is the
* same (equivalent) as the ByteAlignment.
*/
AccessBitWidth = AcpiExDecodeFieldAccess (ObjDesc, FieldFlags, &ByteAlignment);
if (!AccessBitWidth)
{
return_ACPI_STATUS (AE_AML_OPERAND_VALUE);
}
/* Setup width (access granularity) fields */
ObjDesc->CommonField.AccessByteWidth = (UINT8) ACPI_DIV_8 (AccessBitWidth); /* 1, 2, 4, 8 */
/*
* BaseByteOffset is the address of the start of the field within the region. It is
* the byte address of the first *datum* (field-width data unit) of the field.
* (i.e., the first datum that contains at least the first *bit* of the field.)
* Note: ByteAlignment is always either equal to the AccessBitWidth or 8 (Byte access),
* and it defines the addressing granularity of the parent region or buffer.
*/
NearestByteAddress = ACPI_ROUND_BITS_DOWN_TO_BYTES (FieldBitPosition);
ObjDesc->CommonField.BaseByteOffset = ACPI_ROUND_DOWN (NearestByteAddress, ByteAlignment);
/*
* StartFieldBitOffset is the offset of the first bit of the field within a field datum.
*/
ObjDesc->CommonField.StartFieldBitOffset = (UINT8) (FieldBitPosition -
ACPI_MUL_8 (ObjDesc->CommonField.BaseByteOffset));
/*
* Valid bits -- the number of bits that compose a partial datum,
* 1) At the end of the field within the region (arbitrary starting bit offset)
* 2) At the end of a buffer used to contain the field (starting offset always zero)
*/
ObjDesc->CommonField.EndFieldValidBits = (UINT8) ((ObjDesc->CommonField.StartFieldBitOffset + FieldBitLength) %
AccessBitWidth);
ObjDesc->CommonField.EndBufferValidBits = (UINT8) (FieldBitLength % AccessBitWidth); /* StartBufferBitOffset always = 0 */
/*
* DatumValidBits is the number of valid field bits in the first field datum.
*/
ObjDesc->CommonField.DatumValidBits = (UINT8) (AccessBitWidth -
ObjDesc->CommonField.StartFieldBitOffset);
/*
* Does the entire field fit within a single field access element? (datum)
* (i.e., without crossing a datum boundary)
*/
if ((ObjDesc->CommonField.StartFieldBitOffset + FieldBitLength) <=
(UINT16) AccessBitWidth)
{
ObjDesc->Common.Flags |= AOPOBJ_SINGLE_DATUM;
}
return_ACPI_STATUS (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: AcpiExPrepFieldValue
*
* PARAMETERS: Node - Owning Node
* RegionNode - Region in which field is being defined
* FieldFlags - Access, LockRule, and UpdateRule.
* FieldBitPosition - Field start position
* FieldBitLength - Field length in number of bits
*
* RETURN: Status
*
* DESCRIPTION: Construct an ACPI_OPERAND_OBJECT of type DefField and
* connect it to the parent Node.
*
******************************************************************************/
ACPI_STATUS
AcpiExPrepFieldValue (
ACPI_CREATE_FIELD_INFO *Info)
{
ACPI_OPERAND_OBJECT *ObjDesc;
UINT32 Type;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE ("ExPrepFieldValue");
/* Parameter validation */
if (Info->FieldType != INTERNAL_TYPE_INDEX_FIELD)
{
if (!Info->RegionNode)
{
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Null RegionNode\n"));
return_ACPI_STATUS (AE_AML_NO_OPERAND);
}
Type = AcpiNsGetType (Info->RegionNode);
if (Type != ACPI_TYPE_REGION)
{
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"Needed Region, found type %X %s\n",
Type, AcpiUtGetTypeName (Type)));
return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
}
}
/* Allocate a new field object */
ObjDesc = AcpiUtCreateInternalObject (Info->FieldType);
if (!ObjDesc)
{
return_ACPI_STATUS (AE_NO_MEMORY);
}
/* Initialize areas of the object that are common to all fields */
ObjDesc->CommonField.Node = Info->FieldNode;
Status = AcpiExPrepCommonFieldObject (ObjDesc, Info->FieldFlags,
Info->Attribute, Info->FieldBitPosition, Info->FieldBitLength);
if (ACPI_FAILURE (Status))
{
AcpiUtDeleteObjectDesc (ObjDesc);
return_ACPI_STATUS (Status);
}
/* Initialize areas of the object that are specific to the field type */
switch (Info->FieldType)
{
case INTERNAL_TYPE_REGION_FIELD:
ObjDesc->Field.RegionObj = AcpiNsGetAttachedObject (Info->RegionNode);
/* An additional reference for the container */
AcpiUtAddReference (ObjDesc->Field.RegionObj);
ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
"RegionField: Bitoff=%X Off=%X Gran=%X Region %p\n",
ObjDesc->Field.StartFieldBitOffset, ObjDesc->Field.BaseByteOffset,
ObjDesc->Field.AccessByteWidth, ObjDesc->Field.RegionObj));
break;
case INTERNAL_TYPE_BANK_FIELD:
ObjDesc->BankField.Value = Info->BankValue;
ObjDesc->BankField.RegionObj = AcpiNsGetAttachedObject (Info->RegionNode);
ObjDesc->BankField.BankObj = AcpiNsGetAttachedObject (Info->RegisterNode);
/* An additional reference for the attached objects */
AcpiUtAddReference (ObjDesc->BankField.RegionObj);
AcpiUtAddReference (ObjDesc->BankField.BankObj);
ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Bank Field: BitOff=%X Off=%X Gran=%X Region %p BankReg %p\n",
ObjDesc->BankField.StartFieldBitOffset, ObjDesc->BankField.BaseByteOffset,
ObjDesc->Field.AccessByteWidth, ObjDesc->BankField.RegionObj,
ObjDesc->BankField.BankObj));
break;
case INTERNAL_TYPE_INDEX_FIELD:
ObjDesc->IndexField.IndexObj = AcpiNsGetAttachedObject (Info->RegisterNode);
ObjDesc->IndexField.DataObj = AcpiNsGetAttachedObject (Info->DataRegisterNode);
ObjDesc->IndexField.Value = (UINT32) (Info->FieldBitPosition /
ACPI_MUL_8 (ObjDesc->Field.AccessByteWidth));
if (!ObjDesc->IndexField.DataObj || !ObjDesc->IndexField.IndexObj)
{
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Null Index Object\n"));
return_ACPI_STATUS (AE_AML_INTERNAL);
}
/* An additional reference for the attached objects */
AcpiUtAddReference (ObjDesc->IndexField.DataObj);
AcpiUtAddReference (ObjDesc->IndexField.IndexObj);
ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "IndexField: bitoff=%X off=%X gran=%X Index %p Data %p\n",
ObjDesc->IndexField.StartFieldBitOffset, ObjDesc->IndexField.BaseByteOffset,
ObjDesc->Field.AccessByteWidth, ObjDesc->IndexField.IndexObj,
ObjDesc->IndexField.DataObj));
break;
}
/*
* Store the constructed descriptor (ObjDesc) into the parent Node,
* preserving the current type of that NamedObj.
*/
Status = AcpiNsAttachObject (Info->FieldNode, ObjDesc,
AcpiNsGetType (Info->FieldNode));
ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "set NamedObj %p (%4.4s) val = %p\n",
Info->FieldNode, (char *) &(Info->FieldNode->Name), ObjDesc));
/* Remove local reference to the object */
AcpiUtRemoveReference (ObjDesc);
return_ACPI_STATUS (Status);
}