freebsd-nq/sys/vm/vm_pager.c
Kirk McKusick e929c00d23 The buffer queue mechanism has been reformulated. Instead of having
QUEUE_AGE, QUEUE_LRU, and QUEUE_EMPTY we instead have QUEUE_CLEAN,
QUEUE_DIRTY, QUEUE_EMPTY, and QUEUE_EMPTYKVA.  With this patch clean
and dirty buffers have been separated.  Empty buffers with KVM
assignments have been separated from truely empty buffers.  getnewbuf()
has been rewritten and now operates in a 100% optimal fashion.  That is,
it is able to find precisely the right kind of buffer it needs to
allocate a new buffer, defragment KVM, or to free-up an existing buffer
when the buffer cache is full (which is a steady-state situation for
the buffer cache).

Buffer flushing has been reorganized.  Previously buffers were flushed
in the context of whatever process hit the conditions forcing buffer
flushing to occur.  This resulted in processes blocking on conditions
unrelated to what they were doing.  This also resulted in inappropriate
VFS stacking chains due to multiple processes getting stuck trying to
flush dirty buffers or due to a single process getting into a situation
where it might attempt to flush buffers recursively - a situation that
was only partially fixed in prior commits.  We have added a new daemon
called the buf_daemon which is responsible for flushing dirty buffers
when the number of dirty buffers exceeds the vfs.hidirtybuffers limit.
This daemon attempts to dynamically adjust the rate at which dirty buffers
are flushed such that getnewbuf() calls (almost) never block.

The number of nbufs and amount of buffer space is now scaled past the
8MB limit that was previously imposed for systems with over 64MB of
memory, and the vfs.{lo,hi}dirtybuffers limits have been relaxed
somewhat.  The number of physical buffers has been increased with the
intention that we will manage physical I/O differently in the future.

reassignbuf previously attempted to keep the dirtyblkhd list sorted which
could result in non-deterministic operation under certain conditions,
such as when a large number of dirty buffers are being managed.  This
algorithm has been changed.  reassignbuf now keeps buffers locally sorted
if it can do so cheaply, and otherwise gives up and adds buffers to
the head of the dirtyblkhd list.  The new algorithm is deterministic but
not perfect.  The new algorithm greatly reduces problems that previously
occured when write_behind was turned off in the system.

The P_FLSINPROG proc->p_flag bit has been replaced by the more descriptive
P_BUFEXHAUST bit.  This bit allows processes working with filesystem
buffers to use available emergency reserves.  Normal processes do not set
this bit and are not allowed to dig into emergency reserves.  The purpose
of this bit is to avoid low-memory deadlocks.

A small race condition was fixed in getpbuf() in vm/vm_pager.c.

Submitted by:	Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by:	Kirk McKusick <mckusick@mckusick.com>
1999-07-04 00:25:38 +00:00

606 lines
14 KiB
C

/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_pager.c 8.6 (Berkeley) 1/12/94
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
* $Id: vm_pager.c,v 1.49 1999/06/27 11:44:22 peter Exp $
*/
/*
* Paging space routine stubs. Emulates a matchmaker-like interface
* for builtin pagers.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/buf.h>
#include <sys/ucred.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
MALLOC_DEFINE(M_VMPGDATA, "VM pgdata", "XXX: VM pager private data");
extern struct pagerops defaultpagerops;
extern struct pagerops swappagerops;
extern struct pagerops vnodepagerops;
extern struct pagerops devicepagerops;
int cluster_pbuf_freecnt = -1; /* unlimited to begin with */
static int dead_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
static vm_object_t dead_pager_alloc __P((void *, vm_ooffset_t, vm_prot_t,
vm_ooffset_t));
static void dead_pager_putpages __P((vm_object_t, vm_page_t *, int, int, int *));
static boolean_t dead_pager_haspage __P((vm_object_t, vm_pindex_t, int *, int *));
static void dead_pager_dealloc __P((vm_object_t));
static int
dead_pager_getpages(obj, ma, count, req)
vm_object_t obj;
vm_page_t *ma;
int count;
int req;
{
return VM_PAGER_FAIL;
}
static vm_object_t
dead_pager_alloc(handle, size, prot, off)
void *handle;
vm_ooffset_t size;
vm_prot_t prot;
vm_ooffset_t off;
{
return NULL;
}
static void
dead_pager_putpages(object, m, count, flags, rtvals)
vm_object_t object;
vm_page_t *m;
int count;
int flags;
int *rtvals;
{
int i;
for (i = 0; i < count; i++) {
rtvals[i] = VM_PAGER_AGAIN;
}
}
static int
dead_pager_haspage(object, pindex, prev, next)
vm_object_t object;
vm_pindex_t pindex;
int *prev;
int *next;
{
if (prev)
*prev = 0;
if (next)
*next = 0;
return FALSE;
}
static void
dead_pager_dealloc(object)
vm_object_t object;
{
return;
}
static struct pagerops deadpagerops = {
NULL,
dead_pager_alloc,
dead_pager_dealloc,
dead_pager_getpages,
dead_pager_putpages,
dead_pager_haspage,
NULL
};
struct pagerops *pagertab[] = {
&defaultpagerops, /* OBJT_DEFAULT */
&swappagerops, /* OBJT_SWAP */
&vnodepagerops, /* OBJT_VNODE */
&devicepagerops, /* OBJT_DEVICE */
&deadpagerops /* OBJT_DEAD */
};
int npagers = sizeof(pagertab) / sizeof(pagertab[0]);
/*
* Kernel address space for mapping pages.
* Used by pagers where KVAs are needed for IO.
*
* XXX needs to be large enough to support the number of pending async
* cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
* (MAXPHYS == 64k) if you want to get the most efficiency.
*/
#define PAGER_MAP_SIZE (8 * 1024 * 1024)
int pager_map_size = PAGER_MAP_SIZE;
vm_map_t pager_map;
static int bswneeded;
static vm_offset_t swapbkva; /* swap buffers kva */
void
vm_pager_init()
{
struct pagerops **pgops;
/*
* Initialize known pagers
*/
for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
if (pgops && ((*pgops)->pgo_init != NULL))
(*(*pgops)->pgo_init) ();
}
void
vm_pager_bufferinit()
{
struct buf *bp;
int i;
bp = swbuf;
/*
* Now set up swap and physical I/O buffer headers.
*/
for (i = 0; i < nswbuf; i++, bp++) {
TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
BUF_LOCKINIT(bp);
LIST_INIT(&bp->b_dep);
bp->b_rcred = bp->b_wcred = NOCRED;
bp->b_xflags = 0;
}
cluster_pbuf_freecnt = nswbuf / 2;
swapbkva = kmem_alloc_pageable(pager_map, nswbuf * MAXPHYS);
if (!swapbkva)
panic("Not enough pager_map VM space for physical buffers");
}
/*
* Allocate an instance of a pager of the given type.
* Size, protection and offset parameters are passed in for pagers that
* need to perform page-level validation (e.g. the device pager).
*/
vm_object_t
vm_pager_allocate(objtype_t type, void *handle, vm_ooffset_t size, vm_prot_t prot,
vm_ooffset_t off)
{
struct pagerops *ops;
ops = pagertab[type];
if (ops)
return ((*ops->pgo_alloc) (handle, size, prot, off));
return (NULL);
}
void
vm_pager_deallocate(object)
vm_object_t object;
{
(*pagertab[object->type]->pgo_dealloc) (object);
}
/*
* vm_pager_strategy:
*
* called with no specific spl
* Execute strategy routine directly to pager.
*/
void
vm_pager_strategy(vm_object_t object, struct buf *bp)
{
if (pagertab[object->type]->pgo_strategy) {
(*pagertab[object->type]->pgo_strategy)(object, bp);
} else {
bp->b_flags |= B_ERROR;
bp->b_error = ENXIO;
biodone(bp);
}
}
/*
* vm_pager_get_pages() - inline, see vm/vm_pager.h
* vm_pager_put_pages() - inline, see vm/vm_pager.h
* vm_pager_has_page() - inline, see vm/vm_pager.h
* vm_pager_page_inserted() - inline, see vm/vm_pager.h
* vm_pager_page_removed() - inline, see vm/vm_pager.h
*/
#if 0
/*
* vm_pager_sync:
*
* Called by pageout daemon before going back to sleep.
* Gives pagers a chance to clean up any completed async pageing
* operations.
*/
void
vm_pager_sync()
{
struct pagerops **pgops;
for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
if (pgops && ((*pgops)->pgo_sync != NULL))
(*(*pgops)->pgo_sync) ();
}
#endif
vm_offset_t
vm_pager_map_page(m)
vm_page_t m;
{
vm_offset_t kva;
kva = kmem_alloc_wait(pager_map, PAGE_SIZE);
pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
return (kva);
}
void
vm_pager_unmap_page(kva)
vm_offset_t kva;
{
pmap_kremove(kva);
kmem_free_wakeup(pager_map, kva, PAGE_SIZE);
}
vm_object_t
vm_pager_object_lookup(pg_list, handle)
register struct pagerlst *pg_list;
void *handle;
{
register vm_object_t object;
for (object = TAILQ_FIRST(pg_list); object != NULL; object = TAILQ_NEXT(object,pager_object_list))
if (object->handle == handle)
return (object);
return (NULL);
}
/*
* initialize a physical buffer
*/
static void
initpbuf(struct buf *bp)
{
bp->b_rcred = NOCRED;
bp->b_wcred = NOCRED;
bp->b_qindex = QUEUE_NONE;
bp->b_data = (caddr_t) (MAXPHYS * (bp - swbuf)) + swapbkva;
bp->b_kvabase = bp->b_data;
bp->b_kvasize = MAXPHYS;
bp->b_xflags = 0;
bp->b_flags = 0;
bp->b_error = 0;
BUF_LOCK(bp, LK_EXCLUSIVE);
}
/*
* allocate a physical buffer
*
* There are a limited number (nswbuf) of physical buffers. We need
* to make sure that no single subsystem is able to hog all of them,
* so each subsystem implements a counter which is typically initialized
* to 1/2 nswbuf. getpbuf() decrements this counter in allocation and
* increments it on release, and blocks if the counter hits zero. A
* subsystem may initialize the counter to -1 to disable the feature,
* but it must still be sure to match up all uses of getpbuf() with
* relpbuf() using the same variable.
*
* NOTE: pfreecnt can be NULL, but this 'feature' will be removed
* relatively soon when the rest of the subsystems get smart about it. XXX
*/
struct buf *
getpbuf(pfreecnt)
int *pfreecnt;
{
int s;
struct buf *bp;
s = splvm();
retry:
if (pfreecnt) {
while (*pfreecnt == 0) {
tsleep(pfreecnt, PVM, "wswbuf0", 0);
}
}
/* get a bp from the swap buffer header pool */
while ((bp = TAILQ_FIRST(&bswlist)) == NULL) {
bswneeded = 1;
tsleep(&bswneeded, PVM, "wswbuf1", 0);
goto retry; /* loop in case someone else grabbed one */
}
TAILQ_REMOVE(&bswlist, bp, b_freelist);
if (pfreecnt)
--*pfreecnt;
splx(s);
initpbuf(bp);
return bp;
}
/*
* allocate a physical buffer, if one is available.
*
* Note that there is no NULL hack here - all subsystems using this
* call understand how to use pfreecnt.
*/
struct buf *
trypbuf(pfreecnt)
int *pfreecnt;
{
int s;
struct buf *bp;
s = splvm();
if (*pfreecnt == 0 || (bp = TAILQ_FIRST(&bswlist)) == NULL) {
splx(s);
return NULL;
}
TAILQ_REMOVE(&bswlist, bp, b_freelist);
--*pfreecnt;
splx(s);
initpbuf(bp);
return bp;
}
/*
* release a physical buffer
*
* NOTE: pfreecnt can be NULL, but this 'feature' will be removed
* relatively soon when the rest of the subsystems get smart about it. XXX
*/
void
relpbuf(bp, pfreecnt)
struct buf *bp;
int *pfreecnt;
{
int s;
s = splvm();
if (bp->b_rcred != NOCRED) {
crfree(bp->b_rcred);
bp->b_rcred = NOCRED;
}
if (bp->b_wcred != NOCRED) {
crfree(bp->b_wcred);
bp->b_wcred = NOCRED;
}
if (bp->b_vp)
pbrelvp(bp);
BUF_UNLOCK(bp);
TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
if (bswneeded) {
bswneeded = 0;
wakeup(&bswneeded);
}
if (pfreecnt) {
if (++*pfreecnt == 1)
wakeup(pfreecnt);
}
splx(s);
}
/********************************************************
* CHAINING FUNCTIONS *
********************************************************
*
* These functions support recursion of I/O operations
* on bp's, typically by chaining one or more 'child' bp's
* to the parent. Synchronous, asynchronous, and semi-synchronous
* chaining is possible.
*/
/*
* vm_pager_chain_iodone:
*
* io completion routine for child bp. Currently we fudge a bit
* on dealing with b_resid. Since users of these routines may issue
* multiple children simultaniously, sequencing of the error can be lost.
*/
static void
vm_pager_chain_iodone(struct buf *nbp)
{
struct buf *bp;
if ((bp = nbp->b_chain.parent) != NULL) {
if (nbp->b_flags & B_ERROR) {
bp->b_flags |= B_ERROR;
bp->b_error = nbp->b_error;
} else if (nbp->b_resid != 0) {
bp->b_flags |= B_ERROR;
bp->b_error = EINVAL;
} else {
bp->b_resid -= nbp->b_bcount;
}
nbp->b_chain.parent = NULL;
--bp->b_chain.count;
if (bp->b_flags & B_WANT) {
bp->b_flags &= ~B_WANT;
wakeup(bp);
}
if (!bp->b_chain.count && (bp->b_flags & B_AUTOCHAINDONE)) {
bp->b_flags &= ~B_AUTOCHAINDONE;
if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
bp->b_flags |= B_ERROR;
bp->b_error = EINVAL;
}
biodone(bp);
}
}
nbp->b_flags |= B_DONE;
nbp->b_flags &= ~B_ASYNC;
relpbuf(nbp, NULL);
}
/*
* getchainbuf:
*
* Obtain a physical buffer and chain it to its parent buffer. When
* I/O completes, the parent buffer will be B_SIGNAL'd. Errors are
* automatically propogated to the parent
*
* Since these are brand new buffers, we do not have to clear B_INVAL
* and B_ERROR because they are already clear.
*/
struct buf *
getchainbuf(struct buf *bp, struct vnode *vp, int flags)
{
struct buf *nbp = getpbuf(NULL);
nbp->b_chain.parent = bp;
++bp->b_chain.count;
if (bp->b_chain.count > 4)
waitchainbuf(bp, 4, 0);
nbp->b_flags = B_CALL | (bp->b_flags & B_ORDERED) | flags;
nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
nbp->b_iodone = vm_pager_chain_iodone;
crhold(nbp->b_rcred);
crhold(nbp->b_wcred);
if (vp)
pbgetvp(vp, nbp);
return(nbp);
}
void
flushchainbuf(struct buf *nbp)
{
if (nbp->b_bcount) {
nbp->b_bufsize = nbp->b_bcount;
if ((nbp->b_flags & B_READ) == 0)
nbp->b_dirtyend = nbp->b_bcount;
VOP_STRATEGY(nbp->b_vp, nbp);
} else {
biodone(nbp);
}
}
void
waitchainbuf(struct buf *bp, int count, int done)
{
int s;
s = splbio();
while (bp->b_chain.count > count) {
bp->b_flags |= B_WANT;
tsleep(bp, PRIBIO + 4, "bpchain", 0);
}
if (done) {
if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
bp->b_flags |= B_ERROR;
bp->b_error = EINVAL;
}
biodone(bp);
}
splx(s);
}
void
autochaindone(struct buf *bp)
{
int s;
s = splbio();
if (bp->b_chain.count == 0)
biodone(bp);
else
bp->b_flags |= B_AUTOCHAINDONE;
splx(s);
}