freebsd-nq/lib/IR/ConstantsContext.h

635 lines
22 KiB
C++

//===-- ConstantsContext.h - Constants-related Context Interals -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various helper methods and classes used by
// LLVMContextImpl for creating and managing constants.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_IR_CONSTANTSCONTEXT_H
#define LLVM_LIB_IR_CONSTANTSCONTEXT_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <tuple>
#define DEBUG_TYPE "ir"
namespace llvm {
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class UnaryConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
: ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
Op<0>() = C;
}
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class BinaryConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags)
: ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
Op<0>() = C1;
Op<1>() = C2;
SubclassOptionalData = Flags;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class SelectConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class ExtractElementConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
ExtractElementConstantExpr(Constant *C1, Constant *C2)
: ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
Instruction::ExtractElement, &Op<0>(), 2) {
Op<0>() = C1;
Op<1>() = C2;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class InsertElementConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C1->getType(), Instruction::InsertElement,
&Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ShuffleVectorConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// shufflevector constant exprs.
class ShuffleVectorConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(VectorType::get(
cast<VectorType>(C1->getType())->getElementType(),
cast<VectorType>(C3->getType())->getNumElements()),
Instruction::ShuffleVector,
&Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ExtractValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractvalue constant exprs.
class ExtractValueConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
ExtractValueConstantExpr(Constant *Agg, ArrayRef<unsigned> IdxList,
Type *DestTy)
: ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
Indices(IdxList.begin(), IdxList.end()) {
Op<0>() = Agg;
}
/// Indices - These identify which value to extract.
const SmallVector<unsigned, 4> Indices;
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// InsertValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertvalue constant exprs.
class InsertValueConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 2);
}
InsertValueConstantExpr(Constant *Agg, Constant *Val,
ArrayRef<unsigned> IdxList, Type *DestTy)
: ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
Indices(IdxList.begin(), IdxList.end()) {
Op<0>() = Agg;
Op<1>() = Val;
}
/// Indices - These identify the position for the insertion.
const SmallVector<unsigned, 4> Indices;
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
class GetElementPtrConstantExpr : public ConstantExpr {
void anchor() override;
GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
Type *DestTy);
public:
static GetElementPtrConstantExpr *Create(Constant *C,
ArrayRef<Constant*> IdxList,
Type *DestTy,
unsigned Flags) {
GetElementPtrConstantExpr *Result =
new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
Result->SubclassOptionalData = Flags;
return Result;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
// CompareConstantExpr - This class is private to Constants.cpp, and is used
// behind the scenes to implement ICmp and FCmp constant expressions. This is
// needed in order to store the predicate value for these instructions.
class CompareConstantExpr : public ConstantExpr {
void anchor() override;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
unsigned short predicate;
CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
unsigned short pred, Constant* LHS, Constant* RHS)
: ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
Op<0>() = LHS;
Op<1>() = RHS;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
template <>
struct OperandTraits<UnaryConstantExpr> :
public FixedNumOperandTraits<UnaryConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
template <>
struct OperandTraits<BinaryConstantExpr> :
public FixedNumOperandTraits<BinaryConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
template <>
struct OperandTraits<SelectConstantExpr> :
public FixedNumOperandTraits<SelectConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
template <>
struct OperandTraits<ExtractElementConstantExpr> :
public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
template <>
struct OperandTraits<InsertElementConstantExpr> :
public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
template <>
struct OperandTraits<ShuffleVectorConstantExpr> :
public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
template <>
struct OperandTraits<ExtractValueConstantExpr> :
public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
template <>
struct OperandTraits<InsertValueConstantExpr> :
public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
template <>
struct OperandTraits<GetElementPtrConstantExpr> :
public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
template <>
struct OperandTraits<CompareConstantExpr> :
public FixedNumOperandTraits<CompareConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
template <class ConstantClass> struct ConstantAggrKeyType;
struct InlineAsmKeyType;
struct ConstantExprKeyType;
template <class ConstantClass> struct ConstantInfo;
template <> struct ConstantInfo<ConstantExpr> {
typedef ConstantExprKeyType ValType;
typedef Type TypeClass;
};
template <> struct ConstantInfo<InlineAsm> {
typedef InlineAsmKeyType ValType;
typedef PointerType TypeClass;
};
template <> struct ConstantInfo<ConstantArray> {
typedef ConstantAggrKeyType<ConstantArray> ValType;
typedef ArrayType TypeClass;
};
template <> struct ConstantInfo<ConstantStruct> {
typedef ConstantAggrKeyType<ConstantStruct> ValType;
typedef StructType TypeClass;
};
template <> struct ConstantInfo<ConstantVector> {
typedef ConstantAggrKeyType<ConstantVector> ValType;
typedef VectorType TypeClass;
};
template <class ConstantClass> struct ConstantAggrKeyType {
ArrayRef<Constant *> Operands;
ConstantAggrKeyType(ArrayRef<Constant *> Operands) : Operands(Operands) {}
ConstantAggrKeyType(ArrayRef<Constant *> Operands, const ConstantClass *)
: Operands(Operands) {}
ConstantAggrKeyType(const ConstantClass *C,
SmallVectorImpl<Constant *> &Storage) {
assert(Storage.empty() && "Expected empty storage");
for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
Storage.push_back(C->getOperand(I));
Operands = Storage;
}
bool operator==(const ConstantAggrKeyType &X) const {
return Operands == X.Operands;
}
bool operator==(const ConstantClass *C) const {
if (Operands.size() != C->getNumOperands())
return false;
for (unsigned I = 0, E = Operands.size(); I != E; ++I)
if (Operands[I] != C->getOperand(I))
return false;
return true;
}
unsigned getHash() const {
return hash_combine_range(Operands.begin(), Operands.end());
}
typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
ConstantClass *create(TypeClass *Ty) const {
return new (Operands.size()) ConstantClass(Ty, Operands);
}
};
struct InlineAsmKeyType {
StringRef AsmString;
StringRef Constraints;
bool HasSideEffects;
bool IsAlignStack;
InlineAsm::AsmDialect AsmDialect;
InlineAsmKeyType(StringRef AsmString, StringRef Constraints,
bool HasSideEffects, bool IsAlignStack,
InlineAsm::AsmDialect AsmDialect)
: AsmString(AsmString), Constraints(Constraints),
HasSideEffects(HasSideEffects), IsAlignStack(IsAlignStack),
AsmDialect(AsmDialect) {}
InlineAsmKeyType(const InlineAsm *Asm, SmallVectorImpl<Constant *> &)
: AsmString(Asm->getAsmString()), Constraints(Asm->getConstraintString()),
HasSideEffects(Asm->hasSideEffects()),
IsAlignStack(Asm->isAlignStack()), AsmDialect(Asm->getDialect()) {}
bool operator==(const InlineAsmKeyType &X) const {
return HasSideEffects == X.HasSideEffects &&
IsAlignStack == X.IsAlignStack && AsmDialect == X.AsmDialect &&
AsmString == X.AsmString && Constraints == X.Constraints;
}
bool operator==(const InlineAsm *Asm) const {
return HasSideEffects == Asm->hasSideEffects() &&
IsAlignStack == Asm->isAlignStack() &&
AsmDialect == Asm->getDialect() &&
AsmString == Asm->getAsmString() &&
Constraints == Asm->getConstraintString();
}
unsigned getHash() const {
return hash_combine(AsmString, Constraints, HasSideEffects, IsAlignStack,
AsmDialect);
}
typedef ConstantInfo<InlineAsm>::TypeClass TypeClass;
InlineAsm *create(TypeClass *Ty) const {
return new InlineAsm(Ty, AsmString, Constraints, HasSideEffects,
IsAlignStack, AsmDialect);
}
};
struct ConstantExprKeyType {
uint8_t Opcode;
uint8_t SubclassOptionalData;
uint16_t SubclassData;
ArrayRef<Constant *> Ops;
ArrayRef<unsigned> Indexes;
ConstantExprKeyType(unsigned Opcode, ArrayRef<Constant *> Ops,
unsigned short SubclassData = 0,
unsigned short SubclassOptionalData = 0,
ArrayRef<unsigned> Indexes = None)
: Opcode(Opcode), SubclassOptionalData(SubclassOptionalData),
SubclassData(SubclassData), Ops(Ops), Indexes(Indexes) {}
ConstantExprKeyType(ArrayRef<Constant *> Operands, const ConstantExpr *CE)
: Opcode(CE->getOpcode()),
SubclassOptionalData(CE->getRawSubclassOptionalData()),
SubclassData(CE->isCompare() ? CE->getPredicate() : 0), Ops(Operands),
Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {}
ConstantExprKeyType(const ConstantExpr *CE,
SmallVectorImpl<Constant *> &Storage)
: Opcode(CE->getOpcode()),
SubclassOptionalData(CE->getRawSubclassOptionalData()),
SubclassData(CE->isCompare() ? CE->getPredicate() : 0),
Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {
assert(Storage.empty() && "Expected empty storage");
for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
Storage.push_back(CE->getOperand(I));
Ops = Storage;
}
bool operator==(const ConstantExprKeyType &X) const {
return Opcode == X.Opcode && SubclassData == X.SubclassData &&
SubclassOptionalData == X.SubclassOptionalData && Ops == X.Ops &&
Indexes == X.Indexes;
}
bool operator==(const ConstantExpr *CE) const {
if (Opcode != CE->getOpcode())
return false;
if (SubclassOptionalData != CE->getRawSubclassOptionalData())
return false;
if (Ops.size() != CE->getNumOperands())
return false;
if (SubclassData != (CE->isCompare() ? CE->getPredicate() : 0))
return false;
for (unsigned I = 0, E = Ops.size(); I != E; ++I)
if (Ops[I] != CE->getOperand(I))
return false;
if (Indexes != (CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()))
return false;
return true;
}
unsigned getHash() const {
return hash_combine(Opcode, SubclassOptionalData, SubclassData,
hash_combine_range(Ops.begin(), Ops.end()),
hash_combine_range(Indexes.begin(), Indexes.end()));
}
typedef ConstantInfo<ConstantExpr>::TypeClass TypeClass;
ConstantExpr *create(TypeClass *Ty) const {
switch (Opcode) {
default:
if (Instruction::isCast(Opcode))
return new UnaryConstantExpr(Opcode, Ops[0], Ty);
if ((Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd))
return new BinaryConstantExpr(Opcode, Ops[0], Ops[1],
SubclassOptionalData);
llvm_unreachable("Invalid ConstantExpr!");
case Instruction::Select:
return new SelectConstantExpr(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return new ExtractElementConstantExpr(Ops[0], Ops[1]);
case Instruction::InsertElement:
return new InsertElementConstantExpr(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return new ShuffleVectorConstantExpr(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertValue:
return new InsertValueConstantExpr(Ops[0], Ops[1], Indexes, Ty);
case Instruction::ExtractValue:
return new ExtractValueConstantExpr(Ops[0], Indexes, Ty);
case Instruction::GetElementPtr:
return GetElementPtrConstantExpr::Create(Ops[0], Ops.slice(1), Ty,
SubclassOptionalData);
case Instruction::ICmp:
return new CompareConstantExpr(Ty, Instruction::ICmp, SubclassData,
Ops[0], Ops[1]);
case Instruction::FCmp:
return new CompareConstantExpr(Ty, Instruction::FCmp, SubclassData,
Ops[0], Ops[1]);
}
}
};
template <class ConstantClass> class ConstantUniqueMap {
public:
typedef typename ConstantInfo<ConstantClass>::ValType ValType;
typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
typedef std::pair<TypeClass *, ValType> LookupKey;
private:
struct MapInfo {
typedef DenseMapInfo<ConstantClass *> ConstantClassInfo;
static inline ConstantClass *getEmptyKey() {
return ConstantClassInfo::getEmptyKey();
}
static inline ConstantClass *getTombstoneKey() {
return ConstantClassInfo::getTombstoneKey();
}
static unsigned getHashValue(const ConstantClass *CP) {
SmallVector<Constant *, 8> Storage;
return getHashValue(LookupKey(CP->getType(), ValType(CP, Storage)));
}
static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
return LHS == RHS;
}
static unsigned getHashValue(const LookupKey &Val) {
return hash_combine(Val.first, Val.second.getHash());
}
static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
if (LHS.first != RHS->getType())
return false;
return LHS.second == RHS;
}
};
public:
typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
private:
MapTy Map;
public:
typename MapTy::iterator map_begin() { return Map.begin(); }
typename MapTy::iterator map_end() { return Map.end(); }
void freeConstants() {
for (auto &I : Map)
// Asserts that use_empty().
delete I.first;
}
private:
ConstantClass *create(TypeClass *Ty, ValType V) {
ConstantClass *Result = V.create(Ty);
assert(Result->getType() == Ty && "Type specified is not correct!");
insert(Result);
return Result;
}
public:
/// Return the specified constant from the map, creating it if necessary.
ConstantClass *getOrCreate(TypeClass *Ty, ValType V) {
LookupKey Lookup(Ty, V);
ConstantClass *Result = nullptr;
auto I = find(Lookup);
if (I == Map.end())
Result = create(Ty, V);
else
Result = I->first;
assert(Result && "Unexpected nullptr");
return Result;
}
/// Find the constant by lookup key.
typename MapTy::iterator find(LookupKey Lookup) {
return Map.find_as(Lookup);
}
/// Insert the constant into its proper slot.
void insert(ConstantClass *CP) { Map[CP] = '\0'; }
/// Remove this constant from the map
void remove(ConstantClass *CP) {
typename MapTy::iterator I = Map.find(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->first == CP && "Didn't find correct element?");
Map.erase(I);
}
ConstantClass *replaceOperandsInPlace(ArrayRef<Constant *> Operands,
ConstantClass *CP, Value *From,
Constant *To, unsigned NumUpdated = 0,
unsigned OperandNo = ~0u) {
LookupKey Lookup(CP->getType(), ValType(Operands, CP));
auto I = find(Lookup);
if (I != Map.end())
return I->first;
// Update to the new value. Optimize for the case when we have a single
// operand that we're changing, but handle bulk updates efficiently.
remove(CP);
if (NumUpdated == 1) {
assert(OperandNo < CP->getNumOperands() && "Invalid index");
assert(CP->getOperand(OperandNo) != To && "I didn't contain From!");
CP->setOperand(OperandNo, To);
} else {
for (unsigned I = 0, E = CP->getNumOperands(); I != E; ++I)
if (CP->getOperand(I) == From)
CP->setOperand(I, To);
}
insert(CP);
return nullptr;
}
void dump() const { DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); }
};
} // end namespace llvm
#endif